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Spectral theory on 3-dimensional hyperbolic space
and Hermitian modular forms
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Abstract. We study some arithmetics of Hermitian modular forms of degree two by apply-
ing the spectral theory on 3-dimensional hyperbolic space. This paper presents three main
results: (1) a 3-dimensional analogue of Katok—Sarnak’s correspondence, (2) an analytic
proof of a Hermitian analogue of the Saito—Kurokawa lift by means of a converse theorem,
(3) an explicit formula for the Fourier coefficients of a certain Hermitian Eisenstein series.
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1 Introduction

In [17], Imai discovered how one can apply the spectral theory on the upper half-
plane to Siegel modular forms of degree two. The purpose of this paper is to gen-
eralize this method to Hermitian modular forms with actual applications. More
precisely, we present three main results:

(1) a 3-dimensional analogue of Katok—Sarnak’s correspondence,

(2) an analytic proof of a Hermitian analogue of the Saito—Kurokawa lift by means
of a converse theorem,

(3) an explicit formula for the Fourier coefficients of a certain Hermitian Eisen-
stein series.

Our main object is to study a unimodular invariant Fourier series F(Z) on the
Hermitian upper half-space Hy = {Z € M>(C) : (Z —*Z)/(2i) > O3} of de-
gree 2. For Z € H,, the hermitian imaginary part Y = (Z —?Z)/(2i) belongs
to the set &, of all 2 by 2 positive definite hermitian matrices. The set &, is
parametrized by determinant and 3-dimensional hyperbolic space H?3. In view of
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this fact combined with the unimodular invariance, we can study F(iY') as a func-
tion on SL,(O) \ H3 by means of the spectral decomposition. Here @ is the ring
of integers of an imaginary quadratic field. Moreover, some properties of F(iY)
are also hold for F(Z) by the principle of analytic continuation. Accordingly, the
spectral decomposition of F(iY) turns out to be useful in order to study F(Z).

Similarly to the Siegel modular case, a certain integral formula describes the
spectral coefficients by the associated Dirichlet series, now called the Koecher—
Maass series. Duke-Imamoglu [9] observed that the Koecher—Maass series is the
Rankin—Selberg convolution of modular forms, whenever the Fourier coefficients
of F(Z) satisfy a Maass relation. This fact is important in actual applications. In
this point, the key result is Katok—Sarnak’s correspondence for Maass forms on
the upper half-plane [9, 19]. Our first purpose is to give a precise analogue of this
correspondence for automorphic functions on H?.

Let K = Q(i) be the Gaussian number field, @ = Z[i] the ring of all inte-
gers, D! = (2i)710 the inverse different and yx = (=%) the Kronecker sym-
bol of K. Let H3> = {P =z +rj : z € C, r > 0} be 3-dimensional hyperbolic
space. An automorphic function on H?3 for SL,(0) is an eigenfunction of the

Laplacian
02 92 92 0
Y B T T R
A=r (8x2 + dy?2 + 8r2) "or

which is, in addition, invariant with respect to SL, () and is of polynomial growth
as r — 00. Denote by

Lo={T=(4}):adez ben™|

the set of all half-integral hermitian matrices of size two and by L;’ =L,NP
the set of all half-integral positive definite hermitian matrices of size two. The
group SL;(0) acts on each set by T — [U]T = UT'U. To any positive definite
T = (% 2) € L;, we associate the point

Pr =b/d + (VdetT/d)j € H>.

ab

While to any indefinite T = ( b d ) € Ly, we associate the geodesic hyperplane

St ={P =z+rjeH?:a+bz+bz+d(z]*>+r? =0}

Moreover, we denote by E(T) = {U € SL,(0O) : [U]T = T} the unit group of T'.
Recall that Pjy17 = oPr and S[jg)7 = oSt for 0 € SL2(C) ([11, Propositions
1.2 and 1.4, p. 409]). The following is a 3-dimensional analogue of Katok—Sarnak
[19] and Duke-Imamoglu [9]. See also [27], [29] and [33].
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Theorem 1.1. Let U(P) be any spectral eigenfunction on H3 such that —AU =
(1 = u?)U with some complex number (. In the case of cusp eigenfunctions, there
exists a real analytic cusp form p(t)on Hy = {t = u +iv : v > 0} of weight —1,
character yg for T'g(4), namely

o(yt) = yx(d)lct +d|(ct +d) (), vy =(2})eTo@),

such that the Fourier expansion

0(1) = > bul)W_ @2, w2 (4|l v)e®™

0#£leZ
satisfies
by(l) =171 > U(PT)/HE(T) for 1 >0,
TeSL2(O\LT, 4det T=I
| (1.1)
by() = —|II! / U(P)do for |l <0,
4 2! 2 E(T)\87

TeSL2(O)\L>, 4detT=I

where do is hyperbolic measure on 81 (given explicitly in [13,27]) and Wy g(v)
is the usual Whittaker function. In the case of non-cusp eigenfunctions, there exists
a real analytic Eisenstein series ¢(t) of weight —1, character yg with respect to
I'o(4) whose Fourier coefficients are given by the same formulas for | such that all
of T € Ly with 4detT =1 are not zero-forms. Moreover ¢(t) satisfies the plus
condition, that is, if yx(I) = 1, then by, (I) = 0 for any integer [.

As discovered by Duke—-Imamoglu [9] in the Siegel modular case, this allows
us to analyze each spectral coefficient of F(iY) by the Rankin—Selberg method.
We can reprove a Hermitian analogue of Saito—Kurokawa lift by means of a con-
verse theorem. This lifting was discovered by Kojima [21] and generalized by
Krieg [23].

Suppose that a natural number & is divisible by 4. Take a cusp form g(t) of
weight k — 1, character yx for ['g(4) belonging to the plus space in the sense of
Kojima [21], that is

gy = Y e e S ((To(). xx) (teH).  (1.2)
I>1, xx (1)#1

Puta*(/) = c(l)/(xx (—!) + 1) and define a function on H, by

FZ)= Y ( > dk_la*((4detT)/dz))ez’”“(TZ), (1.3)

TeLy dle(T)

where e(T) = max{g e N :¢7'T ¢ L;}.
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We denote by I', the full Hermitian modular group
Do ={y e My(0):'7Iy =T}, J=(P732) (1.4)
where O is the zero matrix and /5 is the identity matrix of size 2.

Theorem 1.2. The function F(Z) is a modular form of weight k for T'5.

Another example is an application to Hermitian Eisenstein series. Theorem 1.1
makes it possible to determine every spectral coefficients of the non-degenerate
part of a certain Hermitian Eisenstein series defined below. Using Maass lift, we
can construct a Hermitian modular form with the same spectral coefficients. Con-
sequently, the Hermitian Eisenstein series coincides with this image of the Maass
lift. This fact implies an explicit form of the Fourier coefficients of the Hermitian
Eisenstein series.

Suppose that k > 4 is even and N is a natural number. Let @ be a character
on O* such that w(i) = i 7% and ¥ a character on (Z/N Z)* such that ¥ (—1) =
(=1)¥ = 1. Then put p(ed) = w(e)y(d) for e € O*,d € (Z/NZ)*. Denote by
I'; the full Hermitian modular group (1.4) and put

F(()z)(N) ={y=(88)eTln:C =0, (mod NO)},
Fg):{}/GF22C:02}.

A Hermitian Fisenstein series of weight k, degree two and character p for
Féz) (N) is then defined by

EN(Z) = 3 B(det D)det(CZ + D)%, Z € H,.
(& B)errg @)

It has a Fourier expansion indexed by positive semi-definite 7 € L,. If N =1,
some explicit forms of the Fourier coefficients are obtained by Krieg [23] and
Nagaoka [35,36]. In fact, we will use their formula to obtain the following theorem
for N > 1.

For any Dirichlet character y mod M, we put

M
i (x) =Y x(r)e?™ M.

r=1

Theorem 1.3. Suppose that N > 1 is a square-free odd natural number and the
above V is a primitive Dirichlet character mod N. The T -th Fourier coefficient
of the Hermitian Eisenstein series for any positive definite T € LT = Ly N P, is
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given by

(—2miYF ey ()

@)y _ 2T NIV
AT E ) = NKT (k)L (k. V)

D Y @d e ((4det T)/d?),
dle(T)
where T'(s) is the gamma function, L(s, ) is the Dirichlet L-function of v,
e(T)=max{g e N: ¢ 'T € L;’}

and e%o (t) has the form

227k k-1 s Vo gtk —1)

O WD Lk 1D
x [I wngek-0 ] ¢ o.
odd prime p prime p|N
- 2—k\lp+1
vpur(tk=1) = 1(?()(?2119”)(&/]/)21]9))1922" forp#2
e for 1 =0,
yk=1)= {1 + ok (—1/22) (@227 for 1 =1,
*0 o lp+1 .
Coop) = wp<4)%mmlﬂ“wpa/plﬂ)p’ﬁrp(wp).

Here, for any prime q, we denote by l, the non-negative integer such that qlq is
the exact power of q dividing t, Y, are the primitive Dirichlet characters mod p

so that
v= 1 v v,= 1[I Ve

prime p|N prime q|(N/ p)

This paper is organized as follows. We prove Theorem 1.1 in Section 2.1, and
explain a relation between the form ¢(t) in Theorem 1.1 and a vector valued
modular form on SL,(Z) in Section 2.2. Section 3.1 gives some basic facts on
Hermitian Jacobi forms. In Section 3.2, we introduce Hermitian Jacobi Eisenstein
series and compute their Fourier coefficients. Some basic facts on Hermitian mod-
ular forms and a relation with automorphic functions on 3-dimensional hyperbolic
space are given in Section 4. Section 5 gives some analytic preparation. Theo-
rem 1.3 is proved in Section 6 and Theorem 1.2 is proved in Section 7. These are
done by studying the associated Koecher—Maass series.

In view of the Siegel modular case (see [3,8,9,17,34]) and the present Hermitian
modular case, it seems to be interesting to study modular forms on O(2,n + 1) by
using the spectral theory on n-dimensional hyperbolic space. See also [28].
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2 Katok-Sarnak type correspondence

We refer to [11] as a basic reference for automorphic functions on 3-dimensional
hyperbolic space. A useful summary is also given in [40]. Let

H*={P=z+4rj:z€C,r>0}
be 3-dimensional hyperbolic space. The action of g = (? 3) € SL,(C) on
P=z+rjeH?
is given by (see [11, p. 3])

_ (az+b)(cz +d) +acr? N r .
T ez dPE + |2 ez +dP2 + |c]zr2”

An automorphic function on H? for SL() is any function U(P) on H? sat-
isfying the following three conditions ([11, Definition 3.5, p. 108]).

(G-i) U(yP) = U(P) forall y € SL,(0).
(G-ii) U(P) is a C2-function on H3 with respect to x, y, r, where
P=x+yi+rjeH.
It satisfies a differential equation —AU = AU with some A € C, where
A—i’z(ﬁ—l-ﬁ—kﬁ)—ri
- dx2 dy2 or2 ar*
(G-iii) U(P) is of polynomial growth as r tends to co.
If U(P) is a cusp eigenfunction such that A = 1 — u? in (G-ii), then U(P)

possesses a Fourier expansion ([11, Theorem 3.1, p. 105])

U +rj)= Y birKuQr|Alr)e(R(Az)). 2.1)
0#A€0@

Here e(x) = 2™’ and Kj is the usual K-Bessel function. On the other hand,
there is an Eisenstein series E (P, t) defined by

1 - 1+t
E(P,t) = - , N 1,
(P.1) 4 Z (|cz+d|2+|c|2r2) 0) >

c,del®
(c,d)=0

where (c, d) is a fractional ideal generated by ¢, d. It has a Fourier expansion of
the form (see [11, Definition 1.1, p. 359, (2.21), p. 370])

EG+rjin)=r""+¢0r'™ + > e2(00rK,Qr|AlreM(Rz)). (2.2)
0£AEO
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where

_ w0 - t R
P(t) = TRET $a(1) = I(1+ 1)k (1 +t)M| (w%:x) .

Here {k (¢) is the Dedekind zeta function of K. The Eisenstein series £ (P, t) has
a meromorphic continuation to the whole complex 7-plane and it is holomorphic
for N(¢) > 0 except for a simple pole at t = 1 ([11, Theorem 3.8, p. 377]). See
also (5.11) in Section 5.4.

2.1 Proof of Theorem 1.1

We prove Theorem 1.1 in this section. In order to describe the spectral decomposi-
tion of LZ(SL,(0) \ H?), we need the constant function Ug(P) = 7//2Lx (2),
an orthonormal system of cusp eigenfunctions U, (P) (see [11, Proposition 2.2,
p. 245, Corollary 3.4, p. 107]) and the Eisenstein series E(P,it), wheret € R. We
call any one of them by the spectral eigenfunction in this paper.

If U(P) is a spectral cusp eigenfunction, Theorem 1.1 follows from [27]. In
fact, in [27, Corollary 1.1, p. 485], we take a quadratic form Q of signature (1, 3)
and level 4 by

S O O N
S = O O
- O O O

S O DO

Note that, if we put
r="'(a,d,b1,bs) € Z* forT = (% )eL2

with b = %(bl +byi) € D1 then4det T = vy Qur. The Siegel theta function
used there is

O P)=v Y e((ddetT)u+iv[P.T)), T = u+iv € H\. P =z+rj € H?,
TeL,
where [P, T] = 2(tr(W~1T))? — 4det T with
2 2y,.—1 —1
W:<(|Z| + r)r zrl)‘

zr—1 r-

The theta lifting is defined for any spectral cusp eigenfunction U(P) by

UO (1) = /‘M(P)@(r P)dmydr
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where ¥ is the fundamental domain of H3 with respect to SL, (). By [27, Corol-
lary 1.1, p. 485],
o(1) = 4n12U8 (1)

is a desired Maass form for U(P). See also [29], where theta lifting including the
case of non-cusp eigenfunctions is discussed. If [ satisfies 4detT # [ for all T,
then the /-th Fourier coefficient of ¢(7) = 47~ 1/2U®(z) does not appear by the
construction.

On the other hand, for the Eisenstein series £ (P, t) (and the constant function),

o(r) = 4_1v_1/2F(r, t)

(and its residue at = 1) is a desired Maass form. Here, F(z,t) is the Eisenstein
series defined by (see [33, Section 2])

[(1/2)(1)
@m) D20t + 1, yx)

x V12T YA E_(47,1/2 + 1: yo0, XK)
4 (21')_1E—1(Tvt/2 + L Xk, x0)}s

where yg is the principal character, yx = (=%) is the Kronecker symbol of K and
E_i(z,t; x,¥) is the Eisenstein series (see [30, p. 274])

(mt +n)
|mt + n|?t’

F(r,t) =

Eo(nt;x9)= Y.  xmy®»)
(m,n)#(0,0)
In fact, the case [ > 0 follows from [33, Theorem 5, p. 902]. In the case of / < 0,
the integral of E(P,t) over E(T) \ St is the zeta function of representation num-
bers of binary hermitian forms, if T is not a zero-form ([13, Satz 2.26, p. 19]). In
view of [32, Theorem 4, p. 169], their average over all

(T € SLy(O)\ Ly : 4detT = [}

teC, Nr>3/2.

is just a sum of divisor functions and it is proportional to the /-th Fourier coeffi-
cient of 471 v_l/zF(t, t) (see the proof of [33, Theorem 5], [13, Korollar 2.27 and
Satz 2.28, p. 22]). This completes the proof of Theorem 1.1. o

2.2 Plus condition and vector valued modular forms

For the later use, we associate to ¢(t) constructed in Theorem 1.1 a vector valued
modular form on SL,(Z). Put f(r) = v}/2¢(7). Fora € D! and

f(@) =v"ex) =Y B, v)e(lu),

leZ
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put
—2i

T (AN @) B(l.v/4e(lu/4). ©=u+iv, (23

et a4(—4N (@) lE—4N(0lZ) (mod 4) (veur®. e =t iv. @9

and

(), z,w) = Z fu(D)0a(z,z,w), (1.z,w) € Hy x C2,

aeD /0
Here a4(l) = yx(—!) + 1 and 04(z, z, w) is the theta function

bulr.zw) = Y. VOl 24
Bea+0O

where g = ¢27iBT, £ = 2oz ¥ = p2miow
Fix a representatives of D=1/ by
a1 =0, a,=1/2, az=1i/2, as=(1+1i)/2.
A column vector
@J(T,Z, w) = t(Hal(r,Z,w), ceny Ogy(t, 2, w))
of the theta functions satisfies the transformation formula

(ct+d) te2miczw/ettd ) (yr 2 /(ct+d), w/(ct+d)) = U(y)®’ (v.z, w)

(2.5)
forall y = (‘C‘ 2 ) € SL,(Z), where U(y) is a certain unitary matrix of size 4. See
[23, Lemma, p. 669].

Proposition 2.1. The vector (fo, (7). ..., fu, (7)) associate to ¢(z) by (2.3) satis-
fies
(fa, (7). s faa (0) = (foy (¥ 7). ... Jag (YO (eT + d)U(y)

forall y = (? 3) € SL,(Z), where U(y) is the unitary matrix in (2.5). This im-
plies

e 2miczw/(Ct+ D (y(yr z/(ct + d),w/(ct +d) = 1(f)(t.z,w) (2.6)
forally = (% 5) e SLy(Z).

Proof. We follow [23, Section 6] treating holomorphic modular forms. The oper-
ators Uy, V4 are defined by

glUa= > gla(s)). glaVa=gl1Usl-10a. Q4= (7).
Jj  (mod 4)
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where g|_1M = (det M)™1/2(ct + d)g(M7) for M = (¢ 5). First of all, we
shall prove (cf. [23, Proposition, p. 671])

fl=1Va = (20) f. (2.7
In fact this can be shown as follows. By definition,

_ 4j —1

Jj  (mod 4)
Decompose as
fleaVa=fT+f".

Here we denote by f T the sum over the terms indexed by even j and by f~ that

of odd j. The identity (16 o ) (i (12_]1)/4)( )for odd j implies
fr@=2i Y} k) Y Bl.ve(lu).

r=1,3 I=r (mod 4)

The identity ( )( (1) 1{2) ( 1:? 21]2_{_21 )(‘1‘/6 _01 ) for even j gives

frae+1/2) = [T .
Puth = f|_1Vs— (2i) f and F(z) = 2Y/2h(x/2). Then

Fl_18, = h, m=(109), (2.8)
hl—1y = xx(dh,  y=(L5)eTo4). (2.9)
F|_iT = F, T=(31). (2.10)

Here we used the plus condition by, (/) = 0 for yx (/) = 1 to prove (2.10).

For any y = ( i d) € I'p(4), the modularity (2.9) combined with
Sar83t = (5.%7)
implies
Fl1(£20) = yx(d)F. @11)
By (2.10) and (2.11) witha =d = 1,b = 0, ¢ = 1, we have
Flayn=F, yn=T}9)T. (2.12)

On the other hand, since y; = (3 %), the identity (2.11) witha =d =3,b =2
and ¢ = 1 implies F|_1y; = —F. This combined with (2.12) implies F = 0 and
h = 0. This completes the proof of (2.7).

Itis easy tosee [ =i geqy-1/0 fpl-104 and fp|- T/ = e(— JNB)) fp-
Thus the identity 84( ) = 4T/ combined with these two equations implies

fla(Bi)y =i D e=jNB)fp. (2.13)

BeD1/0
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For o € D! and each natural number p dividing 4, put cg = {4ias(—4N ()} !
and set

= Y e N@ (5.

r (mod 4), (r,4)=u
In case u = 1, the identity (4 ') = (5 %) (3§ 3) for r = +1 combined with
(2.13) yields

D =(ai) Y Y e N @) —3rN(B) k(=3 f3

BeD-1/0 r=%1

=(=2¢ca) D, Axx@N @)+ 1x(4N(B))e(@B + Ba) fp.

BeD1/0O
Incase u = 2, weuse f = (2i)~! f|_1 V4 and
i 2j—1 b, —id;
(160G ) =475 )G,

where b;, d; are integers such that (2j — 1)d; — 8b; = 1. Then it follows from
(2.13) that

3
£9 = (cq/2) Z Z 1k (dj)eQN (@) + jd; N (B)) fp

BeD-1/0 j=0
= (“2ca)e(@(l = i)/2+ a1 +1)/2) figi.

In case pu = 4, (2.7) implies fa® = (ica/2) f1-1Us = (~2¢4) fo.
Because fy = cq Zj (mod 4) €(N (@) ]) f1-1 ((1) i), we conclude that

(M) B =
Jul1(39) = D0 L =5 ) e@B+pD s (2.14)
n=12,4 BeD1/0O
Proposition 2.1 follows from this and fg|-17 = e(—=N(B)) fg (cf. [37, proof of
Theorem 4]). O

3 Hermitian Jacobi forms

3.1 Basic facts

In this section we recall some basic facts on Hermitian Jacobi forms. We refer to
[14,23,37] for more details. Let H; = {t = u + iv : v > 0} be the upper half-

plane. The action of SL(R) on Hy is denoted by (4 5 )t = Z:is Put

U1,1) ={eM : e € S!, M € SL,(R)}.
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For integers k and m, there is an action of the Jacobi group U(1,1) x (C? x S1)
for functions ¢ on H; x C? given by

—c(z+ At + W + At + W)
ct+d

BlimE(r. 2. ) = e F(cr + d)—kem(

+ NA)T + Az +Aw)

w5 (Mo e(z+kr—|—/¢L)’e(w—|—)Lr+/L) ’
ct+d ct+d

where § = (€(25). (A, p).s) € U(1,1) x (C? x S1), (r,z,w) € Hy x C? and
em(x) — e2nimx.

Let k,m and N be natural numbers. We suppose that k > 2 and N is a square-
free odd natural number. Denote by Fél) (N) the congruence subgroup

TNy = {e(28) e € 0%, (95) € SLa(Z),c =0 (mod N)}.

Let  be a character on @ such that (i) = i = and v a character on (Z /N Z)*
such that ¥ (—1) = (=1)*. Put

p(ed) = w(€)y(d)

fore € O*,d € (Z/NZ)>< Then p(e( )) = p(ed) is a character on F(l)(N)
We denote by Jk, m(l"( (N), p) the space con51st1ng of all holomorphic functions
¢ on Hy x C? satisfying the following two conditions.

= p(y)¢ forall € = (y. (A, ) € T7 = T§V (V) x O,

(J-ii) For each M € S1,(Z), the function ¢|i_,, M has a Fourier expansion of
the form

PemMr.zw)y = Y eymo)g"¥E. G0

neZ,aeD!
nm—vN (¢)>0

where ¢ = 27T (¥ = o2mi¥Z & = @27MIOW and p is a natural number
depending on M.

If m = 1, then cps (n, o) depends only on @ (mod @) and 1)) = 4(n—v N (ax))
as a consequence of the invariance of ¢|x , M with respect to O2. Moreover if v
is odd, the action of € € O and (J-i) imply that cps (1, ) depends only on ¢, (cf.
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[37, Lemma 1, p. 303]). Using the theta functions (2.4), we have a theta expansion
of (3.1) such as

PleaMTzw)= Y fa(®)ba(r,z,w),

acD1/0
where
fa(T) = > emDg" . e (1)) = cm(n. ).
[>0
lE—v4eN(§) (mod 4)

In the case of the cusp oo (M = I, v = 11in (3.1)), one has

$(r.z,w) = 3 c()gU TN @ 3reeg

[>0,0eD™!
=—4N(a) (mod 4)

The condition (J-1) combined with (2.5) shows that the coefficient functions in the
theta expansion behave like a vector valued modular form on

To(N) ={(95) eSLy(Z):c =0 (mod N)},
that is

Y(d) Sy () faa) = Sy G0 Sy et +d)TFU@)  (32)

forally = (¢ %) € To(N), where

Ja(0) = > c(hg'*.
>0
[=—4N(x) (mod 4)

By [23, Lemma (i), p. 669], we know fy (7) € My_1(I'(4N)). Accordingly, one
has
ey =00%32) forl > 1.

3.2 Hermitian Jacobi Eisenstein series

In this section, we compute some Fourier developments of Hermitian Jacobi Eisen-
stein series on I'Y = F(()l)(N ) x 92 associated with the cusps 0 and co. With the
previous notation, suppose that N > 1 is square-free odd, k > 4 even and ¥ is
primitive.
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For G C Fél)(l) X 02, put Goo = {(e((l) 1 ), (0, u)) € G}. For any cusp « of
I'o(N), take g € SL,(Z) such that g(co) = k. The Hermitian Jacobi Eisenstein
series of weight k and index 1 associated with « is defined by

Ef, (r.z.w) = > p(& ') kY-

ye(gl’/ g7 Doo\gl’

One easily has
E f, 1,p

k,ly = E(Y)Ez’l,p

forally e T/,

The Fourier coefficients of E g’l, for k € {00, 0} can be computed in the same
way as in [36, Theorem 2.1, p. 22]. See also the proof of Proposition 3.2 given
later. Here we choose g = I (resp. g = (_01 (1))) for k = oo (resp. k = 0) so that

g(o0) = k.

Proposition 3.1. For k € {00, 0}, the Fourier development of Ej_ | o is given by

Ef 1 (T, 2,w) = S,0000(7, 2, w) + > el (1)gU TN @ aears
t>0,aeD!

=—4N(a) (mod 4)

where

eX(t) = aat® 2By () [ C32,(0. (1) = arav (D" 2By ().
prime p|N

Here ay 4 = 22~k gk=1i=kp(k — 1)~ and 8i,; is Kronecker’s delta,

Jk—1
By =2 E =D k-,

L(k a 1’ XKW) odd prime p

where yg 4 (t,k — 1) and Cifp(t) are as in Theorem 1.3, |

Since N is square-free, {oco,0} [ J{1/p: 1 <u < N, | N} is a set of repre-
sentatives of non-equivalent cusps of I'g(N). We define elements in SL,(Z) by

oo =1l 00=(97%") ou=(ungu) (3.3)

where integers « and § are chosen so that N§/u — ap = 1. These transform oo
to each cusps. For the cusp «, we will also use symbols o instead of (3.3) without
any confusion.
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Proposition 3.2. The following statements hold:

(1) The Fourier development of E? |k, 100 is given by

k,1,p
E]((),l,plk,lo—o(-[v z, w)
= fo(t.z.w) + > af(N1)g HAN NN g
t>0,0eD™!
t=—4NN(a) (mod 4)
where
0 _ k—2p
ad(N1) = g4 xx (N)* 2By (N1) ‘Hw C2 (1), (3.4)
prime p

Here the notation is the same as in Proposition 3.1.

(2) Fork =1/pwithl <pu <N, | N, the coefficient functions HJ (v) of the
theta expansion

E](()’l,plk,lak(‘[’Z’w) = Z H(;C(T)Ha(tvzﬁw) (35)
aeD/0

are of rapid decay as It tends to oo.

Proof. We prove only (1) here, since the proof of (2) is similar. By definition, we
have

0
Ef 1 pliea00(T. 2, w)

=t *e(—zw/1)EQ | (—1/7.2/T.w/7)

=6o(t,z,w) + Z M

PAY 4
d>0,ceZ (d‘L' C)
(¢,Nd)=1
bt —aN Az + Aw dzw
A - .
x%ge(ﬂ( ) dt—c + dt—c dr—c)

Denote the sum over c,d, A by B(t,z,w). In the same manner as in [36, Sec-
tion 2.2], we get
B(Ntzow)= Y N T4 - NN (@)

neZ,aeD!
n—NN(a)>0

xY ¢ Y(d)encdQ)G LS, (3.6)
cx1 de(Z/cNZ)>
A€0/cO

where 0(1) = NN(A) + NT (@A) +n, (L) = AL, T(A) = A + A.
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If ¢ = a[lyime piv P¢- (@, N) = 1is afactorization of ¢, the Chinese Remain-
der Theorem tells us that the (n, «)-th coefficient in (3.6) is equal to

e aN A = NN @)Y 2Bua [ Cuap 3.7)
prime p|N
where
Biog=) V¥@a™* > eld0(),
a>1 deZ/alZ,(d,a)=1
A€0 /a0
k—2 = k - (3.8)
Crop =P 2D _VF(pOP™ > Yp(d)epe(dQ (V).
ex>1 de(Z/peZ)*
A€0/p¢0O

Following [36, Section 2.3.1], one has
Bn,a = BE(N[(N))

with () = 4(n — NN ()).

In order to simplify Cp 4, p, choose an integer g so that 4g =1 (mod p¢).
Since p is odd and 2ia € O, it follows from Q(1) = NgN (2iA + 2i@) + gt(n)
(mod p®) that the inner double sum in (3.8) is

P Y. Up@epeldgin) Y epem1(d(N/p)gN (). (3.9)

de(Z/ peZ)* A€0/pe—10

We now claim that, for any odd prime p and e > 1, one has

S eyt g N @) = (x(p)p)T!
A€O®/pet1O

where d is any integer relatively prime to p and g is any integer such that 4g = 1
(mod p¢T1). Indeed, the left-hand side can be written as

e
Z Z r((97pe+1’_plAl)epe+1(dgplA1)+r((97pe+17_pe+1)»
I=0 Ave(Z/pe—'+12Z)>

where

r0,k,A) =82 € O9/kO : N(A) = —-A (mod k)}.
This equals (yx (p)p)¢™! by the formulas in [10, Propositions 2.6, 2.7].
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Applying this result to the inner sum in (3.9), we have

Crap = Vp(4)p*~ lzwfk(”l)ﬂ k(PN ) Up(d)epe(dr). (3.10)

ex1 7 de(Z/pe )"

Let e > 1 and p’ be the exact power of p dividing ¢. The inner sum in (3.10)
is equal to Y, (¢/ p™) p™ 1y (Yp) if e = m + 1, and O otherwise (cf. [34, proof of
Proposition 4, p. 843]). This completes the proof of Proposition 3.2 (1). o

4 Hermitian modular forms

4.1 Basic facts

LetU(2.2) = {M = (4 B) € My(C) : 'MJIM = J} with J = (> 752). This
group acts on the Hermitian upper half-space

Hy ={Z € M5(C) : (Z-"2Z)/(2i) > O3}

by
(48)Z=(AZ+ B)(CZ+ D).

Let K = Q(i) be the Gaussian number field of discriminant —4. Let @ = Z[i] be
the ring of integers in K and D! = (2i)~1 0 the inverse different. We denote by
I, = U(2,2) N M4(0O) the full Hermitian modular group of degree two. For any
natural number N, the congruence subgroup F (N ) is defined to be

TPWN)={y=(48)eTC=0, (mod NO)}.

Using p as in Sectlon 3, we define a character on F( )(N) by p(y) = p(det D)
fory=(45)¢ (N) Note here that det D € Z UiZ for (4 B) eT,. In
fact, by the proof of [39, Lemma 1.1, p. 421] combined with [7, Theorem I, p. 143],
we can deduce that € det D € Z with some € € @™ (cf. [20, Remark 2.1]).

For an even natural number k, denote by M, (F(gz) (N), p) the space of all holo-
morphic functions f(Z) on H, which satisfy

f(4Z) = p(y)det(CZ + DY f(Z), y=(48)eTP(N).

Since k is even, the condition (A4’) in [24, p. 92] holds, namely the character p is
trivial on the principal congruence subgroup of level N.

Any f € My (F(()z)(N ), p) has a Fourier expansion

f(Z)="3Y AT [e(TZ)),

TelL>>0
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where the sum is extended over all half-integral positive semi-definite hermitian
matrices of size two. There exists a constant C such that

|A(T, f)| < C(detT)*

for all positive definite matrices 7 € L; . See [24, Theorem 3.1, p. 93], the proofs
of [24, Lemma 1.9, p. 80] and [1, Theorem 2.3.4, p. 70].

4.2 Relation with 3-dimensional hyperbolic space

For any Z € H,, the hermitian imaginary part Y = (Z —?Z)/(2i) is a positive
definite hermitian matrix of size two. Denote by J, the set of all positive definite
hermitian matrices of size two and by &, the determinant one part of 5. We
identify 8, with 3-dimensional hyperbolic space H3 by ([11, Definition 1.1,
p. 408])

W= (|z|2 + 1”2)1’_1 zr~1
- zZr- r

1 _1) — Py =z +4rj. 4.1)

Any automorphic function U(P) on H3 gives a function on &P, by setting
U(Y) = U(Py), where Py corresponds to (det Y)~!/2Y . In other words, Y € P,
is identified with Py € H?3 by

Y
Y:(;_l b)—)Pyzb JdetY |

d at a7

Put moreover ﬂ(Y) = U(Y ). Recall that ([11, Proposition 1.2, p. 409])
Pis)y = oPy forY € 5, 0 € SL(C).

4.3 Maass lift

As in [23,37], the Maass lift M from the space Ji, I(F( )(N) p) to the space
M (I‘(z) (N), p) is defined as follows. For ¢ € J I(I‘ (N ), p) and any natural
number m, we define the operator VJ by

Sl Vi (1.2, w) = mF! > V(@) (et +d)*

M=(2b)ero(V)\M3(m)
cmzw ¢ M mz muw
el — T, ——s———— |»
ct+d ct+d ct+d

M3(m)={M = (%%) e My(Z) : detM =m, c =0 (mod N), (a,N) = 1}.

where
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It is easy to see that @[ ; Vn{ transforms like an element in Ji , (Fél)(N ), p) and
if

pr.zw) = Y cla)g"ties,

neZ,aeD-!
n—~N(a)>0
then
_ mn o -
PlaVm(rzow) = ) ( > vy lc(ﬁ,g))qnmg.
neZ,acD! \d|(n,a,m)
nm—~N ()>0

(4.2)
Here the sum over d | (n,«, m) is taken over all d € N such thatn/d,m/d € Z,
a/d € D~'. Moreover, put

) _
po(r) = {w " Z(Z W(d>d"—1)q"}c(o,0).

(—27Ti)kTN(W) n>1 \d|n

This is an Eisenstein series on I'g(N) for the cusp oo ([30, Theorem 7.1.3, p. 270]).
The Maass lift M¢ is then defined for (Z Z) € H» by

M((52) =o(r) + > _ ¢

m>1

k.1 VI (t, z, w)e(mt"). 4.3)

Since c(n,a) =c(4(n — N(a)) = O((n — JV(a))k_3/2) as noted in the end of
Section 3.1, the Fourier series (4.3) w.r.t. e(nt +az +a@w + mt’) converges abso-
lutely and uniformly in any domain ¥ > Yy > Os. See Section 5.1 for the proof.

Proposition 4.1. One has M¢ € My (T (N). p).

Proof. For M = (% 5) € To(N), we denote by M1, M+ the matrices

For simplicity, put G(Z) = M¢(Z) and
Doy, Z) = det(CZ + D), p(y) = p(det D) for y = (A B) e TP (W).
Since ¢o(t) € My (To(N), ¥), a direct computation using (4.3) implies
G(MLZ) = p(M1)J2(M1. Z)*G(2).
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On the other hand, (4.2) implies that
N*T (k)L (k, V)
(—2mi)koy ()

LY (

m>0,n>0,acD™!
mn>a\/’(a) (n,0,m)#(0,0,0)

G(2) = c(0,0)

k—1 [Mmh «o
> vdd (d2 d))

d|(n,x,m)

xe(nt +az +aw + mt').

Because c(n, o) depends only on 4(n — N (o)) by Section 3.1, this expression tells
us
G(V¥Z2)=G(2) for VE= ([ T7). where V = (9}).

Therefore, for any M € ['y(N), one has
GM*Z)=GWV*M V#Z)=GM_ V*Z)
= p(M1) oMy V2 G(VFZ) = p(M*) Jy(M*. 2)*G(Z).

By Lemma 4.2 given below, Féz) (N) is generated by the elements consisting
of M+, M| for M € To(N), tT(S) for S € Hero(9) and U* for U € GL,(0),

where
w=(5) = (5.0

Hence the desired result follows. O

Lemma 4.2. The group F(()z) (N) is generated by the elements consisting of M+
and M | for M € To(N), t1(S) for S € Her»(O) and U* for U € GL»(0O).

Proof. Putt=(S) = (I2 02) for S € Her,(O). By [24, Theorem 4.2, p. 68], the
group F (2) (N ) is generated by the elements consisting of (eM)  for € € O
M € FO(N) tT(S),t=(NS) for S € Her»(O) and U* for U € GL,(O). In the
first one, we can restrict € = 1. In fact

(59)F ML = (M),

Hence we have only to show that 1~ (N.S) can be expressed by a product of ma-
trices in Lemma 4.2. Let us denote by I" the group generated by matrices in Lem-

ma 4.2. First = ((39) = (4 ) .7 (¥ 9) = (L 9)" € T so that

TN AN = (DT (AT
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Using
# g - —

(LD (WD (D = (TR VD,
we have r=(( & ¥')) € T. Similarly, 1 =((_% ‘')) € T follows from

FOF DL D = FD ()
suggested by Krieg. Accordingly, we conclude ¢t ~(NS) € T for § € Her,(0) and
sol = Féz) (N) as desired. ]
5 Spectral decomposition

In this section, we consider the spectral decomposition of unimodular invariant
Fourier series on H». Take a Fourier series

F(Z)= Y A(I.F)e(w(TZ)), Z¢€ H,, (5.1)
TeLy

where L; = L, N $,. We assume that

A(T,F) = A(U]IT, F)
for any U € GL,(0O), and

A(T, F) = O((det T)%)

with a positive constant §;.
Here we summarize the facts on hermitian matrices, that are needed below.
Lemma 5.1. The following statements hold:
(1) For hermitian matrices T, X, Y, one has tr(TX),tr(TY) € R.
(2) If hermitian matrices A, B, C satisfy A > B and C > O», then

tr(AC) > tr(BC).

ay a2

a5 a ) > Os, one has

(3) For any positive semi-definite hermitian matrix A = (
ajar > det A.

(4) Lett be any natural number. If T = (% Z) € L;‘ satisfies ad = t, then
a,d <t and |b|<2t.

Moreover, one has 1{T = (z Z) €Ly :ad =t} <1?(4t +1)%
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(5) Forany S € P, there exists U € GL,(0) such that [U]S € Ra, where
Rz ={(35"%7) € P2:2|3(s12)| < 2% (s12) < 51 < 52}.
Moreover, there exist constants «, 8 > 0 such that

sis2 <a(detS), 2(42)>=85=p8(%2)

0 s2 0 s2

forall S = (:5°12) € Ra. O

§12 82

See [24, Theorem 4.12, p. 35] for Lemma 5.1 (5). Other statements are ele-
mentary. By Lemma 5.1, we have the following inequality, which (or a similar
argument) will be used frequently in this section (see [17, p. 912]). If

S:(s' slz)efRz and T:(“b)eL;,

512 82 bd
then
w(TS) = Bu(T (% o)) = Blasy + dsz)
> 28 /adsisy > 2B ad v/det S.

We also use the Stirling formula frequently.

(5.2)

Lemma 5.2. For given ¢ > 0 and 01 < 03, there exist positive constants N1, N
such that

D@ +in)| < Ne 2+ [e)772 Do +in)|™" < Nae 21 42y /270

for any complex number o + it in the region |t| > ¢, 01 <0 < 05. O

5.1 Convergence and estimate of Fourier series

The Fourier series F(Z) defined in (5.1) converges absolutely and uniformly in
any domain Y > Yy > O, and F(Z) is bounded on this region. In fact, if we take
€ > 0 so that Y > Yy > €l5, the argument in [17, p. 912] combined with Lem-
ma 5.1 gives

[e.e]
FZ) = Y AT P)|e T < Ky Y 012 (4n + 1)2e#mVie
TeLy =1
with a constant K. Hence we obtain the claims. Accordingly, we have

F(i[U]Y) = F(iY) for U € GLy(0). (5.3)



3-dimensional hyperbolic space and Hermitian modular forms 1785

Moreover there exist positive constants Cy, Cs, 83,/ such that
|F(Y)| < [C1(det V)" UFD 4 Cy(det V) e 3@t g0y ¢ 2,0 (5.4)

In order to prove (5.4), we may assume Y € R;. Then the argument in [17, p. 913]
combined with (5.2) gives

o0
|FGY) < K2 Y 1311241 4 1)2em4npvaare!?
t=1
o
< K3 (Z [51-1-46—271/3«/@;‘1/2) e—Zan

=1

< K, (Bl(detY)_((81+4)+1) + Bz(detY)_(81+4)) ¢"2BVIY (5 5)

with some positive constants K, K3, By, B>. Hence we obtain (5.4) as desired.

Here we show the convergence of the series given in (4.3). For n, m, o such that
nm—N()>0,putT = (’g}g) € L;‘ ande(T) =max{g e N:q7 T e L;}.
The Fourier coefficient w.r.t. e(nt + oz + @w + mt’) is

AT = Y w(d)dk_lc(%, %)

dle(T)

Since e(T) divides n, m, it follows that e(T)? < nm. Using the facts that k > 2,
c(n,a) = O((n — N («))*3/2) and Lemma 4.2 (5), we have

|A(T)| < Co(det T)*™3/2¢(T) < Co(det T)*3?(nm)"/? < Coa(det T)F !

for T € R;. By the GL; () invariance of the expression, this inequality holds for
any T € L; . Hence the convergence of the non-degenerate 7" parts follows. On the
other hand, the convergence of the degenerate T parts can be treated as in the proof
of [3, Lemma 5, p.206]. The uniform convergence on the domain ¥ > Yy > O»
follows from the argument of [1, Theorem 2.3.1, p. 65] combined with [24, Propo-
sition 1.3, p. 75].

5.2 Mellin transform of Fourier series

Any Y € P, has the form Y = uW, where u = (detY)Y/2 > 0 and W € 8§25.
Assuming 9i(s) to be sufficiently large, set

o0
FS(P)=/ F@uW)u®> Ydu, P = Py.
0
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For s = o + it, the estimate (5.4) implies
o0
FP)l = [ IF G d
0

< 1T Qo —21 = 2)8,%772 1 G120 - 21)8; 2720,

Hence, if 01,02 (01 < 07) are sufficiently large, the integral converges abso-
lutely and uniformly on H3 x {s = ¢ + it : 01 < 0 < 02}. Moreover, Fs(P) is
bounded on the same region.

By (5.3), it satisfies

Fs(yP) = Fs(P) for y € SLy(0).
For sufficiently large 0 = 9i(s), one has

Fs(P) = @m) T Qs) fs(P), fs(P)= )
T

+
€L,

A(T, F)
—_—. (5.6)
tr(T W)32s
In fact, if 01, 02 (01 < 02) are sufficiently large, the series f;(P) converges ab-
solutely and uniformly on H> x {s = 0 + it : 01 < 0 < 03}. Moreover fs(P) is
bounded on the same region. In order to prove these claims, we may assume that
W e Ry. AsdetW = 1, (5.2) implies tr(T W) > 28+/ad for T = (z 2) € L;’.
It follows for sufficiently large 0 = N (s) that

; |A(T, F) Ky 1
P)| < < - -
|f9( )l = Z tr(Tw)Zo' — (2[3)20 Z (ad)o’—81
TelLf TeLf
0 .2 2
< K42(, Zt (4t —; 1)
o_
2p)* = 1o
with a positive constant K4. Hence the claims follow.
By Lemma 5.2, one has
1 _
F(iy'?w) = — 2F(P)y~Sds, o> 0, (5.7)

21 J%i(s)=c
for y > 0 from (5.6).

5.3 Estimate of A2 f;(P)

Let us study Azfs(P), where f;(P) is as in (5.6) and A is the Laplacian. See
Section 2 (G-ii). First, we summarize the facts on the elementary set &;(«). See
[24, Definition, Theorems 4.9, 4.10 and 4.11, pp. 33-35]. For o > 0, put

82(0&) = {(i?)(‘f; ;2)((1)1712) :0< dl < Oldz,lb12| < Ol} C P».
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Lemma 5.3. The following statements hold:
(1) There is o > 0 such that Ry C &x(wx).
(2) There exists a constant B > 0 such that
0
(s ) = (% 52)
for all ( > slz) € & ().

§12 52

(3) For any compact subset K C P, there is a > 0 such that X C &x(x). O

We claim

Proposition 5.4. If 01, 05 (01 < 02) are sufficiently large, then there exist positive
constants N, a such that

|A2 fo(P)| < No(1 + 2[t])* (5.8)
onH3x{s=0+it:0o; <o <03}

Proof. In order to prove this claim, note that on the left-hand side of the equation
A2F (P) = 27) 2T (25) A2 fS(P), the differentiations under the integral sign
is permissible. In fact, for any compact subset K C H?3, let X C &5 be the subset
corresponding to K by means of (4.1). Take & > 0 such that X C &»(«) by Lem-
ma 5.3(3). For P = Py = x + iy + jr € K, the argument used in Sections 5.1
and 5.2 combined with Lemma 5.3 (2) gives the estimate

|0x F(iuW)| = ‘ Z A(T, F)(—2nu)(2ax + b + b)r e~ 2muu(TW)
T=(35)ed
< Z |A(T, F)|2ru2|a| - |x| + 2|b|)r—le—4nﬁum‘
(s Dest

Now there are constants N3, N4 > 0 such that |z| < N3 and r—! < N4 for all
P =z +rj € K. Thus Lemma 5.1 (4) tells us that

o0
|0x FiuW)| < > 12(41 + 1)? - K119 2u - (2tN3 + 4t)Nye 4mPuvi,
=1

This implies the estimate of |0, F(iuW)| similar to (5.5). The majorant functions
is independent of P = Py € K and is integrable from 0 to oo w.r.t. u, when it is
multiplied by #2°~!. Hence, we can differentiate Fy (P) w.r.t. x under the integral
sign. Other variables and repeating differentiations can be justified by similar way.
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Put B = tr(T W). We have the identities
AB =3B and r*((Bx)®+ (By)*+ (Br)?) = B*> —4detT,

where By = g—g etc. It follows that

A% 2B — (27u)e 2" “B{9B — 27u(8(B? — 4detT) + 15B?)
+ 27u)?10B(B? — 4det T) — 2nu)(B? — 4det T)?},
and that A2 F (iuW) is the finite sum of the functions like
Forgryr(uW) = Y A(T. F)u® (T W)P'(det T)Y =271 (T W),
TeLf

where o/, B/, y' are some positive constants. Accordingly, A2 Fg(P) for R(s) > 0
is the finite sum of the functions of the form

o0
Fa/,ﬂ/’yljs(PW) = / Fa/,ﬂ/’y,(iuW)uZS—ldu‘
0
Integrating term by term, we can deduce similarly to Section 5.2 that
D@5 + o)™ Far pryr s (P

is bounded on H3 x {s = 0 + it : 01 < 0 < 02}, if 01,07 (01 < 02) are suffi-
ciently large.

By Lemma 5.2, there is a positive constant N5 such that |['(2s+o)T(25) 71| <
N5(142]t])*! on the region o7 < o < 03. Hence, we get the desired estimate (5.8)
for A2 fi(P) = (2m)>T(2s) 1 A2Fy(P). o

5.4 Associated Dirichlet series

For any automorphic function U(P), put

A(T, F)W(T)
yo S0

D(F,U,s) = e(T)(detT)s

5.9
TeSLy(O\LT

where the summation extends over all 7' € L;L modulo the action
T —[UIT=UT'U
of the group SL,(0),
e(T)=M{U eSL,(O9): [U]T =T}
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is the order of the unit group of T and
U(T) = W(T™) = UPr—).

This is so-called Koecher—Maass series twisted by U(P) (cf. [17,25] in the Siegel
modular case). Recall that A(T, F) is GL (@) invariant, and

A(T, F) = O((det T)®")
with a constant §; > 0.

Proposition 5.5. For any spectral eigenfunction U(P), the series defining the
Sfunctions D(F, U, s) and D(F,U,s) in (5.9) converge absolutely and uniformly
for R(s) > % + 1.

Proof. In order to prove this claim, we use the following Lemmas 5.6 and 5.7.
These are consequence of [33, Proposition 2, p. 902] combined with

J'PT—I == P[J]T_] :PT’
where J = (9 71).

Lemma 5.6. The series

Z E(PT—I,M)

€(T)(detT)s
TeSLa(O\LS

converges absolutely and uniformly for X(u) > 1, R(s) > %") + %

Lemma 5.7. The series

1
2 e(T)(det T)*

TeSLy(O\LS
converges absolutely and uniformly for R(s) > 2.

Any cusp eigenfunction U, (P) and the constant function Ug(P) are bounded
[11, Corollary 3.3, p. 107]. Hence Lemma 5.7 implies that the series (5.9) con-
verges absolutely and uniformly for R (s) > 2 4 8;. This completes the proof of
Proposition 5.5 in these cases.

On the other hand, Lemma 5.6 implies for i(u) > 1 that

A(T, F)E(Pp-1.u)
2 (T)(det T)s

D(F,E(P.u),s) = (5.10)

TeSLo(O)\LT
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converges absolutely and uniformly for N (s) > mg") + % +381. To extend the result

from N(u) > 1to R(u) = 0, we follow the proof of [3, Lemma 2, p. 202].
For ¢ > 0, put

bo(P.t) = 3 o Fleztal e
c,de®

Z.(Pu) = /100(9@(1),;) — 1)z1+“#.

By [11, p. 402],
a1+ w)dix (1 + u)E(P,u)

o0
:/ (o (P.1) — 1)t1+”%
0

2
-1

> dt
= [ o - net T
1 t u

=Z.(P.u)+ Z4(P.—u) + (5.11)

u2—1°

Note that this is invariant under ¥ — —u, and implies the meromorphic continua-
tion and the functional equation of the Eisenstein series.
Then we claim that

Lemma 5.8. For any complex number u, the series

Z Zy(Pr—1,N(u))
€(T)(detT)*
TeSLa(O\LT

Rw)+M
2

converges absolutely and uniformly for R(s) > + %, where M is any real

number such that X(u) + M > 1.

Proof. For any u, we take M > 0 such that v = u + M satisfies i (v) > 1. Then
Z4(Pr—1, ()
* 14+9(w) 91
< Z4(Pr-1.%(v)) = (B (Pr—1.1) — 1)t ’
0
= 7~ UFROIP (] 4 RW)4Lk (1 + RO)E(Pr-1, R©W)).  (5.12)

The desired claim follows from Lemma 5.6. O
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Let us complete the proof of Proposition 5.5 for the case of Eisenstein series
E(P,it). By (5.11),
AT, F)E(Pr-1,u)
€(T)(detT)s

" OTOT 1+ waig (T+uw)| Y
TeSLa(O\LT

1
< C’
- Z €(T)(det T)R()=81
TeSLa(O\LS

2
X {Z+(PT—1 RW)) + Zy (Pr—1, =N (u)) + lu2 — 1|}

with a constant C’. Since T'(1 +it) # 0 and {x(1 + i) # O for any real num-
ber ¢, Lemmas 5.7 and 5.8 imply the desired result for £ (P, it) for any real num-
ber ¢t # 0 by taking M = 3/2. Note that £(P,0) = 0 and use

J'PT_]:P[j]T—IZPT Wlth.lz((ll_ol)
in Lemma 5.6 in order to treat D(F, E (P,u),s). We remark here that we have

proved the convergence for any fixed u such thatu # £1, I'(1+u)lg(1+u) #0
and sufficiently large 9 (s). |

In order to analyze continuous spectrum, we will use the following two lemmas
(see [3, Lemma 4, p. 205]).

Lemma 5.9. Let o be sufficiently large. Then there exist constants M, § depending
only on o such that

ID(F, E(P.in).0 +i1)| < M(1 + [n]°)
for any real numbers t, 1.

Proof. Forany u = p + in withfixed 1 < p ¢ Z, it follows from (5.10) and Lem-
ma 5.6 that there exists a constant M; > 0 depending only on p, ¢ such that

|(u? = )¢k (1 + u)D(F, E(P,u),0 +it)| < Mi(1 + [n]?).

By the functional equation of E(P,u) and Lemma 5.2 together with this estimate,
there exists a constant M > 0 depending only on p, o such that

|(u? = 1)k (1 + u)D(F, E(P.u),0 + it)| < Ma(1 + [n]*)(1 + |n])**

on the line ¥ = —p + in. Moreover, by (5.10) and (5.11) combined with Lem-
mas 5.2, 5.7 and 5.8, there exist constants ¢’ and M3 > 0 depending only on p, o
such that

|? = 1)k (1 + u)D(F, E(P,u),0 + it)| < M3eS 3@
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on the region —p < NR(u) < p. Since 0 = NR(s) > 0, it follows that the series
u? — 1)¢g (1 + u)D(F, E(P,u), s) converges uniformly on any compact subset
of —p < 9(u) < p by (5.11). Thus as a function of u € C, it is holomorphic on
the region —p < R(u) < p. According to the Phragmén-Lindel6f Theorem, there
exist constants My, §4 > 0 depending only on p, o such that

|u? — 1)k (1 + u)D(F, E(P.u), 0 +it)| < Ma(1 + |S@)D*  (5.13)

on the region —p < N(u) < p.

By Bauer [4, (33), p. 227], we have (g (1 +in)~! = O(|n|€) as |n| — oo with
some €. Note that Bauer proved there a better result for any number field. See also
[22, (3.12), p. 482] for this estimation. Since (g (1 + in) # 0 for any real num-
ber n, the desired result follows from the case u = in in (5.13). O

Lemma 5.10. For fixed P € H3, there exists a constant 85 such that
E(P.in) = O(1 + |n]*).

Proof. Letu = p + in with fixed 1 < p ¢ Z. Since u is in the region of conver-
gence of E(P,u) and {x (1 + u), there exists a constant M5 such that

|(? — D¢k (1 4+ u)E(P.u)| < Ms(1 + [n]?).

By the functional equation and Lemma 5.2 together with this estimate, there exists
a constant Mg such that

|(? — D)k (1 + w)E(P,u)| < Mg(1 + [n]*)(1 + |n])**

on the line ¥ = —p + in. Moreover, (5.11) combined with Lemma 5.2 implies that
there exist constants ¢” and M7 such that

|(? = 1)k (1 + u) E(P, u)| < Mqe 3@

on the region —p < R(u) < p. Since (u? — 1)¢g (1 + u)E(P, u) is holomorphic
on —p < R(u) < p by (5.11), the Phragmén—Lindelof Theorem tells us that there
exist constants Mg, 65 such that

|u? — )k (1 +u)E(Pu)| < Ms(1 + |3()])* (5.14)

on the region —p < R(u) < p.
By Bauer [4, (33), p. 227] (see also [22, (3.12), p. 482]), we have

tk(+in~"=0(nl°) as|y - oo

with some €. Since {x (1+i7n) # 0 for any real number 7, the desired result follows
from the case u = in in (5.14). O
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Applying the known estimate of K-Bessel function ([18, p.204]) and that of
¢, (i) ([11, Theorem 4.10 (4), p. 294]) to (2.2), we have

Lemma 5.11. Let I C R be any compact set and ro be a sufficiently large real
number. Then there exists a positive constant k such that

E(z +rjit) ="t 4 ¢G0)r' ™ + 0™ (t€l,r > ro),
where ¢ () is as in (2.2).

See also [11, (3.21), p. 270] for this estimation.

5.5 Spectral decomposition

Put B = tr(T W) as before. Using
Ae 2B — (_27u){(3B — 27u(B? — 4det T)}e 245,

we can deduce I*:S(P), AFy(P) € L2(SL»(0) \ H?3) for sufficiently large R(s).
In fact, we can prove this in the same way as in Section 5.3. By Section 5.2 and
Lemma 5.11, Fx(P)E(P,ir) is absolutely integrable over the region ¥ x [0, T
forevery T > 0, where ¥ is a fundamental domain of SL, () \ H3. We shall take
FoyF ={P=x+yi+rj:0<x<1/2, |y <1/2, x2+y2+r2>1}.

According to [11, Theorem 3.4 (3), p. 267], we have the spectral decomposition
of Fg(P) (N(s) > 0)

o0

Fy(P) = D*(F.Upm.5)Un(P) + %[ D*(F,E(,it),s)E(P,it)dt,

(5.15)
where {U,;,(P)} consists of the constant function Uo(P) = n/+/2(g(2) and an
orthonormal system of cusp eigenfunctions (see [11, Proposition 2.2, p. 245, Cor-
ollary 3.4, p.107]) and E(P,it) is the Eisenstein series. We called one of them
by the spectral eigenfunction. For any automorphic function U(P), the function
D*(F, U, s) is defined by the inner product

D*(F,U,s) =/ Fs(P)U(P)dv(P),
F

where dv(P) = r—3dxdydr with P = (x 4 yi) + rj. By [40, Proposition 2,
p.3971,if —AUp = (1 — u2,) Uy, form # 0, then 1 — 2, € R, 1 — 2, > 1 and
Im 18 pure imaginary for m # 0.
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Proposition 5.12 below gives the spectral coefficient as Koecher—Maass series
(5.9) completed by a certain gamma factor. For any automorphic function U(P)
and any hermitian modular form

fZ)= > AT fle(TZ)) e M(T$(N), p),

TelL,>0

we define D*( f, U, s) by D*(F, U, s), where F(Z) is the non-degenerate part of
f(Z), that is

F(Z)y= Y A(T. f)e(u(TZ)).
TeLy
Proposition 5.12. The following statements hold:

(1) Let F be any Fourier series as in (5.1) and a spectral eigenfunction U(P)
has the eigenvalue 1 — % of —A. Then, for sufficiently large R(s), one has

D*(F,U,s) = n2n) T (s —1/2 + /2)T'(s — 1/2 — i/2) D(F, U, ).
Moreover, we have the same formula for D*(F, U, s), if we change U by U
on the right hand side.

(2) For any spectral eigenfunction U(P) and f(Z) € My (Féz) (N), p) (p = wy),
the functions D*(F, U, s) and D*(F, U, s) have a meromorphic continuation
to all s, and satisfies the functional equation

NS D*(£ U 5) = (—1Y* N*= D* (g, U, k — 5),
where g(Z) = N~%(det Z) ™% f(=(NZ)™") € Mp(T(N), o).

Proof. For sufficiently large o = 9i(s), one has from (5.6)

I'(2s) A(T, F) —2s
s > oo > w(UIT - W)

TeSLo(O\LT UesL»(0)

FS(P) =

Hence

T'(2s) 3 A(T, F)

27)2s e(T
(27) TeSLa(O\LS T

/f Fy(Q)U(Q)dv(Q) =2 Qus.T). (5.16)
where we put

dxdydr

r3

Qu(s.T) = /0 /C (T W) 2 UQ)dv(Q), dv(Q) =
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with Q = (x + yi) +rj e H>and W = ((|Z|2;’_21)r71 Zr’:ll ). According to [11,
Proposition 1.6, p. 6], we define

|z —z2'12 4+ r2 + 17

8P, P) = 2rr!

for P=z+rj, PP=z+71'j.

Then, for Q =z +rj and P = w with T = (%Z), one has
2(det T)V/28(P, Q) = (T W).

Hence

Qu(s.T) = (det 7)™ /H3(25(P, 0)) " U(Q)dv(Q). (5.17)

Take g € SL,(C) sothat P = g-j. Since §(P, Q) = 8(g-j, Q) = 8(j, g~ '-0)
and U(Q) = O(max{r?, r—#}) with some positive , B, we have

[, 1@5P. 0> u@)ldv(0)

_ /H 1280, 0 Ulg - O)ldv(©Q)

00 20 1/2 _
E/ / r U (detT)'/“Q —b
o Joc\zl2+r2+1 a
o [
< -
=" Je |z|2+r2+1)

{((detT)l/2 )“ ((detT)1/2 )—ﬂ}dxdydr
xmaxs| —r ) ,| ——r .

a a

dxdydr
/3

Since, for o > 0,

1 TQo—1) 5 s
dxdy = 727 =D 2 yy1-20
/C(|z|2+r2+1)2‘7 Xdy =7 —pon A DT

o0 o0

/ rOT3ve 2 L1209y, / 3B £ D)2 < oo,
0 0

the integral (5.17) is absolutely convergent for sufficiently large o.

In (5.16), we take T € SL,(0) \ L;’ so that so that 27 is reduced in the sense
of [11, Definition 2.3, p.411]. Then a < det(ZT)2 by [11, Proposition 2.6 (1),
p-412]. Hence Lemma 5.7 justifies interchanging the summation and the integra-
tion to obtain (5.16).
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Theorem 5.3 in [11, p. 119] combined with the third formula in [26, p. 6] eval-
uates the integral in (5.17) as

up)- = /Oo(t bRk iy — t—l)ﬂ
®J1 t

al(—1/2—u/2)T(s—1/2+ u/2)
2 T'(2s) '

This completes the proof of the statement (1) (cf. [25, (55), (63), pp. 100-102] for
the Siegel modular case).

The statement (2) can be shown in the same way as in the proof of [2, Corol-
lary 2.3, p.271] and [3, Theorem 10, p. 209]. |

=UTY-

We note here that Ibukiyama [16] established a general theory of Koecher—
Maass series with Grossencharacter (suitable automorphic forms) associated with
modular forms on tube domains. The convergence of the series, determination of
the gamma factor, meromorphic continuation and functional equation are given
in [16].

If the Fourier coefficients A(7, F') satisfy a Maass type relation, then D(F, U, s)
is a convolution product of two Dirichlet series.

Proposition 5.13. Let y be a Dirichlet character. Suppose that there exists a func-
tion o on the set of all natural numbers satisfying

A(T.F)= )" x(d)d*'a((4detT)/d?), (5.18)
dle(T)
where
e(T)=max{g e N: ¢ 'T € L;’}.
Then for any spectral eigenfunction U(P) on H3 whose eigenvalue of —A is
1-— uz, we have
D*(F,U,s) = n2n) " >T(s —1/2+1/2)T(s — 1/2 —[1/2)

a(l)bﬁ(l)l

x4SL(25—k+1,)()Z s ,

I>1

for R(s) > 0, where by (1) is defined by (1.1). Moreover, we have the same for-
mula for D*(F, U, s), if we change U by U on the right hand side.

Proof. Substituting equation (5.18) into (5.9), the result follows without difficul-
ties. See [5, Satz 3] and [9, Lemma 3]. O
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6 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. First of all, we give an explicit form of the
Koecher—Maass series associated with Hermitian Eisenstein series.
For any spectral eigenfunction U(P) and

fZ)= > AT fle(TZ)) e Mp(T$(N), p),
TelL,>0

put

pg= Y ACHUD)

e(T)(detT)s
TeSLa(O)\LS () )

By Proposition 5.12 (1), the spectral coefficient D*( f, U, s) of the non-degenerate
part of f is given by

D*(f. U,s) = n(n) 3T (s —1/2 + /2T (s — 1/2 = 11/2)D(f. U, 5),
where —AU = (1 — u?)U.

Proposition 6.1. For any spectral eigenfunction U(P) corresponding to the eigen-
value —(1 — u?) of A, the Koecher—Maass series of E kzﬁ has the form

Tk,24_k+2N_k7T1_2STN (W)
Olk,4L(k’ V)

D*(EX. U, s) =

) T(s—1/2+7/2)

()b (1)l

xT(s—=1/2—u/2)L2s —k +1,¥) s ,
=1
where

%o = (=D @) 2l ()T (k- Dy~
and a4 is as in Proposition 3.1.

Proof. Let
FO(2) = N (det 2y FER (—~(N2)™)

be the involuted Eisenstein series. It has a Fourier expansion

F&Z)= Y. C(T)e(TZ)).
TeLy
Tk,zN_k (6.1)

D = e COF L)

> Y(d)d ed((4det T)/d?).

dle(T)




1798 R. Matthes and Y. Mizuno

Indeed similarly to [6], we have

C(T) = uaN ¥ @et )2 37 pO(R)V(R) e(ur(TR)).
ReHerz(K)/Herz(O)

where v(R) = |detC| with R = C~!D, (é g) €Ty, detC #0. For T > O,
the Siegel series

b(s,T) = > V(R)Se(trt(TR)) (R(s) > 0)

ReHerz(K)/Her2(0O)

has an Euler product, whose Euler p-factor is a partial series of b(s, T') consisting
of the terms indexed by R € Her,(K)/Her, () such that v(R) is a power of p.
The explicit formula due to Nagaoka [35] tells us that each Euler p-factor is a
polynomial of p~*. Replacing p~ by 5(p) p~¥ in his formula, one can deduce a
formula for C(T') as an Euler product of the polynomial of ¥ (p) p~¥. The result
combined with some elementary manipulation implies (6.1).

Since —AU = (1 — 7*)U and —AU = 1- 2)‘1,( it follows from (6.1) and
Proposition 5.13 that

‘Ck’zN_kT[I_zs

420y 4 (1K L(k, V)

D* (F(Z) ,5) = T(s—1/2—1/2)T(s — 1/2 + [1/2)

x L(2s—k + 1, wZM.

=1

(6.2)

For each cusp k € {c0,0} | J{1/p:1 < u <N, u| N}, we choose elements
in SL>(R) by

JWO)

8oo = Oco, 80 = 00A1, 8u = UMAM, AM = (
0 Viu/N

with oy in (3.3). So the assumptions in [31, Section 2.1] are fulfilled. We will also
use g, instead of the above symbols g;.
Let /14 (7) be the a-th coefficient of the theta expansion of E]g 1, and put

D)= Y ha(@fa(0). &) = vi2(8e. 1) E (gD
aeD1/0

where fo(7)isasin (2.3)and ve»((95).7) = (ct +d)k /et +d|?. Since U(y)
is unitary, Proposition 2.1 combined with (3.2) implies

E(yt) = ¥ (vea(r. DE(r) forall y € To(N).
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Moreover, we claim that
£c(r) — 80.c(21)N*/>"TB(0, Nv/4)

is of rapid decay as It tends to co. In order to check this claim, to the theta ex-
pansions

> HE[@)bu(r.z.w),

aeD"1/0

0
Ek,l,p

we associate the function

@ =Y HE® ().

acDL/0

The theta formula (2.5) gives the relation 7, (t) = vg 2(0k, 7)"1€(0 T), and this
implies & () = (1u/N)' ™ ne(Nt/p) fork = 1/ and §o(z) = N¥/>"Ino(N ).
Hence the desired claim follows from the Fourier expansions of 7, (t) (Proposi-
tions 3.1, 3.2). In particular, £ (t) = N*¥/271po(N1) and

L
HY(t) =80 + > ad(N1)qan .
[>0, [=—4NN(a) (mod 4)

Under these observations, we define the Rankin—Selberg transform R, (s) for
N (s) sufficiently large by (cf. [31,41])

[e’e} 1
Re(s) = /0 /0 (£ (1) — 804 2i)N*/27VB(0, Nv/4))v* 2dudbv.

Theorem 2 of [31] is applicable to the present setting and it gives meromorphic
continuation of R, (s) to all s and the functional equation
2k H1I=2s 7jk N=STR/2=1/2T (25 — k)L (25 — k, )
I'(s—k+1/2)T(s+1/2)L2s —k + 1,v)
X Ro(tk —s —1/2).

Roo(s — 1/2) =

Using [12, formula 11, p. 816] combined with the Fourier expansion of §(z) and
(6.2), it follows that D*(F), (2) , U, 5) coincides with Roo(s — 1/2) up to a gamma
factor. The functional equatlon of the Dirichlet L-function and Proposition 5.12 (2)
combined with (6.2) imply

% 2Ns—3k/2—1/2n—s.L.N(E)
P4k =20y 4 L(k, V)
x T(s + 1/2)L(2s —k + 1,¥)Ro(s — 1/2).

D*(EX U.s5) =
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Taking the relations e%o (1) = ag(Nzt) and bg (1) = by (/) into account, a Fourier
expansion of &y(7) combined with [12, formula 11, p. 816] yields the desired re-
sult. |

Proof of Theorem 1.3. Set

o 2 @) e
P = Ees = kT Lk gy " 7

Applying the Siegel operator ® defined by

®F(7) = A—lirfoo F(’& (r’) € My (To(N), p),
we have ®F = 0 so that the Fourier expansion of F(Z) has only the terms indexed
by L;‘ . Moreover, Propositions 6.1 and 5.13 imply D*(F, U, s) = 0 for any spec-
tral eigenfunctions U = U,,, E(-,it). Hence we have F4(P) = 0in (5.15) and
so F(Z) = 0 by Mellin inversion (5.7) and the principle of analytic continuation
([24, Lemma 1.6, p. 48]). This completes the proof of Theorem 1.3. O

In [34, p. 858], we used the termwise Mellin inversion of the spectral decom-
position of a Siegel modular form. This is justified in [15]. See also the proof of
Proposition 7.1 below. While, the termwise Mellin inversion is unnecessary, if we
proceed the proof as above (cf. [8, proof of Lemma 2.1, p. 155]).

7 Proof of Theorem 1.2

The converse theorem for Hermitian modular forms analogous to the Siegel mod-
ular case ([9, Theorem 2]) is the following.

Proposition 7.1. Suppose that a natural number k is divisible by 4 and take F(Z)
asin (5.1). If D*(F, U, s) and D*(F, U, s) can be analytically continued to entire
functions of s, which are bounded in every vertical strip in s and satisfy

D*(F,U,s) = D*(F, U, k —s)

for any spectral eigenfunction U on H3, then F(Z) is a Hermitian modular form
of weight k on I',.

Proof. We follow Ibukiyama’s proof of [9, Theorem 2] (see [15]). The estimate
(5.8) implies 3
A% f(P) € L*(SL2(0) \ H?)
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for fixed s with sufficiently large N (s). Suppose that —AU,, = Az Uy Since —A
is symmetric ([11, Theorem 1.7, p. 136]), we have (fy, Um) = A, 2(A2 fy, Um)
for cusp eigenfunctions U,,, where (-, -) denotes the inner product on SL,(©9)\ H?3
defined by

(fi9) = L F(P)R(PYrdxdydr
with the fundamental domain & and P = (x + yi) +rj € H3 (see [11, (1.2),

p- 133]). This relation combined with an inequality about geometric-arithmetic
means and Schwarz’ inequality tells us that

|(Fy, Um) Um (P)] < |20) 2T (28)[27 14,2 (A% 5, A% ) + 4,71 U (P) )
< 2m)72 T 2s) 27 YA 2 NE(1 + 20t )% - 2L ()™}
+ A2 U (P) 7).
Here, for the last inequality, we used (5.8) and [ r=3dxdydr = 2tx (2)n L.
Then, by [11, Corollaries 5.3 and 5.5, p. 182], the sum
> ID*(F. U, )Um(P)| = D |(Fs. Um) U (P)|
m#0 m#0

on the right hand side of (5.15) converges uniformly on any compact subset L of
H?3. See also [11, Corollary 5.4, p. 182]. By Lemma 5.2, we have

o0
/ > (Fotit: Um)Um(P)|dt < 400 for o> 0.
~® m#o

On the other hand, according to [11, Theorem 3.4 (3), p. 267],

/ \D*(F.EC.im). ) E(P.in)|dn

converges uniformly on any compact subset L of H?3 for fixed s with %i(s) > 0.
Lemmas 5.2, 5.9 and 5.10 imply for any fixed P € H?3 that

o o0
/ / |D*(F,E(-,in),o +it)E(P,in)|dndt < +oo for o > 0.
t=—00 Jn=—00

Hence, we can apply Mellin inversion of (§.15) term by term.

By Section 5.4, D(F, U, s) and D(F, U, s) are O(1) on the line o1 = R(s), if
o1 is sufficiently large. By the functional equation and Lemma 5.2, there exists a
constant A such that D(F, U, s) and D(F, U, s) are O(1 + |3(s)|4) on the line
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o2 = N(s), if 02 < 0 and |o2] is sufficiently large. As D*(F, U, s), D*(F, ﬁ s)
are entire and bounded in thg strip 0 < 9 (s) < o1, there exists a constant B such
that D(F, U, s) and D(F, U, s) are O(eBIS®)) on the strip o, < R(s) < o7 by
Lemma 5.2. According to the Phragmén-Lindelof Eheorem, we deduce that there
exists a constant C such that D(F, U, s) and D(F, U, s) are O(14+|3(s)|€) on the

strip 0 < R(s) < o1. Hence, Lemma 5.2 implies that D*(F, U, s), D*(F, U, s)
are of rapid decay as |I(s)| — oo on the strip g2 < 9i(s) < o1. This combined

with the entireness of D*(F, U, s), D*(F, U, s) and the functional equation gives

_ A 1\"%
/ D*(F,U,s)y Sds = y_k/ D*(F,U,s) (—) ds, o> 0,
(o) (o) y

for y > 0 by shifting the path of integration. Then it follows from (5.7) and (5.15)
that Fiu='W=1) = u? F(iuW) and F(—(Y)~!) = det(iY)*F(iY). In fact,
by
_ 2 2y,—1 Z.—1
[(§ )] w=t = (EHD 2, (7.1)

zr_l r_l

the function D*(F, U, s) is the spectral coefficient of F, s (Py—1) with respect to
U(Pw). Note that, similarly to Fy(Py), the function F, s(Py—1) satisfies the as-
sumptions to apply the spectral decomposition [11, Theorem 3.4 (3), p.267] and
the termwise Mellin inversion. In view of [24, Lemma 1.7, p. 79] and [24, Lem-
ma 1.6, p. 48], we complete the proof of Proposition 7.1. o

Proof of Theorem 1.2. Let F(Z) be as in (1.3) and suppose that
—AU = (1 —p>)U.

The identity (7.1) tells us bg; (/) = by;(/). This combined with Proposition 5.13
implies

D*(F,U,s) = nQ2n) T (s—1/2+1/2)T(s — 1/2 —11/2)
x45¢(2s —k + I)Zw.
I>1

For a € D!, we associate to g(7) in (1.2) the function

ga(7) = e Z c(De(lt/4).

GAN@) ) e i) mod
Similarly to Proposition 2.1, one has

(801 (D). 80 (D) = (8, (VD). -+, Gus (YD) (cT + ) TFU(Y)  (72)
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fory = (4 5) € SLy(Z), where U(y) is the unitary matrix in (2.5). While, to

f(@) =v"%p(x)

with ¢(t) corresponding to U(P) by means of Theorem 1.1, we associate fy(7)
as in (2.3). It follows from the transformation formulas (7.2) and (2.5) that the
function

= Y ga®fa®

aeD1/0
satisfies £(y7) = vg 2(y, 1)&(7) for all y € SL>(Z). Here

ve2((45).0) = (et + d)¥ /|t + d |~
Hence the Rankin—Selberg method tells us that
D*(F,U,s) =2n5T(s +1/2){2s —k + D Roo(s — 1/2)

with
ud v

Rools) = / E(DE(.s)

where D ={t=u+ive Hy:|t| =1, Ju| < 1/2}and

s k
S(r,s)z% Z (ct+d)

25+2°
cdez o)1 €T T4l

If we use the notation of Shimura [38, p. 461], this has the form

dudv

D*(F,U,s) = n1/2/ E()v " Hi(s + 1/2,7,id)

It follows from the proof of [38, Lemma 3.3, p. 461] that_D* (F, U, s)is gltire (see
also [30, Corollary 7.2.11, p.286]) and satisfies D*(F, U, s) = D*(F, U,k — ).
Moreover, it is bounded in every vertical strip in s. Using bg, (1) = by/(I), we

have D*(F, U, s) = D*(F, U, s). By Proposition 7.1, we complete the proof of
Theorem 1.2. o
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