
Forum Math. 26 (2014), 1763–1806
DOI 10.1515/forum-2011-0113

Forum Mathematicum
© de Gruyter 2014

Spectral theory on 3-dimensional hyperbolic space
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Abstract. We study some arithmetics of Hermitian modular forms of degree two by apply-
ing the spectral theory on 3-dimensional hyperbolic space. This paper presents three main
results: (1) a 3-dimensional analogue of Katok–Sarnak’s correspondence, (2) an analytic
proof of a Hermitian analogue of the Saito–Kurokawa lift by means of a converse theorem,
(3) an explicit formula for the Fourier coefficients of a certain Hermitian Eisenstein series.
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1 Introduction

In [17], Imai discovered how one can apply the spectral theory on the upper half-
plane to Siegel modular forms of degree two. The purpose of this paper is to gen-
eralize this method to Hermitian modular forms with actual applications. More
precisely, we present three main results:

(1) a 3-dimensional analogue of Katok–Sarnak’s correspondence,

(2) an analytic proof of a Hermitian analogue of the Saito–Kurokawa lift by means
of a converse theorem,

(3) an explicit formula for the Fourier coefficients of a certain Hermitian Eisen-
stein series.

Our main object is to study a unimodular invariant Fourier series F.Z/ on the
Hermitian upper half-space H2 D ¹Z 2M2.C/ W .Z � tZ/=.2i/ > O2º of de-
gree 2. For Z 2 H2, the hermitian imaginary part Y D .Z � tZ/=.2i/ belongs
to the set P2 of all 2 by 2 positive definite hermitian matrices. The set P2 is
parametrized by determinant and 3-dimensional hyperbolic space H3. In view of
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this fact combined with the unimodular invariance, we can study F.iY / as a func-
tion on SL2.O/ nH3 by means of the spectral decomposition. Here O is the ring
of integers of an imaginary quadratic field. Moreover, some properties of F.iY /
are also hold for F.Z/ by the principle of analytic continuation. Accordingly, the
spectral decomposition of F.iY / turns out to be useful in order to study F.Z/.

Similarly to the Siegel modular case, a certain integral formula describes the
spectral coefficients by the associated Dirichlet series, now called the Koecher–
Maass series. Duke–Imamoglu [9] observed that the Koecher–Maass series is the
Rankin–Selberg convolution of modular forms, whenever the Fourier coefficients
of F.Z/ satisfy a Maass relation. This fact is important in actual applications. In
this point, the key result is Katok–Sarnak’s correspondence for Maass forms on
the upper half-plane [9, 19]. Our first purpose is to give a precise analogue of this
correspondence for automorphic functions on H3.

Let K D Q.i/ be the Gaussian number field, O D ZŒi � the ring of all inte-
gers, D�1 D .2i/�1O the inverse different and �K D .�4/ the Kronecker sym-
bol of K. Let H3 D ¹P D z C rj W z 2 C; r > 0º be 3-dimensional hyperbolic
space. An automorphic function on H3 for SL2.O/ is an eigenfunction of the
Laplacian

� D r2
�
@2

@x2
C

@2

@y2
C

@2

@r2

�
� r

@

@r

which is, in addition, invariant with respect to SL2.O/ and is of polynomial growth
as r !1. Denote by

L2 D
°
T D

�
a b
Nb d

�
W a; d 2 Z; b 2 D�1

±
the set of all half-integral hermitian matrices of size two and by LC2 D L2 \P2
the set of all half-integral positive definite hermitian matrices of size two. The
group SL2.O/ acts on each set by T ! ŒU �T D UT tU . To any positive definite
T D

�
a b
Nb d

�
2 LC2 , we associate the point

PT D b=d C .
p

detT =d/j 2 H3:

While to any indefinite T D
�
a b
Nb d

�
2 L2, we associate the geodesic hyperplane

ST D ¹P D z C rj 2 H3
W aC bz C bz C d.jzj2 C r2/ D 0º:

Moreover, we denote byE.T / D ¹U 2 SL2.O/ W ŒU �T D T º the unit group of T .
Recall that PŒ��T D �PT and SŒ��T D �ST for � 2 SL2.C/ ([11, Propositions
1.2 and 1.4, p. 409]). The following is a 3-dimensional analogue of Katok–Sarnak
[19] and Duke–Imamoglu [9]. See also [27], [29] and [33].
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Theorem 1.1. Let U.P / be any spectral eigenfunction on H3 such that ��U D

.1��2/U with some complex number �. In the case of cusp eigenfunctions, there
exists a real analytic cusp form '.�/ onH1 D ¹� D uC iv W v > 0º of weight�1,
character �K for �0.4/, namely

'.�/ D �K.d/jc� C d j.c� C d/
�1'.�/;  D

�
a b
c d

�
2 �0.4/;

such that the Fourier expansion

'.�/ D
X
0¤l2Z

bU.l/W� sgn.l/=2; �=2.4�jl jv/e
2�ilu

satisfies

bU.l/ D l
�1

X
T2SL2.O/nL

C

2 ; 4 detTDl

U.PT /=]E.T / for l > 0;

bU.l/ D
1

2�
jl j�1

X
T2SL2.O/nL2; 4 detTDl

Z
E.T /nST

U.P /d� for l < 0;
(1.1)

where d� is hyperbolic measure on ST (given explicitly in [13, 27]) and W˛;ˇ .v/
is the usual Whittaker function. In the case of non-cusp eigenfunctions, there exists
a real analytic Eisenstein series '.�/ of weight �1, character �K with respect to
�0.4/ whose Fourier coefficients are given by the same formulas for l such that all
of T 2 L2 with 4 detT D l are not zero-forms. Moreover '.�/ satisfies the plus
condition, that is, if �K.l/ D 1, then bU.l/ D 0 for any integer l .

As discovered by Duke–Imamoglu [9] in the Siegel modular case, this allows
us to analyze each spectral coefficient of F.iY / by the Rankin–Selberg method.
We can reprove a Hermitian analogue of Saito–Kurokawa lift by means of a con-
verse theorem. This lifting was discovered by Kojima [21] and generalized by
Krieg [23].

Suppose that a natural number k is divisible by 4. Take a cusp form g.�/ of
weight k � 1, character �K for �0.4/ belonging to the plus space in the sense of
Kojima [21], that is

g.�/ D
X

l�1; �K.l/¤1

c.l/e2�il� 2 Sk�1.�0.4/; �K/ .� 2 H1/: (1.2)

Put ˛�.l/ D c.l/=.�K.�l/C 1/ and define a function on H2 by

F.Z/ D
X
T2L

C

2

� X
d je.T /

dk�1˛�..4 detT /=d2/
�
e2�i tr.TZ/; (1.3)

where e.T / D max¹q 2 N W q�1T 2 LC2 º.
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We denote by �2 the full Hermitian modular group

�2 D
®
 2M4.O/ W

tJ  D J
¯
; J D

�
O2 �I2
I2 O2

�
; (1.4)

where O2 is the zero matrix and I2 is the identity matrix of size 2.

Theorem 1.2. The function F.Z/ is a modular form of weight k for �2.

Another example is an application to Hermitian Eisenstein series. Theorem 1.1
makes it possible to determine every spectral coefficients of the non-degenerate
part of a certain Hermitian Eisenstein series defined below. Using Maass lift, we
can construct a Hermitian modular form with the same spectral coefficients. Con-
sequently, the Hermitian Eisenstein series coincides with this image of the Maass
lift. This fact implies an explicit form of the Fourier coefficients of the Hermitian
Eisenstein series.

Suppose that k > 4 is even and N is a natural number. Let ! be a character
on O� such that !.i/ D i�k and  a character on .Z=NZ/� such that  .�1/ D
.�1/k D 1. Then put �.�d/ D !.�/ .d/ for � 2 O�; d 2 .Z=NZ/�. Denote by
�2 the full Hermitian modular group (1.4) and put

�
.2/
0 .N / D

®
 D

�
A B
C D

�
2 �2 W C � O2 .mod NO/

¯
;

�.2/1 D
®
 2 �2 W C D O2

¯
:

A Hermitian Eisenstein series of weight k, degree two and character � for
�
.2/
0 .N / is then defined by

E
.2/

k;�
.Z/ D

X�
A B
C D

�
2�

.2/
1 n�

.2/
0 .N/

�.detD/ det.CZ CD/�k; Z 2 H2:

It has a Fourier expansion indexed by positive semi-definite T 2 L2. If N D 1,
some explicit forms of the Fourier coefficients are obtained by Krieg [23] and
Nagaoka [35,36]. In fact, we will use their formula to obtain the following theorem
for N > 1.

For any Dirichlet character � mod M , we put

�M .�/ D

MX
rD1

�.r/e2�ir=M :

Theorem 1.3. Suppose that N > 1 is a square-free odd natural number and the
above  is a primitive Dirichlet character mod N . The T -th Fourier coefficient
of the Hermitian Eisenstein series for any positive definite T 2 LC2 D L2 \P2 is
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given by

A.T;E
.2/

k;�
/ D

.�2�i/k�N . /

N k�.k/L.k;  /

X
d je.T /

 .d/dk�1e1� ..4 detT /=d2/;

where �.s/ is the gamma function, L.s;  / is the Dirichlet L-function of  ,

e.T / D max¹q 2 N W q�1T 2 LC2 º

and e1� .t/ has the form

e1� .t/ D
22�k�k�1

ik�.k � 1/
tk�2

2; .t; k � 1/

L.k � 1; �K /

�

Y
odd prime p

p; .t; k � 1/
Y

prime pjN

C1
 ;p

.t/;

p; .t; k � 1/ D
1 � .�K.p/ .p/p

2�k/lpC1

1 � �K.p/ .p/p2�k
for p ¤ 2;

2; .t; k � 1/ D

´
1; for l2 D 0,
1C �K.�t=2

l2/. .2/22�k/l2 ; for l2 � 1,

C1 ;p.t/ D  p.4/
 �p .p

lpC1/

p.k�1/.lpC1/
�K.p/

lpC1 p.t=p
lp /plp�p. p/:

Here, for any prime q, we denote by lq the non-negative integer such that qlq is
the exact power of q dividing t ,  p are the primitive Dirichlet characters mod p
so that

 D
Y

prime pjN

 p;  �p D
Y

prime qj.N=p/

 q:

This paper is organized as follows. We prove Theorem 1.1 in Section 2.1, and
explain a relation between the form '.�/ in Theorem 1.1 and a vector valued
modular form on SL2.Z/ in Section 2.2. Section 3.1 gives some basic facts on
Hermitian Jacobi forms. In Section 3.2, we introduce Hermitian Jacobi Eisenstein
series and compute their Fourier coefficients. Some basic facts on Hermitian mod-
ular forms and a relation with automorphic functions on 3-dimensional hyperbolic
space are given in Section 4. Section 5 gives some analytic preparation. Theo-
rem 1.3 is proved in Section 6 and Theorem 1.2 is proved in Section 7. These are
done by studying the associated Koecher–Maass series.

In view of the Siegel modular case (see [3,8,9,17,34]) and the present Hermitian
modular case, it seems to be interesting to study modular forms onO.2; nC 1/ by
using the spectral theory on n-dimensional hyperbolic space. See also [28].
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2 Katok–Sarnak type correspondence

We refer to [11] as a basic reference for automorphic functions on 3-dimensional
hyperbolic space. A useful summary is also given in [40]. Let

H3
D ¹P D z C rj W z 2 C; r > 0º

be 3-dimensional hyperbolic space. The action of g D
�
a b
c d

�
2 SL2.C/ on

P D z C rj 2 H3

is given by (see [11, p. 3])

g � P D
.az C b/.cz C d/C acr2

jcz C d j2 C jcj2r2
C

r

jcz C d j2 C jcj2r2
j:

An automorphic function on H3 for SL2.O/ is any function U.P / on H3 sat-
isfying the following three conditions ([11, Definition 3.5, p. 108]).

(G-i) U.P / D U.P / for all  2 SL2.O/.

(G-ii) U.P / is a C 2-function on H3 with respect to x; y; r , where

P D x C yi C rj 2 H3:

It satisfies a differential equation ��U D �U with some � 2 C, where
� D r2. @

2

@x2
C

@2

@y2
C

@2

@r2
/ � r @

@r
.

(G-iii) U.P / is of polynomial growth as r tends to1.

If U.P / is a cusp eigenfunction such that � D 1 � �2 in (G-ii), then U.P /

possesses a Fourier expansion ([11, Theorem 3.1, p. 105])

U.z C rj / D
X

0¤�2O

b�rK�.2�j�jr/e.<.�z//: (2.1)

Here e.x/ D e2�ix and Ks is the usual K-Bessel function. On the other hand,
there is an Eisenstein series E.P; t/ defined by

E.P; t/ D
1

4

X
c;d2O
.c;d/DO

�
r

jcz C d j2 C jcj2r2

�1Ct
; <.t/ > 1;

where .c; d/ is a fractional ideal generated by c; d . It has a Fourier expansion of
the form (see [11, Definition 1.1, p. 359, (2.21), p. 370])

E.z C rj; t/ D r1Ct C �.t/r1�t C
X

0¤�2O

��.t/rKt .2�j�jr/e.<.�z//; (2.2)
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where

�.t/ D
��K.t/

t�K.1C t /
; ��.t/ D

2�1Ct

�.1C t /�K.1C t /
j�jt

X
.!/j.�/

j!j�t :

Here �K.t/ is the Dedekind zeta function of K. The Eisenstein series E.P; t/ has
a meromorphic continuation to the whole complex t -plane and it is holomorphic
for <.t/ > 0 except for a simple pole at t D 1 ([11, Theorem 3.8, p. 377]). See
also (5.11) in Section 5.4.

2.1 Proof of Theorem 1.1

We prove Theorem 1.1 in this section. In order to describe the spectral decomposi-
tion of L2.SL2.O/ nH3/, we need the constant function U0.P / D �=

p
2�K.2/,

an orthonormal system of cusp eigenfunctions Um.P / (see [11, Proposition 2.2,
p. 245, Corollary 3.4, p. 107]) and the Eisenstein seriesE.P; it/, where t 2 R. We
call any one of them by the spectral eigenfunction in this paper.

If U.P / is a spectral cusp eigenfunction, Theorem 1.1 follows from [27]. In
fact, in [27, Corollary 1.1, p. 485], we take a quadratic form Q of signature .1; 3/
and level 4 by

Q D

0BBBB@
0 2 0 0

2 0 0 0

0 0 1 0

0 0 0 1

1CCCCA :
Note that, if we put

vT D
t .a; d; b1; b2/ 2 Z4 for T D

�
a b

b d

�
2 L2

with b D i
2
.b1Cb2i/ 2 D�1, then 4 detT D tvTQvT . The Siegel theta function

used there is

‚.�; P / D v
X
T2L2

e..4 detT /uCivŒP; T �/; � D uCiv 2 H1; P D zCrj 2 H3;

where ŒP; T � D 2.tr.W �1T //2 � 4 detT with

W D

 
.jzj2 C r2/r�1 zr�1

zr�1 r�1

!
:

The theta lifting is defined for any spectral cusp eigenfunction U.P / by

U‚.�/ D

Z
F

U.P /‚.�; P /
dxdydr

r3
;
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where F is the fundamental domain of H3 with respect to SL2.O/. By [27, Corol-
lary 1.1, p. 485],

'.�/ D 4��1=2U‚.�/

is a desired Maass form for U.P /. See also [29], where theta lifting including the
case of non-cusp eigenfunctions is discussed. If l satisfies 4 detT ¤ l for all T ,
then the l-th Fourier coefficient of '.�/ D 4��1=2U‚.�/ does not appear by the
construction.

On the other hand, for the Eisenstein series E.P; t/ (and the constant function),

'.�/ D 4�1v�1=2F.�; t/

(and its residue at t D 1) is a desired Maass form. Here, F.�; t/ is the Eisenstein
series defined by (see [33, Section 2])

F.�; t/ D
�.t=2/�.t/

.4�/.tC1/=2L.t C 1; �K/

� vt=2C1¹4tE�1.4�; t=2C 1I�0; �K/

C .2i/�1E�1.�; t=2C 1I�K ; �0/º;

where �0 is the principal character, �K D .�4� / is the Kronecker symbol ofK and
E�1.�; t I�; / is the Eisenstein series (see [30, p. 274])

E�1.�; t I�; / D
X

.m;n/¤.0;0/

�.m/ .n/
.m� C n/

jm� C nj2t
; t 2 C; <t > 3=2:

In fact, the case l > 0 follows from [33, Theorem 5, p. 902]. In the case of l < 0,
the integral of E.P; t/ over E.T / nST is the zeta function of representation num-
bers of binary hermitian forms, if T is not a zero-form ([13, Satz 2.26, p. 19]). In
view of [32, Theorem 4, p. 169], their average over all

¹T 2 SL2.O/ n L2 W 4 detT D lº

is just a sum of divisor functions and it is proportional to the l-th Fourier coeffi-
cient of 4�1v�1=2F.�; t/ (see the proof of [33, Theorem 5], [13, Korollar 2.27 and
Satz 2.28, p. 22]). This completes the proof of Theorem 1.1.

2.2 Plus condition and vector valued modular forms

For the later use, we associate to '.�/ constructed in Theorem 1.1 a vector valued
modular form on SL2.Z/. Put f .�/ D v1=2'.�/. For ˛ 2 D�1 and

f .�/ D v1=2'.�/ D
X
l2Z

B.l; v/e.lu/;
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put

f˛.�/ D
�2i

a4.�4N .˛//

X
l��4N .˛/ .mod 4/

B.l; v=4/e.lu=4/; � D uC iv; (2.3)

and

{.f /.�; z; w/ D
X

˛2D�1=O

f˛.�/�˛.�; z; w/; .�; z; w/ 2 H1 �C2:

Here a4.l/ D �K.�l/C 1 and �˛.�; z; w/ is the theta function

�˛.�; z; w/ D
X

ˇ2˛CO

qN .ˇ/�
ˇ
1 �
ˇ
2 ; (2.4)

where qˇ D e2�iˇ� , �˛1 D e
2�i˛z , �˛2 D e

2�i˛w .
Fix a representatives of D�1=O by

˛1 D 0; ˛2 D 1=2; ˛3 D i=2; ˛4 D .1C i/=2:

A column vector

‚J .�; z; w/ D t .�˛1.�; z; w/; : : : ; �˛4.�; z; w//

of the theta functions satisfies the transformation formula

.c�Cd/�1e�2�iczw=.c�Cd/‚J .�; z=.c�Cd/; w=.c�Cd// D U./‚J .�; z; w/

(2.5)
for all  D

�
a b
c d

�
2 SL2.Z/, where U./ is a certain unitary matrix of size 4. See

[23, Lemma, p. 669].

Proposition 2.1. The vector .f˛1.�/; : : : ; f˛4.�// associate to '.�/ by (2.3) satis-
fies

.f˛1.�/; : : : ; f˛4.�// D .f˛1.�/; : : : ; f˛4.�//.c� C d/U./

for all  D
�
a b
c d

�
2 SL2.Z/, where U./ is the unitary matrix in (2.5). This im-

plies

e�2�iczw=.c�Cd/{.f /.�; z=.c� C d/; w=.c� C d// D {.f /.�; z; w/ (2.6)

for all  D
�
a b
c d

�
2 SL2.Z/.

Proof. We follow [23, Section 6] treating holomorphic modular forms. The oper-
ators U4; V4 are defined by

gj�1U4 D
X

j .mod 4/

gj�1
�
1 j
0 4

�
; gj�1V4 D gj�1U4j�1Q4; Q4 D

�
0 �1
4 0

�
;
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where gj�1M D .detM/�1=2.c� C d/g.M�/ for M D
�
a b
c d

�
. First of all, we

shall prove (cf. [23, Proposition, p. 671])

f j�1V4 D .2i/f: (2.7)

In fact this can be shown as follows. By definition,

f j�1V4 D
X

j .mod 4/

f j�1
�
4j �1
16 0

�
:

Decompose as
f j�1V4 D f

C
C f �:

Here we denote by f C the sum over the terms indexed by even j and by f � that
of odd j . The identity

�
4j �1
16 0

�
D
�
j .j 2�1/=4
4 j

��
4 �j
0 4

�
for odd j implies

f �.�/ D 2i
X
rD1;3

�K.�r/
X

l�r .mod 4/

B.l; v/e.lu/:

The identity
�
4j �1
16 0

��
1 1=2
0 1

�
D
�
1�2j j 2=2
�8 2jC1

��
4j �1
16 0

�
for even j gives

f C.� C 1=2/ D f C.�/:

Put h D f j�1V4 � .2i/f and F.�/ D 21=2h.�=2/. Then

F j�1ı2 D h; ım D
�
m 0
0 1

�
; (2.8)

hj�1 D �K.d/h;  D
�
a b
4c d

�
2 �0.4/; (2.9)

F j�1T D F; T D
�
1 1
0 1

�
: (2.10)

Here we used the plus condition bU.l/ D 0 for �K.l/ D 1 to prove (2.10).
For any  D

�
a b
4c d

�
2 �0.4/, the modularity (2.9) combined with

ı2ı
�1
2 D

�
a 2b
2c d

�
implies

F j�1
�
a 2b
2c d

�
D �K.d/F: (2.11)

By (2.10) and (2.11) with a D d D 1,b D 0, c D 1, we have

F j�11 D F; 1 D T
�
1 0
2 1

�
T: (2.12)

On the other hand, since 1 D
�
3 4
2 3

�
, the identity (2.11) with a D d D 3, b D 2

and c D 1 implies F j�11 D �F . This combined with (2.12) implies F D 0 and
h D 0. This completes the proof of (2.7).

It is easy to see f D i
P
ˇ2D�1=O fˇ j�1ı4 and fˇ j�1T j D e.�jN .ˇ//fˇ .

Thus the identity ı4
�
1 j
0 4

�
D 4T j combined with these two equations implies

f j�1
�
1 j
0 4

�
D i

X
ˇ2D�1=O

e.�jN .ˇ//fˇ : (2.13)
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For ˛ 2D�1 and each natural number� dividing 4, put c˛ D ¹4ia4.�4N .˛//º�1

and set
f .�/˛ D c˛

X
r .mod 4/; .r;4/D�

e.rN .˛//f j�1
�
r �1
4 0

�
:

In case � D 1, the identity
�
r �1
4 0

�
D
�
r �1
4 �3r

��
1 3r
0 4

�
for r D ˙1 combined with

(2.13) yields

f .1/˛ D .c˛i/
X

ˇ2D�1=O

X
rD˙1

e.rN .˛/ � 3rN .ˇ//�K.�3r/fˇ

D .�2c˛/
X

ˇ2D�1=O

¹�K.4N .˛//C �K.4N .ˇ//ºe.˛ˇ C ˇ˛/fˇ :

In case � D 2, we use f D .2i/�1f j�1V4 and�
4j �1
16 0

��
2 �1
4 0

�
D 4

� 2j�1 bj
8 dj

��
1 4bj�jdj
0 4

�
;

where bj ; dj are integers such that .2j � 1/dj � 8bj D 1. Then it follows from
(2.13) that

f .2/˛ D .c˛=2/
X

ˇ2D�1=O

3X
jD0

�K.dj /e.2N .˛/C jdjN .ˇ//fˇ

D .�2c˛/e.˛.1 � i/=2C ˛.1C i/=2/f 1Ci
2

:

In case � D 4, (2.7) implies f .4/˛ D .ic˛=2/f j�1U4 D .�2c˛/f0.
Because f˛ D c˛

P
j .mod 4/ e.N .˛/j /f j�1

�
1 j
0 4

�
, we conclude that

f˛j�1
�
0 �1
1 0

�
D

X
�D1;2;4

f .�/˛ D
i

2

X
ˇ2D�1=O

e.˛ˇ C ˇ˛/fˇ : (2.14)

Proposition 2.1 follows from this and fˇ j�1T D e.�N .ˇ//fˇ (cf. [37, proof of
Theorem 4]).

3 Hermitian Jacobi forms

3.1 Basic facts

In this section we recall some basic facts on Hermitian Jacobi forms. We refer to
[14, 23, 37] for more details. Let H1 D ¹� D uC iv W v > 0º be the upper half-
plane. The action of SL2.R/ on H1 is denoted by

�
a b
c d

�
� D a�Cb

c�Cd
. Put

U.1; 1/ D ¹�M W � 2 S1; M 2 SL2.R/º:
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For integers k and m, there is an action of the Jacobi group U.1; 1/ Ë .C2 � S1/

for functions � on H1 �C2 given by

�jk;m�.�; z; w/ D �
�k.c� C d/�kem

�
�c.z C �� C �/.w C �� C �/

c� C d

CN .�/� C �z C �w

�
� sm�

�
M�;

�.z C �� C �/

c� C d
;
�.w C �� C �/

c� C d

�
;

where � D
�
�
�
a b
c d

�
; .�; �/; s

�
2 U.1; 1/ Ë .C2 � S1/; .�; z; w/ 2 H1 � C2 and

em.x/ D e2�imx .
Let k;m and N be natural numbers. We suppose that k � 2 and N is a square-

free odd natural number. Denote by �.1/0 .N / the congruence subgroup

�
.1/
0 .N / D

®
�
�
a b
c d

�
W � 2 O�;

�
a b
c d

�
2 SL2.Z/; c � 0 .mod N/

¯
:

Let ! be a character on O� such that !.i/ D i�k and  a character on .Z=NZ/�

such that  .�1/ D .�1/k . Put

�.�d/ D !.�/ .d/

for � 2 O�; d 2 .Z=NZ/�. Then �.�
�
a b
c d

�
/ D �.�d/ is a character on �.1/0 .N /.

We denote by Jk;m.�
.1/
0 .N /; �/ the space consisting of all holomorphic functions

� on H1 �C2 satisfying the following two conditions.

(J-i) �jk;m� D �./� for all � D .; .�; �// 2 �J D �.1/0 .N / Ë O2.

(J-ii) For each M 2 SL2.Z/, the function �jk;mM has a Fourier expansion of
the form

�jk;mM.�; z; w/ D
X

n2Z; ˛2D�1

nm��N .˛/�0

cM .n; ˛/q
n=��˛1 �

˛
2 ; (3.1)

where qˇ D e2�iˇ� , �˛1 D e
2�i˛z , �˛2 D e

2�i˛w and � is a natural number
depending on M .

Ifm D 1, then cM .n; ˛/ depends only on ˛ .mod O/ and t.�/ D 4.n��N .˛//

as a consequence of the invariance of �jk;mM with respect to O2. Moreover if �
is odd, the action of � 2 O� and (J-i) imply that cM .n; ˛/ depends only on t.�/ (cf.
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[37, Lemma 1, p. 303]). Using the theta functions (2.4), we have a theta expansion
of (3.1) such as

�jk;1M.�; z; w/ D
X

˛2D�1=O

f˛.�/�˛.�; z; w/;

where

f˛.�/ D
X
l�0

l���4N .˛/ .mod 4/

cM .l/q
l=.4�/; cM .t.�// D cM .n; ˛/:

In the case of the cusp1 (M D I2, � D 1 in (3.1)), one has

�.�; z; w/ D
X

l�0; ˛2D�1

l��4N .˛/ .mod 4/

c.l/q.lC4N .˛//=4�˛1 �
˛
2 :

The condition (J-i) combined with (2.5) shows that the coefficient functions in the
theta expansion behave like a vector valued modular form on

�0.N / D
®�
a b
c d

�
2 SL2.Z/ W c � 0 .mod N/

¯
;

that is

 .d/.f˛1.�/; : : : ; f˛4/ D .f˛1.�/; : : : ; f˛4.�//.c� C d/
1�kU./ (3.2)

for all  D
�
a b
c d

�
2 �0.N /, where

f˛.�/ D
X
l�0

l��4N .˛/ .mod 4/

c.l/ql=4:

By [23, Lemma (i), p. 669], we know f˛.�/ 2Mk�1.�.4N //. Accordingly, one
has

c.l/ D O.lk�3=2/ for l � 1:

3.2 Hermitian Jacobi Eisenstein series

In this section, we compute some Fourier developments of Hermitian Jacobi Eisen-
stein series on �J D �.1/0 .N / Ë O2 associated with the cusps 0 and1. With the
previous notation, suppose that N > 1 is square-free odd, k > 4 even and  is
primitive.
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For G � �.1/0 .1/ Ë O2, put G1 D
®�
�
�
1 n
0 1

�
; .0; �/

�
2 G

¯
. For any cusp � of

�0.N /, take g 2 SL2.Z/ such that g.1/ D �. The Hermitian Jacobi Eisenstein
series of weight k and index 1 associated with � is defined by

E�k;1;�.�; z; w/ D
X

2.g�Jg�1/1ng�J

�.g�1/1jk;1:

One easily has
E�k;1;�jk;1 D �./E

�
k;1;�

for all  2 �J .
The Fourier coefficients of E�

k;1;�
for � 2 ¹1; 0º can be computed in the same

way as in [36, Theorem 2.1, p. 22]. See also the proof of Proposition 3.2 given
later. Here we choose g D I2 (resp. g D

�
0 1
�1 0

�
/ for � D1 (resp. � D 0) so that

g.1/ D �.

Proposition 3.1. For � 2 ¹1; 0º, the Fourier development of E�
k;1;�

is given by

E�k;1;�.�; z; w/ D ı�;1�0.�; z; w/C
X

t>0; ˛2D�1

t��4N .˛/ .mod 4/

e��.t/q
.tC4N .˛//=4�˛1 �

˛
2 ;

where

e1� .t/ D ˛k;4t
k�2B .t/

Y
prime pjN

C1 ;p.t/; e0�.t/ D ˛k;4 .�1/t
k�2B .t/:

Here ˛k;4 D 22�k�k�1i�k�.k � 1/�1 and ıi;j is Kronecker’s delta,

B .t/ D
2; .t; k � 1/

L.k � 1; �K /

Y
odd prime p

p; .t; k � 1/;

where q; .t; k � 1/ and C1 ;p.t/ are as in Theorem 1.3.

Since N is square-free, ¹1; 0º
S
¹1=� W 1 < � < N; � j N º is a set of repre-

sentatives of non-equivalent cusps of �0.N /. We define elements in SL2.Z/ by

�1 D I2; �0 D
�
0 �1
1 0

�
; �� D

�
1 ˛
� Nˇ=�

�
; (3.3)

where integers ˛ and ˇ are chosen so that Nˇ=� � ˛� D 1. These transform1
to each cusps. For the cusp �, we will also use symbols �� instead of (3.3) without
any confusion.
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Proposition 3.2. The following statements hold:

(1) The Fourier development of E0
k;1;�
jk;1�0 is given by

E0k;1;�jk;1�0.�; z; w/

D �0.�; z; w/C
X

t>0; ˛2D�1

t��4NN .˛/ .mod 4/

a0�.N t/q
.tC4NN .˛//=.4N/�˛1 �

˛
2 ;

where
a0�.N t/ D ˛k;4�K.N /t

k�2B .N t/
Y

prime pjN

C1
 ;p

.t/: (3.4)

Here the notation is the same as in Proposition 3.1.

(2) For � D 1=� with 1 < � < N , � j N , the coefficient functions H �
˛ .�/ of the

theta expansion

E0k;1;�jk;1��.�; z; w/ D
X

˛2D�1=O

H �
˛ .�/�˛.�; z; w/ (3.5)

are of rapid decay as =� tends to1.

Proof. We prove only (1) here, since the proof of (2) is similar. By definition, we
have

E0k;1;�jk;1�0.�; z; w/

D ��ke.�zw=�/E0k;1;�.�1=�; z=�; w=�/

D �0.�; z; w/C
X

d>0; c2Z
.c;Nd/D1

 .�c/

.d� � c/k

�

X
�2O

e

�
N .�/

b� � aN

d� � c
C
�z C �w

d� � c
�

dzw

d� � c

�
:

Denote the sum over c; d; � by B.�; z; w/. In the same manner as in [36, Sec-
tion 2.2], we get

B.N�; z; w/ D
X

n2Z; ˛2D�1

n�NN .˛/>0

˛k;4N
1�k
¹4.n �NN .˛//ºk�2

�

X
c�1

c�k
X

d2.Z=cNZ/�

�2O=cO

 .d/eNc.dQ.�//q
n�˛1 �

˛
2 ; (3.6)

where Q.�/ D NN .�/CNT .˛�/C n, N .�/ D ��, T .�/ D �C �.



1778 R. Matthes and Y. Mizuno

If c D a
Q

prime pjN p
e, .a;N / D 1 is a factorization of c, the Chinese Remain-

der Theorem tells us that the .n; ˛/-th coefficient in (3.6) is equal to

˛k;4N
1�k
¹4.n �NN .˛//ºk�2Bn;˛

Y
prime pjN

Cn;˛;p; (3.7)

where

Bn;˛ D
X
a�1

 .a/a�k
X

d2Z=aZ; .d;a/D1
�2O=aO

ea.dQ.�//;

Cn;˛;p D p
k�2

X
e�1

 �p .p
e/p�ek

X
d2.Z=peZ/�

�2O=peO

 p.d/epe .dQ.�//:
(3.8)

Following [36, Section 2.3.1], one has

Bn;˛ D B .N t.N//

with t.N/ D 4.n �NN .˛//.
In order to simplify Cn;˛;p, choose an integer g so that 4g � 1 .mod pe/.

Since p is odd and 2i˛ 2 O, it follows from Q.�/ � NgN .2i�C 2i˛/C gt.N/
.mod pe/ that the inner double sum in (3.8) is

p2
X

d2.Z=peZ/�

 p.d/epe .dgt.N//
X

�2O=pe�1O

epe�1.d.N=p/gN .�//: (3.9)

We now claim that, for any odd prime p and e � 1, one hasX
�2O=peC1O

epeC1.dgN .�// D .�K.p/p/
eC1

where d is any integer relatively prime to p and g is any integer such that 4g � 1
.mod peC1/. Indeed, the left-hand side can be written as

eX
lD0

X
�12.Z=pe�lC1Z/�

r.O; peC1;�pl�1/epeC1.dgp
l�1/Cr.O; p

eC1;�peC1/;

where
r.O; k;�/ D ]¹� 2 O=kO W N .�/ � �� .mod k/º:

This equals .�K.p/p/eC1 by the formulas in [10, Propositions 2.6, 2.7].
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Applying this result to the inner sum in (3.9), we have

Cn;˛;p D  p.4/p
k�1

X
e�1

 �p .p
e/

p.k�1/e
�K.p/

e�1
X

d2.Z=peZ/�

 p.d/epe .dt/: (3.10)

Let e � 1 and pm be the exact power of p dividing t . The inner sum in (3.10)
is equal to  p.t=pm/pm�p. p/ if e D mC 1, and 0 otherwise (cf. [34, proof of
Proposition 4, p. 843]). This completes the proof of Proposition 3.2 (1).

4 Hermitian modular forms

4.1 Basic facts

LetU.2; 2/ D
®
M D

�
A B
C D

�
2M4.C/ W tMJM D J

¯
with J D

�
O2 �I2
I2 O2

�
. This

group acts on the Hermitian upper half-space

H2 D ¹Z 2M2.C/ W .Z �
tZ/=.2i/ > O2º

by �
A B
C D

�
Z D .AZ C B/.CZ CD/�1:

Let K D Q.i/ be the Gaussian number field of discriminant �4. Let O D ZŒi � be
the ring of integers inK and D�1 D .2i/�1O the inverse different. We denote by
�2 D U.2; 2/ \M4.O/ the full Hermitian modular group of degree two. For any
natural number N , the congruence subgroup �.2/0 .N / is defined to be

�
.2/
0 .N / D

®
 D

�
A B
C D

�
2 �2IC � O2 .mod NO/

¯
:

Using � as in Section 3, we define a character on �.2/0 .N / by �./ D �.detD/
for  D

�
A B
C D

�
2 �

.2/
0 .N /. Note here that detD 2 Z [ iZ for

�
A B
C D

�
2 �2. In

fact, by the proof of [39, Lemma 1.1, p. 421] combined with [7, Theorem I, p. 143],
we can deduce that � detD 2 Z with some � 2 O� (cf. [20, Remark 2.1]).

For an even natural number k, denote byMk.�
.2/
0 .N /; �/ the space of all holo-

morphic functions f .Z/ on H2 which satisfy

f .Z/ D �./ det.CZ CD/kf .Z/;  D
�
A B
C D

�
2 �

.2/
0 .N /:

Since k is even, the condition .A0/ in [24, p. 92] holds, namely the character � is
trivial on the principal congruence subgroup of level N .

Any f 2Mk.�
.2/
0 .N /; �/ has a Fourier expansion

f .Z/ D
X

T2L2�0

A.T; f /e.tr.TZ//;
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where the sum is extended over all half-integral positive semi-definite hermitian
matrices of size two. There exists a constant C such that

jA.T; f /j � C.detT /k

for all positive definite matrices T 2 LC2 . See [24, Theorem 3.1, p. 93], the proofs
of [24, Lemma 1.9, p. 80] and [1, Theorem 2.3.4, p. 70].

4.2 Relation with 3-dimensional hyperbolic space

For any Z 2 H2, the hermitian imaginary part Y D .Z � tZ/=.2i/ is a positive
definite hermitian matrix of size two. Denote by P2 the set of all positive definite
hermitian matrices of size two and by SP 2 the determinant one part of P2. We
identify SP 2 with 3-dimensional hyperbolic space H3 by ([11, Definition 1.1,
p. 408])

W D

 
.jzj2 C r2/r�1 zr�1

zr�1 r�1

!
! PW D z C rj: (4.1)

Any automorphic function U.P / on H3 gives a function on P2 by setting
U.Y /DU.PY /, wherePY corresponds to .detY /�1=2Y . In other words, Y 2 P2
is identified with PY 2 H3 by

Y D

 
a b

b d

!
! PY D

b

d
C

p
detY
d

j:

Put moreover OU.Y / D U.Y �1/. Recall that ([11, Proposition 1.2, p. 409])

PŒ��Y D �PY for Y 2 P2; � 2 SL2.C/:

4.3 Maass lift

As in [23, 37], the Maass lift M from the space Jk;1.�
.1/
0 .N /; �/ to the space

Mk.�
.2/
0 .N /; �/ is defined as follows. For � 2 Jk;1.�

.1/
0 .N /; �/ and any natural

number m, we define the operator V Jm by

�jk;1V
J
m .�; z; w/ D m

k�1
X

MD
�
a b
c d

�
2�0.N/nM

�
2 .m/

 .a/.c� C d/�k

� e

�
�
cmzw

c� C d

�
�

�
M�;

mz

c� C d
;
mw

c� C d

�
;

where

M �2 .m/ D
®
M D

�
a b
c d

�
2M2.Z/ W detM D m; c � 0 .mod N/; .a;N / D 1

¯
:



3-dimensional hyperbolic space and Hermitian modular forms 1781

It is easy to see that �jk;1V Jm transforms like an element in Jk;m.�
.1/
0 .N /; �/ and

if
�.�; z; w/ D

X
n2Z; ˛2D�1

n�N .˛/�0

c.n; ˛/qn�˛1 �
˛
2 ;

then

�jk;1V
J
m .�; z; w/ D

X
n2Z; ˛2D�1

nm�N .˛/�0

 X
d j.n;˛;m/

 .d/dk�1c

�
mn

d2
;
˛

d

�!
qn�˛1 �

˛
2 :

(4.2)
Here the sum over d j .n; ˛;m/ is taken over all d 2 N such that n=d;m=d 2 Z,
˛=d 2 D�1. Moreover, put

�0.�/ D

´
N k�.k/L.k;  /

.�2�i/k�N . /
C

X
n�1

 X
d jn

 .d/dk�1

!
qn

µ
c.0; 0/:

This is an Eisenstein series on �0.N / for the cusp1 ([30, Theorem 7.1.3, p. 270]).
The Maass lift M� is then defined for

�
� 0 z
w �

�
2 H2 by

M�.
�
� 0 z
w �

�
/ D �0.�/C

X
m�1

�jk;1V
J
m .�; z; w/e.m�

0/: (4.3)

Since c.n; ˛/ D c.4.n �N .˛// D O..n �N .˛//k�3=2/ as noted in the end of
Section 3.1, the Fourier series (4.3) w.r.t. e.n�C˛zC˛wCm� 0/ converges abso-
lutely and uniformly in any domain Y � Y0 > O2. See Section 5.1 for the proof.

Proposition 4.1. One has M� 2Mk.�
.2/
0 .N /; �/.

Proof. For M D
�
a b
c d

�
2 �0.N /, we denote by M?, M? the matrices

M? D

0BBBB@
1

a b

1

c d

1CCCCA ; M? D

0BBBB@
a b

1

c d

1

1CCCCA :
For simplicity, put G.Z/ DM�.Z/ and

J2.;Z/ D det.CZ CD/; �./ D �.detD/ for  D
�
A B
C D

�
2 �

.2/
0 .N /:

Since �0.�/ 2Mk.�0.N /;  /, a direct computation using (4.3) implies

G.M?Z/ D �.M?/J2.M?; Z/
kG.Z/:
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On the other hand, (4.2) implies that

G.Z/ D
N k�.k/L.k;  /

.�2�i/k�N . /
c.0; 0/

C

X
m�0; n�0; ˛2D�1

mn�N .˛/; .n;˛;m/¤.0;0;0/

 X
d j.n;˛;m/

 .d/dk�1c

�
mn

d2
;
˛

d

�!

� e.n� C ˛z C ˛w Cm� 0/:

Because c.n; ˛/ depends only on 4.n�N .˛// by Section 3.1, this expression tells
us

G.V ]Z/ D G.Z/ for V ] D
�
V O2
O2 V

�
; where V D

�
0 1
1 0

�
:

Therefore, for any M 2 �0.N /, one has

G.M?Z/ D G.V ]M?V
]Z/ D G.M?V

]Z/

D �.M?/J2.M?; V
]Z/kG.V ]Z/ D �.M?/J2.M

?; Z/kG.Z/:

By Lemma 4.2 given below, �.2/0 .N / is generated by the elements consisting
of M?;M? for M 2 �0.N /, tC.S/ for S 2 Her2.O/ and U ] for U 2 GL2.O/,
where

tC.S/ D
�
I2 S
O2 I2

�
; U ] D

�
U O2

O2
tU
�1

�
:

Hence the desired result follows.

Lemma 4.2. The group �.2/0 .N / is generated by the elements consisting of M?

and M? for M 2 �0.N /, tC.S/ for S 2 Her2.O/ and U ] for U 2 GL2.O/.

Proof. Put t�.S/ D
�
I2 O2
S I2

�
for S 2 Her2.O/. By [24, Theorem 4.2, p. 68], the

group �.2/0 .N / is generated by the elements consisting of .�M/? for � 2 O�,
M 2 �0.N /, tC.S/; t�.NS/ for S 2 Her2.O/ and U ] for U 2 GL2.O/. In the
first one, we can restrict � D 1. In fact�

1 0
0 �

�]
M? D .�M/?:

Hence we have only to show that t�.NS/ can be expressed by a product of ma-
trices in Lemma 4.2. Let us denote by Q� the group generated by matrices in Lem-
ma 4.2. First t�.

�
0 0
0 N

�
/ D

�
1 0
N 1

�
?
; t�.

�
N 0
0 0

�
/ D

�
1 0
N 1

�?
2 Q� so that

t�.
�
N 0
0 N

�
/ D

�
1 0
N 1

�?� 1 0
N 1

�
?
2 Q�:
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Using �
1 0
�1 1

�]� 1 0
N 1

�
?

�
1 0
�1 1

�]
D t�.

�
N 0
0 N

�
/t�.

�
0 N
N 0

�
/;

we have t�.
�
0 N
N 0

�
/ 2 Q� . Similarly, t�.

�
0 iN
�iN 0

�
/ 2 Q� follows from�

1 0
i 1

�]� 1 0
N 1

�
?

�
1 0
�i 1

�]
D t�.

�
N 0
0 N

�
/t�.

�
0 iN
�iN 0

�
/

suggested by Krieg. Accordingly, we conclude t�.NS/ 2 Q� for S 2 Her2.O/ and
so Q� D �.2/0 .N / as desired.

5 Spectral decomposition

In this section, we consider the spectral decomposition of unimodular invariant
Fourier series on H2. Take a Fourier series

F.Z/ D
X
T2L

C

2

A.T; F /e.tr.TZ//; Z 2 H2; (5.1)

where LC2 D L2 \P2. We assume that

A.T; F / D A.ŒU �T; F /

for any U 2 GL2.O/, and

A.T; F / D O..detT /ı1/

with a positive constant ı1.
Here we summarize the facts on hermitian matrices, that are needed below.

Lemma 5.1. The following statements hold:

(1) For hermitian matrices T;X; Y , one has tr.TX/; tr.T Y / 2 R.

(2) If hermitian matrices A;B;C satisfy A � B and C � O2, then

tr.AC/ � tr.BC/:

(3) For any positive semi-definite hermitian matrix A D
� a1 a12
a12 a2

�
� O2, one has

a1a2 � detA.

(4) Let t be any natural number. If T D
�
a b
Nb d

�
2 LC2 satisfies ad D t , then

a; d � t and jbj � 2t :

Moreover, one has ]¹T D
�
a b
Nb d

�
2 LC2 W ad D tº � t

2.4t C 1/2.
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(5) For any S 2 P2, there exists U 2 GL2.O/ such that ŒU �S 2 R2, where

R2 D
®� s1 s12
s12 s2

�
2 P2 W 2j=.s12/j � 2<.s12/ � s1 � s2

¯
:

Moreover, there exist constants ˛; ˇ > 0 such that

s1s2 � ˛.detS/; 2
�
s1 0
0 s2

�
� S � ˇ

�
s1 0
0 s2

�
for all S D

� s1 s12
s12 s2

�
2 R2.

See [24, Theorem 4.12, p. 35] for Lemma 5.1 (5). Other statements are ele-
mentary. By Lemma 5.1, we have the following inequality, which (or a similar
argument) will be used frequently in this section (see [17, p. 912]). If

S D
� s1 s12
s12 s2

�
2 R2 and T D

�
a b
Nb d

�
2 LC2 ;

then

tr.TS/ � ˇtr.T
�
s1 0
0 s2

�
/ D ˇ.as1 C ds2/

� 2ˇ
p
ads1s2 � 2ˇ

p
ad
p

detS:
(5.2)

We also use the Stirling formula frequently.

Lemma 5.2. For given c > 0 and �1 < �2, there exist positive constants N1; N2
such that

j�.�C i t/j � N1e
��
2
jt j.1Cjt j/��1=2; j�.�C i t/j�1 � N2e

�
2
jt j.1Cjt j/1=2��

for any complex number � C i t in the region jt j � c, �1 � � � �2.

5.1 Convergence and estimate of Fourier series

The Fourier series F.Z/ defined in (5.1) converges absolutely and uniformly in
any domain Y � Y0 > O2, and F.Z/ is bounded on this region. In fact, if we take
� > 0 so that Y � Y0 > �I2, the argument in [17, p. 912] combined with Lem-
ma 5.1 gives

jF.Z/j �
X
T2L

C

2

jA.T; F /je�2� tr.T Y /
� K1

1X
tD1

tı1 t2.4t C 1/2e�4�
p
t�

with a constant K1. Hence we obtain the claims. Accordingly, we have

F.iŒU �Y / D F.iY / for U 2 GL2.O/: (5.3)
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Moreover there exist positive constants C1; C2; ı3; l such that

jF.iY /j � ŒC1.detY /�.lC1/ C C2.detY /�l �e�ı3.detY /1=2 for Y 2 P2: (5.4)

In order to prove (5.4), we may assume Y 2 R2. Then the argument in [17, p. 913]
combined with (5.2) gives

jF.iY /j � K2

1X
tD1

tı1 t2.4t C 1/2e�4�ˇ
p

detY t1=2

� K3

 
1X
tD1

tı1C4e�2�ˇ
p

detY t1=2
!
e�2�ˇ

p
detY

� K3

�
B1.detY /�..ı1C4/C1/ C B2.detY /�.ı1C4/

�
e�2�ˇ

p
detY (5.5)

with some positive constants K2; K3; B1; B2. Hence we obtain (5.4) as desired.
Here we show the convergence of the series given in (4.3). For n;m; ˛ such that

nm �N .˛/ > 0, put T D
�
m ˛
˛ n

�
2 LC2 and e.T / D max¹q 2 N W q�1T 2 LC2 º.

The Fourier coefficient w.r.t. e.n� C ˛z C ˛w Cm� 0/ is

A.T / D
X
d je.T /

 .d/dk�1c

�
mn

d2
;
˛

d

�
:

Since e.T / divides n;m, it follows that e.T /2 � nm. Using the facts that k � 2,
c.n; ˛/ D O..n �N .˛//k�3=2/ and Lemma 4.2 (5), we have

jA.T /j � C0.detT /k�3=2e.T / � C0.detT /k�3=2.nm/1=2 � C0˛.detT /k�1

for T 2 R2. By the GL2.O/ invariance of the expression, this inequality holds for
any T 2 LC2 . Hence the convergence of the non-degenerate T parts follows. On the
other hand, the convergence of the degenerate T parts can be treated as in the proof
of [3, Lemma 5, p. 206]. The uniform convergence on the domain Y � Y0 > O2
follows from the argument of [1, Theorem 2.3.1, p. 65] combined with [24, Propo-
sition 1.3, p. 75].

5.2 Mellin transform of Fourier series

Any Y 2 P2 has the form Y D uW , where u D .detY /1=2 > 0 and W 2 SP 2.
Assuming <.s/ to be sufficiently large, set

QFs.P / D

Z 1
0

F.iuW /u2s�1du; P D PW :
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For s D � C i t , the estimate (5.4) implies

j QFs.P /j �

Z 1
0

jF.iuW /ju2��1du

� C1�.2� � 2l � 2/ı
�.2��2l�2/
3 C C2�.2� � 2l/ı

�.2��2l/
3 :

Hence, if �1; �2 .�1 < �2/ are sufficiently large, the integral converges abso-
lutely and uniformly on H3 � ¹s D � C i t W �1 � � � �2º. Moreover, QFs.P / is
bounded on the same region.

By (5.3), it satisfies

QFs.P / D QFs.P / for  2 SL2.O/:

For sufficiently large � D <.s/, one has

QFs.P / D .2�/
�2s�.2s/ Qfs.P /; Qfs.P / D

X
T2L

C

2

A.T; F /

tr.T W /2s
: (5.6)

In fact, if �1; �2 .�1 < �2/ are sufficiently large, the series Qfs.P / converges ab-
solutely and uniformly on H3 � ¹s D � C i t W �1 � � � �2º. Moreover Qfs.P / is
bounded on the same region. In order to prove these claims, we may assume that
W 2 R2. As detW D 1, (5.2) implies tr.T W / � 2ˇ

p
ad for T D

�
a b
Nb d

�
2 LC2 .

It follows for sufficiently large � D <.s/ that

j Qfs.P /j �
X
T2L

C

2

jA.T; F /j

tr.T W /2�
�

K4

.2ˇ/2�

X
T2L

C

2

1

.ad/��ı1

�
K4

.2ˇ/2�

1X
tD1

t2.4t C 1/2

t��ı1

with a positive constant K4. Hence the claims follow.
By Lemma 5.2, one has

F.iy1=2W / D
1

2�i

Z
<.s/D�

2 QFs.P /y
�sds; � � 0; (5.7)

for y > 0 from (5.6).

5.3 Estimate of �2 Qfs.P/

Let us study �2 Qfs.P /, where Qfs.P / is as in (5.6) and � is the Laplacian. See
Section 2 (G-ii). First, we summarize the facts on the elementary set E2.˛/. See
[24, Definition, Theorems 4.9, 4.10 and 4.11, pp. 33–35]. For ˛ > 0, put

E2.˛/ D
®� 1 0

b12 1

��
d1 0
0 d2

��
1 b12
0 1

�
W 0 < d1 < ˛d2; jb12j < ˛

¯
� P2:
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Lemma 5.3. The following statements hold:

(1) There is ˛ > 0 such that R2 � E2.˛/.

(2) There exists a constant ˇ > 0 such that� s1 s12
s12 s2

�
� ˇ

�
s1 0
0 s2

�
for all

� s1 s12
s12 s2

�
2 E2.˛/.

(3) For any compact subset K � P2, there is ˛ > 0 such that K � E2.˛/.

We claim

Proposition 5.4. If �1; �2 .�1 < �2/ are sufficiently large, then there exist positive
constants N0; ˛ such that

j�2 Qfs.P /j � N0.1C 2jt j/
˛ (5.8)

on H3 � ¹s D � C i t W �1 � � � �2º.

Proof. In order to prove this claim, note that on the left-hand side of the equation
�2 QFs.P / D .2�/

�2s�.2s/�2 Qfs.P /, the differentiations under the integral sign
is permissible. In fact, for any compact subsetK � H3, let K � P2 be the subset
corresponding toK by means of (4.1). Take ˛ > 0 such that K � E2.˛/ by Lem-
ma 5.3 (3). For P D PW D x C iy C jr 2 K, the argument used in Sections 5.1
and 5.2 combined with Lemma 5.3 (2) gives the estimate

j@xF.iuW /j D

ˇ̌̌̌ X
TD
�
a b

b d

�
2L
C

2

A.T; F /.�2�u/.2ax C b C b/r�1e�2�u tr.T W /
ˇ̌̌̌

�

X
TD
�
a b

b d

�
2L
C

2

jA.T; F /j2�u.2jaj � jxj C 2jbj/r�1e�4�ˇu
p
ad :

Now there are constants N3; N4 > 0 such that jzj < N3 and r�1 < N4 for all
P D z C rj 2 K. Thus Lemma 5.1 (4) tells us that

j@xF.iuW /j �

1X
tD1

t2.4t C 1/2 �K1t
ı12�u � .2tN3 C 4t/N4e

�4�ˇu
p
t :

This implies the estimate of j@xF.iuW /j similar to (5.5). The majorant functions
is independent of P D PW 2 K and is integrable from 0 to1 w.r.t. u, when it is
multiplied by u2��1. Hence, we can differentiate QFs.P / w.r.t. x under the integral
sign. Other variables and repeating differentiations can be justified by similar way.
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Put B D tr.T W /. We have the identities

�B D 3B and r2..Bx/
2
C .By/

2
C .Br/

2/ D B2 � 4 detT ;

where Bx D @B
@x

etc. It follows that

�2e�2�uB D .�2�u/e�2�uB¹9B � 2�u.8.B2 � 4 detT /C 15B2/

C .2�u/210B.B2 � 4 detT / � .2�u/3.B2 � 4 detT /2º;

and that �2F.iuW / is the finite sum of the functions like

F˛0;ˇ 0; 0.iuW / D
X
T2L

C

2

A.T; F /u˛
0

tr.T W /ˇ
0

.detT /
0

e�2�u tr.T W /;

where ˛0; ˇ0;  0 are some positive constants. Accordingly,�2 QFs.P / for<.s/� 0

is the finite sum of the functions of the form

CF˛0;ˇ 0; 0;s.PW / D
Z 1
0

F˛0;ˇ 0; 0.iuW /u
2s�1du:

Integrating term by term, we can deduce similarly to Section 5.2 that

j�.2s C ˛1/
�1 CF˛0;ˇ 0; 0;s.P /j

is bounded on H3 � ¹s D � C i t W �1 � � � �2º, if �1; �2 .�1 < �2/ are suffi-
ciently large.

By Lemma 5.2, there is a positive constantN5 such that j�.2sC˛1/�.2s/�1j <
N5.1C2jt j/

˛1 on the region �1 � � � �2. Hence, we get the desired estimate (5.8)
for �2 Qfs.P / D .2�/2s�.2s/�1�2 QFs.P /.

5.4 Associated Dirichlet series

For any automorphic function U.P /, put

D.F;U; s/ D
X

T2SL2.O/nL
C

2

A.T; F / OU.T /

�.T /.detT /s
; (5.9)

where the summation extends over all T 2 LC2 modulo the action

T ! ŒU �T D UT tU

of the group SL2.O/,

�.T / D ]¹U 2 SL2.O/ W ŒU �T D T º
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is the order of the unit group of T and

OU.T / D U.T �1/ D U.PT�1/:

This is so-called Koecher–Maass series twisted by U.P / (cf. [17,25] in the Siegel
modular case). Recall that A.T; F / is GL2.O/ invariant, and

A.T; F / D O..detT /ı1/

with a constant ı1 > 0.

Proposition 5.5. For any spectral eigenfunction U.P /, the series defining the
functions D.F;U; s/ and D.F; OU; s/ in (5.9) converge absolutely and uniformly
for <.s/ > 9

4
C ı1.

Proof. In order to prove this claim, we use the following Lemmas 5.6 and 5.7.
These are consequence of [33, Proposition 2, p. 902] combined with

J � PT�1 D PŒJ �T�1 D PT ;

where J D
�
0 �1
1 0

�
.

Lemma 5.6. The series X
T2SL2.O/nL

C

2

E.PT�1 ; u/

�.T /.detT /s

converges absolutely and uniformly for <.u/ > 1, <.s/ > <.u/
2
C

3
2

.

Lemma 5.7. The series X
T2SL2.O/nL

C

2

1

�.T /.detT /s

converges absolutely and uniformly for <.s/ > 2.

Any cusp eigenfunction Um.P / and the constant function U0.P / are bounded
[11, Corollary 3.3, p. 107]. Hence Lemma 5.7 implies that the series (5.9) con-
verges absolutely and uniformly for <.s/ > 2C ı1. This completes the proof of
Proposition 5.5 in these cases.

On the other hand, Lemma 5.6 implies for <.u/ > 1 that

D.F;E.P; u/; s/ D
X

T2SL2.O/nL
C

2

A.T; F /E.PT�1 ; u/

�.T /.detT /s
(5.10)
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converges absolutely and uniformly for<.s/ > <.u/
2
C
3
2
Cı1. To extend the result

from <.u/ > 1 to <.u/ D 0, we follow the proof of [3, Lemma 2, p. 202].
For t > 0, put

�O.P; t/ D
X
c;d2O

e�
�
r
.jczCd j2Cjcj2r2/t

ZC.P; u/ D

Z 1
1

.�O.P; t/ � 1/t
1Cudt

t
:

By [11, p. 402],

��.1Cu/�.1C u/4�K.1C u/E.P; u/

D

Z 1
0

.�O.P; t/ � 1/t
1Cudt

t

D

Z 1
1

.�O.P; t/ � 1/.t
1Cu
C t1�u/

dt

t
C

2

u2 � 1

D ZC.P; u/CZC.P;�u/C
2

u2 � 1
: (5.11)

Note that this is invariant under u! �u, and implies the meromorphic continua-
tion and the functional equation of the Eisenstein series.

Then we claim that

Lemma 5.8. For any complex number u, the seriesX
T2SL2.O/nL

C

2

ZC.PT�1 ;<.u//

�.T /.detT /s

converges absolutely and uniformly for<.s/ > <.u/CM
2
C
3
2

, whereM is any real
number such that <.u/CM > 1.

Proof. For any u, we take M > 0 such that v D uCM satisfies <.v/ > 1. Then

ZC.PT�1 ;<.u//

� ZC.PT�1 ;<.v// �

Z 1
0

.�O.PT�1 ; t / � 1/t
1C<.v/dt

t

D ��.1C<.v//�.1C<.v//4�K.1C<.v//E.PT�1 ;<.v//: (5.12)

The desired claim follows from Lemma 5.6.
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Let us complete the proof of Proposition 5.5 for the case of Eisenstein series
E.P; it/. By (5.11),

j��.1Cu/�.1C u/4�K.1C u/j
X

T2SL2.O/nL
C

2

ˇ̌̌̌
A.T; F /E.PT�1 ; u/

�.T /.detT /s

ˇ̌̌̌

� C 0
X

T2SL2.O/nL
C

2

1

�.T /.detT /<.s/�ı1

�

²
ZC.PT�1 ;<.u//CZC.PT�1 ;�<.u//C

2

ju2 � 1j

³
with a constant C 0. Since �.1C i t/ ¤ 0 and �K.1C i t/ ¤ 0 for any real num-
ber t , Lemmas 5.7 and 5.8 imply the desired result for E.P; it/ for any real num-
ber t ¤ 0 by taking M D 3=2. Note that E.P; 0/ D 0 and use

J � PT�1 D PŒJ �T�1 D PT with J D
�
0 �1
1 0

�
in Lemma 5.6 in order to treat D.F; OE.P; u/; s/. We remark here that we have
proved the convergence for any fixed u such that u ¤ ˙1, �.1Cu/�K.1Cu/ ¤ 0
and sufficiently large <.s/.

In order to analyze continuous spectrum, we will use the following two lemmas
(see [3, Lemma 4, p. 205]).

Lemma 5.9. Let � be sufficiently large. Then there exist constantsM; ı depending
only on � such that

jD.F;E.P; i�/; � C i t/j < M.1C j�jı/

for any real numbers t; �.

Proof. For any u D �C i� with fixed 1 < � … Z, it follows from (5.10) and Lem-
ma 5.6 that there exists a constant M1 > 0 depending only on �; � such that

j.u2 � 1/�K.1C u/D.F;E.P; u/; � C i t/j < M1.1C j�j
2/:

By the functional equation of E.P; u/ and Lemma 5.2 together with this estimate,
there exists a constant M2 > 0 depending only on �; � such that

j.u2 � 1/�K.1C u/D.F;E.P; u/; � C i t/j < M2.1C j�j
2/.1C j�j/2�

on the line u D ��C i�. Moreover, by (5.10) and (5.11) combined with Lem-
mas 5.2, 5.7 and 5.8, there exist constants c0 and M3 > 0 depending only on �; �
such that

j.u2 � 1/�K.1C u/D.F;E.P; u/; � C i t/j �M3e
c0j=.u/j
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on the region �� � <.u/ � �. Since � D <.s/� 0, it follows that the series
.u2 � 1/�K.1C u/D.F;E.P; u/; s/ converges uniformly on any compact subset
of �� � <.u/ � � by (5.11). Thus as a function of u 2 C, it is holomorphic on
the region �� � <.u/ � �. According to the Phragmén–Lindelöf Theorem, there
exist constants M4; ı4 > 0 depending only on �; � such that

j.u2 � 1/�K.1C u/D.F;E.P; u/; � C i t/j < M4.1C j=.u/j/
ı4 (5.13)

on the region �� � <.u/ � �.
By Bauer [4, (33), p. 227], we have �K.1C i�/�1 D O.j�j�/ as j�j ! 1 with

some �. Note that Bauer proved there a better result for any number field. See also
[22, (3.12), p. 482] for this estimation. Since �K.1C i�/ ¤ 0 for any real num-
ber �, the desired result follows from the case u D i� in (5.13).

Lemma 5.10. For fixed P 2 H3, there exists a constant ı2 such that

E.P; i�/ D O.1C j�jı2/:

Proof. Let u D �C i� with fixed 1 < � … Z. Since u is in the region of conver-
gence of E.P; u/ and �K.1C u/, there exists a constant M5 such that

j.u2 � 1/�K.1C u/E.P; u/j < M5.1C j�j
2/:

By the functional equation and Lemma 5.2 together with this estimate, there exists
a constant M6 such that

j.u2 � 1/�K.1C u/E.P; u/j < M6.1C j�j
2/.1C j�j/2�

on the line u D ��C i�. Moreover, (5.11) combined with Lemma 5.2 implies that
there exist constants c00 and M7 such that

j.u2 � 1/�K.1C u/E.P; u/j �M7e
c00j=.u/j

on the region �� � <.u/ � �. Since .u2 � 1/�K.1C u/E.P; u/ is holomorphic
on �� � <.u/ � � by (5.11), the Phragmén–Lindelöf Theorem tells us that there
exist constants M8; ı5 such that

j.u2 � 1/�K.1C u/E.P; u/j < M8.1C j=.u/j/
ı5 (5.14)

on the region �� � <.u/ � �.
By Bauer [4, (33), p. 227] (see also [22, (3.12), p. 482]), we have

�K.1C i�/
�1
D O.j�j�/ as j�j ! 1

with some �. Since �K.1Ci�/ ¤ 0 for any real number �, the desired result follows
from the case u D i� in (5.14).
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Applying the known estimate of K-Bessel function ([18, p. 204]) and that of
��.i t/ ([11, Theorem 4.10 (4), p. 294]) to (2.2), we have

Lemma 5.11. Let I � R be any compact set and r0 be a sufficiently large real
number. Then there exists a positive constant � such that

E.z C rj; i t/ D r1Cit C �.it/r1�it CO.e��r/ .t 2 I; r > r0/;

where �.s/ is as in (2.2).

See also [11, (3.21), p. 270] for this estimation.

5.5 Spectral decomposition

Put B D tr.T W / as before. Using

�e�2�uB D .�2�u/¹3B � 2�u.B2 � 4 detT /ºe�2�uB ;

we can deduce QFs.P /;� QFs.P / 2 L2.SL2.O/ nH3/ for sufficiently large <.s/.
In fact, we can prove this in the same way as in Section 5.3. By Section 5.2 and
Lemma 5.11, QFs.P /E.P; i t/ is absolutely integrable over the region F � Œ0; T �

for every T � 0, where F is a fundamental domain of SL2.O/nH3. We shall take
F by F D ¹P D x C yi C rj W 0 � x � 1=2; jyj � 1=2; x2 C y2 C r2 � 1º.

According to [11, Theorem 3.4 (3), p. 267], we have the spectral decomposition
of QFs.P / (<.s/� 0)

QFs.P / D
X
m

D�.F;Um; s/Um.P /C
1

2�

Z 1
�1

D�.F;E. ; i t/; s/E.P; i t/dt;

(5.15)
where ¹Um.P /º consists of the constant function U0.P / D �=

p
2�K.2/ and an

orthonormal system of cusp eigenfunctions (see [11, Proposition 2.2, p. 245, Cor-
ollary 3.4, p. 107]) and E.P; it/ is the Eisenstein series. We called one of them
by the spectral eigenfunction. For any automorphic function U.P /, the function
D�.F;U; s/ is defined by the inner product

D�.F;U; s/ D

Z
F

QFs.P /U.P /dv.P /;

where dv.P / D r�3dxdydr with P D .x C yi/C rj . By [40, Proposition 2,
p. 397], if ��Um D .1��

2
m/Um for m ¤ 0, then 1��2m 2 R, 1��2m > 1 and

�m is pure imaginary for m ¤ 0.
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Proposition 5.12 below gives the spectral coefficient as Koecher–Maass series
(5.9) completed by a certain gamma factor. For any automorphic function U.P /

and any hermitian modular form

f .Z/ D
X

T2L2�O

A.T; f /e.tr.TZ// 2Mk.�
.2/
0 .N /; �/;

we defineD�.f;U; s/ byD�.F;U; s/, where F.Z/ is the non-degenerate part of
f .Z/, that is

F.Z/ D
X
T2L

C

2

A.T; f /e.tr.TZ//:

Proposition 5.12. The following statements hold:

(1) Let F be any Fourier series as in .5:1/ and a spectral eigenfunction U.P /

has the eigenvalue 1 � �2 of ��. Then, for sufficiently large <.s/, one has

D�.F;U; s/ D �.2�/�2s�.s � 1=2C �=2/�.s � 1=2 � �=2/D.F;U; s/:

Moreover, we have the same formula for D�.F; OU; s/, if we change U by OU
on the right hand side.

(2) For any spectral eigenfunction U.P / andf .Z/ 2Mk.�
.2/
0 .N /; �/ .�D ! /,

the functionsD�.F;U; s/ andD�.F; OU; s/ have a meromorphic continuation
to all s, and satisfies the functional equation

N sD�.f;U; s/ D .�1/kN k�sD�.g;
O

U; k � s/;

where g.Z/ D N�k.detZ/�kf .�.NZ/�1/ 2Mk.�
.2/
0 .N /; ! /.

Proof. For sufficiently large � D <.s/, one has from (5.6)

QFs.P / D
�.2s/

.2�/2s

X
T2SL2.O/nL

C

2

A.T; F /

�.T /

X
U2SL2.O/

tr.ŒU �T �W /�2s:

HenceZ
F

QFs.Q/U.Q/dv.Q/ D 2
�.2s/

.2�/2s

X
T2SL2.O/nL

C

2

A.T; F /

�.T /
�U.s; T /; (5.16)

where we put

�U.s; T / D

Z 1
0

Z
C

tr.T W /�2sU.Q/dv.Q/; dv.Q/ D
dxdydr

r3
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with Q D .x C yi/C rj 2 H3 and W D
�
.jzj2Cr2/r�1 zr�1

zr�1 r�1

�
. According to [11,

Proposition 1.6, p. 6], we define

ı.P; P 0/ D
jz � z0j2 C r2 C r 02

2rr 0
for P D z C rj; P 0 D z0 C r 0j:

Then, for Q D z C rj and P D .detT /1=2j�b
a

with T D
�
a b

b d

�
, one has

2.detT /1=2ı.P;Q/ D tr.T W /:

Hence

�U.s; T / D .detT /�s
Z

H3

.2ı.P;Q//�2sU.Q/dv.Q/: (5.17)

Take g 2 SL2.C/ so thatP D g�j . Since ı.P;Q/ D ı.g�j;Q/ D ı.j; g�1�Q/
and U.Q/ D O.max¹r˛; r�ˇ º/ with some positive ˛; ˇ, we haveZ

H3

j.2ı.P;Q//�2sU.Q/jdv.Q/

D

Z
H3

j.2ı.j;Q//�2sU.g �Q/jdv.Q/

�

Z 1
0

Z
C

�
r

jzj2 C r2 C 1

�2� ˇ̌̌̌
U

�
.detT /1=2Q � b

a

�ˇ̌̌̌
dxdydr

r3

�M9

Z 1
0

Z
C

�
r

jzj2 C r2 C 1

�2�
�max

²�
.detT /1=2

a
r

�˛
;

�
.detT /1=2

a
r

��ˇ³dxdydr
r3

:

Since, for � � 0,Z
C

1

.jzj2 C r2 C 1/2�
dxdy D �

�.2� � 1/

�.2�/
.r2 C 1/1�2� ;Z 1

0

r��3C˛.r2 C 1/1�2�dr;

Z 1
0

r��3�ˇ .r2 C 1/1�2�dr < C1;

the integral (5.17) is absolutely convergent for sufficiently large � .
In (5.16), we take T 2 SL2.O/ n LC2 so that so that 2T is reduced in the sense

of [11, Definition 2.3, p. 411]. Then a � det.2T /2 by [11, Proposition 2.6 (1),
p. 412]. Hence Lemma 5.7 justifies interchanging the summation and the integra-
tion to obtain (5.16).
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Theorem 5.3 in [11, p. 119] combined with the third formula in [26, p. 6] eval-
uates the integral in (5.17) as

U.P / �
�

�

Z 1
1

.t C t�1/�2s.t� � t��/.t � t�1/
dt

t

D U.T �1/ �
�

2

�.s � 1=2 � �=2/�.s � 1=2C �=2/

�.2s/
:

This completes the proof of the statement (1) (cf. [25, (55), (63), pp. 100–102] for
the Siegel modular case).

The statement (2) can be shown in the same way as in the proof of [2, Corol-
lary 2.3, p. 271] and [3, Theorem 10, p. 209].

We note here that Ibukiyama [16] established a general theory of Koecher–
Maass series with Grössencharacter (suitable automorphic forms) associated with
modular forms on tube domains. The convergence of the series, determination of
the gamma factor, meromorphic continuation and functional equation are given
in [16].

If the Fourier coefficientsA.T;F / satisfy a Maass type relation, thenD.F;U; s/
is a convolution product of two Dirichlet series.

Proposition 5.13. Let � be a Dirichlet character. Suppose that there exists a func-
tion ˛ on the set of all natural numbers satisfying

A.T; F / D
X
d je.T /

�.d/dk�1˛..4 detT /=d2/; (5.18)

where
e.T / D max¹q 2 N W q�1T 2 LC2 º:

Then for any spectral eigenfunction U.P / on H3 whose eigenvalue of �� is
1 � �2, we have

D�.F;U; s/ D �.2�/�2s�.s � 1=2C �=2/�.s � 1=2 � �=2/

� 4sL.2s � k C 1; �/
X
l�1

˛.l/b O
U
.l/l

ls
;

for <.s/� 0, where bU.l/ is defined by (1.1). Moreover, we have the same for-
mula for D�.F; OU; s/, if we change U by OU on the right hand side.

Proof. Substituting equation (5.18) into (5.9), the result follows without difficul-
ties. See [5, Satz 3] and [9, Lemma 3].
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6 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. First of all, we give an explicit form of the
Koecher–Maass series associated with Hermitian Eisenstein series.

For any spectral eigenfunction U.P / and

f .Z/ D
X

T2L2�O

A.T; f /e.tr.TZ// 2Mk.�
.2/
0 .N /; �/;

put

D.f;U; s/ D
X

T2SL2.O/nL
C

2

A.T; f / OU.T /

�.T /.detT /s
:

By Proposition 5.12 (1), the spectral coefficientD�.f;U; s/ of the non-degenerate
part of f is given by

D�.f;U; s/ D �.2�/�2s�.s � 1=2C �=2/�.s � 1=2 � �=2/D.f;U; s/;

where ��U D .1 � �2/U.

Proposition 6.1. For any spectral eigenfunction U.P / corresponding to the eigen-
value �.1 � �2/ of �, the Koecher–Maass series of E.2/

k;�
has the form

D�.E
.2/

k;�
;U; s/ D

�k;24
�kC2N�k�1�2s�N . /

˛k;4L.k; /
�.s � 1=2C �=2/

� �.s � 1=2 � �=2/L.2s � k C 1;  /

1X
lD1

e1� .l/b OU
.l/l

ls
;

where
�k;2 D .�1/

k.2�/2k�1¹2�.k/�.k � 1/º�1

and ˛k;4 is as in Proposition 3.1.

Proof. Let
F
.2/

k;�
.Z/ D N�k.detZ/�kE.2/

k;�
.�.NZ/�1/

be the involuted Eisenstein series. It has a Fourier expansion

F
.2/

k;�
.Z/ D

X
T2L

C

2

C.T /e.tr.TZ//;

C.T / D
�k;2N

�k

4k�2˛k;4.�1/
kL.k; /

X
d je.T /

 .d/dk�1e0�..4 detT /=d2/:

(6.1)
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Indeed similarly to [6], we have

C.T / D �k;2N
�k.detT /k�2

X
R2Her2.K/=Her2.O/

�.�.R//�.R/�ke.tr.TR//;

where �.R/ D jdetC j with R D C�1D,
�
A B
C D

�
2 �2, detC ¤ 0. For T > O ,

the Siegel series

b.s; T / D
X

R2Her2.K/=Her2.O/

�.R/�se.tr.TR// .<.s/� 0/

has an Euler product, whose Euler p-factor is a partial series of b.s; T / consisting
of the terms indexed by R 2 Her2.K/=Her2.O/ such that �.R/ is a power of p.
The explicit formula due to Nagaoka [35] tells us that each Euler p-factor is a
polynomial of p�s . Replacing p�s by �.p/p�k in his formula, one can deduce a
formula for C.T / as an Euler product of the polynomial of  .p/p�k . The result
combined with some elementary manipulation implies (6.1).

Since ��U D .1 � �2/U and �� OU D .1 � �2/ OU, it follows from (6.1) and
Proposition 5.13 that

D�.F
.2/

k;�
;
O

U; s/ D
�k;2N

�k�1�2s

4k�2˛k;4.�1/
kL.k; /

�.s � 1=2 � �=2/�.s � 1=2C �=2/

� L.2s � k C 1;  /

1X
lD1

e0�.l/bU
.l/l

ls
: (6.2)

For each cusp � 2 ¹1; 0º
S
¹1=� W 1 < � < N; � j N º, we choose elements

in SL2.R/ by

g1 D �1; g0 D �0A1; g� D ��A�; A� D

 p
N=� 0

0
p
�=N

!
with �� in (3.3). So the assumptions in [31, Section 2.1] are fulfilled. We will also
use g� instead of the above symbols gj .

Let h˛.�/ be the ˛-th coefficient of the theta expansion of E0
k;1;�

and put

�.�/ D
X

˛2D�1=O

h˛.�/f˛.�/; ��.�/ D �k;2.g� ; �/
�1�.g��/;

where f˛.�/ is as in (2.3) and �k;2.
�
a b
c d

�
; �/ D .c�Cd/k=jc�Cd j2. Since U./

is unitary, Proposition 2.1 combined with (3.2) implies

�.�/ D  ./�k;2.; �/�.�/ for all  2 �0.N /:
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Moreover, we claim that

��.�/ � ı0;�.2i/N
k=2�1B.0;Nv=4/

is of rapid decay as =� tends to1. In order to check this claim, to the theta ex-
pansions

E0k;1;�jk;1��.�; z; w/ D
X

˛2D�1=O

H �
˛ .�/�˛.�; z; w/;

we associate the function

��.�/ D
X

˛2D�1=O

H �
˛ .�/f˛.�/:

The theta formula (2.5) gives the relation ��.�/ D �k;2.�� ; �/�1�.���/, and this
implies ��.�/ D .�=N/1�k��.N�=�/ for � D 1=� and �0.�/ D N k=2�1�0.N�/.
Hence the desired claim follows from the Fourier expansions of ��.�/ (Proposi-
tions 3.1, 3.2). In particular, �0.�/ D N k=2�1�0.N�/ and

H 0
˛ .�/ D ı0;˛ C

X
l>0; l��4NN .˛/ .mod 4/

a0�.N l/q
l
4N :

Under these observations, we define the Rankin–Selberg transform R�.s/ for
<.s/ sufficiently large by (cf. [31, 41])

R�.s/ D

Z 1
0

Z 1

0

.��.�/ � ı0;�.2i/N
k=2�1B.0;Nv=4//vs�2dudv:

Theorem 2 of [31] is applicable to the present setting and it gives meromorphic
continuation of R�.s/ to all s and the functional equation

R1.s � 1=2/ D
2kC1�2s�ikN�sCk=2�1=2�.2s � k/L.2s � k;  /

�.s � k C 1=2/�.s C 1=2/L.2s � k C 1;  /

�R0.k � s � 1=2/:

Using [12, formula 11, p. 816] combined with the Fourier expansion of �.�/ and
(6.2), it follows that D�.F .2/

k;�
;
O

U; s/ coincides with R1.s � 1=2/ up to a gamma
factor. The functional equation of the DirichletL-function and Proposition 5.12 (2)
combined with (6.2) imply

D�.E
.2/

k;�
;U; s/ D

�k;2N
s�3k=2�1=2��s�N . /

i4k�2˛k;4L.k; /

� �.s C 1=2/L.2s � k C 1;  /R0.s � 1=2/:
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Taking the relations e1� .t/ D a
0
�.N

2t / and b OU.l/ D bU.l/ into account, a Fourier
expansion of �0.�/ combined with [12, formula 11, p. 816] yields the desired re-
sult.

Proof of Theorem 1.3. Set

F D E
.2/

k;�
�
.�2�i/k�N . /

N k�.k/L.k;  /
ME1k;1;�:

Applying the Siegel operator ˆ defined by

ˆF.�/ D lim
�!C1

F
�
i� 0
0 �

�
2Mk.�0.N /; �/;

we haveˆF D 0 so that the Fourier expansion of F.Z/ has only the terms indexed
byLC2 . Moreover, Propositions 6.1 and 5.13 implyD�.F;U; s/ D 0 for any spec-
tral eigenfunctions U D Um; E. � ; i t /. Hence we have QFs.P / D 0 in (5.15) and
so F.Z/ D 0 by Mellin inversion (5.7) and the principle of analytic continuation
([24, Lemma 1.6, p. 48]). This completes the proof of Theorem 1.3.

In [34, p. 858], we used the termwise Mellin inversion of the spectral decom-
position of a Siegel modular form. This is justified in [15]. See also the proof of
Proposition 7.1 below. While, the termwise Mellin inversion is unnecessary, if we
proceed the proof as above (cf. [8, proof of Lemma 2.1, p. 155]).

7 Proof of Theorem 1.2

The converse theorem for Hermitian modular forms analogous to the Siegel mod-
ular case ([9, Theorem 2]) is the following.

Proposition 7.1. Suppose that a natural number k is divisible by 4 and take F.Z/
as in (5.1). IfD�.F;U; s/ andD�.F; OU; s/ can be analytically continued to entire
functions of s, which are bounded in every vertical strip in s and satisfy

D�.F;
O

U; s/ D D�.F;U; k � s/

for any spectral eigenfunction U on H3, then F.Z/ is a Hermitian modular form
of weight k on �2.

Proof. We follow Ibukiyama’s proof of [9, Theorem 2] (see [15]). The estimate
(5.8) implies

�2 Qfs.P / 2 L
2.SL2.O/ nH3/
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for fixed s with sufficiently large<.s/. Suppose that��Um D �mUm. Since��
is symmetric ([11, Theorem 1.7, p. 136]), we have . Qfs;Um/ D �

�2
m .�2 Qfs;Um/

for cusp eigenfunctions Um, where .� ; �/ denotes the inner product on SL2.O/nH3

defined by

.f; g/ D

Z
F

f .P /g.P /r�3dxdydr

with the fundamental domain F and P D .x C yi/C rj 2 H3 (see [11, (1.2),
p. 133]). This relation combined with an inequality about geometric-arithmetic
means and Schwarz’ inequality tells us that

j. QFs;Um/Um.P /j � j.2�/
�2s�.2s/j2�1¹��2m .�2 Qfs; �

2 Qfs/C �
�2
m jUm.P /j

2
º

� .2�/�2� j�.2s/j2�1¹��2m �N
2
0 .1C 2jt j/

2˛
� 2�K.2/�

�1

C ��2m jUm.P /j
2
º:

Here, for the last inequality, we used (5.8) and
R

F r�3dxdydr D 2�K.2/�
�1.

Then, by [11, Corollaries 5.3 and 5.5, p. 182], the sumX
m¤0

jD�.F;Um; s/Um.P /j D
X
m¤0

j. QFs;Um/Um.P /j

on the right hand side of (5.15) converges uniformly on any compact subset L of
H3. See also [11, Corollary 5.4, p. 182]. By Lemma 5.2, we haveZ 1

�1

X
m¤0

j. QF�Cit ;Um/Um.P /jdt < C1 for � � 0:

On the other hand, according to [11, Theorem 3.4 (3), p. 267],Z 1
�1

jD�.F;E. ; i�/; s/E.P; i�/jd�

converges uniformly on any compact subset L of H3 for fixed s with <.s/ � 0.
Lemmas 5.2, 5.9 and 5.10 imply for any fixed P 2 H3 thatZ 1
tD�1

Z 1
�D�1

jD�.F;E. � ; i�/; � C i t/E.P; i�/jd�dt < C1 for � � 0:

Hence, we can apply Mellin inversion of (5.15) term by term.

By Section 5.4, D.F;U; s/ and D.F; OU; s/ are O.1/ on the line �1 D <.s/, if
�1 is sufficiently large. By the functional equation and Lemma 5.2, there exists a

constant A such that D.F;U; s/ and D.F; OU; s/ are O.1 C j=.s/jA/ on the line
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�2 D <.s/, if �2 < 0 and j�2j is sufficiently large. As D�.F;U; s/, D�.F; OU; s/
are entire and bounded in the strip �2 � <.s/ � �1, there exists a constant B such

that D.F;U; s/ and D.F; OU; s/ are O.eBj=.s/j/ on the strip �2 � <.s/ � �1 by
Lemma 5.2. According to the Phragmén–Lindelöf theorem, we deduce that there

exists a constantC such thatD.F;U; s/ andD.F; OU; s/ areO.1Cj=.s/jC / on the

strip �2 � <.s/ � �1. Hence, Lemma 5.2 implies that D�.F;U; s/, D�.F; OU; s/
are of rapid decay as j=.s/j ! 1 on the strip �2 � <.s/ � �1. This combined

with the entireness ofD�.F;U; s/;D�.F; OU; s/ and the functional equation givesZ
.�/

D�.F;U; s/y�sds D y�k
Z
.�/

D�.F;
O

U; s/

�
1

y

��s
ds; � � 0;

for y > 0 by shifting the path of integration. Then it follows from (5.7) and (5.15)
that F.iu�1W �1/ D u2kF.iuW / and F.�.iY /�1/ D det.iY /kF.iY /. In fact,
by ��

0 �1
1 0

��
W �1 D

�
.jzj2Cr2/r�1 zr�1

zr�1 r�1

�
; (7.1)

the function D�.F; OU; s/ is the spectral coefficient of QFs.PW �1/ with respect to
U.PW /. Note that, similarly to QFs.PW /, the function QFs.PW �1/ satisfies the as-
sumptions to apply the spectral decomposition [11, Theorem 3.4 (3), p. 267] and
the termwise Mellin inversion. In view of [24, Lemma 1.7, p. 79] and [24, Lem-
ma 1.6, p. 48], we complete the proof of Proposition 7.1.

Proof of Theorem 1.2. Let F.Z/ be as in (1.3) and suppose that

��U D .1 � �2/U:

The identity (7.1) tells us b OU.l/ D bU.l/. This combined with Proposition 5.13
implies

D�.F;U; s/ D �.2�/�2s�.s � 1=2C �=2/�.s � 1=2 � �=2/

� 4s�.2s � k C 1/
X
l�1

˛�.l/b
U
.l/l

ls
:

For ˛ 2 D�1, we associate to g.�/ in (1.2) the function

g˛.�/ D
�2i

a4.�4N .˛//

X
l�1; l��4N .˛/ .mod 4/

c.l/e.l�=4/:

Similarly to Proposition 2.1, one has

.g˛1.�/; : : : ; g˛4.�// D .g˛1.�/; : : : ; g˛4.�//.c� C d/
1�kU./ (7.2)
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for  D
�
a b
c d

�
2 SL2.Z/, where U./ is the unitary matrix in (2.5). While, to

f .�/ D v1=2'.�/

with '.�/ corresponding to U.P / by means of Theorem 1.1, we associate f˛.�/
as in (2.3). It follows from the transformation formulas (7.2) and (2.5) that the
function

�.�/ D
X

˛2D�1=O

g˛.�/f˛.�/

satisfies �.�/ D �k;2.; �/�.�/ for all  2 SL2.Z/. Here

�k;2.
�
a b
c d

�
; �/ D .c� C d/k=jc� C d j2:

Hence the Rankin–Selberg method tells us that

D�.F;U; s/ D 2��s�.s C 1=2/�.2s � k C 1/R1.s � 1=2/

with

R1.s/ D

“
D

�.�/E.�; s/
dudv

v2
;

where D D ¹� D uC iv 2 H1 W j� j � 1; juj � 1=2º and

E.�; s/ D
vs

2

X
c;d2Z; .c;d/D1

.c� C d/k

jc� C d j2sC2
:

If we use the notation of Shimura [38, p. 461], this has the form

D�.F;U; s/ D �1=2
“
D

�.�/v�1Hk.s C 1=2; �; id/
dudv

v2
:

It follows from the proof of [38, Lemma 3.3, p. 461] thatD�.F;U; s/ is entire (see
also [30, Corollary 7.2.11, p. 286]) and satisfiesD�.F;U; s/ D D�.F;U; k � s/.
Moreover, it is bounded in every vertical strip in s. Using b OU.l/ D bU.l/, we

have D�.F;U; s/ D D�.F;
O

U; s/. By Proposition 7.1, we complete the proof of
Theorem 1.2.
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