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Abstract. We study mirror symmetry for orbifold Hurwitz numbers. We show that the Laplace
transform of orbifold Hurwitz numbers satisfy a differential recursion, which is then proved to

be equivalent to the integral recursion of Eynard and Orantin with spectral curve given by the
r-Lambert curve. We argue that the r-Lambert curve also arises in the infinite framing limit of

orbifold Gromov-Witten theory of [C3/(Z/rZ)]. Finally, we prove that the mirror model to orbifold

Hurwitz numbers admits a quantum curve.
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1. Introduction

1.1. Overview. In recent years, it has been found that many counting problems involving
the moduli space Mg,n, such as Gromov-Witten invariants of toric target spaces and enu-
meration of various ramified coverings of P1, have a common feature: they have a “mirror
symmetric” counterpart which is governed by a universal integral recursion formula due to
Eynard and Orantin [22]. The key ingredient of the mirror theory is the existence of a spec-
tral curve, which is a Lagrangian subvariety of the holomorphic symplectic surface C∗×C∗.
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Once the spectral curve mirror to a given counting problem is determined, the universal
recursion calculates the generating functions of the corresponding enumerative invariants.

Simple Hurwitz numbers provide an interesting example of such a story. It was first
conjectured in [8] that the generating functions for simple Hurwitz numbers should satisfy
the integral recursion of Eynard and Orantin, with spectral curve given by the Lambert
curve

(1.1) x = ye−y.

The conjecture followed from the broader remodeling conjecture [6, 32], which claims that
generating functions for Gromov-Witten invariants of toric Calabi-Yau threefolds/orbifolds
should satisfy the integral recursion of Eynard and Orantin, with spectral curve given by the
standard mirror curve of Hori and Vafa [28]. The conjecture for simple Hurwitz numbers
is derived as the infinite framing limit of the simplest case of the remodeling conjecture,
namely for Gromov-Witten invariants of C3.

The conjecture for simple Hurwitz numbers was solved in [21, 35]. There, it was shown
that the generating functions of simple Hurwitz numbers defined in [8] are in fact the Laplace
transform of the simple Hurwitz numbers Hg,n(~µ) (defined below), and that the combina-
torial equation known as the cut-and-join equation [24, 25, 37] automatically changes into
the Eynard-Orantin integral recursion defined on the Lambert curve (1.1), after taking the
Laplace transform, Galois averaging, and restricting to the principal part. In this way the
simple Hurwitz number conjecture was solved.

Through the infinite framing limit, the mathematical solution of the simple Hurwitz
number conjecture presents a strong evidence for the remodeling conjecture itself. Recently,
there have been many developments towards a proof of the remodeling conjecture (see for
example [5, 13, 40], and most notably, [23]). In its full generality, however, the remodeling
conjecture is still open. In particular, there are no rigorous mathematical results for the
cases of orbifold Gromov-Witten invariants.

In this paper we study mirror symmetry for Hurwitz numbers of the orbifold P1[r] with
one stack point

[
0
/

(Z/rZ)
]
.

As a first step, we use the remodeling conjecture to argue that the generating functions of
such orbifold Hurwitz numbers should satisfy the integral recursion of Eynard and Orantin.
As for simple Hurwitz numbers, we show that generating functions for orbifold Hurwitz
numbers can be obtained in the infinite framing limit of generating functions for Gromov-
Witten theory; however, instead of considering Gromov-Witten theory of C3, we must now
consider orbifold Gromov-Witten theory of [C3/(Z/rZ)]. Via the remodeling conjecture, this
implies that generating functions of orbifold Hurwitz numbers should satisfy the integral
recursion, with spectral curve the infinite framing limit of the curve mirror to the orbifolds
[C3/(Z/rZ)]. We show that the resulting spectral curve for orbifold Hurwitz numbers is the
r-Lambert curve:

(1.2) xr = ye−ry.

We then give a rigorous proof of the recursion formula, generalizing the result of [8, 21, 35]
to the orbifold case. First, we prove that the r-Lambert curve is the correct spectral curve
via Laplace transform. Then, we establish a system of recursive partial differential equations
that uniquely determines the Laplace transform of the orbifold Hurwitz numbers for arbi-
trary genus and ramification profile at ∞ ∈ P1[r]. These functions are called free energies.
The Eynard-Orantin topological recursion is then established by taking the Galois average
of the Laplace transform of the cut-and-join equation and restricting to the principal part
of the free energies. Note that this result also provides strong evidence for the remodeling



MIRROR SYMMETRY FOR ORBIFOLD HURWITZ NUMBERS 3

conjecture in the context of orbifold Gromov-Witten theory of [C3/(Z/rZ)], which is still
open.

We also study the appearance of a quantum curve for orbifold Hurwitz numbers. Quan-
tum curves arise when the mirror symmetric side of a counting problem is governed by a
complex analytic curve. Here, a quantum curve [1, 17, 15, 16] means a holonomic system
that characterizes the partition function of the theory, the latter being defined in terms of
the principal specialization of the free energies. In the context of orbifold Hurwitz numbers,
we show that the partition function (which is the diagonal restriction of a KP τ -function)
satisfies a stationary Schrödinger-type equation of [33], that is, a quantum curve exists.
Surprisingly, this linear equation alone uniquely determines the free energies for arbitrary
genus.

1.2. Main results. For a vector of n positive integers ~µ = (µ1, . . . , µn) ∈ Zn+, the simple
Hurwitz number Hg,n(~µ) counts the automorphism weighted number of the topological types
of simple Hurwitz covers of P1 of type (g, ~µ). A holomorphic map ϕ : C −→ P1 is a simple
Hurwitz cover of type (g, ~µ) if C is a complete nonsingular algebraic curve defined over C
of genus g, ϕ has n labeled poles of orders (µ1, . . . , µn), and all other critical points of ϕ
are unlabeled simple ramification points.

In a similar way, we define the orbifold Hurwitz number H
(r)
g,n(~µ) for every positive integer

r > 0 to be the automorphism weighted count of the topological types of smooth orbifold
morphisms ϕ : C −→ P1[r] with the same pole structure as the simple Hurwitz number case.
Here C is a connected 1-dimensional orbifold (or a twisted curve) modeled on a nonsingular
curve of genus g with (µ1 + · · · + µn)/r stack points of the type

[
p
/

(Z/rZ)
]
. We impose

that the inverse image of the morphism ϕ of the stack point
[
0
/

(Z/rZ)
]
∈ P1[r] coincides

with the set of stack points of C. When r = 1 we recover the simple Hurwitz number

H
(1)
g,n(~µ) = Hg,n(~µ).

Consider H
(r)
g,n(~µ) as a function in ~µ ∈ Zn+. Following the recipe of [19, 21, 34], we define

the free energies as the Laplace transform

(1.3) F (r)
g,n(z1, . . . , zn) =

∑
~µ∈Zn+

H(r)
g,n(~µ) e−〈~w,~µ〉.

Here ~w = (w1, . . . , wn) is the vector of the Laplace dual coordinates of ~µ, 〈~w, ~µ〉 = w1µ1 +
· · · + wnµn, and the function variable zi and wi for each i are related by the r-Lambert
function

(1.4) e−w = ze−z
r
.

It is often convenient to use a different variable

(1.5) x = e−w,

with which the r-Lambert curve is given by x = ze−z
r
. Then the free energies F

(r)
g,n of (1.3)

are generating functions of the orbifold Hurwitz numbers. We use the notation

(1.6) F (r)
g,n[x1, . . . , xn] =

∑
~µ∈Zn+

H(r)
g,n(~µ)

n∏
i=1

xµii

to indicate the same function (1.3) in the different set of variables. For every (g, n) the
power series (1.6) is convergent and defines an analytic function.

Our first result, Theorem 3.2, states that the generating functions (1.6) can be obtained
in the infinite framing limit of generating functions for orbifold Gromov-Witten invariants of
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[C3/(Z/rZ)]. This follows by rewriting both generating functions in terms of Hurwitz-Hodge
integrals. On one side, a ELSV-type [20] formula expressing orbifold Hurwitz numbers in
terms of Hurwitz-Hodge integrals was established by Johnson-Pandharipande-Tseng [29],
where orbifold Hurwitz numbers were considered as a special case of double Hurwitz num-
bers. On the other side, orbifold Gromov-Witten invariants can also be expressed in terms of
Hurwitz-Hodge integrals, through the orbifold topological vertex [9, 36]. Using these expres-
sions in terms of Hurwitz-Hodge integrals we establish the infinite framing correspondence
for the generating functions.

Through the remodeling conjecture, it is expected that the generating functions for orb-
ifold Gromov-Witten invariants of [C3/(Z/rZ)] should satisfy the integral recursion of Ey-
nard and Orantin with spectral curve

(1.7) ys+rf (1− y)− xr = 0,

where f ∈ Z is a framing parameter and s ∈ Z determines the weight of the action of Z/rZ
on C3. By taking the limit of infinite framing, f → ∞, after an appropriate coordinate
change

(1.8)

{
x 7−→ x

f1/r

y 7−→ 1− y
f

we obtain the r-Lambert curve (1.2). Therefore, we expect the free energies (1.6) to satisfy
the integral recursion of Eynard and Orantin, with spectral curve the r-Lambert curve.

Our next result is an explicit determination of all the free energies (1.3):

Theorem 1.1. In terms of the z-variables, the free energies are calculated as follows.

F
(r)
0,1 (z) =

1

r
zr − 1

2
z2r,(1.9)

F
(r)
0,2 (z1, z2) = log

z1 − z2

x1 − x2
− (zr1 + zr2),(1.10)

where xi = zie
−zri . For (g, n) in the stable range, i.e., when 2g−2+n > 0, the free energies

satisfy the differential recursion equation

(1.11)

(
2g − 2 + n+

1

r

n∑
i=1

zi
∂

∂zi

)
F (r)
g,n(z1, . . . , zn)

=
1

2

∑
i 6=j

zizj
zi − zj

[
1

(1− rzri )2

∂

∂zi
F

(r)
g,n−1

(
z[ĵ]

)
− 1

(1− rzrj )2

∂

∂zj
F

(r)
g,n−1

(
z[̂i]

)]

+
1

2

n∑
i=1

z2
i

(1− rzri )2

∂2

∂u1∂u2
F

(r)
g−1,n+1

(
u1, u2, z[̂i]

)∣∣∣∣
u1=u2=zi

+
1

2

n∑
i=1

z2
i

(1− rzri )2

stable∑
g1+g2=g

ItJ=[̂i]

(
∂

∂zi
F

(r)
g1,|I|+1(zi, zI)

)(
∂

∂zi
F

(r)
g2,|J |+1(zi, zJ)

)
.

Here we use the following convention for indices. The index set is [n] = {1, 2, . . . , n}, and

for a subset I ⊂ [n], zI = (zi)i∈I . The hat symbol î means the omission of i from [n].

The final summation is over all non-negative integer partitions of g and set partitions of [̂i]
subject to the stability conditions 2g1 − 2 + |I| ≥ 0 and 2g2 − 2 + |J | ≥ 0.
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Remark 1.2. Since F
(r)
g,n(z1, . . . , zn)

∣∣
zi=0

= 0 for every i, the differential recursion (1.11),

which is a linear first order partial differential equation, uniquely determines F
(r)
g,n one by

one inductively for all (g, n) subject to 2g− 2 +n > 0. This generalizes the result of [35] to
the orbifold case.

The differential recursion of Theorem 1.1 is obtained by taking the Laplace transform

of the cut-and-join equation for H
(r)
g,n(~µ). The r-Lambert curve itself, (1.2), is obtained by

computing the Laplace transform of H
(r)
0,1(µ).

Our third theorem concerns the existence of a quantum curve for orbifold Hurwitz num-
bers. Since the r-Lambert curve has a global parameter z, the algebraic K-theory condition
required for the existence of the quantization (see for instance [27]) is automatically satisfied,
and we have the following result.

Theorem 1.3. The partition function of the orbifold Hurwitz numbers is given by

(1.12) Z(r)(z, ~) = exp

 ∞∑
g=0

∞∑
n=1

1

n!
~2g−2+nF (r)

g,n(z, z, . . . , z)

 .

It satisfies the following system of (an infinite-order) linear differential equations.(
~D − er(−w+ r−1

2
~)er~D

)
Z(r)(z, ~) = 0,(1.13) (

~
2
D2 −

(
1

r
+

~
2

)
D − ~

∂

∂~

)
Z(r)(z, ~) = 0,(1.14)

where

D =
z

1− rzr
∂

∂z
= x

∂

∂x
= − ∂

∂w
.

Let the differential operator of (1.13) (resp. (1.14) be denoted by P (resp. Q). Then we
have the commutator relation

(1.15) [P,Q] = P.

The semi-classical limit of each of the equations (1.13) or (1.14) recovers the r-Lambert
curve (1.4).

Remark 1.4. The Schrödinger equation (1.13) is established in [33].

Remark 1.5. The above theorem is a generalization of [34, Theorem 1.3] for an arbitrary
r > 0. The restriction r = 1 reduces to the simple Hurwitz case.

Our final result establishes the prediction from the infinite framing limit that the free
energies (1.3) should satisfy the integral recursion of Eynard and Orantin with spectral
curve the r-Lambert curve (1.2). More precisely, it is the symmetric differential forms

(1.16) W (r)
g,n(z1, . . . , zn) := d1d2 · · · dnF (r)

g,n(z1, . . . , zn)

that should satisfy the Eynard-Orantin integral recursion on the r-Lambert curve. We
establish this fact in the next theorem.1

Remark 1.6. The significance of the integral formalism is its universality. The differential
equation (1.11) takes a different form depending on the counting problem, whereas the
integral formula (1.17) depends only on the choice of the spectral curve.

1We refer to [34] for the precise mathematical formulation of the Eynard-Orantin recursion formalism.
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The Eynard-Orantin integral recursion requires a set of geometric data from the r-
Lambert curve, given in parameteric form by x(z) = ze−z

r
, y(z) = zr. The function

x(z) has r critical points at 1− rzr = 0. Let {p1, . . . , pr} be the list of these critical points.
Since dx = 0 has a simple zero at each pj , the map x(z) is locally a double-sheeted covering
around z = pj . We denote by sj the deck transformation on a small neighborhood of pj .

Theorem 1.7. For the stable range 2g−2+n > 0, the symmetric differential forms satisfy
the following integral recursion formula.

(1.17) W (r)
g,n(z1, . . . , zn) =

1

2πi

r∑
j=1

∮
γj

Kj(z, z1)

[
W

(r)
g−1,n+1

(
z, sj(z), z2, . . . , zn

)
+

n∑
i=2

(
W

(r)
0,2 (z, zi)⊗W (r)

g,n−1

(
sj(z), z[1̂,̂i]

)
+W

(r)
0,2

(
sj(z), zi

)
⊗W (r)

g,n−1

(
z, z[1̂,̂i]

))
+

stable∑
g1+g2=g

ItJ={2,...,n}

W
(r)
g1,|I|+1

(
z, zI

)
⊗W (r)

g2,|J |+1

(
sj(z), zJ

)]
.

Here the integration is taken with respect to z along a small simple closed loop γj around
pj. The integration kernel is defined by

(1.18) Kj(z, z1) =
1

2

1

W
(r)
0,1

(
sj(z1)

)
−W (r)

0,1 (z1)
⊗
∫ sj(z)

z
W

(r)
0,2 ( · , z1).

Remark 1.8. The proof is based on the idea of [21]. The notion of the principal part of
meromorphic differentials plays a key role in converting the Laplace transform of the cut-
and-join equation into a residue formula. We generalize this technique to a more suitable
one that works for the current orbifold case.

Remark 1.9. When our manuscript was being finalized, we noticed an extremely interest-
ing paper [18]. The authors of [18] derive the same spectral curve using a concrete graph
counting argument, and establish Theorem 1.1 independently. They also claim to have
proved our Theorem 1.7. Although they have the right strategy, their proof as written is
in error. [18, Lemma 13] does not hold, while it is used in the key step of proving [18,
Eqn.(22)].

1.3. Outline. The paper is organized as follows. Section 2 reviews the orbifold Hurwitz
numbers. The key formulas we use in this paper are the ELSV-type formula (2.3) of [29]
and the cut-and-join equation (2.4). Section 3 is devoted to the infinite framing relation
between orbifold Hurwitz numbers and Gromov-Witten theory of [C3

/
(Z/rZ)]. We then

calculate the Laplace transform of the orbifold Hurwitz numbers and prove Theorem 1.1
in Section 4. Section 5 lists some properties enjoyed by the free energies. The quantum
curve of the r-Lambert curve is studied in Section 6. The proof of Theorem 1.7 is given in
Section 7.

2. The orbifold Hurwitz numbers

The polynomial behavior of simple Hurwitz numbersHg,n(~µ) [25, 37] as a function in ~µ has
been a long mystery. The polynomiality has become manifest in the Ekedahl-Lando-Shapiro-
Vainshtein formula [20] that relates simple Hurwitz numbers and the Hodge integrals on
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the Deligne-Mumford moduli Mg,n. Another manifestation of the polynomiality is found
in [35], where it is established that the Laplace transform

(2.1) Fg,n(t1, . . . , tn) =
∑
~µ∈Zn+

Hg,n(~µ)e−〈~w,~µ〉

is a polynomial of degree 3(2g − 2 + n) in ti-variables. Here the variables are related by

e−w = ze−z, z =
t− 1

t
.

The orbifold Hurwitz numbers H
(r)
g,n(~µ) no longer exhibits the same polynomiality. But it

shows a piecewise polynomial behavior. Indeed, we can define H
(r)
g,n(~µ) as a double Hurwitz

number, which is the automorphism weighted count of the topological types of double
Hurwitz covers ϕ : C −→ P1. Here C is a connected nonsingular curve of genus g, and ϕ
is a holomorphic map that has n labeled poles of orders ~µ, m unlabeled zeros of degree r,
and all other critical points are unlabeled simple ramification points. The number of zeros
is given by

(2.2) m =
µ1 + · · ·+ µn

r
.

This is a special case of the fully general double Hurwitz numbers Hg,m,n(~µ, ~ν) of arbitrary
zeros and poles and otherwise simply ramified. We refer to [12, 26] for further discussions
on the piecewise polynomiality.

Reflecting the chamber structure of the polynomiality, the ELSV-type formula for orbifold
Hurwitz numbers is more complicated than the original case. The following formula is
established in Johnson-Pandharipande-Tseng [29].

Theorem 2.1 ([29]). The orbifold Hurwitz number has an expression in terms of linear
Hodge integrals as follows:

(2.3) H(r)
g,n(µ1, . . . , µn) = r1−g+

∑n
i=1 〈

µi
r
〉
∫
Mg,−~µ(BG)

∑
j≥0(−r)jλj∏n
i=1(1− µiψi)

n∏
i=1

µ
bµi
r
c

i

bµir c!
.

Here, G = Z/rZ, and BG is the classifying space of G. The floor and the fractional part of
q ∈ Q is given by q = bqc+〈q〉. Mg,−~µ(BG) denotes the moduli space of stable morphisms to
BG from a stable curve of genus g and n smooth points on it, with a prescribed monodromy
data −~µ. The vector −~µ, as the monodromy data, is identified with the residue class

−~µ mod r = (−µ1 mod r, . . . ,−µn mod r) ∈ Gr

at each marked point. We fix a character

G = Z/rZ 3 k 7−→ e
2πik
r ∈ C∗.

This defines a line bundle on [C, (p1, . . . , pn)] ∈ Mg,n, and the choice of the monodromy

data ~µ ∈ Gr determines a covering C̃ −→ C as a multi-section of this line bundle. All these
data give a point of the moduli stack Mg,−~µ(BG), and the Hodge ‘bundle’ E is defined on it

by assigning the fiber H0
(
C̃,KC̃

)
to this point, where KC̃ is the canonical sheaf. We then

define
λj = cj(E) ∈ H2j

(
Mg,−~µ(BG),Q

)
.

The ψ-classes onMg,−~µ(BG) are the pull-back of the standard tautological cotangent classes

on Mg,n via the natural forgetful morphism

Mg,−~µ(BG) −→Mg,n.
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The cut-and-join equation of orbifold Hurwitz numbers H
(r)
g,n(µ1, . . . , µn) is derived from

the analysis of the geometric deformation of confluence of one of the simple ramification
points with ∞ ∈ P1[r]. In terms of the monodromy data, the deformation corresponds
to multiplying a transposition to the product of n disjoint cycles of type (µ1, . . . , µn) that
determine the ramification profile above ∞. Therefore, the geometric situation in our
orbifold context does not change from the usual simple Hurwitz number case. As a result,
the exact same proof of the original case (see for example, [35] and [41]) applies to establish
the following.

Theorem 2.2 (Cut-and-join equation). The orbifold Hurwitz numbers H
(r)
g,n(µ1, . . . , µn)

satisfy the following equation.

(2.4) sH(r)
g,n(µ1, . . . , µn) =

1

2

∑
i 6=j

(µi + µj)H
(r)
g,n−1

(
µi + µj , µ[̂i,ĵ]

)

+
1

2

n∑
i=1

∑
α+β=µi

αβ

H(r)
g−1,n+1

(
α, β, µ[̂i]

)
+

∑
g1+g2=g

ItJ=[̂i]

H
(r)
g1,|I|+1

(
α, µI

)
H

(r)
g2,|J |+1

(
β, µJ

) .
Here

(2.5) s = s(g, ~µ) = 2g − 2 + n+
µ1 + · · ·+ µn

r

is the number of simple ramification point given by the Riemann-Hurwitz formula, and we
use the convention that for any subset I ⊂ [n] = {1, 2, . . . , n}, µI = (µi)i∈I . The hat

notation î indicates that the index i is removed. The last summation is over all partitions
of g and set partitions of [̂i] = {1, . . . , i− 1, i+ 1, . . . , n}.

3. The infinite framing limit of the orbifold topological vertex

The realization that generating functions for simple Hurwitz numbers satisfy the Eynard-
Orantin recursion for the Lambert curve (1.1) originated from topological string theory.
More precisely, the argument put forward in [8] was that generating functions for simple
Hurwitz numbers can be obtained in the infinite framing limit of the topological vertex
generating functions in open Gromov-Witten theory. The remodeling conjecture of [6] then
asserts that the topological vertex generating functions should satisfy the Eynard-Orantin
recursion for the framed curve mirror to C3, whose infinite framing limit is precisely the
Lambert curve. Hence, it follows from the remodeling conjecture that generating functions
for simple Hurwitz numbers should also satisfy the Eynard-Orantin recursion for the limiting
curve, that is, the Lambert curve (1.1). In the context of simple Hurwitz numbers, this
conjecture has been proved in [4, 21], and the remodeling conjecture for the topological
vertex has also been proved in [40] following similar methods.

In this section, we argue that there exists a similar story for orbifold Hurwitz numbers.
We show that generating functions for orbifold Hurwitz numbers can be obtained in the
infinite framing limit of the orbifold topological vertex generating functions in open orbifold
Gromov-Witten theory. By the remodeling conjecture, the latter are expected to satisfy the
Eynard-Orantin recursion for the curve mirror to the orbifolds. We show that the infinite
framing limit of these curves reproduce the r-Lambert curve (1.2), therefore suggesting
that generating functions for orbifold Hurwitz numbers should satisfy the Eynard-Orantin
recursion for the r-Lambert curve. We will prove this result in section 7.
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3.1. Open orbifold Gromov-Witten theory.

3.1.1. The geometry. We consider the toric Calabi-Yau orbifold X = [C3/(Z/rZ)], where
Z/rZ acts on the three complex coordinates of C3 as:

(3.1) (z1, z2, z3) 7→ (αz1, α
sz2, α

−s−1z3), α = exp

(
2πi

r

)
, s ∈ Z.

The rays for the fan of X can be taken to be:

(3.2)

0
0
1

 ,

0
1
1

 ,

 r
−s
1

 .

The fan triangulation of X is the intersection of its fan with the plane at z = 1, which
is shown in red in figure 3.1. Its dual diagram is the toric diagram (or web diagram) of
X, which is shown in blue. For a good pedagogical introduction to web diagrams and fan
triangulations of toric Calabi-Yau orbifolds, see for instance Appendix B in [11].

Figure 3.1. The fan triangulation (in red) and toric diagram (in blue) for X =
[C3/(Z/rZ)], with the action of Z/rZ specified by (3.1). The fan triangulation is
the Newton polygon for the curve mirror to X.

3.1.2. Open orbifold Gromov-Witten invariants. We are interested in open orbifold Gromov-
Witten theory with target space X. Open Gromov-Witten invariants provide a virtual count
of stable maps from Riemann surfaces with boundaries to a target spaceX. In addition toX,
one must specify a Lagrangian submanifold L ⊂ X where the boundary of the domain curve
is required to lie. We choose our Lagrangian submanifold to be as constructed originally in
[2, 3], intersecting the z1 coordinate axis of X. In the language of [36], we are studying the
“effective one-leg Z/rZ orbifold topological vertex”: one-leg because we consider only one
Lagrangian submanifold for the boundary condition, and effective because our Lagrangian
submanifold intersects the z1 leg of X, where the action of Z/rZ is effective. This is known
as the orbifold topological vertex, because this type of geometry provides a building block
that can be used to construct open/closed Gromov-Witten theory for any toric Calabi-Yau
orbifolds, just as the original topological vertex of [2] is the building block to construct
open/closed Gromov-Witten theory of toric Calabi-Yau manifolds.
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We will not give a precise definition of open Gromov-Witten theory here; we refer the
interested reader to [9, 30, 31, 36]. Roughly speaking, in [30], Katz and Liu were the first
to construct a tangent/obstruction theory for the moduli space of open stable maps to toric
Calabi-Yau manifolds. The construction was generalized to orbifolds in [9], and then in full
generality by Ross in [36]. An important point is that the moduli theory is only defined via
localization with respect to a torus action on the moduli space, induced from a torus action
on the target space X. There is a choice of weights involved in the choice of torus action
on the target space X, and it turns out that open Gromov-Witten invariants do depend
on this choice of weight. More precisely, they depend on a residual integer f ∈ Z, which
is known as the framing of the open Gromov-Witten invariants (in fact, in the context of
orbifolds, f ∈ 1

rZ). To make contact with the notation of [9, 36], here we choose the weights
for the torus action with respect to which we localize to be

(3.3)

(
~
r
, f~,−f~− ~

r

)
,

just as in [9].2 In the non-equivariant limit in which we will evaluate Gromov-Witten
invariants, we set ~ = 1.

After localization, open Gromov-Witten theory becomes a theory of stable maps ϕ : Σ→
X, where Σ is a compact genus g Riemann surface with n disks attached at n (possibly
k-twisted) distinct nodes. The map ϕ contracts the compact component to the origin of
the target orbifold X, while the n boundaries of the disks are mapped to the Lagrangian
submanifold L. Each disk is mapped with a given winding number µi ∈ Z, i = 1, . . . , n.
Thus, the data encoding a map ϕ is the genus g of the domain curve, a partition ~µ of length

`(µ) = n specifying the winding numbers of the disks, and a vector ~k of integers 0 < ki ≤ r
specifying the twisting of the attachment points.

In fact, as shown in [9], for the theory to be k-twisted equivariant, the twisting vector ~k
is not independent from the winding numbers ~µ: we must require that

(3.4) µi ≡ ki mod r,

which fully specifies ~k in terms of ~µ.

Remark 3.1. We remark here that we do not allow insertions, that is, stacky points on the
compact components of the domain curves, aside from the attachment points of the disks.
It would be interesting to study the Eynard-Orantin recursion for the orbifold topological
vertex with insertions, and its infinite framing limit. We hope to report on that in the near
future.

3.1.3. The orbifold topological vertex. Under the assumptions described above, we can con-

struct the effective one-leg orbifold topological vertex V
(r,s)
g,n (~µ; f), which computes the open

orbifold Gromov-Witten invariants of X from genus g domain curves with n disks with wind-
ing numbers specified by the partition ~µ. We form orbifold topological vertex generating
functions:

(3.5) G(r,s)
g,n [x1, . . . , xn; f ] =

∑
~µ∈Zn+

V (r,s)
g,n (~µ; f)

n∏
i=1

xµii .

One of the main results of [9, 36] is that the orbifold topological vertex V
(r,s)
g,n (~µ; f) has

an explicit formula in terms of Hurwitz-Hodge integrals over the moduli spaceMg,−~µ(BG),

2Note that our f has a minus sign difference with [9], which is consistent with the framing that we will introduce
for the mirror curve later on.
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with G = Z/rZ. More precisely, in the non-equivariant limit, from the work of [9, 36, 39]
we extract the following formula for the orbifold topological vertex described above:3

V (r,s)
g,n (~µ; f) =(−1)g−1+

∑n
i=1〈−

µi(s+1)

r
〉r
n−
∑n
i=1 δ〈µir 〉,0(f)

∑n
i=1 δ〈µisr 〉,0

(
−f − 1

r

)∑n
i=1 δ〈− (s+1)µi

r 〉,0

×
n∏
i=1

 1

µ
bµi
r

+〈µis
r
〉− 1

teff
c−bµi

r
c

i bµir c!

bµi
r

+〈µis
r
〉− 1

teff
c∏

j=1

(
fµi − 〈

µis

r
〉+ j

)
×
∫
Mg,−~µ(BG)

Λ∨,αg
(

1
r

)
Λ∨,α

s

g (f) Λ∨,α
−s−1

g

(
−f − 1

r

)∏n
i=1(1− µiψi)

,(3.6)

where we used the Kronecker delta symbol notation:

(3.7) δt,0 =

{
0 if t 6= 0,

1 if t = 0,

and we defined a rational number

(3.8) teff :=
r

gcd(µi, r)
.

We also used the notation:

(3.9) Λ∨,α
k

g (u) = urk(E
αk

)

rk(E
αk

)∑
i=0

(
−1

u

)i
λi,αk ,

where Eαk is the Hodge bundle corresponding to the representation of Z/rZ given by

(3.10) ϕαk : Z/rZ→ C∗, ϕαk(1) = αk = exp

(
2πik

r

)
,

and

(3.11) λi,αk = ci (Eαk)

are its Chern classes.

3.2. The infinite framing limit of the generating functions. With this explicit for-
mula for the orbifold topological vertex, we can study the limit of the generating functions
(3.5) when the framing f goes to infinity. What we show is that the infinite framing limit of
the orbifold topological vertex reproduces precisely the orbifold Hurwitz numbers defined
previously.

Theorem 3.2. Consider the generating functions G
(r,s)
g,n [x1, . . . , xn; f ] defined in (3.5), with

the orbifold topological vertex V
(r,s)
g,n (~µ; f) given by (3.6). Then:

(3.12) lim
f→∞

(
(−1)nf2−2g−nG(r,s)

g,n

[
x1

f1/r
, . . . ,

xn

f1/r
; f

])
= F (r)

g,n[x1, . . . , xn],

where F
(r)
g,n[x1, . . . , xn] is the generating functions for orbifold Hurwitz numbers defined in

(1.6), with the orbifold Hurwitz numbers H
(r)
g,n(~µ) satisfying (2.3).

3Note that the overall sign in V
(r,s)
g,n (~µ; f) differs from [9, 36]; as mentioned in [9], there are ambiguities with minus

signs in open Gromov-Witten theory. Here, we fixed the overall minus sign such that it is consistent with the infinite
framing limit that we will study. It would be interesting to investigate this issue of minus signs further.
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Proof. Let us consider the leading order term in a large f expansion of the orbifold topo-

logical vertex V
(r,s)
g,n (~µ; f) in (3.6). Let us consider the Hurwitz-Hodge integral first. In the

large f limit, it is easy to see that

(3.13) Λ∨,α
s

g (f) Λ∨,α
−s−1

g

(
−f − 1

r

)
' (f)rk(Eαs )(−f)rk(Eα−s−1 ),

since all other terms will be suppressed by powers of 1/f . We can compute the rank of the
Hodge bundles over Mg,−~µ(BG) using orbifold Riemann-Roch. We get that4

rk(Eαs) =g − 1 +

n∑
i=1

〈−µis
r
〉,(3.14)

rk(Eα−s−1) =g − 1 +
n∑
i=1

〈µi(s+ 1)

r
〉.(3.15)

Moreover, we can write

(3.16) Λ∨,αg

(
1

r

)
= r−rk(Eα)

rk(Eα)∑
i=0

(−r)i λi,α,

and we compute

(3.17) rk(Eα) = g − 1 +
n∑
i=1

〈−µi
r
〉.

Thus, the Hurwitz-Hodge integral in the third line of (3.6) has the following leading order
term in a large f expansion:
(3.18)

r1−g−
∑n
i=1〈−

µi
r
〉(−1)g−1+

∑n
i=1〈

µi(s+1)

r
〉f

2g−2+
∑n
i=1

(
〈−µis

r
〉+〈µi(s+1)

r
〉
) ∫
Mg,−~µ(BG)

∑
j≥0(−r)jλj,α∏n
i=1(1− µiψi)

.

The first line of (3.6) has leading order term given by

(3.19) (−1)g−1+
∑n
i=1〈−

µi(s+1)

r
〉r
n−
∑n
i=1 δ〈µir 〉,0f

∑n
i=1 δ〈µisr 〉,0(−f)

∑n
i=1 δ〈− (s+1)µi

r 〉,0 .

As for the second line in (3.6), the leading order term is

(3.20)
n∏
i=1

µbµir ci

bµir c!
f
bµi
r

+〈µis
r
〉− 1

teff
c


To get our final answer we must combine these three lines together. For the exponent of

the overall factor of f , we notice that

2g − 2
n∑
i=1

(
〈−µis

r
〉+ 〈µi(s+ 1)

r
〉+ δ〈µis

r
〉,0 + δ〈− (s+1)µi

r
〉,0 + bµi

r
+ 〈µis

r
〉 − 1

teff
c
)

=2g − 2 + n+

n∑
i=1

(
1− 〈µis

r
〉 − 〈−µi(s+ 1)

r
〉+ bµi

r
+ 〈µis

r
〉 − 1

teff
c
)

4To be precise, we should consider separately the cases when the moduli space has a component with trivial
monodromy (see for instance [29]). But since the same formulae are valid in the end, for the sake of clarity we will
not treat these cases separately.
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=2g − 2 + n+
n∑
i=1

(
1 +

µi
r

+ b−µi(s+ 1)

r
c+ bµi(s+ 1)

r
− 1

teff
c
)

=2g − 2 + n+
n∑
i=1

µi
r
.(3.21)

The last equality follows because:

(3.22) b−µi(s+ 1)

r
c+bµi(s+ 1)

r
− 1

teff
c =

{
b− 1

teff
c = b−gcd(µi,r)

r c = −1 for µi(s+1)
r ∈ Z,

−1 + b〈αi(s+1)
teff

〉 − 1
teff
c = −1 for µi(s+1)

r /∈ Z,

where αi := µiteff
r = µi

gcd(µi,r)
∈ Z.

As for the exponent of the factor in r, we get

1− g + n−
n∑
i=1

(
〈−µi

r
〉+ δ〈µi

r
〉,0

)
=1− g + n−

n∑
i=1

(
1− 〈µi

r
〉
)

=1− g +

n∑
i=1

〈µi
r
〉.(3.23)

Finally, the overall minus sign has exponent:

(3.24) 2g − 2 +
n∑
i=1

(
〈−µi(s+ 1)

r
〉+ 〈µi(s+ 1)

r
〉+ δ〈− (s+1)µi

r
〉,0

)
= 2g − 2 + n.

Putting these together, we obtain that the leading term of (3.6) as f is large is

(3.25) (−1)nf2g−2+n+
∑n
i=1

µi
r H(r)

g,n(~µ),

where the orbifold Hurwitz numbers H
(r)
g,n(~µ) are defined in (2.3). Therefore, it follows that

the generating functions satisfy

(3.26) lim
f→∞

(
(−1)nf2−2g−nG(r,s)

g,n

[
x1

f1/r
, . . . ,

xn

f1/r
; f

])
= F (r)

g,n[x1, . . . , xn].

�

3.3. The remodeling conjecture and the Eynard-Orantin recursion. An interesting
implication of the infinite framing limit studied in the previous subsection is the existence
of a recursive structure for orbifold Hurwitz numbers, which follows from the remodeling
conjecture of [6].

The remodeling conjecture asserts that the differentials d1d2 · · · dnG(r,s)
g,n [x1, . . . , xn; f ]

can be resummed as symmetric differential forms living on the complex curve mirror to
the orbifold X, and that they satisfy the Eynard-Orantin recursion (which was defined in
the introduction) for this particular spectral curve. Through the infinite framing limit of
the generating functions, this conjecture implies that the generating functions for orbifold
Hurwitz numbers should also satisfy the Eynard-Orantin recursion, with spectral curve
given by the r-Lambert curve.

Recall that the mirror curve to the orbifold X can be read off directly from the fan
triangulation of X. Indeed, the fan triangulation is the Newton polygon of the mirror
curve. In the case of the orbifold X = [C3/(Z/rZ)] that we studied in this section, the fan
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triangulation of X, shown in figure 3.1, has vertices (0, 0), (0, 1) and (r,−s), corresponding
to the monomials 1, y and xry−s. Therefore, the mirror curve can be written as:

(3.27) C : {1− y − xry−s = 0} ⊂ (C∗)2.

Note that in writing the mirror curve, we have chosen a particular parameterization (in
the language of toric geometry, we chose a particular set of rays, (3.2), for the fan of X).
We claim that this particular choice of parameterization should correspond to a Lagrangian
submanifold intersecting the z1 leg of the orbifold X (we refer the reader to [6, 7, 9, 10] for
more on this).

To introduce framing for the mirror curve, we must reparameterize the curve by (x, y) 7→
(xy−f , y) [6] . We then get the framed mirror curve:5

(3.28) Cf : {ys+rf (1− y)− xr = 0} ⊂ (C∗)2.

Note that we denoted the framing by f , the same letter as in the previous subsection, but
the two may not be precisely equal; they may be related via the addition of a constant (see
for instance [9]). But this will not be important for us, since we are interested in the f →∞
limit.

The statement of the remodeling conjecture is that the differentials d1d2 · · · dnG(r,s)
g,n [x1, . . . , xn; f ]

are symmetric differential forms on Cf that satisfy the Eynard-Orantin recursion for the
spectral curve Cf , with fundamental one-form

(3.29) dG
(r,s)
0,1 [x; f ] = log y

dx

x
,

where x and y are related by (3.28).
Now what happens in the infinite framing limit? First, we notice that if we define new

variables

(3.30) x =
x̃

f1/r
, y = 1− ỹ

f
,

the equation for the framed mirror curve Cf in (3.28) becomes

(3.31) x̃r = ỹ

(
1− ỹ

f

)rf (
1− ỹ

f

)s
.

Taking the limit f →∞, we obtain the curve

(3.32) x̃r = ỹe−rỹ,

which is precisely the equation of the r-Lambert curve (1.2)!
What does it mean for the recursion satisfied by the generating functions? The one-form

that is fundamental for the recursion, (3.29), can be rewritten in terms of the new variables
x̃ and ỹ. It becomes

(3.33) dG
(r,s)
0,1 [x; f ] = log y

dx

x
= log

(
1− ỹ

f

)
dx̃

x̃
,

with x and y related by (3.28). If we send f →∞, the leading order term is

(3.34) − ỹ

f

dx̃

x̃
,

with x̃ and ỹ now related through (3.32).

5Notice that the framing transformation of [9] replaces f by −f , which is why our choice of torus weights in (3.3)
had a minus sign difference with [9].
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Looking at the explicit form of the recursion, the result of this analysis is that if we
consider the infinite framing limit of the differentials
(3.35)

d1d2 · · · dnF (r)
g,n[x̃1, . . . , x̃n] := lim

f→∞

(
(−1)nf2−2g−nd1d2 · · · dnG(r,s)

g,n

[
x̃1

f1/r
, . . . ,

x̃n

f1/r
; f

])
,

then they should satisfy the Eynard-Orantin recursion with fundamental one-form

(3.36) dF
(r)
0,1 [x̃] = ỹ

dx̃

x̃
,

where x̃ and ỹ are related by (3.32). The −1/f factor between (3.36) and (3.34) is precisely
responsible for the (−1)nf2−2g−n factor in front of the differentials constructed from the
recursion.

But we know what these new objects d1d2 · · · dnF (r)
g,n[x̃1, . . . , x̃n] are: in the previous

section, we showed that they are precisely the differentials of the generating functions of
orbifold Hurwitz numbers! Therefore, if we believe the remodeling conjecture for orbifolds,
then we are led to claim that the generating functions for orbifold Hurwitz numbers should
also satisfy the Eynard-Orantin recursion, with spectral curve the r-Lambert curve (1.2),
which can be written in parameteric form as

(3.37) x̃ = ze−z
r
, ỹ = zr,

with fundamental one-form

(3.38) dF
(r)
0,1 [x̃] = ỹ

dx̃

x̃
= zr−1(1− rzr)dz.

We will prove this statement in section 7.

4. The Laplace transform of the orbifold Hurwitz numbers

In this section we prove Theorem 1.1. From the remodeling conjecture point of view pre-
sented in the previous section, we see that the mirror theory to orbifold Hurwitz numbers
should be built on the r-Lambert curve (1.4). To launch the Eynard-Orantin topological re-
cursion [22, 34] for the r-Lambert curve as its spectral curve, we need to find the Lagrangian
immersion

ι : Σ −−−−→ T ∗C∗yπ
C∗

of the open Riemann surface Σ = C∗ given by

(4.1)

{
x = ze−z

r

y = f(z)
z ∈ Σ,

where y = f(z) is yet to be determined. We refer to [34] for a mathematical definition of the
Eynard-Orantin topological recursion theory. The recipe of [34] tells us that the Laplace

transform of the disk amplitude H
(r)
0,1(µ) should determine the Lagrangian immersion by the

formula

(4.2) W
(r)
0,1 (z)

def
= ι∗(yd log x) = dF

(r)
0,1 (z),

where η = yd log x on T ∗C∗ is the tautological holomorphic 1-form on the cotangent bundle
T ∗C∗. In this section we first identify the Lagrangian immersion (4.1) from the computation
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of F
(r)
0,1 . We learn from [29] that

H
(r)
0,1(µ) =

µb
µ
r
c−2

bµr c!
if µ ≡ 0 mod r,

and H
(r)
0,1(µ) = 0 otherwise. Therefore, the (g, n) = (0, 1) free energy (1.3) is given by

F
(r)
0,1 =

∞∑
m=1

(rm)m−2

m!
xrm.

We note that F
(r)
0,1 = 0 when x = 0.

As the ELSV-type formula (2.3) indicates, the free energy computation requires that we
need to find similar infinite sums. We thus introduce the following auxiliary functions:

(4.3)

ξr,k` (x) =
∞∑
m=0

(rm+ k)m+`

m!
xrm+k, k = 1, 2, . . . , r − 1,

ξr,0` (x) =
∞∑
m=1

(rm)m+`

m!
xrm.

It is easy to see from Stirling’s formula that the auxiliary functions are absolutely convergent

with the radius of convergence e−
1
r . Since these functions do not have any constant terms,

we have

(4.4) ξr,k`+1(x) = x
d

dx
ξr,k` (x), k = 0, 1, . . . , r − 1.

Therefore, all we need is to find the functions at ` = −1. The standard procedure to
compute (4.3) is to use the Lambert function. Let us define

(4.5) y(x) = ξ1,0
−1(x) =

∞∑
m=1

mm−1

m!
xm.

Then its inverse is given by the Lambert function (1.1), which can be easily checked by
the Lagrange inversion formula, and the following formula holds for every complex number
α ∈ C∗ (see for example, [14]):

(4.6) exp
(
αy(x)

)
=
∞∑
m=0

α(m+ α)m−1

m!
xm.

Therefore, the base case for (4.3) is computed by

(4.7)
ξr,k−1(x) =

1

k
xk exp

(
k

r
y(rxr)

)
, k 6= 0,

ξr,0−1(x) =
1

r
y(rxr).

We now define the variable z by

(4.8) z = z(x) =

(
1

r
y(rxr)

) 1
r

,
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so that its inverse function is given by the r-Lambert curve x = ze−z
r

(1.4). In terms of z,
the auxiliary functions (4.7) take much simpler form

(4.9)
ξr,k−1(x) =

1

k
zk, k 6= 0,

ξr,0−1(x) = zr.

The differential operator of (4.4) in z is

(4.10) x
d

dx
=

z

1− rzr
d

dz
.

Since F
(r)
0,1 = ξr,0−2(x), we have

z

1− rzr
d

dz
F

(r)
0,1 = ξr,0−1(x) = zr.

Therefore, considering the fact that z = 0 =⇒ x = 0 =⇒ F
(r)
0,1 = 0, we find

F
(r)
0,1 (z) =

1

r
zr − 1

2
z2r,

which proves (1.9). Then from (4.2), we have

dF
(r)
0,1 (z) = zr−1(1− rzr)dz,

yd log(x) = yz−1ez
r
d
(
ze−z

r)
= yz−1(1− rzr)dz.

Hence

y = f(z) = zr.

We have thus determined the Lagrangian immersion

(4.11) ι : Σ = C∗ −→ T ∗C∗,

{
x = ze−z

r

y = zr,
z ∈ Σ,

in agreement with (3.37). We note that (4.11) implies rxr = (ry)e−ry, hence y(rxr) = ry =
rzr, which is consistent with (4.8).

Another important feature of the Eynard-Orantin theory [34] is the special relation be-

tween the Laplace transform F
(r)
0,2 (z1, z2) of the annulus amplitude H

(r)
0,2(µ1, µ2) and the

difference of the Riemann’s prime forms of the x-projection π : Σ −→ C∗ [22]. Again from
[29], we know the annulus amplitude of the orbifold Hurwitz numbers:

H
(r)
0,2(µ1, µ2) = r〈

µ1
r
〉+〈µ2

r
〉 · 1

µ1 + µ2
· µ
bµ1
r
c

1

bµ1

r c!
· µ
bµ2
r
c

2

bµ2

r c!
, if µ1 + µ2 ≡ 0 mod r,

and H
(r)
0,2(µ1, µ2) = 0 otherwise. Here 〈q〉 = q − bqc is the fractional part of q ∈ Q.

Proof of (1.10). Write µi = rmi + ki, i = 1, 2, with 0 ≤ ki ≤ r − 1. Then

µ1 + µ2 ≡ 0 mod r ⇐⇒

{
k1 = k2 = 0 or

k1 + k2 = r.

Therefore, we obtain a partial differential equation(
z1

1− rz1

∂

∂z1
+

z2

1− rz2

∂

∂z2

)
F

(r)
0,2 (z1, z2)
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=

(
x1

∂

∂x1
+ x2

∂

∂x2

) ∑
(µ1,µ2)∈Z2

+

H
(r)
0,2(µ1, µ2)xµ1

1 xµ2
2

=
∑

(µ1,µ2)∈Z2
+

r〈
µ1
r
〉+〈µ2

r
〉 · µ

bµ1
r
c

1

bµ1

r c!
· µ
bµ2
r
c

2

bµ2

r c!
xµ1

1 xµ2
2

=

( ∞∑
m1=1

(rm1)m1

m1!
xrm1

1

)( ∞∑
m1=2

(rm2)m2

m2!
xrm2

2

)

+ r

r−1∑
k=1

( ∞∑
m1=0

(rm1 + k)m1

m1!
xrm1+k

1

)( ∞∑
m2=0

(rm2 + r − k)m2

m2!
xrm1+r−k

2

)

=ξr,00 (x1)ξr,00 (x2) + r
r−1∑
k=1

ξr,k0 (x1)ξr,r−k0 (x2)

=
rzr1

1− rz1
· rzr2

1− rz2
+ r

1

1− rz1
· 1

1− rz2

r−1∑
k=1

zk1z
r−k
2

=
1

(1− rz1)(1− rz2)

(
r2zr1z

r
2 + r

z1z
r
2 − z2z

r
1

z2 − z1

)
,

where we have used (4.4) to find the auxiliary functions. It is easy to check that

F
(r)
0,2 (z1, z2) = log

z1 − z2

x1 − x2
− (zr1 + zr2)

is a solution of this differential equation, where xi = zie
−zri . We note that as a convergent

power series in (x1, x2), F
(r)
0,2 does not have any constant term. Since the convergent series

eigenfunctions of the Euler differential operator x1
∂
∂x1

+x2
∂
∂x2

are homogeneous polynomials,

its kernel consists of constants. Therefore, (1.10) is the only solution that satisfies the initial
condition. �

The main structural difference between the cut-and-join equation (2.4) and the differential
recursion (1.11) is whether the unstable geometries are included in the right-hand side or

not. While (1.11) is a genuine recursion for F
(r)
g,n with respect to 2g− 2 +n, (2.4) only gives

a relation because H
(r)
g,n appears on each side of the equation. In proving (1.11), we first

calculate the Laplace transform of the cut-and-join equation, then use (1.9) and (1.10) to
eliminate the unstable geometries from the right-hand side.

Lemma 4.1. The straightforward Laplace transform of the cut-and-join equation (2.4) gives
a differential equation

(4.12)

(
2g − 2 + n+

1

r

n∑
i=1

xi
∂

∂xi

)
F (r)
g,n[x1, . . . , xn]

=
1

2

∑
i 6=j

1

xi − xj

(
x2
i

∂

∂xi
F

(r)
g,n−1

[
x[ĵ]

]
− x2

j

∂

∂xj
F

(r)
g,n−1

[
x[̂i]

])
−
∑
i 6=j

xi
∂

∂xi
F

(r)
g,n−1

[
x[ĵ]

]
+

1

2

n∑
i=1

u1
∂

∂u1
u2

∂

∂u2
F

(r)
g−1,n+1

[
u1, u2, x[̂i]

]∣∣∣∣
u1=u2=xi
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+
1

2

n∑
i=1

∑
g1+g2=g

ItJ=[̂i]

(
xi

∂

∂xi
F

(r)
g1,|I|+1[xi, xI ]

)(
xi

∂

∂xi
F

(r)
g2,|J |+1[xi, xJ ]

)
,

where F
(r)
g,n[x1, . . . , xn] is defined by (1.6).

Proof. Since the cut-and-join equation (2.4) has the same structure as the simple Hurwitz
number case of [35], the calculation of the Laplace transform goes exactly in parallel. There-
fore, the left-hand side of (4.12) and the second and the third lines of the right-hand side
are immediate from (1.6) and (2.4), noting how xi

∂
∂xi

acts on xαi .
The trick we need is∑

µ1,µ2≥0

f(µ1 + µ2)xµ1
1 xµ2

2 =
∞∑
k=0

f(k)
∑

µ1+µ2=k

xµ1
1 xµ2

2 =
∞∑
k=0

f(k)

(
xk+1

1 − xk+1
2

x1 − x2

)
,

which is valid if the series on the left-hand side is absolutely convergent. The ELSV formula

(2.3) tells us that the power series F
(r)
g,n[x1, . . . , xn] is convergent on the polydisk(

|x1| < e−
1
r
)
× · · · ×

(
|xn| < e−

1
r
)
.

Therefore, we can compute the Laplace transform of the first line of the right-hand side of
(2.4) as follows.

1

2

∑
µ1,...,µn∈Z+

∑
i 6=j

(µi + µj)H
(r)
g,r−1

(
µi + µj , µ[̂i,ĵ]

) n∏
i=1

xµii

=
1

2

∑
i 6=j

∞∑
ν=0

∑
~µ[̂i,ĵ]∈Z

n−2
+

∑
µi+µj=ν

νH
(r)
g,r−1

(
ν, µ[̂i,ĵ]

) n∏
i=1

xµii

− 1

2

∑
i 6=j

∞∑
ν=0

∑
~µ[̂i,ĵ]∈Z

n−2
+

νH
(r)
g,r−1

(
ν, µ[̂i,ĵ]

)
(xνi + xνj )

n∏
k 6=i,j

xµkk

=
1

2

∑
i 6=j

∞∑
ν=0

∑
~µ[̂i,ĵ]∈Z

n−2
+

νH
(r)
g,r−1

(
ν, µ[̂i,ĵ]

) xν+1
i − xν+1

j

xi − xj

n∏
k 6=i,j

xµkk

−
∑
i 6=j

xi
∂

∂xi
F

(r)
g,r−1

[
xi, x[̂i,ĵ]

]
=

1

2

∑
i 6=j

1

xi − xj

(
x2
i

∂

∂xi
F

(r)
g,r−1

[
xi, x[̂i,ĵ]

]
− x2

j

∂

∂xj
F

(r)
g,r−1

[
xj , x[̂i,ĵ]

])
−
∑
i 6=j

xi
∂

∂xi
F

(r)
g,r−1

[
x[ĵ]

]
.

This completes the proof. �

Proof of Theorem 1.1. The conversion of (4.12) to the form (1.11) is now straightforward,
using (4.10), and substituting the unstable geometries with the actual values (1.9) and
(1.10) in the right-hand side.
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The contribution from the terms of g1 = 0, I = ∅ and g2 = 0, J = ∅ in the third line of
the right-hand side of (4.12) is

n∑
i=1

(
xi

∂

∂xi
F

(r)
0,1 [xi]

)(
xi

∂

∂xi
F (r)
g,n

[
xi, x[̂i]

])
=

n∑
i=1

zri
zi

1− rzri
∂

∂zi
F (r)
g,n(z1, . . . , zn).

If we bring this term to the left-hand side or (4.12), then we have(
2g − 2 + n+

1

r

n∑
i=1

xi
∂

∂xi

)
F (r)
g,n(z1, . . . , zn)−

n∑
i=1

zri
zi

1− rzri
∂

∂zi
F (r)
g,n(z1, . . . , zn)

=

(
2g − 2 + n+

1

r

n∑
i=1

zi
1− rzri

(1− rzri )
∂

∂zi

)
F (r)
g,n(z1, . . . , zn),

which is the left-hand side of (1.11).
The other unstable terms come from g1 = 0, I = {j} and g2 = 0, J = {j}. The contribu-

tion is

n∑
i=1

∑
j 6=i

(
xi

∂

∂xi
F

(r)
0,2 [xi, xj ]

)(
xi

∂

∂xi
F

(r)
g,n−1

[
xi, x[̂i,ĵ]

])

=
∑
i 6=j

(
zi

1− rzri
∂

∂zi

(
log(zi − zj)− (zri + zrj )

)
− xi

∂

∂xi
log(xi − xj)

)(
xi

∂

∂xi
F

(r)
g,n−1

[
x[ĵ]

])

=
∑
i 6=j

(
zi

1− rzri

(
1

zi − zj
− rzr−1

i

)
− xi
xi − xj

)(
xi

∂

∂xi
F

(r)
g,n−1

[
x[ĵ]

])
.

These terms and the first line of the right-hand side of (4.12) together yield∑
i 6=j

(
zi

1− rzri

(
1

zi − zj
− rzr−1

i

)
− xi
xi − xj

+
xi

xi − xj
− 1

)(
xi

∂

∂xi
F

(r)
g,n−1

[
x[ĵ]

])

=
∑
i 6=j

(
zi

1− rzri

(
1

zi − zj
− rzr−1

i

)
− 1

)(
zi

1− rzri
∂

∂zi
F

(r)
g,n−1

(
z[ĵ]

))
=
∑
i 6=j

zizj
zi − zj

1

(1− rzri )2

∂

∂zi
F

(r)
g,n−1

(
z[ĵ]

)
,

which is the same as the first line of the right-hand side of (1.11).
Converting the second line and the stable terms in the third line of the right-hand side

of (4.12) is straightforward. This completes the proof of Theorem 1.1. �

5. Some properties of the free energies

In this section we derive some properties of the free energies and compute a few examples.
We also check our results with closed formulas obtained in [29].

A direct consequence of the ELSV formula (2.3) is the following.

Proposition 5.1. The Laplace transform of (2.3), the free energy of type (g, n), is an
element of the tensor algebra

(5.1) F (r)
g,n(z1, . . . , zn) ∈ Sym⊗n

(
C(P1)

)
,
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except for F
(r)
0,2 (z1, z2). The poles F

(r)
g,n(z1, . . . , zn) are located at

D ×
(
P1
)n−1 ∪ P1 ×D × · · · × P1 ∪ · · · ∪

(
P1
)n−1 ×D,

where
D = {z ∈ C | 1− rzr = 0}.

The highest total degree of poles of F
(r)
g,n is 6g − 6 + 3n.

Proof. This follows from the fact that the coefficient

r1−g+
∑n
i=1 〈

µi
r
〉
∫
Mg,−~µ(BG)

n∏
i=1

ψdii
∑
j≥0

(−r)jλj

of (2.3) depends only on ~µ mod r, hence

(5.2) F (r)
g,n(z1, . . . , zn)

=
∑

~µ∈Zn+,
∑
µi≡0 (r)

r1−g+
∑n
i=1 〈

µi
r
〉
∫
Mg,−~µ(BG)

∑
j≥0(−r)jλj∏n
i=1(1− µiψi)

n∏
i=1

µ
bµi
r
c

i

bµir c!
xµii

=
∑

0≤k1,...,kn<r,
∑
ki≡0 (r)

d1+···+dn≤3g−3+n

r1−g+
∑n
i=1

ki
r

∫
M

g,−~k(BG)

n∏
i=1

ψdii
∑
j≥0

(−r)jλj

 n∏
i=1

ξr,kidi
(xi).

For di ≥ 0, each ξr,kidi
(xi) is a rational function in zi with poles at zi ∈ D of degree 2di+1 due

to (4.4), (4.9), and (4.10). The highest degree poles occur when d1 + · · ·+ dn = 3g− 3 + n,

and then F
(r)
g,n has poles of degree 6g − 6 + 3n. �

Using the same notation as in Theorem 2.1, let us denote

(5.3) 〈τ2g−2+jλg−j〉(r) =

∫
Mg,1(BG)

ψ2g−2+j
1 λg−j ,

where G = Z/rZ. The generating function of these one-point intersection numbers is
determined in [29]:

(5.4)
1

2r

(
r~/2

sin(r~/2)

)u 1

sin(~/2)
=

1

r~
+

∞∑
g=1

 g∑
j=0

〈τ2g−2+jλg−j〉(r)uj
 ~2g−1.

Note that from (2.3) and (4.3) we can calculate the one-point free energies:

(5.5) F
(r)
g,1 (z) =

g∑
j=0

(−1)g−jr1−j〈τ2g−2+jλg−j〉(r)ξr,02g−2+j(x).

For example, in terms of

(5.6) t =
1

1− rzr
,

we have

F
(r)
1,1 (z) =

1

24
(r2t3 − r2t2 − t+ 1),

F
(r)
2,1 (z) =

r2

5760

(
525r4t9 − 1575r4t8 + 10r2(167r2 − 15)t7 + 350r2(−2r2 + 1)t6
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+ (68r4 − 260r2 + 21)t5 + (12r4 + 60r2 − 35)t4 + 14t3
)
,

F
(r)
3,1 (z) =

r4

2903040

(
4729725r6t15 − 23648625r6t14 + 24255r4(2012r2 − 45)t13

+ 35035r4(−1516r2 + 135)t12 + 35r2(914912r4 − 235116r2 + 3969)t11

+ 231r2(−43156r4 + 31430r2 − 2205)t10

+ 35(31016r6 − 95340r4 + 20580r2 − 279)t9

+ 7(15416r6 + 100596r4 − 69384r2 + 4185)t8

+ 12(−1128r6 − 2646r4 + 12789r2 − 2635)t7

+ 6(−320r6 − 840r4 − 2940r2 + 2387)t6 − 2232t5
)
.

In general,

Proposition 5.2. The one-point free energy F
(r)
g,1 (z) of genus g is a polynomial of degree

6g − 3 in t = 1
1−rzr .

Proof. The expression (5.5) tells us that F
(r)
g,1 (z) is a function in zr. More precisely, it is a

ratio of a polynomial in zr and a power of 1 − rzr. Therefore, it is a Laurent polynomial
in t. The only auxiliary functions appearing in (5.5) are ξr,0` (x) for ` ≥ 0. From (4.4) and
(4.9) we calculate

(5.7)

ξr,00 (x) =
rzr

1− rzr
= t− 1,

ξr,0` (x) =

(
rt2(t− 1)

d

dt

)`
(t− 1),

since

x
d

dx
= rt2(t− 1)

d

dt
.

Therefore, F
(r)
g,1 (z) is a polynomial of degree 2(3g−2)+1 in t. The degree of the polynomial

is the same as the degree of poles of Proposition 5.1 for n = 1. �

The initial cases of the differential recursion (1.11) are (g, n) = (1, 1) and (0, 3). For the
g = n = 1 case, the differential equation is(

1 +
1

r
z
∂

∂z

)
F

(r)
1,1 (z) =

1

2

z2

(1− rzr)2

∂2

∂u1∂u2
F

(r)
0,2 (u1, u2)

∣∣∣∣
u1=u2=z

.

The unique solution to this equation with the initial condition F
(r)
1,1 (0) = 0 agrees with the

above computation using the result of [29].

The free energy F
(r)
0,3 (z1, z2, z3) can also be calculated from (2.3) since M0,3 is a point.

Thus the BG Hodge integral contribution in the formula is simply 1. We have

F
(r)
0,3 (z1, z2, z3) =

∑
~µ∈Z3

+
µ1+µ2+µ3≡0

r1+〈µ1
r
〉+〈µ2

r
〉+〈µ3

r
〉

3∏
i=1

µ
bµi
r
c

i

bµir c!
xµii
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= rξr,00 (x1)ξr,00 (x2)ξr,00 (x3) + r2
∑

k1+k2+k3=r
0≤ki≤r−1

ξr,k1
0 (x1)ξr,k2

0 (x2)ξr,k3
0 (x3)

+ r3
∑

k1+k2+k3=2r
0≤ki≤r−1

ξr,k1
0 (x1)ξr,k2

0 (x2)ξr,k3
0 (x3).

More concretely,

F
(2)
0,3 (z1, z2, z3) = 8

z1z2z3(z1 + z2 + z3 + 2z1z2z3)

(1− 2z2
1)(1− 2z2

2)(1− 2z2
3)

,

F
(3)
0,3 (z1, z2, z3) = 9

z1z2z3

(
1 + 3z1z2z3 + 3

∑
i 6=j z

2
i zj + 9z2

1z
2
2z

2
3

)
(1− 3z3

1)(1− 3z3
2)(1− 3z3

3)
.

6. The quantum curve

Since the r-Lambert curve (1.4) has genus 0, we define the partition function Z(z, ~) as
in (1.12). In this section we prove Theorem 1.3.

Proposition 6.1. The principal specialization F
(r)
g,n(z, . . . , z) for 2g − 2 + n > 0 is a poly-

nomial in t of degree 6g − 6 + 3n, where t is the variable introduced in (5.6).

Proof. This is an immediate consequence of Proposition 5.1 and its proof. �

For unstable geometries, we use the same argument of [34] to find

F
(r)
0,1 (z) =

1

2r2

(
1− 1

t2

)
,(6.1)

F
(r)
0,2 (z, z) =

1

r

(
1− 1

t

)
+ log t.(6.2)

Proposition 6.2. The 1-variable functions

(6.3) S(r)
m (z) =

∑
2g−2+n=m−1

1

n!
F (r)
g,n(z, . . . , z), m = 0, 1, 2, . . . ,

satisfy the second order ordinary differential equation

(6.4)

(
m+

1

r

d

dz

)
S

(r)
m+1(z) =

1

2

[
d

dz

(
z

1− rzr

)2

− 2z

(1− rzr)2

]
· d
dz
S(r)
m (z)

+
1

2

z2

(1− rzr)2

 d2

dz2
S(r)
m (z) +

∑
a+b=m+1
a,b≥2

d

dz
S(r)
a (z)

d

dz
S

(r)
b (z)

 .

Proof. The principal specialization of the differential recursion (1.11) reduces to the follow-
ing ordinary differential equation.(

2g − 2 + n+
1

r
z
d

dz

)
F (r)
g,n(z, · · · , z) =

n

2

d

dz

(
z2

(1− rzr)2

)
d

dz
F

(r)
g,n−1(z, · · · , z)

−n z

(1− rzr)2

d

dz
F

(r)
g,n−1(z, · · · , z)

+
1

2
n(n− 1)

z2

(1− rzr)2

∂2

∂u2

∣∣∣∣
u=z

F
(r)
g,n−1(z, · · · , z)
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+
n

2

z2

(1− rzr)2

∂2

∂u1∂u2

∣∣∣∣
u1=u2=z

F
(r)
g−1,n+1(u1, u2, z, · · · , z)

+
n!

2

stable∑
g1+g2=g

n1+n2=n−1

[
1

(n1 + 1)!

z

1− rzr
d

dz
F

(r)
g1,n1+1(z, · · · , z)

+
1

(n2 + 1)!

z

1− rzr
d

dz
F

(r)
g2,n2+1(z, · · · , z)

]
.

The summation (6.3) proves the proposition. �

Proof of Theorem 1.3. Note that we have

S
(r)
0 (z) = zr

(
1

r
− 1

2
zr
)
, S

(r)
1 (z) = −1

2
log(1− rzr)− 1

2
zr.

If we include these unstable terms into (6.4), then we obtain(
m+

1

r

z

1− rzr
d

dz

)
S

(r)
m+1(z)

=
1

2

((
z

1− rzr
d

dz

)2

S(r)
m (z) +

∑
a+b=m+1

z

1− rzr
d

dz
S(r)
a (z) · z

1− rzr
d

dz
S

(r)
b (z)

)

− 1

2

z

1− rzr
d

dz
S(r)
m (z).

In terms of the generating series

F (r)(z, ~) =
∞∑
m=0

S(r)
m ~m−1,

the equation becomes

~
∂

∂~
F (r)(z, ~) +

1

r

z

1− rzr
d

dz
F (r)(z, ~)

=
~
2

[(
z

1− rzr
d

dz

)2

F (r)(z, ~) +

(
z

1− rzr
d

dz
F (r)(z, ~)

)2
]

− ~
2

z

1− rzr
d

dz
F (r)(z, ~).

Since Z(r)(z, ~) = expF r(z, ~) and D = x d
dx = z

1−rzr
d
dz , we have

(6.5)

(
∂

∂~
+

(
1

r~
+

1

2

)
x
d

dx
− 1

2

(
x
d

dx

)2
)
Z(r)(z, ~) = 0,

which establishes (1.14).
Now define

P = ~
∂

∂w
+ e−

r−1
2

~ ∂
∂w e−rwe

r−1
2

~ ∂
∂w e−r~

∂
∂w(6.6)

Q =
~
2

∂2

∂w2
+

(
1

r
+

~
2

)
∂

∂w
− ~

∂

∂~
.(6.7)
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It is proved in [33] that P annihilates the partition function Z(r)(z, ~):

(6.8) PZ(r)(z, ~) =

(
~
∂

∂w
+ e−

r−1
2

~ ∂
∂w e−rwe

r−1
2

~ ∂
∂w e−r~

∂
∂w

)
Z(r)(z, ~) = 0.

Since e
r−1

2
~ ∂
∂w is a shift operator, with the multiplication operator by a function f(w) it

satisfies the relation

e
r−1

2
~ ∂
∂w · f(w) = f(w +

r − 1

2
~) · e

r−1
2

~ ∂
∂w .

Therefore, the operator P can also be written as

P = ~
∂

∂w
+ er(−w+ r−1

2
~)e−r~

∂
∂w .

Now the commutator relation

[P,Q] = P

is straightforward.
The semi-classical limit calculations are the same as those in [34]. We have thus completed

the proof of Theorem 1.3. �

7. The Eynard-Orantin topological recursion

In this section, we shall prove Theorem 1.7. For a mathematical definition of the Eynard-
Orantin theory, we refer to [19, 34].

Because of the definition of the differentials

W (r)
g,n = d1 · · · dnF (r)

g,n,

we expect that the exterior differentiation of (1.11) should give the integral recursion (1.17).
This naive idea does not work because of the specific reference to the local Galois conjugation
sj appearing in the integral recursion. The PDE (1.11) does not care about the x-projection
of the spectral curve, while (1.17) heavily uses the local ramification structure of the spectral
curve as a covering of the x-coordinate line. The integration kernel (1.18) shows that the
residue calculation on the right-hand side of (1.17) is similar to the local Galois averaging.
Yet evaluation of the free energies at any Galois conjugate point is no longer a rational
function, since sj(z) is a very complicated holomorphic function in z.

The strategy we adopt in this section is to extract the principal part of the local Galois
average, and then take the terms of the result that are the pull-back of a function in the
x-coordinate. On the stable range 2g − 2 + n > 0, the free energies are indeed functions in
the xi-variables, so the last step makes sense. And by taking the principal part of the Galois

average, we maintain the finiteness (polynomial-like) structure of W
(r)
g,n that represents the

picewise polynomiality of the orbifold Hurwitz number H
(r)
g,n(~µ).

Thus the simple residue operation of the right-hand side of (1.17) amounts to the combi-
nation of the algebraic operations listed in Subsection 7.5 and the projection to the principal
part described in Definition 7.9.

7.1. The spectral curve and the x-projection. For the convenience of calculations we
shall use the scaled coordinate η = r

√
rz from now on. This change has no significance, but

some formulas and statements become less cumbersome in the η-coordinate.
The r-Lambert curve (1.4) is now given by

x =
1
r
√
r
η e−η

r/r,
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and the x-projection has r simple ramification points at the r-roots of unity 1−ηr = 0. We
denote these ramification points by

{αj | αj = e2(j−1)πi/r, j = 1, 2, · · · , r}.
Around each critical point αj , the x-projection is locally a double-sheeted covering. There
is a neighborhood Uj of αj such that when η ∈ Uj , there is another point η̃ satisfying
x(η̃ ) = x(η). This correspondence defines a local deck transformation (or local Galois
conjugation) sj(η) := η̃ on Uj . Clearly, sj is an involution: sj(sj(η)) = η.

Lemma 7.1. For each j = 1, · · · , r, the deck transformation sj(η) is a holomorphic function
in η defined on Uj. Moreover, the function form of sj(η) in the variable η does not depend
on the index j.

Proof. Let us introduce notations ∆j := 1−sj(η)r and ∆ := 1−ηr. The equation x(sj(η)) =
x(η) then gives

log(1−∆j) + ∆j = log(1−∆) + ∆.

We make Uj smaller so that it lies in the region |∆| < 1. Then ∆j has a power series
expansion

∆j = −∆− 2

3
∆2 − 4

9
∆3 − 44

135
∆4 − 104

405
∆5 − 40

189
∆6 − 7648

42525
∆7 − 2848

18225
∆8 +O(∆9),

which convergences for |∆| < 1. Therefore ∆j is a holomorphic function of η defined on Uj
whose function form in η does not depend on j. Since

sj(η) = η exp
∆−∆j

r
,

it is holomorphic in η on Uj , and the function form does not depend on j, either. �

7.2. The free energies and the auxiliary functions in the η-coordinate. By abuse
of notation, we denote the auxiliary functions of (4.3) and (4.4) by the same notation and
consider them as functions in η. Thus we re-define

(7.1) ξr,k−1(η) =

{
1
rη

r k = 0
1

krk/r
ηk k > 0,

ξr,km+1(η) =
η

1− ηr
d

dη
ξr,km (η), m ≥ −1.

Remark 7.2. It is easy to see that ξr,km (η) is a proper rational function in η for m ≥ 0,

whose denominator is a constant times (1 − ηr)2m+1. Thus ξr,km (η) is meromorphic with
poles only at αj ’s.

A few examples of ξr,km (η) are given in Table 1.

We denote the free energy F
(r)
g,n(η1, . . . , ηn) as

(7.2) F (r)
g,n(η1, . . . , ηn) = r1−g

∑
|~k|≡0 (r)

|~̀|≤3g−3+n

r|
~k|/r 〈τ~̀ Λ〉(r),~k ξr,~k~̀ (η1, . . . , ηn),

where ~̀ := (`1, . . . , `n) with `i ≥ 0, ~k := (k1, . . . , kn) with 0 ≤ ki < r, |~k| :=
∑n

i=1 ki, Λ :=∑
j≥0(−r)jλj , and, ξr,

~k
~̀ (η1, . . . , ηn) :=

∏n
i=1 ξ

r,ki
`i

(ηi). The Hodge integrals are abbreviated
as

(7.3) 〈τ~̀ Λ〉(r),~k := 〈τ`1 τ`2 . . . τ`n Λ〉(r),~k =

∫
M

g,−~k(BG)

n∏
i=1

ψ`ii
∑
j≥0

(−r)jλj .
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k = 0 k = 1 k = 2

m = −1 ηr

r
η

r1/r
η2

2r2/r

m = 0 ηr

1−ηr
η

r1/r(1−ηr)
η2

r2/r(1−ηr)

m = 1 rηr

(1−ηr)3
η [(r−1)ηr+1]

r1/r(1−ηr)3
η2 [(r−2)ηr+2]

r2/r(1−ηr)3

m = 2 r2ηr(2ηr+1)

(1−ηr)5

η [(2r2−3r+1)η2r+(r2+3r−2)ηr+1]
r1/r(1−ηr)5

η2 [2(r2−3r+2)η2r+(r2+6r−8)ηr+4]
r2/r(1−ηr)5

Table 1. ξr,km (η) for m = −1, . . . , 2 and k = 0, 1, 2.

In terms of the η-variables, the unstable free energies are given by

F
(r)
0,1 (η) =

1

r2
ηr − 1

2r2
η2r,(7.4)

F
(r)
0,2 (η1, η2) = log

η1 − η2

x1 − x2
− 1

r
(log r + ηr1 + ηr2).(7.5)

For (g, n) in the stable range 2g − 2 + n > 0, (1.11) becomes

(7.6)

(
2g − 2 + n+

1

r

n∑
i=1

ηi
∂

∂ηi

)
F (r)
g,n(η1, . . . , ηn)

=
1

2

∑
i 6=j

ηiηj
ηi − ηj

[
1

(1− ηri )2

∂

∂ηi
F

(r)
g,n−1

(
η[ĵ]

)
− 1

(1− ηrj )2

∂

∂ηj
F

(r)
g,n−1

(
η[̂i]

)]

+
1

2

n∑
i=1

η2
i

(1− ηri )2

∂2

∂u1∂u2
F

(r)
g−1,n+1

(
u1, u2, η[̂i]

)∣∣∣∣
u1=u2=ηi

+
1

2

n∑
i=1

η2
i

(1− ηri )2

stable∑
g1+g2=g

ItJ=[̂i]

(
∂

∂ηi
F

(r)
g1,|I|+1(ηi, ηI)

)(
∂

∂ηi
F

(r)
g2,|J |+1(ηi, ηJ)

)
.

7.3. The integration kernel for the Eynard-Orantin recursion. Using (7.4) and (7.5)
we find

W
(r)
0,1 (η) =

1

r
ηr−1(1− ηr)dη, W

(r)
0,2 (η1, η2) =

dη1 ⊗ dη2

(η1 − η2)2
− dx1 ⊗ dx2

(x1 − x2)2
.

We recall Lemma 7.1, which states that the local Galois conjugation sj(η), considered as a
function in η, does not depend on the index j. Let us denote this function by η̃ = η̃ (η).
As a consequence, the integration kernel (1.18) has an expression independent of j as well,
and is given by

(7.7) Kj(η, η1) =
r

2

η

(η̃ r − ηr)(1− ηr)

(
1

η − η1
− 1

η̃ − η1

)
· dη1 ⊗

1

dη
.
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Here we note that W
(r)
0,2 in the integral recursion (1.17) can be replaced by Riemann’s

normalized fundamental differential of the second kind

(7.8) B(η1, η2) =
dη1 ⊗ dη2

(η1 − η2)2
.

This is because the difference

W
(r)
0,2 (η1, η2)−B(η1, η2) = − dx1 ⊗ dx2

(x1 − x2)2

does not contribute to the residue calculation of the second line of the right-hand side of
(1.17).

7.4. The local analytic properties of the auxiliary functions. Let us denote

∆ = 1− ηr and ∆̃ = 1− η̃ r

for η in each neighborhood Uj of the critical point αj . When η → αi, ∆(η) and ∆̃(η)

converge to 0. We therefore regard ∆ and ∆̃ as small parameters, for example, |∆| < 1 and

|∆̃| < 1, for η ∈ Uj .
To analyze the r-Lambert curve locally around its critical point, let us introduce a local

parameter u around αj by

(7.9) e−u−1 = ηre−η
r

= η̃ re−η̃
r

.

When η is in any neighborhood Uj , we have

(7.10) u = −∆− log(1−∆) = −∆̃− log(1− ∆̃).

Since the u-projection of the r-Lambert curve around αj is a double-sheeted covering, let
us define

(7.11)
1

2
v2 = u.

This Airy curve equation describes the local behavior of our spectral curve around αj . We
choose the branch of v at αj so that we have an expansion

(7.12) v = ∆ +
1

3
∆2 +

7

36
∆3 +

73

540
∆4 +O(∆5).

Here again we can see that v is a holomorphic function in η with the same expression at
each neighborhood Uj of αj , without any explicit dependence on the index j. From the
definition and (7.10), we know that the other branch of the curve around αj is given by

v(η̃ ) = ∆̃ +
1

3
∆̃2 +

7

36
∆̃3 +

73

540
∆̃4 +O(∆̃5).

Of course in terms of the v-coordinate the local Galois conjugate is given simply by

(7.13) v(η̃ ) = −v(η),

while u is symmetric under the involution η 7→ η̃ .

At each αj , we can express ∆ and ∆̃ as inverse series in v for sufficiently small v.

(7.14)
∆ = ψ(v) := v − 1

3
v2 +

1

36
v3 +

1

270
v4 +O(v5),

∆̃ = ψ(−v) = −v − 1

3
v2 − 1

36
v3 +

1

270
v4 +O(v5).
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To make the equations shorter, we use the following functions

Y k(η) =
ηk + η̃ k

2
,(7.15)

Er,k(η) =
η d
dηY

k(η)

(1− ηr)Y k(η)
,(7.16)

ϕr,kn (η) =
ξr,kn (η)− ξr,kn (η̃ )

2Y k(η)
,(7.17)

hr,kn (η) =
ξr,kn (η) + ξr,kn (η̃ )

2Y k(η)
.(7.18)

Here η̃ is understood as sj(η) for any j.

Remark 7.3. Again thanks to Lemma 7.1, the above expressions are well defined and
independent of which neighborhood Uj of the critical points the η-variable lies.

Proposition 7.4. The functions Y k(η), Er,k(η) and hr,kn (η) are symmetric under the in-

volution η 7→ η̃ , while ϕr,kn (η) is anti-symmetric. In terms of the local parameter v, we
have

(i) Er,k is an even holomorphic function in v, or a holomorphic function in u;

(ii) ϕr,k−1 is an odd holomorphic function in v. For n ≥ 0, ϕr,kn is an odd meromorphic
function in v, which has at most (2n+ 1)-th order pole at v = 0, and no other poles
near v = 0;

(iii) For n ≥ −1, hr,kn is an even holomorphic function in v, or a holomorphic function
in u.

Proof. (i). By definition it is clear that Y k(η) and hr,kn (η) are symmetric, and ϕr,kn is anti-
symmetric, under the involution. Note that Er,k(η) has a local expression

Er,k(η) = k
ψ(−v)e

k
r
ψ(−v) + ψ(v)e

k
r
ψ(v)

ψ(v)ψ(−v)
(
e
k
r
ψ(v) + e

k
r
ψ(−v)

) = k
(kr −

1
3) +O(v)

1 +O(v)
.

From the first equality we know that Er,k is a function in v, and symmetric under the
involution. The second equality is due to the expansion (7.14) of ψ(v), which indicates
thatEr,k(v) is holomorphic near v = 0. Thus near v = 0, Er,k expands into a power series
containing only even powers of v. Hence Er,k is a power series in u = 1

2v
2.

We now prove (ii) and (iii) by induction. (ii). For n = −1, when η ∈ Uj , we have

(7.19)

ϕr,k−1 =
1

krk/r
ηk − ηke

k
r

(∆−∆̃)

ηk + ηk e
k
r

(∆−∆̃)

=
1

krk/r
tanh

[
k (ψ(−v)− ψ(v))

2r

]
= − 1

r1+k/r
v +O(v3) for k > 0,

ϕr,0−1 =
ψ(−v)− ψ(v)

2r
= −v

r
+O(v3).

These are odd holomorphic functions near v = 0. By induction, for n ≥ −1, if ϕr,kn is an
odd function in v, then we have:

2Y k(η)ϕr,kn+1(η) = ξr,kn+1(η)− ξr,kn+1(η̃ ) =
η

1− ηr
d

dη

(
ξr,kn (η)− ξr,kn (η̃ )

)
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=
η

1− ηr
d

dη

(
2Y k(η)ϕr,kn (v)

)
= 2Y k(η)

(
Er,k(u)− r

v

d

dv

)
ϕr,kn (v).

Here we used (7.16) and

(7.20)
η

1− ηr
d

dη
=

η̃

1− η̃ r
d

dη̃
= −r

v

d

dv
= −r d

du
.

Therefore we obtain a recursion formula

(7.21) ϕr,kn+1 =

(
Er,k(u)− r

v

d

dv

)
ϕr,kn (v),

which proves that ϕr,kn for n ≥ 0 are odd meromorphic functions of v, with poles of order
at most 2n+ 1 at v = 0 and no other poles near v = 0.

(iii). Note that hr,k−1 = 1
krk/r

is an even holomorphic function in v. For n ≥ −1, suppose

that hr,kn is a function in u. Then the recursion

(7.22) hr,kn+1 =

(
Er,k(u)− r d

du

)
hr,kn (u)

shows that hr,kn+1 is again an even holomorphic function in v. This completes the proof. �

Remark 7.5. Around each critical point αj , we have

(7.23) ξr,kn (η) = Y k(η)
(
ϕr,kn (v) + hr,kn (u)

)
, ξr,kn (η̃ ) = Y k(η)

(
−ϕr,kn (v) + hr,kn (u)

)
.

For k = 0, we have

(7.24) ϕr,0−1(v) =
ηr − η̃ r

2r
=

∆̃−∆

2r
,

(7.25) ∆ = 1− rϕr,0−1(v)− rhr,0−1(u), ∆̃ = 1 + rϕr,0−1(v)− rhr,0−1(u),

and

ϕr,0n+1(v) = −r
v

d

dv
ϕr,0n (v), hr,0n+1(u) = −r d

du
hr,0n (u).

7.5. The local Galois averaging. The shape of the Eynard-Orantin integral recursion
(1.17), together with the integration kernel given by (7.7) and the local Galois conjugation
of (7.13), suggests that the residue evaluation of the right-hand-side of (1.17) is equivalent
to the local Galois averaging with respect to the single variable z. Since we already have a
topological recursion in the form of the partial differential equation (1.11), it is natural to
expect that the local Galois averaging of (1.11) should produce (1.17). In this subsection
we apply the following three algebraic operations to the differential equation (1.11).

(1) Local Galois averaging with respect to the first variable η1. This means that for a
meromorphic function f(η1) defined on Uj , we apply

π∗ : f(η1) 7→ f(η1) + f(η̃ 1)

2
.

(2) Extract the part of the function that is symmetric with respect to the local Galois
conjugation (7.13). In this process we use Proposition 7.4 and (7.25).

(3) To make the matching of our formula with the integral recursion manifest, we then
multiply by the factor

v1 dv1

rϕr,0−1(v1)
.
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Because of (7.14) and (7.24), ϕr,0−1(v1) = O(v1) near v1 = 0. Therefore, the multipli-
cation factor v1

rϕr,0−1(v1)
is a holomorphic function around each critical point αj .

Our starting point is the following Laplace transform formula (7.6) of the cut-and-join
equation (2.4), written in terms of the Hodge integrals (7.3) and the auxiliary functions
(7.1) incorporating the ELSV-type formula (2.3) of [29].

(7.26)
∑
|~k|≡0

|~̀|≤3g−3+n

r
|~k|
r 〈τ~̀Λ〉r,~k

[
(2g − 2 + n) ξr,

~k
~̀ (η[n]) +

1

r

n∑
i=1

(1− ηri ) ξ
r,ki
`i+1(ηi) ξ

r,k[̂i]

`[̂i]
(η[̂i])

]

=
∑
i<j

∑
a+
∣∣∣k[̂i,ĵ]

∣∣∣≡0

m+
∣∣∣`[̂i,ĵ]∣∣∣≤3g−4+n

r
a+

∣∣∣∣k[̂i,ĵ]

∣∣∣∣
r 〈τm τ`[̂i,ĵ] Λ〉(r),(a,k[̂i,ĵ])

1

ηi − ηj

×

[
ηj ξ

r,a
m+1(ηi)

1− ηri
−
ηi ξ

r,a
m+1(ηj)

1− ηrj

]
ξ
r,k[̂i,ĵ]

`[̂i,ĵ]
(η[̂i,ĵ])

+
r

2

n∑
i=1

∑
a+b+

∣∣∣k[̂i]

∣∣∣≡0

m+`+
∣∣∣`[̂i]∣∣∣≤3g−5+n

r
a+b+

∣∣∣∣k[̂i]

∣∣∣∣
r 〈τm τ` τ`[̂i] Λ〉(r),(a,b,k[̂i]) ξr,am+1(ηi) ξ

r,b
`+1(ηi) ξ

r,k[̂i]

`[̂i]
(η[̂i])

+
r

2

n∑
i=1

stable∑
g1+g2=g

ItJ=[̂i]

∑
a+|kI |≡0
b+|kJ |≡0

m+|`I |≤3g1−2+|I|
`+|`J |≤3g2−2+|J |

r
a+b+

∣∣∣∣k[̂i]

∣∣∣∣
r 〈τm τ`I Λ〉r,(a,kI)〈τ` τ`J Λ〉r,(b,kJ )

× ξr,am+1(ηi) ξ
r,b
`+1(ηi) ξ

r,k[̂i]

`[̂i]
(η[̂i]).

Here the bound of the summation indices are 0 ≤ a, b < r and m, ` ≥ 0. Let us now apply
the three algebraic operations listed above to (7.26).

The left-hand-side of (7.26) produces

(7.27)
∑
|~k|≡0

|~̀|≤3g−3+n

r
|~k|
r 〈τ~̀Λ〉(r),~k Y k1(η1)

[
−v1

r
ϕr,k1

`1+1(v1) dv1 +H(v1) dv1

]
ξ
r,k[1̂]

`[1̂]
(η[1̂]),

whereH(v1) is a holomorphic function in v1 near v1 = 0 that comes from the third operation.
We calculate, using, (7.21) and (7.23):

− v1

r
Y k1(η1)ϕr,k1

`1+1(v1) dv1 = −v1

r
Y k1(η1)

[
Er,k1(u1)− r

v1

d

dv1

]
ϕr,k1

`1
(v1) dv1

= Y k1(η1) dϕr,k1

`1
(v1)− v1

r
Y k1(η1)Er,k1(u1)ϕr,k1

`1
(v1) dv1

= dξr,k1

`1
(η1)− d

(
Y k1(η1)hr,k1

`1
(u1)

)
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−
(
dY k1(η1)

)
ϕr,k1

`1
(v1)− 1

r
Y k1(η1)Er,k1(u1)ϕr,k1

`1
(v1) v1 dv1.

The last two terms of the above formula cancel due to (7.16) and

(7.28) du = vdv = r
ηr − 1

η
dη = r

η̃ r − 1

η̃
dη̃ .

Notice that Y k1(η1), H(v1), and hr,k1

`1
(u1) are holomorphic functions in η1 ∈ U , where U is

the union ∪rj=1Uj . Thus the left-hand side of (7.26) simply takes the form

(7.29)
∑
|~k|≡0

|~̀|≤3g−3+n

r
|~k|
r 〈τ~̀Λ〉(r),~k

[
dξr,k1

`1
(η1) +H1(η1) dη1

]
ξ
r,k[1̂]

`[1̂]
(η[1̂]),

with a holomorphic function H1 in η1.
Again appealing to (7.28), we calculate the result of the three operations on the first

term of the right-hand side of (7.26) as

(7.30)
1

2

∑
1<j

∑
a+
∣∣∣k[1̂,ĵ]

∣∣∣≡0

m+
∣∣∣`[1̂,ĵ]∣∣∣≤3g−4+n

r
a+

∣∣∣∣k[1̂,ĵ]

∣∣∣∣
r 〈τm τ`[1̂,ĵ] Λ〉(r),(a,k[1̂,ĵ])

×

[
−ξr,am+1(η1) d η1

(η1 − ηj)ϕr,0−1(v1)
+
−ξr,am+1(η̃ 1) d η̃ 1

(η̃ 1 − ηj)ϕ
r,0
−1(v1)

+ Ωr,a
1,m+1(η1) + Ω(η1, ηj)

ξr,am+1(ηj)

1− ηrj

]
× ξ

r,k[1̂,ĵ]

`[1̂,ĵ]
(η[1̂,ĵ]) +H2(η1) dη1F(η[1̂]).

Here H2(η1) ∈ O(U). F(η[1̂]) is a function in η2, . . . , ηn. Ωr,a
1,m+1(η1) is a meromorphic

differential in η1 defined by

Ωr,a
1,m+1(η1) :=

ξr,am+1(η1) d η1

η1 ϕ
r,0
−1(v1)

+
ξr,am+1(η̃ 1) d η̃ 1

η̃ 1 ϕ
r,0
−1(v1)

,

and Ω(η1, ηj) is a holomorphic differential in η1

Ω(η1, ηj) =

[
(1− ηr1) d η1

(η1 − ηj)ϕr,0−1(v1)
+

(1− η̃ r1) d η̃ 1

(η̃ 1 − ηj)ϕ
r,0
−1(v1)

]
ξr,am+1(ηj)

1− ηrj
.

Without loss of generality, we can assume that ηj 6∈ U . Then Ω(η1, ηj) is a holomorphic

differential with respect to η1 ∈ U , which follows from the local behavior of
(1−ηr1)

ϕr,0−1(v1)
and

(1−η̃ r1)

ϕr,0−1(v1)
coming from (7.12) and (7.24).

The operation on the second and the third terms of the right-hand side of (7.26) produces

(7.31)
∑

a+b+
∣∣∣k[1̂]

∣∣∣≡0

m+`+
∣∣∣`[1̂]

∣∣∣≤3g−5+n

r
a+b+

∣∣∣∣k[1̂]

∣∣∣∣
r 〈τm τ` τ`[1̂]

Λ〉(r),(a,b,k[1̂])

×

[
Y a(η1)Y b(η1)ϕr,am+1(v1)ϕr,b`+1(v1) v1 d v1

2ϕr,0−1(v1)

]
ξ
r,k[1̂]

`[1̂]
(η[1̂]) +H3(η1) d η1F1(η[1̂])
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+
stable∑

g1+g2=g
ItJ=[1̂]

∑
a+|kI |≡0
b+|kJ |≡0

m+|`I |≤3g1−2+|I|
`+|`J |≤3g2−2+|J |

r
a+b+|k

[1̂]
|

r 〈τm τ`I Λ〉(r),(a,kI) 〈τ` τ`J Λ〉(r),(a,kJ )

×

[
Y a(η1)Y b(η1)ϕr,am+1(v1)ϕr,b`+1(v1) v1 dv1

2ϕr,0−1(v1)

]
ξ
r,k[1̂]

`[1̂]
(η[1̂]) +H4(η1) dη1F2(η[1̂]).

Here H3(η1) and H4(η1) are in O(U), and F1(η[1̂]) and F2(η[1̂]) are functions in η2, . . . , ηn.

7.6. The residue calculation. Recall that the central idea of [21] to prove the Hurwitz
number conjecture of [8] is to relate the principal part of the free energies with the residue
calculation of the Eynard-Orantin integral recursion formula. Since the free energies in
our case have r distinct poles, we need a more general notion of the principal part for a
meromorphic function with many poles (see for example, [38]). In this subsection we derive
the key formula (7.34) for the residue calculations we need.

Definition 7.6. Let us denote by U = ∪rj=1Uj the union of the local neighborhood of the

critical point αj for all j. We define an O(U)-module MU by

MU =

{
m(η)

∣∣∣∣ m(η) =
h(η)

(1− ηr)k
, k ≥ 0, h(η) ∈ O(U).

}
Following [38], we define

Definition 7.7. Let p(η) ∈ C[η] be a non-constant polynomial, and U ⊂ C an open subset.
Two functions f, g ∈ O(U) are said to be congruent modulo p (denoted by f ≡ g mod p)
if there is q(η) ∈ O(U) such that

f = g + p q.

Proposition 7.8 ([38]). Under the same condition as above, suppose that p(η) has all its
zeros in U . Then for every holomorphic function f(η) ∈ O(U), there is a unique polynomial
r(η) such that

f ≡ r mod p and deg r(η) < deg p(η).

We denote this unique remainder polynomial by

(7.32) r(η) = bf(η)cp.
This defines a natural C-algebra homomorphism

O(U) 3 f 7−→ bf(η)cp ∈ C[η]
/

(p),

which is called the reduction of f modulo p.

Definition 7.9. Let m(η) = h(η)/p(η) be a meromorphic function in MU , where h(η) ∈
O(U) and p(η) = (1− ηr)k, k ≥ 0. We define the following symbol

(7.33) {m(η)}η :=
bh(η)cp
p(η)

∈ C(η).

Thus we have a linear map, which we simply call the projection to the principal part

{ · }η :MU −→ C(η).

The principal part {m(η)}η of a meromorphic function m(η) is the “proper rational function

part” of m = h/p. If k = 0, then we define the principal part to be 0.
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Remark 7.10. From the definition it is obvious that for every m(η) ∈MU , we have

m(η)− {m(η)}η ∈ O(U).

Thus {m(η)}η behaves much like the principal part of a meromorphic function at a pole.
The image {m(η)}η ∈ C(η) is always globally defined on P1, even though m(η) is defined
locally on U , and {m(η)}η has poles only at αj .

The following lemma plays the key role in connecting the residue of the Eynard-Orantin
recursion formula and taking the principal part.

Lemma 7.11. For any element m(ζ) ∈ MU and η ∈ C such that η 6= αj, j = 1, . . . , r, we
have

(7.34)
r∑
j=1

Resζ=αj
m(ζ)

ζ − η
= −{m(η)}η .

Proof. Let γj be a small loop in Uj centered at αj , γη a small loop around η, and ΓR a large
circle enclosing all αj and η with radius R� 1 (see Figure 7.1). Then

r∑
j=1

Resζ=αj
m(ζ)

ζ − η
=
∑
j

1

2πi

∮
γj

m(ζ)

ζ − η
dζ

=
∑
j

1

2πi

∮
γj

{m(ζ)}ζ
ζ − η

dζ +
∑
j

1

2πi

∮
γj

m(ζ)− {m(ζ)}ζ
ζ − η

dζ

=
∑
j

Resζ=αj
{m(ζ)}ζ
ζ − η

,

because
m(ζ)−{m(ζ)}ζ

ζ−η does not have any pole in any of the Uj ’s. Noting that
{m(ζ)}ζ
ζ−η is a

rational function with poles only at η and αj , j = 1, . . . , r, we calculate

0 = lim
R→∞

1

2πi

∮
ΓR

{m(ζ)}ζ
ζ − η

dζ

=
∑
j

Resζ=αj
{m(ζ)}ζ
ζ − η

+ Resζ=η
{m(ζ)}ζ
ζ − η

=
∑
j

Resζ=αj
{m(ζ)}ζ
ζ − η

+ {m(η)}η .

This completes the proof of (7.34). �

7.7. Proof of Theorem 1.7. We are now ready to complete the proof of Theorem 1.7.
The operation we wish to apply to (7.29), (7.30), and (7.31) is

(dη2 · · · dηn) ◦ {•}η1
.

This means we first calculate the principal part of the quantities with respect to η1, and
then apply the exterior differentiations with respect to η2, . . . , ηn. We obtain

(7.35)
∑
|~k|≡0

|~̀|≤3g−3+n

r
|~k|
r 〈τ~̀Λ〉(r),~k dξr,~k~̀ (η1, . . . , ηn)
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Figure 7.1. Integration contours.

=
∑
1<j

∑
a+
∣∣∣k[1̂,ĵ]

∣∣∣≡0

m+
∣∣∣`[1̂,ĵ]∣∣∣≤3g−4+n

r
a+

∣∣∣∣k[1̂,ĵ]

∣∣∣∣
r 〈τm τ`[1̂,ĵ] Λ〉(r),(a,k[1̂,ĵ])Rr,am (η1, ηj) ⊗ dξ

r,k[1̂,ĵ]

`[1̂,ĵ]
(η[1̂,ĵ])

+
∑

a+b+
∣∣∣k[1̂]

∣∣∣≡0

m+`+
∣∣∣`[1̂]

∣∣∣≤3g−5+n

r
a+b+

∣∣∣∣k[1̂]

∣∣∣∣
r 〈τm τ` τ`[1̂]

Λ〉(r),(a,b,k[1̂])Rr,a,bm,` (η1)⊗ dξ
r,k[1̂]

`[1̂]
(η[1̂])

+

stable∑
g1+g2=g
ItJ=[1̂]

∑
a+|kI |≡0
b+|kJ |≡0

m+|`I |≤3g1−2+|I|
`+|`J |≤3g2−2+|J |

r
a+b+

∣∣∣∣k[1̂]

∣∣∣∣
r 〈τm τ`I Λ〉(r),(a,kI) 〈τ` τ`J Λ〉(r),(a,kJ )

×Rr,a,bm,` (η1)⊗ dξ
r,k[1̂]

`[1̂]
(η[1̂]),

where dξr,kI`I
(ηI) =

⊗
i∈I dξ

r,ki
`i

(ηi),

(7.36) Rr,a,bm,` (η1) :=

{
Y a(η1)Y b(η1)ϕr,am+1(v1)ϕr,b`+1(v1) v1 dv1

2ϕr,0−1(v1)

}
η1

,

and

(7.37) Rr,am (η1, ηj) := −dηj

{
ξr,am+1(η1) dη1

2 (η1 − ηj)ϕr,0−1(v1)
+

ξr,am+1(η̃ 1) dη̃ 1

2 (η̃ 1 − ηj)ϕ
r,0
−1(v1)

}
η1

.

Remark 7.12. The operation of {•}η1
in (7.37) and (7.36) are well defined because of the

fact that η̃ 1 is holomorphic in η1 ∈ U , (7.12), Proposition 7.4, and (7.23).

To deduce (1.17) from (7.35), we need the following formulas.
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Proposition 7.13.

Rr,a,bm,` (η1) = r

r∑
j=1

Resη=αjKj(η, η1) dξr,am (η) ⊗ dξr,b` (η̃ )(7.38)

Rr,am (η1, ηi) =

r∑
j=1

Resη=αj

[
Kj(η, η1)

(
B(η, ηi) dξ

r,a
m (η̃ ) +B(η̃ , ηi) dξ

r,a
m (η)

)]
,(7.39)

where B(η, ηi) is defined in (7.8).

Proof. Let sj(γj) be the involution image of a small circle γj around αj . We calculate the
residue by contour integration.

R.H.S. of (7.38) = r

r∑
j=1

Resη=αjKj(η, η1) dξr,am (η) ⊗ dξr,b` (η̃ )

=
r2 dη1

2

∑
j

1

2πi

[∮
γj

ξr,am+1(y)

(y − η1)(ỹ r − yr)
dξr,b` (ỹ )

dỹ
dỹ +

∮
sj(γj)

ξr,am+1(ỹ )

(y − η1)(ỹ r − yr)
dξr,b` (y)

dy
dy

]

=
r2 dη1

2

∑
αj

Resy=αj

(1− yr)
[
ξr,am+1(y) ξr,b`+1(ỹ ) + ξr,am+1(ỹ ) ξr,b`+1(y)

]
(y − η1) y (ỹ r − yr)

.

In the second line we have used the involution to the second contour integral, and in the
third line we have appealed to (7.28). Noticing that

(1− yr)
[
ξr,am+1(y) ξr,b`+1(ỹ ) + ξr,am+1(ỹ ) ξr,b`+1(y)

]
y (ỹ r − yr)

∈MU ,

we use Lemma 7.11, (7.23), and (7.24) to yield

R.H.S. = −r
2

2

(1− ηr1)
[
ξr,am+1(η1) ξr,b`+1(η̃ 1) + ξr,am+1(η̃ 1) ξr,b`+1(η1)

]
η1 (η̃ r1 − ηr1)


η1

dη1

=

Y
a(η1)Y b(η1)

[
ϕr,am+1(v1)ϕr,b`+1(v1)− hr,am+1(w1)hr,b`+1(w1)

]
v1 dv1

2ϕr,0−1(v1)


η1

= Rr,a,bm,` (η1).

Similarly, for ηi /∈ U , we have

R.H.S of (7.39) =

r∑
j=1

Resη=αj

[
Kj(η, η1)

(
B(η, ηi) dξ

r,a
m (η̃ ) +B(η̃ , ηi) dξ

r,a
m (η)

)]

=
r

2
dη1 ⊗ dηi

∑
αj

1

2πi

∮
γj

(
1

y − η1
− 1

ỹ − η1

)(
ξr,am+1(ỹ )

y − ηi
+
ξr,am+1(y) ỹ ′

ỹ − ηi

)
dy

ỹ r − yr


= r dη1 ⊗ dηi

∑
αj

Resy=αj

1

y − η1

(
ξr,am+1(ỹ )

(y − ηi)(ỹ r − yr)
+

ξr,am+1(y) ỹ ′

(ỹ − ηi)(ỹ r − yr)

)
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= −r dη1 ⊗ dηi

{
ξr,am+1(η̃ 1)

(η1 − ηi)(η̃ r1 − ηr1)
+

ξr,am+1(η1) η̃ ′1
(η̃ 1 − ηi)(η̃ r1 − ηr1)

}
η1

= dη1 ⊗ dηi

{
ξr,am+1(η̃ 1)

2 (η1 − ηi)ϕr,0−1(v1)
+

ξr,am+1(η1) η̃ ′1

2 (η̃ 1 − ηi)ϕ
r,0
−1(v1)

}
η1

,

thanks to Lemma 7.11. Here the sign ′ indicates differentiation with respect to the variable
without the -̃sign. For example, ỹ ′ = dỹ /dy, etc. The last step is to equate the above
result with (7.37), which follows from

Lemma 7.14. {(
1

η1 − ηi
+

η̃ ′1
η̃ 1 − ηi

)(
ξr,am+1(η1) + ξr,am+1(η̃ 1)

2ϕr,0−1(v1)

)}
η1

= 0.

Proof of Lemma. Note that

ξr,am+1(η1) + ξr,am+1(η̃ 1)

2ϕr,0−1(v1)
= −

r Y a(η1)hr,am+1(0)

∆1
+O(∆1),

which has a simple pole at each αj . Since η̃ ′1
∣∣
η1=αi

= −1, the holomorphic function

1
η1−ηi + η̃ ′1

η̃ 1−ηi
has a zero at each αj . Therefore, the principal part operation is applied

to a holomorphic function in η1, hence the result is 0. �

We have now completed the proof of Theorem 1.7. �
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