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SYMPLECTIC 4-MANIFOLDS WITH FIXED POINT FREE CIRCLE

ACTIONS

JONATHAN BOWDEN

Abstract. We show that recent results of Friedl-Vidussi and Chen imply that a symplec-
tic 4-manifold admits a fixed point free circle action if and only if it admits a symplectic
structure that is invariant under the action and we give a complete description of the sym-
plectic cone in this case. This then completes the topological characterisation of symplectic
4-manifolds that admit non-trivial circle actions.

1. Introduction

Recently Friedl and Vidussi, [7] solved the long standing Taubes Conjecture, which clas-
sifies which 4-manifolds of the form M × S1 admit symplectic forms. Moreover, they de-
termined exactly which cohomology classes can be represented by symplectic forms. Using
recent results of D. Wise, [13] they have extended their results to the case of non-trivial
S1-bundles in [9]. In this note we observe that their results as well of those of Chen, who
obtained partial results in the fixed point free case in [3], imply the analogue of ([9], Theorem
1.3) for all fixed point free circle actions.

Before stating our main result we fix some notation and terminology. Let X
p

−→ M be
an orientable 4-manifold with a fixed point free circle action and quotient space M = X/S1.
The quotient space is an orbifold whose underlying topological space |M | is a manifold since
all the stabilisers of the S1-action are necessarily cyclic and the singular locus consists of a
collection of branching circles (cf. [1], [6]).

We let Mreg denote the complement of an open tubular neighbourhood of the singular
locus of M and Xreg = p−1(Mreg), which is an honest S1-bundle so that the pushforward
map p∗ is well-defined for cohomology classes in H∗(Xreg,R). The manifoldMreg has toroidal
boundary and thus one may define the Thurston norm on H1(Mreg,R) in the usual fashion.
Finally for ψ ∈ H2(X,R) we let ψreg denote the restriction of ψ to Xreg.

Theorem 1. Let X
p

−→ M be an oriented manifold admitting a fixed point free S1-action
with quotient space M and let ψ ∈ H2(X,R). Then the following are equivalent:

(1) ψ can be represented by a symplectic form,
(2) ψ can be represented by an S1-invariant symplectic form,
(3) ψ2 > 0 and p∗ψreg ∈ H1(Mreg,R) lies in the open cone over a fibered face of the

Thurston norm ball and is the restriction of a class in H1(|M |,R).

Note that if a class φ ∈ H1(|M |,R) is integral, then φ can be represented by a fibration
over S1 that is transverse to the singular locus of |M | if and only if its restriction to Mreg,
which we denote by φreg, is fibered. Recall that a fibration of a manifold with boundary
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is required to be transverse to the boundary. Furthermore, since φreg is the restriction of
a class in H1(|M |,R), it automatically vanishes on the meridian classes in ∂Mreg so that if
φreg is fibered, then the induced fibration on the boundary is necessarily meridional. Thus
the fibration dual to φreg extends to |M | in the desired way by filling in discs near the
singular locus. In particular, part (3) of Theorem 1 implies that the underlying manifold
|M | is fibered and we obtain a positive answer to the following conjecture, which implies
([3], Conjecture 1.7) as a special case.

Conjecture 1 (Generalised Taubes conjecture). Let X be a symplectic 4-manifold that
admits a non-trivial fixed point free circle action with quotient orbifoldM . Then the (possibly
empty) singular locus L of M is a meridionally fibered link.

Furthermore, as noted in ([3], p. 6), Theorem 1 completes the characterisation of which
symplectic manifolds admit non-trivial S1-actions. For Baldridge, [1] showed that if a non-
trivial S1-action on a symplectic 4-manifold has fixed points then X is rational or ruled and
thus admits an S1-invariant symplectic form for some non-trivial S1-action. In view of this
we obtain the following corollary.

Corollary 1. Let X be a symplectic 4-manifold that admits a non-trivial S1-action. Then
either the action is fixed point free and the quotient space fibers over S1 or X is rational or
ruled. In either case, X admits a non-trivial symplectic S1-action.

2. Proof of Theorem 1

The proof of Theorem 1 is based on the following lemma, which provides a generalisation of
([4], Theorem 5.2) to include irrational classes. For the proof we assume a certain familiarity
with the basic properties of the Thurston norm (cf. [12]).

Lemma 1. Let M be a 3-manifold with an orientation preserving smooth action of a fi-
nite group G and quotient orbifold M = M/G. An element φ in the invariant subspace
H1(M,R)G admits a non-degenerate de Rham representative if and only if it admits a non-
degenerate de Rham representative that is G-invariant.

In particular, the restriction of the associated class φ ∈ H1(|M |,R) ∼= H1(M,R)G to Mreg

lies in the open cone over a fibered face of the Thurston norm ball.

Proof. We first assume that φ is rational. Since nothing changes after multiplying with
positive constants, we may assume that φ is in fact integral. In this case the first claim is
just a restatement of ([4], Theorem 5.2), which can be applied in complete generality in view
of ([11], Theorem 8.1). Note that the assumption H1(M,Q)G = Q in ([4], Theorem 5.2) can
be replaced by the fact that the fibration is given by a fibered class φ that is G-invariant.
Moreover, the proof in [4] actually gives a fibration that is transverse to the branching locus
in M . The quotient map π induces an isomorphism H1(M,R)G ∼= H1(|M |,R) so that there
is a unique class φ with φ = π∗φ and the fibration dual to φ descends to a fibration of |M |
dual to φ. Finally since the fibration is transverse to the singular locus it follows that the
restriction of φ to Mreg is fibered.

We next assume that φ is irrational and let φ be the unique class with φ = π∗φ. We
let ιreg denote the natural inclusion Mreg →֒ |M | and set V = Im(ι∗reg). By the previous
case all rational classes in V that are sufficiently close to φreg = ι∗regφ are fibered. If φreg

itself did not lie in the open cone over a fibered face of the Thurston unit ball, then it must
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lie in the closed cone over the boundary of a fibered face by the assumption that it can be
approximated by fibered elements. Since the Thurston unit ball is rational, the intersection of
the closed cone containing φreg with V must contain non-fibered rational points arbitrarily
close to φreg, which gives a contradiction. Thus φreg admits a non-degenerate de Rham
representative ηreg. Since ηreg can be approximated by rational classes that are fibered and
restrict to meridional fibrations on the boundary of Mreg, the foliation induced by ηreg on
the boundary is also meridional.

We let (z, θ) ∈ D2 × S1 denote coordinates on a tubular neighbourhood of a component
of the branching locus of |M |. After applying a suitable isotopy we may assume that ηreg
has the form f(θ)dθ near ∂D2 × S1. It follows that ηreg extends to a non-degenerate closed
form η which is transverse to the branching locus of |M |. The pullback η = π∗η then gives
the desired non-degenerate G-equivariant representative of φ.

�

Proof of Theorem 1. The implication (2) =⇒ (1) is trivial.
(1) =⇒ (3): Let (X,ω) be a symplectic manifold with a fixed point free S1-action and

quotient space M . By ([3], Proposition 1.8) there is a manifold M and a smooth action by a
finite group so that M =M/G. Furthermore, we have the following commutative diagram:

π∗X = X
p

//

π

��

M

π

��

X
p

// M,

where π is the quotient map, π is an unramified covering and the induced S1-action on X is
free. Moreover, the group G acts naturally on X as the group of deck transformations of π.

Thus ω = π∗ω is a symplectic form and by ([9], Theorem 1.4) its image under the pushfor-
ward map p

∗
(ω) ∈ H1(M,R) lies in the open cone over a fibered face of the Thurston norm

ball. Since ω is G-invariant and the action on X is fiber preserving, the class φ = p
∗
(ω)

is also G-invariant. We let φ be the unique class such that π∗φ = φ. By Lemma 1 the
restriction φreg to Mreg lies in the open cone over a fibered face. Finally the naturality of
the transfer homomorphism implies that the restriction of φreg agrees with p∗ωreg.

(3) =⇒ (2): By assumption φreg = p∗ψreg lies in the open cone over a fibered face of
the Thurston norm ball and φreg is the restriction of a class φ ∈ H1(|M |,R). In particular,
|M | fibers over S1. We first note that M is a very good orbifold so that it is a quotient
of a manifold M by a smooth action of a finite group G. For this it suffices to rule out
bad 2-suborbifolds by ([2], Corollary 3.28). However, a bad 2-suborbifold is topologically a
sphere that is essential in H2(|M |,Z) and as in the proof of ([3], Lemma 2.3) this implies that
b+2 (X) = b2(|M |) − 1. Thus |M | = S2 × S1 and b+2 (X) = 0, contradicting the assumption
that ψ2 > 0.

Thus since M is very good we can proceed as in the proof of the previous implication.
In particular, M is a quotient of a manifold M by a smooth action of a finite group G, the
total space has a finite covering X which is a genuine S1-bundle and these bundles fit into a
pullback diagram as above. Since a degree one cohomology class on M is determined by its
restriction to the complement of the branching locus, we deduce that φ = π∗φ and p

∗
(π∗ψ)

agree as cohomology classes. We then note that the construction of S1-invariant forms in [5]
and its extension to irrational classes ([8], Theorem 1.1) can be done G-equivariantly.
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First choose a G-invariant representative γ of e(X), which can be obtained as the curvature
of a G-equivariant angular form. By ([8], Lemma 2.1) we may write γ = φ ∧ β. After
averaging over G this equation still holds, so β can be assumed to be G-equivariant. Let η
be a G-invariant angular 1-form so that dη = p∗γ and let Ω ∈ H2(M,R) be the unique class
such that the following holds in cohomology

π∗ψ − η ∧ p∗ φ = p∗Ω.

Such an Ω exists in view of the Gysin sequence since the left hand lies in the kernel of p
∗

and since the left hand side is G-equivariant so is Ω. The fact that π∗ψ2 > 0 implies that
p∗ φ ∧ Ω > 0. Thus by ([8], Lemma 2.2) there is a non-vanishing 2-form representing the
class Ω so that φ∧Ω > 0, again after averaging we may assume that Ω is G-invariant. Thus
the S1-invariant form

ωinv = η ∧ p∗ φ+ p∗Ω

represents π∗ψ and descends to an S1-invariant form ωinv on X which is cohomologous to ψ.
�

Remark 1. A vital step in the proof of Theorem 1 was Chen’s observation that the base
orbifold of a symplectic manifold X admitting a fixed point free S1-action is a quotient of a
manifold by a finite group action. The main technical point in the proof of ([3], Proposition
1.8) is to rule out bad 2-orbifolds in the base. This is achieved by results relating the
Seiberg-Witten invariants of the base orbifold to those of the underlying manifold.

We sketch a different proof which uses more standard Seiberg-Witten vanishing results.
For background on the Seiberg-Witten invariants we refer to [10] and the references therein.
First observe that a bad 2-suborbifold Σ in the quotient orbifold M = X/S1 can intersect
at most 2 singular curves L1, L2 each in at most one point. Taking a neighbourhood N of
|Σ| ∪ L1 gives a topological splitting of the base |M | = (S2 × S1)#M ′ so that preimage of
the splitting sphere in |M | induces a splitting X = X1 ∪S X2, where S is either S2 × S1

or S3 depending on whether L2 is empty or not. Moreover, as in the proof of ([3], Lemma
2.3) we must have b1(M

′) > 0 by the assumption that b+2 (X) > 0. If S is a 3-sphere, then
b+2 (X2) > 0 and by taking the covering X of X induced by the natural surjection

π1(X) → π1(S
2 × S1) → Zn

we obtain a splitting of X = X1 ∪S3 X2, where b
+

2 (X1), b
+

2 (X2) ≥ 1. It follows that the
Seiberg-Witten invariants of X are trivial.

If S = S2 × S1, then we take the covering X of X induced by a surjection

π1(X) → π1(S
2 × S1) ∗ π1(|M

′|) → Zn × Zn.

The embedded 2-sphere S2 × {pt} in S then becomes essential in the covering and b1(X),
and hence b+2 (X), may be assumed to be arbitrarily large. Furthermore, the sphere S2×{pt}
has trivial self-intersection and consequently the Seiberg-Witten invariants of X are trivial.
Thus in both cases we obtain a contradiction to the non-vanishing results of Taubes for the
Seiberg-Witten invariants of a symplectic 4-manifold.
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