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CONCAVITY AND RIGIDITY IN NON-NEGATIVE CURVATURE

LUIGI VERDIANI AND WOLFGANG ZILLER

Dedicated to D.V. Alekseevsky on his 70th birthday

Abstract. We show that for a manifold with non-negative curvature one obtains a collection
of concave functions, special cases of which are the concavity of the length of a Jacobi field in
dimension 2, and the concavity of the volume in general. We use these functions to show that
there are many cohomogeneity one manifolds which do not carry an analytic invariant metric
with non-negative curvature. This implies in particular, that one of the candidates in [GWZ]
does not carry an invariant metric with positive curvature.

There are few known examples of manifolds with positive sectional curvature in Riemannian
geometry. Until recently, they were all homogeneous spaces [Be, Wa, AW] and biquotients [E1,
E2, Ba], i.e., quotients of compact Lie groups G by a free isometric “two sided” action of a
subgroup H ⊂ G×G. See [Zi1] for a survey of the known examples. Recently a new example of
a positively curved 7-manifold, homeomorphic but not diffeomorphic to T1S

4, was constructed in
[GVZ], see also [De] for a different approach. A new method has also been proposed in [PW] to
construct a metric of positive curvature on the Gromoll-Meyer exotic 7-sphere. The new example
in [GVZ] is part of a larger family of “candidates” for positive curvature discovered in [GWZ].
One of the applications of this paper is to exclude one of these candidates.

The obstruction that we use to do this turns out to be of a general nature that does not require
the presence of a group action. It comes from a new concavity property of Jacobi fields in positive
curvature. The method also gives rise to certain rigidity properties in nonnegative curvature.

Let c(t) be a geodesic in Mn+1 and J(t) a Jacobi field along c. For a surface it is well known
that positive curvature is equivalent to requiring that the length of all Jacobi fields is strictly
concave. In higher dimensions, the length |J | satisfies the differential equation

|J |′′

|J |
= − secM (ċ, J) +

|J ′|2

|J |2
sin2(∢(J

′

, J)).

Thus in negative curvature |J | is a strictly convex function. But in positive curvature |J | does
not have any distinctive properties. For example, the Hopf action on a round sphere induces a
Killing vector field of constant length.

For positive curvature we suggest the concept of a “virtual” Jacobi field. For this it is best to
study Jacobi fields via Jacobi tensors. Let At be a solution of the differential equation

A′′ +RA = 0

where Et = ċ(t)⊥ ⊂ Tc(t)M and, after a choice of a base point t0, At : Et0 → Et and R =
R(·, ċ)ċ : Et → Et. A is uniquely determined by At0 and A′

t0 . Thus for any v ∈ Et0 , J(t) = Atv
is a Jacobi field along c. We denote by A∗ the adjoint of A and call a point c(t∗) regular if At∗

is invertible. The Jacobi tensor A is called a Lagrange tensor if A is non-degenerate (i.e. Av is
not the 0-Jacobi field for all v) and S := A′A−1 is symmetric at regular points. Equivalently, S
is the shape operator of a family of parallel hypersurfaces orthogonal to c.
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both Institutes for their hospitality. The second named author was supported by a grant from the National Science
Foundation, the Max Planck Institute in Bonn, CAPES and IMPA.
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Theorem A. Let A be a Lagrange tensor along the geodesic c and v ∈ Et0 non-zero. Define

Zt = (A∗
t )

−1v and let g = gv(t) =
||v||2

||Zt||
. Then

(a) gv(t) ≤ ||Atv|| and at regular points

g′′

g
= − secM (ċ, Z)− 3

|SZ|2

|Z|2
sin2(∢(SZ,Z)).

(b) gv(t) is continuous for all t. Furthermore, it is smooth (and positive) at t = t∗ iff
v⊥ kerAt∗ .

(c) If secM ≥ 0 (resp. secM > 0), then gv is concave (resp. strictly concave) on any interval
where gv is positive. If gv is constant, then the virtual Jacobi field Z is a parallel Jacobi
field, and if At0 = Id, then Zt = Atv.

Notice that for a surface gv = ||Atv|| is simply the length of the Jacobi field.

As an immediate consequence one has the following result by B.Wilking [Wi] which was crucial
in proving the smoothness of the Sharafudinov projection in the soul theorem: If M has non-
negative sectional curvature and A is a Lagrange tensor defined along c for all t, normalized so
that At0 = Id, then one has an orthogonal splitting

Et0 = span{v ∈ Et0 | Atv = 0 for some t ∈ R} ⊕ {v ∈ Et0 | Atv is parallel for all t ∈ R}.

There is another well known concave function in positive curvature given in terms of the volume
along the geodesic: if A is Lagrange, then (detAt)

1/n is concave if Ric ≥ 0. One of the advantages
of the class of concave functions in Theorem A is that by part (b) and (c), some of them are
well defined and concave at singular points of A, whereas detA vanishes at such points. This
property of gv is crucial in our applications.

There exists a sequence of concave functions interpolating between gv and the volume. For
each p-dimensional subspace W ⊂ Et0 set

gW (t) = (detMt)
−1/2p where 〈Mtei, ej〉 = 〈(A∗

t )
−1ei, (A

∗
t )

−1ej〉 = 〈 (A∗A)−1ei, ej〉

and e1, . . . , ep is an orthonormal basis of W . If W is one dimensional, gW = gv with v a unit

vector in W , and if W = Et0 then gW = (detAt)
1/n.

Recall that a manifold is said to have p-positive sectional curvature if the sum of the p smallest
eigenvalues of R(·, v)v is positive for all v. Thus p = 1 is positive sectional curvature and p = n
is positive Ricci curvature.

Theorem B. Let A be a Lagrange tensor along the geodesic c and W ⊂ Et0 a p-dimensional
subspace.

(a) If the p-sectional curvature is non-negative (resp. positive), then gW is concave (resp.
strictly concave) on any interval where gW is positive.

(b) gW is smooth (and positive) at t = t∗ iff W⊥ kerAt∗ .
(c) If the p-sectional curvature is non-negative and gW is constant, then (A∗

t )
−1v is a parallel

Jacobi field for all v ∈ W .

The example of positive curvature in [GVZ] arose from a systematic study of cohomogeneity
one manifolds, i.e., manifolds with an isometric action whose orbit space is one dimensional, or
equivalently the principal orbits have codimension one. A classification of positively curved co-
homogeneity one manifolds was carried out in even dimensions in [V1, V2] and in odd dimensions
an exhaustive description was given in [GWZ] of all simply connected cohomogeneity one mani-
folds that can possibly support an invariant metric with positive curvature. In addition to some
of the known examples of positive curvature which admit isometric cohomogeneity one actions,
two infinite families, P 7

k , Q
7
k, k ≥ 1, and one exceptional manifold R7, all of dimension seven and
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admitting a cohomogeneity one action by SO(4), appeared as the only possible new candidates,
see Section 4 (as well as [Zi2]) for a more detailed description. Here P 7

1 is the 7-sphere and Q7
1

is the normal homogeneous positively curved Aloff-Wallach space. The manifold P 7
2 is the new

example of positive curvature in [GVZ].
These candidates belong to two much larger classes of cohomogeneity one manifolds depending

on 4 integers, described in terms of the isotropy groups, see Section 4. One is denoted by
P(p−,q−),(p+,q+), a family of cohomogeneity one manifolds with π1 = π2 = 0, and a second by
Q(p−,q−),(p+,q+), where π1 = 0, π2 = Z. They all admit a cohomogeneity one action by G = SO(4).
In terms of these, the candidates for positive curvature are given by Pk = P(1,1),(1+2k,1−2k),

Qk = Q(1,1),(k,k+1), with k ≥ 1, and the exceptional manifold R7 = Q(3,1),(1,2).

Theorem C. Let M be one of the 7-manifolds Q(p−,q−),(p+,q+) with its cohomogeneity one
action by G = SO(4) and assume that M is not of type Qk, k ≥ 0. Then there exists no analytic
metric with non-negative sectional curvature invariant under G, although there exists a smooth
one.

The existence of a smooth metric with non-negative curvature follows from a more general
result on cohomogeneity one manifolds in [GZ1]. In particular we obtain:

Corollary. The exceptional cohomogeneity one manifold R7 does not admit an invariant
metric with positive sectional curvature.

The method also applies to the family P(p−,q−),(p+,q+). Here we will show that if the manifold
is not one of the candidates Pk or of type P(1, q),(p , 1), then there exists a G-invariant metric with
non-negative sectional curvature, but no G-invariant analytic metric with non-negative curvature.
On the other hand, the exceptional family P(1, q),(p,1) contains several G-invariant analytic metrics

with non-negative curvature since P(1,1),(−3,1) is S
7, P(1,−3),(−3,1) is the positively curved Berger

space and P(1,1),(1,1) = S
3 × S

4. We do not know if any of the other manifolds P(1, q),(p , 1) carry
analytic metrics with non-negative curvature.

The proof of Theorem C is obtained as follows. For a cohomogeneity one G-manifold one
chooses a geodesic c orthogonal to all orbits. Then the action of G induces Killing vector fields
on M , which along c are Jacobi fields. They give rise to a Lagrange tensor A, to which we can
apply Theorem A. One then shows that there exists a Jacobi field Atv, and an interval [a, b], such
that the corresponding function gv has derivatives equal to 0 at the endpoints, and is positive on
[a, b]. Thus, if the curvature is non-negative, Theorem A implies that gv is constant on [a, b]. On
the other hand, one shows that gv must vanish at other singular points along c due to smoothness
conditions imposed by the group action. This implies that there exists a Jacobi field which is
parallel on [a, b], but is not parallel at all points along c.

We finally discuss an application of Theorem B. There is a third family of 7-dimensional
manifolds Np,q on which G = S3× S3 acts by cohomogeneity one, see Section 4. We will show:

Theorem D. The cohomogeneity one manifolds Np,q have no invariant metric with 2-positive
sectional curvature, and N1,1 has no invariant metric with 3-positive sectional curvature.

In contrast, it was shown in [GZ2] that every simply connected cohomogeneity one manifold
carries an invariant metric with positive Ricci curvature.

The differential equation and its applications also hold if we consider Jacobi fields only in
a subbundle invariant under parallel translation. This arises frequently in the presence of an
isometric group action. For example, a group action is called polar if there exists a so called
section Σ, which is an immersed submanifold orthogonal to all orbits. Such a section must be
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totally geodesic, and hence the group action gives rise to a self adjoint family of Jacobi fields in
the parallel subbundle orthogonal to Σ.

In Section 1 we recall properties of the Riccati equation and prove Theorem A. In Section 2
we prove Theorem B and in Section 3 we discuss rigidity properties. Finally, in Section 4, we
prove Theorems C and D.

1. Concavity

In this section we present a new concavity result about Jacobi fields, and first recall some
standard notation, see e.g. [E3, EH, EO].

Let c be a geodesic in a Riemannian manifold Mn+1 defined on an interval t1 ≤ t ≤ t2 and let
Et = ċ⊥ be the orthogonal complement of ċ(t) ⊂ Tc(t)M . For a vector field X along c, orthogonal
to ċ, we denote by X ′ the covariant derivative ∇ċX.

Let V be an n-dimensional vector space of Jacobi fields along c orthogonal to ċ. Along the
geodesic we have that 〈X ′, Y 〉 − 〈X,Y ′〉 is constant for any X,Y ∈ V . If this constant is 0, V is
called self adjoint, i.e.

(1.1) 〈X ′, Y 〉 = 〈X,Y ′〉, for all X,Y ∈ V.

We call t regular if X(t), X ∈ V span E and singular otherwise. One easily sees that

(1.2) Et = {X(t) | X ∈ V } ⊕ {X ′(t) | X ∈ V with X(t) = 0} =: V1(t)⊕ V2(t)

for all t ∈ [t1, t2]. Notice that self adjointness implies that the decomposition is orthogonal. In
particular, the singular points are isolated.

We fix a base point t0 ∈ [t1, t2]. We can then describe the set of Jacobi fields V by a (smooth)
family of linear maps At : Et0 → Et. It is standard to do this by assuming the base point is
regular and define Atv = X(t) for X ∈ V with X(t0) = v. In this case At0 = Id. But in the
applications it will be useful to allow the base point t0 to be singular as well.

Definition 1.3. Let V be selfadjoint family of Jacobi fields and fix t0 ∈ [t1, t2]. Decompose
v ∈ Et0 as v = v1 + v2, vi ∈ Vi(t0), and define:

At : Et0 → Et : Atv = X1(t) +X2(t)

where X1,X2 ∈ V with X1(t0) = v1, X
′
1(t0) ∈ V1, and X2(t0) = 0, X ′

2(t0) = v2.

For this we observe:

Lemma 1.4. Let V be selfadjoint family of Jacobi fields and choose a base point t0.

(a) Given v ∈ Et0 , the Jacobi fields X1 and X2 in Definition 1.3 are well defined and unique.
(b) Given X ∈ V , there exists a unique v ∈ Et0 such that X = Atv.
(c) At the base point t0 we have, with respect to the orthogonal decomposition V1 ⊕ V2:

At0 =

(

Id 0
0 0

)

A′
t0 =

(

B 0
0 Id

)

with B self adjoint.

Proof. (a) Existence of X2 is clear. As for X1, first choose Y1 ∈ V with Y1(t0) = v1 and set
Y ′
1(t0) = w1 + w2 with wi ∈ Vi(t0). By (1.2), there exists a Y2 ∈ V such that Y2(t0) = 0 and

Y ′
2(t0) = w2. Then set X1 = Y1 − Y2. Uniqueness clearly follows from (1.2) as well.
(b) Given X ∈ V , set v1 := X(t0) and X ′(t0) = w1 + w2 with wi ∈ Vi(t0). There exists a

unique X2 ∈ V with X2(t0) = 0 and X ′
2(t0) = w2. Setting X1 := X −X2 we see that X = Atv

with v = v1 + w2.
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Part (c) is clear from the definition and self adjointness. �

Thus V is indeed uniquely described in terms of At. Notice though that At0v = v for all v ∈ Et0

if only if t0 is regular.

A point t is regular for V if and only if At is invertible. At regular points t one defines the
Riccati operator:

(1.5) St : Et → Et where Stv = X ′(t) for X ∈ V with X(t) = v, i.e. A′
t = StAt .

Thus the family of Jacobi fields V is self adjoint iff St is self adjoint. At satisfies the Jacobi
equation and St the Riccati equation:

(1.6) A′′ +RA = 0 if and only if S′ + S2 +R = 0 and A′ = SA

where R = Rt : Et → Et is the self adjoint curvature endomorphism R( · , ċ), ċ.
Conversely, let At : Et0 → Et be a solution of (1.6). We say that At is non-degenerate, if

kerAt0 ∩ kerA′
t0 = 0. Furthermore, At is called a Lagrange tensor if At is non-degenerate and

St is self adjoint. A Lagrange tensor defines an n-dimensional family of Jacobi fields V = {Atv |
v ∈ Et0} which is self adjoint.

We point out that if At is Lagrange, then At◦F , for any fixed linear isomorphism F : Et0 → Et0 ,
is also a Lagrange tensor, in fact with the same tensor S. Furthermore, if St is self adjoint at one
point, it is self adjoint at all points. Notice also that if two Lagrange tensors At and Ãt, with
base points t0 and t̃0, give rise to the same self adjoint family V , they differ from each other by
a linear isomorphism F : Et0 → Et̃0

. Indeed, if v ∈ Et0 and hence Atv ∈ V , then Lemma 1.4

implies that there exists a unique w ∈ Et̃0
with Atv = Ãtw. Then F (v) = w clearly defines an

isomorphism with Ãt ◦F = At. This applies in particular if we choose a different base point when
defining At in terms of V . Thus Lagrange tensors, modulo composing with F , are in one to one
correspondence with n-dimensional vector spaces of Jacobi fields which are self adjoint.

From now on let A be a Lagrange tensor. Thus for any v ∈ Et0 , Atv is a Jacobi field, and t is
regular if and only if At is invertible. Furthermore,

(1.7) 〈A′
tv,Atw〉 = 〈Atv,A

′
tw〉 for all t and v,w ∈ Et0 .

Notice that here we do not assume that At0 has any special form as is the case when A is
associated to V . When clear from context we simply write A = At, S = St.

Let A∗
t be defined by 〈A∗

t v,w〉 = 〈v,Atw〉 for all v ∈ Et, w ∈ Et0 and for simplicity set
(A∗

t )
−1 = A−∗

t : Et0 → Et.

The main purpose of this section is to study the functions

gv(t) =
||v||2

||A−∗
t v||

, v ∈ Et0 .

The scaling guarantees that gλv = λgv . We first discuss smoothness properties.

Proposition 1.8. Let At be a Lagrange tensor and fix a vector v ∈ Et0 . Then

(a) The vector field A−∗
t v, and hence the function gv, is smooth outside of the singular set.

If t∗ is a singular point, then A−∗
t v has a smooth extension at t = t∗ if and only if v is

orthogonal to kerAt∗ .
(b) gv is continuous for all t and gv(t) > 0 if and only if v is orthogonal to kerAt.

Proof. The first claim in part (a) is clear. For simplicity assume that the singular point is t∗ = 0.
Choose an orthonormal basis {e1, . . . , en} of Et0 such that {e1, . . . , ek} is a basis of kerA0.
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Choose ǫ such that At is non-singular for t ∈ (0, ǫ]. Then At has a block form (with respect to
a parallel basis)

At =

(

tX Y + tY2

tZ W + tW2

)

+ o(t2) and hence A∗
t =

(

tXT tZT

Y T + tY T
2 W T + tW T

2

)

+ o(t2).

We first claim that the matrix

N =

(

X Y
Z W

)

is non-singular. This is equivalent to saying that A′e1, . . . , A
′ek, Aek+1, . . . , Aen are linearly

independent. If not, there exists a v ∈ kerA0 and w ∈ (kerA0)
⊥ such that A′v = Aw. Using self

adjointness, 〈Aw,Aw〉 = 〈A′v,Aw〉 = 〈Av,A′w〉 = 0. Thus Aw = 0 and hence A′v = 0, which
contradicts non-degeneracy. In particular, detAt = atk + o(tk+1) with a nonzero. It follows that
the matrix of minors of A∗

t has the form

M =

(

tk−1X tk−1Y
tkZ tkW

)

+ o(tk) where N =

(

X Y
Z W

)

is the matrix of minors of NT , and hence non-singular. Thus

A−∗
t =

1

detA∗
MT =

1

detA

(

tk−1X
T

tkZ
T

tk−1Y
T

tkW
T

)

+ o(1).

Hence A−∗
t v is smooth, and non-zero, if v is orthogonal to kerA0. If v ∈ Et0 is not orthogonal to

kerA0, we have limt→0 ||A
−∗
t v|| = ∞ since R is non-singular. Hence gv(0) = 0 which finishes (b)

as well. �

Remark. The function gv provides a lower bound for the norm of the corresponding Jacobi
field, i.e.

gv ≤ ||Atv||

since

〈v, v〉 = 〈A−1Av, v〉 = 〈Av,A−∗v〉 ≤ ||Av|| · ||A−∗v||.

Our main tool is the following differential equation for gv(t):

Proposition 1.9. Let A be a Lagrange tensor and S = A′A−1. Then at regular points we
have

(1.10) g′′v + rgv = 0

where

r = 〈Rz, z〉 + 3( ||Sz||2 − 〈Sz, z〉2 ) and z =
A−∗

t v

||A−∗
t v||

.

Proof. To simplify the notation we assume ||v|| = 1 (which does not effect the differential equa-
tion) and set

fv =
1

g2v
= ||A−∗

t v||2.

First observe that

(A−∗
t )′ = −A−∗

t (A∗
t )

′A−∗
t = −(A′

tA
−1
t )∗A−∗

t = −S∗A−∗
t = −SA−∗

t

and hence

f ′
v = −2〈SA−∗

t v,A−∗
t v〉.
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Furthermore

f ′′
v = −2〈S′A−∗

t v,A−∗
t v〉+ 4〈S2A−∗

t v,A−∗
t v〉 =

= −2〈(−S2 −R)A−∗
t v,A−∗

t v〉+ 4〈SA−∗
t v, SA−∗

t v〉 =

= 2〈RA−∗
t v,A−∗

t v〉+ 6||SA−∗
t v||2.

and thus

g′′v =

(

3

4
f ′2
v −

1

2
f ′′
v fv

)

f−5/2

=
(

3〈SA−∗
t v,A−∗

t v〉2 − 〈RA−∗
t v,A−∗

t v〉||A−∗
t v||2 − 3||SA−∗

t v||2||A−∗
t v||2

)

f−5/2

= −rgv.

�

Remark. Notice that A−∗
t itself satisfies the differential equation

(A−∗
t )′′ = (2S2 +R)A−∗

t .

Proposition 1.9 implies certain concavity properties in non-negative curvature.

Corollary 1.11. Let A be a Lagrange tensor. If R ≥ 0 (resp. R > 0), then for any v ∈ Et0 ,
gv is a concave (resp. strictly concave) function on any interval where gv > 0.

Remark. The concavity of gv implies the convexity of fv = ||A−∗
t v||2 (but not conversely).

Since fv = 〈(A∗A)−1v, v〉, this can also be interpreted as saying the operator (A∗A)−1 is convex.
The zeros of gv correspond to vertical asymptotes of fv.

Example 1. If dimM = 2, then gv(t) = ||Atv|| and hence the concavity of gv is indeed a
generalization of the concavity of Jacobi fields in dimension two.

Example 2. Let M = S3 ⊂ C
2 with the standard metric. The restriction of the action

field of the Hopf action of S1 to a geodesic is a Jacobi field J1 with unit length. Consider the
geodesic c(t) = (cos(t), sin(t)), then J1 = i c(t) = (i cos(t), i sin(t)). Let J2 = (0, i sin(t)) then
span{J1, J2} is a self-adjoint family of Jacobi fields V along c(t). The singular points along c(t)
are t = nπ

2 , n ∈ Z, since J2 = 0 for t = nπ and J1 − J2 = 0 for t = (2n + 1)π2 . Now t0 = π
4 is a

regular point and, if v = J1(t0), one easily sees that gv(t) = | sin(2t)| ≤ ||J1(t)|| = 1. Notice also
that gw with w = J2(t0) is smooth across the singularity at π

2 .

Example 3. If secM ≥ δ, then g′′v + rgv = 0 with r ≥ δ. Thus Sturm comparison implies
that gv ≤ fδ with f ′′

δ + δf = 0 and fδ(t0) = gv(t0) = |J |(t0), f
′
δ(t0) = g′v(t0) = |J |′(t0) (see

Proposition 1.12 below). This comparison holds up to the first point where gv vanishes.
In contrast, the usual Rauch comparison theorem implies that |J | ≤ fδ, but only holds up to

the first singularity of At, i.e. there could be other Jacobi fields Atw which vanish before |J |.
For gv one obtains an upper bound on [t0, t1] as long v is orthogonal to the kernels of At , t ∈

[t0, t1], or equivalently gv > 0. Of course a zero of gv also corresponds to a singularity of At. For
example, if secM ≥ 1, this implies that the index of the geodesic is at least n− 1 after length π.

We remark that for an upper curvature bound secM ≤ µ, one can analogously use the differ-
ential equation for |J | in the Introduction to get the usual lower bound on |J |, without having
to prove a Rauch comparison theorem.

It is useful to compare the higher derivatives of gv with those of ||Atv||.
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Proposition 1.12. Let A be the Lagrange tensor defined by a self adjoint family of Jacobi
fields V as in (1.3) with base point t0 and v ⊥ kerAt0 . Then for t = t0 we have:

gv = ||Av|| , g′v = ||Av||′ , g′′v = ||Av||′′ − 4
(

||A′v||2 − 〈A′v, v〉2
)

≤ ||Av||′′.

Proof. The assumption v ⊥ kerAt0 implies that gv is smooth and non-zero at t0. But to determine
its value and derivatives at t = t0 we need to carefully take the limit as t → t0.

Since the equations are scale invariant, we can assume ||v|| = 1. Recall that at the base point
we have At0 |V1

= Id, At0 |V2
= 0 and V1 ⊥ V2. Thus v ∈ V1 and hence At0v = v, as well as

A∗
t0v = v.

To compute the derivatives of g, recall that Proposition 1.8 also implies that A−∗
t v is smooth

at t = t0. We begin by showing that:

(1.13) lim
t→t0

A−∗
t v = v, lim

t→t0
(A−∗

t v)′ = −A′
t0v .

For the first claim, observe that Lemma 1.4 implies that A′
t0w = w if w ∈ V2. Thus, in the

language of the proof of Proposition 1.8, it follows that N = Id and hence N = Id as well. Fur-
thermore, detAt = tk+o(tk+1) and thus the formula for the inverse implies that limt→t0 A

−∗
t v = v.

For the second claim we first observe that limt→t0(A
−∗
t v)′ ∈ V1 since for w ∈ V2 we have that

A′
tw and w have the same limit and

〈w, lim
t→t0

A−∗
t v〉 = lim

t→t0
〈A′

tw,A
−∗
t v〉 = − lim

t→t0
〈Atw, (A

−∗
t v)′〉 = −〈At0w, limt→t0

(A−∗
t v)′〉 = 0

where the second equality follows by differentiating 〈w, v〉 = 〈A−1
t Atw, v〉 = 〈Atw,A

−∗
t v〉. Now,

if w ∈ V1 we have

lim
t→t0

〈(A−∗
t v)′, Atw〉 = − lim

t→t0
〈A−∗

t v,A′
tw〉 = − lim

t→t0
〈Atv,A

′
tw〉 = − lim

t→t0
〈A′

tv,Atw〉

where we have used the fact that A−∗
t v and Atv have the same limit. This implies the second

part of (1.13) since At0w = w.
We now apply (1.13) to g. First, note that gv(t0) = 1 = ||At0v||. For the derivative, using

fv(t) = ||A−∗
t v||2, we see that

g′v(t0) = −
1

2
lim
t→t0

f ′
v(t)

fv(t)
3

2

= −
limt→t0〈(A

−∗
t v)′, A−∗

t v〉

limt→t0 ||A
−∗
t v||3

= − lim
t→t0

〈(A−∗
t v)′, A−∗

t v〉

and thus
g′v(t0) = 〈A′v, v〉 = 〈A′v,Av〉 = ||Av||′t0 .

For the second derivative, we use the differential equation from Proposition 1.9 for gv:

g′′v (t0) = − lim
t→t0

rgv = − lim
t→t0

{

3(||Sz||2 − 〈Sz, z〉2)− 〈Rz, z〉
}

where z = A−∗
t v/||A−∗

t v||. From the proof of Proposition 1.9, recall that at regular points we
have SA−∗

t v = −(A−∗
t v)′ and hence (1.13) implies that limt→t0 Sz = A′

t0v. Thus

g′′v (t0) = −3(||A′v||2 − 〈A′v, v〉2)− 〈Rv, v〉

and since

||Av||′′ =
−〈RAv,Av〉||Av||2 + ||A′v||2||Av||2 − 〈A′v,Av〉2

||Av||3

we have
g′′v (t0) = ||Av||′′ − 4(||A′v||2 − 〈A′v, v〉2).

�
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2. Concavity of Volumes

We construct a collection of concave functions which contain gv as a special case. For this we
fix a p-dimensional subspace W ⊂ Et0 and choose an orthonormal basis e1, . . . , ep of W . Define

(2.1) M : W → W with 〈Mtei, ej〉 = 〈A−∗
t ei, A

−∗
t ej〉 = 〈(A∗A)−1ei, ej〉, 1 ≤ i, j ≤ p .

Thus M represents the upper p× p block of the matrix (A∗A)−1. Furthermore, we decompose
S = A′A−1, where we have set Wt := A−∗

t W , as

S1 : Wt → Wt, S2 : Wt → W⊥
t with Sw = S1w + S2w for all w ∈ Wt.

Notice that S1 is again a symmetric endomorphism. Notice also that since (A∗A)−1 is positive
definite at regular points, so is the upper p×p block by Sylvester’s theorem and thus detMt > 0.

Proposition 2.2. Let A be a Lagrange tensor and W ⊂ Et0 a p-dimensional subspace. Then
at regular points the function

gW (t) = (detMt)
−1/2p

satisfies the differential equation

p
g′′

g
=

1

p
(trS1)

2 − tr(S2
1)− 3 tr(ST

2 S2)−

i=p
∑

i=1

〈Rwi, wi〉

where wi is an orthonormal basis of Wt.

Proof. As in the proof of Proposition 1.9, one easily sees that

(2.3) 〈M ′ei, ej〉 = −2 〈SA−∗ei, A
−∗ej〉 , 〈M ′′ei, ej〉 = 〈 (6S2 + 2R)A−∗ei, A

−∗ej〉.

For convenience, set f = detMt. Differentiating we obtain:

(2.4) f ′ = (detM)′ = detM tr(M−1M ′), or
f ′

f
= tr(M−1M ′)

and hence

f ′′

f
=

[

tr(M−1 M ′)
]2

+ tr((M−1)′ M ′) + tr(M−1 M ′′)

=
[

tr(M−1 M ′)
]2

+ tr(−M−1M ′ M−1M ′) + tr(M−1 M ′′)

=
[

tr(M−1 M ′)
]2

− tr(
[

M−1M ′
]2
) + tr(M−1 M ′′).

We now examine each term separately. For this, fix a regular point t∗ and choose an orthonor-
mal basis e1, . . . , ep of W which diagonalizes the symmetric matrix Mt∗ , i.e. 〈A−∗

t∗ ei, A
−∗
t∗ ej〉 =

||A−∗
t∗ ei||

2 δi,j . Thus Zi :=
A−∗

t∗
ei

||A−∗

t∗
ei||

is an orthonormal basis of Wt∗ .

Dropping the index t∗ from now on, the entries of M−1M ′ are −2
||A−∗ei||2

〈SA−∗ei, A
−∗ej〉 and

thus

tr(M−1 M ′) = −2

i=p
∑

i=1

1

||A−∗ei||2
〈SA−∗ei, A

−∗ei〉 = −2

i=p
∑

i=1

〈SZi, Zi〉 = −2 trS1.

For a general matrix B = (bij) we have trB2 =
∑

i,j bijbji and hence

tr(
[

M−1 M ′
]2
) = 4

∑

i,j

〈SA−∗ei, A
−∗ej〉〈SA

−∗ej , A
−∗ei〉

||A−∗ei||2||A−∗ej ||2

= 4
∑

i,j

〈SZi, Zj〉
2 = 4

∑

i,j

〈S1Zi, Zj〉
2 = 4 tr(S2

1).



10 LUIGI VERDIANI AND WOLFGANG ZILLER

Finally

tr(M−1M ′′) =
∑

i

1

||A−∗ei||2
〈 (6S2 + 2R)A−∗ei, A

−∗ei〉

= 6
∑

i

〈S2Zi, Zi〉+ 2
∑

i

〈RZi, Zi〉 = 6
∑

i

〈SZi, SZi〉+ 2
∑

i

〈RZi, Zi〉

= 6
∑

i

〈S1Zi, S1Zi〉+ 6
∑

i

〈S2Zi, S2Zi〉+ 2
∑

i

〈RZi, Zi〉

= 6 tr(S2
1) + 6 tr(ST

2 S2) + 2
∑

i

〈RZi, Zi〉.

Altogether

f ′

f
= −2 trS1 ,

f ′′

f
= 4(trS1)

2 + 2 tr(S2
1) + 6 tr(ST

2 S2) + 2
∑

i

〈RZi, Zi〉.

For the function g = f−1/2p we have

2p
g′′

g
= −

f ′′

f
+

2p + 1

2p

(

f ′

f

)2

=
2

p
(trS1)

2 − 2 tr(S1)
2 − 6 tr(ST

2 S2)− 2
∑

i

〈RZi, Zi〉

which proves our claim. �

Remark. If W is one dimensional, clearly gW = gv for v a unit vector in W . If W = Et0 , we

have detM = det(A∗A)−1 = 1/(detA)2 and thus gW = (detA)1/n. The differential equation in
this case reduces to n g′′/g = 1

n(trS)
2− tr(S2)−Ric(ċ, ċ) giving rise to the well known concavity

of the volume in positive Ricci curvature. Notice also that the concavity of gW already holds
under the assumption that the curvature is p -positive, i.e. the sum of the p smallest eigenvalues
of R are positive.

Proof of Theorem B : We first prove part (b). If W ⊥ kerAt∗ , then Proposition 1.8 implies
that A−∗v is smooth at t∗ for any v ∈ W , and hence Mt is smooth at t∗ as well. The proof of
Proposition 1.8 also shows that if e1, . . . , ep is a basis of W , then A−∗e1, . . . , A

−∗ep are linearly
independent at t = t∗ and hence gW (t∗) > 0. It also follows that if W is not orthogonal to kerAt∗ ,
then gW (t∗) = 0.

To prove part (a), first recall that (x1 + · · · + xp)
2 ≤ p(x21 + · · · + x2p) with equality if and

only if all xi are equal to each other. Thus (trS1)
2 − p tr(S2

1) ≤ 0 with equality iff S1 = λ Id.
Furthermore, if the sum of the p smallest eigenvalues of R are non-negative, one easily sees that
∑i=p

i=1〈Rwi, wi〉 ≥ 0 if w1, . . . , wp is an orthonormal basis of any p dimensional subspace of Eto .
Finally, ST

2 S2 is clearly positive semi-definite. Altogether, Proposition 2.2 implies that gW is
concave.

If g is constant, the differential equation implies that for any v ∈ Wt we have S1v = λv for
some function λ(t). Furthermore, 0 = 〈ST

2 S2v, v〉 = 〈S2v, S2v〉 and hence S2v = 0. In other
words, Sv = λv for all v ∈ Wt. But if g is constant f is constant as well and f ′ = 0 implies that
trS1 = 0 and hence λ = 0. Thus (A−∗v)′ = −SA−∗v = 0, for all v ∈ W , which implies that the
function gv is constant, and hence by Proposition 3.1 below, A−∗v is a parallel Jacobi field. This
proves part (c). �
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3. Rigidity

We now use the results in Section 1 to prove the existence of parallel Jacobi fields in non-
negative curvature, i.e. vectors v ∈ Et0 with A′

tv = 0. We allow endpoints and interior points of
the geodesic to be singular.

Proposition 3.1. Let A be a Lagrange tensor along the geodesic c : [t0, t1] → M . If R ≥ 0
and if there exists a non-zero vector v ∈ Et0 such that

(a) g′v(t0) = g′v(t1) = 0,
(b) v is orthogonal to kerAt for all t0 ≤ t ≤ t1,

then w = A−1
t A−∗

t v ∈ Et0 is constant and A′
tw = 0 for all t. Thus A−∗

t v = Atw is a parallel
Jacobi field.

Proof. By Proposition 1.8, assumption (b) implies that gv(t) is smooth and positive for all t0 ≤
t ≤ t1, and by Corollary 1.11, gv is concave and hence constant. Thus fv = ||A−∗

t v|| is constant
as well. At regular points we thus have

0 = f ′′
v = 2〈RA−∗v,A−∗v〉+ 6||SA−∗v||2

and hence SA−∗v = 0. Thus (A−∗v)′ = −SA−∗v = 0 and hence

(A−1A−∗v)′ = −A−1A′A−1A−∗v = −A−1SA−∗v = 0.

Therefore, on any connected component of the regular points A−1A−∗v = w is constant and
Aw = A−∗v is parallel. Since A−∗v is continuous, Aw is parallel for all t. �

Here is one possibility to translate Proposition 3.1 into a statement about Jacobi fields only,
which is what we will use for the obstruction in Section 4.

Proposition 3.2. Let Mn+1 be a manifold with non-negative sectional curvature and V a
self adjoint family of Jacobi fields along the geodesic c : [t0, t1] → M . Assume there exists X ∈ V
such that

(a) ||X||t 6= 0, ||X||′t = 0 for t = t0 and t = t1,
(b) If Y ∈ V and 〈X(t1), Y (t1)〉 = 0 then 〈X(t0), Y (t0)〉 = 0,
(c) If Y ∈ V and Y (t) = 0 for some t ∈ (t0, t1) then 〈X(t0), Y (t0)〉 = 0,
(d) If Y (t0) = 0, then 〈X ′(t0), Y

′(t0)〉 = 0,

Then X is a parallel Jacobi field along c.

Proof. We choose as a base point t = t0. Then V defines Lagrange tensor At as in (1.3) with
At0 |V1

= Id, At0 |V2
= 0 and V1 ⊥ V2. By (a) we have that X(t0) 6= 0 and we set v := X(t0) ∈ V1.

If Y ∈ V and Y (t0) = 0 then Y ′(t0) ∈ V2 and V2 is spanned by such vectors. Thus (d) implies
X ′(t0) ∈ V1 and hence by the definition (1.3) we have X(t) = Atv, and At0v = v.

We now want to show that the assumptions of Proposition 3.1 are satisfied by At. We start
with the second part.

Let w ∈ ker(At), i.e. Atw = 0 for t ∈ (t0, t1). Set w = w1 + w2 with wi ∈ Vi(t0) and hence
At0w = w1. Assumption (c) implies that 〈At0v,At0w〉 = 〈v,w1〉 = 0. Since 〈v, V2〉 = 0 as well,
we have 〈v,w〉 = 0 and hence v ⊥ kerAt. The same argument shows that v ⊥ kerAt1 by using
(b). If At0w = 0, then w ∈ V2 and hence 〈v,w〉 = 0. Thus Proposition 1.8 implies that At

−∗v
and hence gv is smooth for all t ∈ [t0, t1].

We now show that g′v vanishes at the endpoints. By Proposition 1.12, g′v(t0) = ||Av||′ =
||X||′(t0) = 0. For t = t1 the proof is similar to the proof of Proposition 1.12. We first claim that

(3.3) lim
t→t1

A−∗
t v = λAt1v for some λ ∈ R.
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To see this, we begin by showing that limt→t1 A
−∗
t v ∈ V1(t1). But V1(t1) ⊥ V2(t1) and V2(t1)

is spanned by A′
t1w for some w ∈ Et0 with At1w = 0. By differentiating 〈w, v〉 = 〈A−∗

t v,Atw〉 we
obtain

〈 lim
t→t1

A−∗
t v,A′

t1w〉 = lim
t→t1

〈A−∗
t v,A′

tw〉 = − lim
t→t1

〈(A−∗
t )′v,Atw〉 = −〈 lim

t→t1
(A−∗

t )′v,At1w〉 = 0.

Next, we show that 〈limt→t1 A
−∗
t v,At1w〉 = 0 whenever 〈At1v,At1w〉 = 0, which clearly implies

(3.3) since ImAt1 = V1(t1). To see this, we observe that (b) implies 0 = 〈At0w,At0v〉 = 〈w1, v〉 =
〈w1 +w2, v〉 = 〈w, v〉 and hence

〈 lim
t→t1

A−∗
t v,At1w〉 = lim

t→t1
〈A−∗

t v,Atw〉 = 〈v,w〉 = 0.

We now use (3.3) to show that g′v(t1) = 0. Since gv(t1) 6= 0 by (a), this is equivalent to
f ′
v(t1) = 0. By (3.3), A−∗

t v and λAtv have the same limit and thus

f ′
v(t1) =2 lim

t→t1
〈(A−∗

t v)′, A−∗
t v〉 = 2 lim

t→t1
〈(A−∗

t v)′, λAtv〉

= −2λ lim
t→t1

〈A−∗
t v,A′

tv, 〉 = −2λ2〈At1v,A
′
t1v〉 = −λ2(||Av||2)′t=t1 .

which is 0 since ||Av||′(t1) = ||X||′(t1) = 0.
Proposition 3.1 now implies that At

−∗v = Aw, for some w ∈ Et0 , is a parallel Jacobi field in V
and A−∗

t0 v = v = At0w by (1.13). Since A′
t0w = 0, (1.3) implies that At0w = w, and hence w = v

and thus Atw = Atv = X is a parallel Jacobi field. �

Remark. (a) Notice that the first three conditions are necessary for X to be parallel, using, for
(b) and (c) that in a self adjoint family of Jacobi fields, 〈X,Y 〉′ = 〈X,Y ′〉 = 〈X ′, Y 〉 = 0 for all
X,Y ∈ V with X parallel. If there are no interior singular points, (b) is the only global condition
and relates the Jacobi fields at t0 and t1. Some global condition is clearly necessary since there
are Jacobi fields of constant length (restricted to a geodesic with no singularities) which are not
parallel.

Also notice that assumption (d) is necessary since on M = S
1×S

2 with the product metric we
can take the geodesic c(t) = (1, γ(t)) with γ a great circle from north pole to south pole. Then
V = span{Z1, Z2} with Z1 = (1, 0), Z2 = (0, Y (t)) and Y a Jacobi field vanishing at north and
south pole is a self adjoint family along c. Setting X = Z1 + Z2 one sees that all conditions in
Proposition 3.2, except for (d), are satisfied, but X is not parallel.

(b) The fact that assumption (d) makes the Proposition asymmetric is due to the fact that
the definition of gv involves the choice of a base point. This turns out to be quite useful since for
the manifolds in Section 3, (d) is sometimes satisfied at one endpoint, but not necessarily at the
other. Of course, if t0 is regular, condition (d) is empty.

Proposition 3.4. Let V and X ∈ V satisfy the conditions in Proposition 3.2 and assume
that V is defined on a larger interval [t0, t2] ⊃ [t0, t1]. If there exists a Jacobi field Y ∈ V such
that Y (t∗) = 0 for some t∗ ∈ (t1, t2] and 〈X(t0), Y (t0)〉 6= 0, then X is not parallel on [t0, t2].

Proof. Let At be the Lagrange tensor associated to V with base point t0. Recall that in the
proof of Proposition 3.2 we showed that X(t) = Atv with v = X(t0). The assumption that
〈X(t0), Y (t0)〉 6= 0 means that v is not orthogonal to kerAt∗ and hence gv(t

∗) = 0 by Proposi-
tion 1.8 (b). Now assume that X is parallel on [t0, t2]. We claim that in that case gv(t) would be
constant on [t0, t2], contradicting that fact that gv(t

∗) = 0.
To see this, we show that A′

tv = 0 with At0v = v implies gv(t) = ||Atv||. First observe
that by self adjointness 〈Atv,Atw〉

′ = 〈A′
tv,Atw〉 + 〈Atv,A

′
tw〉 = 2〈A′

tv,Atw〉 = 0. Thus if
〈v,w〉 = 0, we have 〈Atv,Atw〉 = 〈At0v,At0w〉 = 〈v,w1〉 = 〈v,w〉 = 0. Furthermore, at regular
points 〈v,w〉 = 〈A−∗

t v,Atw〉 and hence A−∗
t v = λAtv for some function λ. But then 〈v, v〉 =
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〈A−∗
t v,Atv〉 = λ〈Atv,Atv〉 = λ〈v, v〉 and thus λ = 1, i.e. A−∗

t v = Atv for all regular t. Thus
gv(t) = ||v||2/||A−∗

t v|| = ||v||2/||Atv|| = ||v|| = ||Atv|| for all regular t and hence for all t. �

4. Proof of Theorem C and D

We now use Proposition 3.2 and Proposition 3.4 to prove Theorem C and D.

A simply connected compact cohomogeneity one manifold is the union of two homogeneous
disc bundles. Given compact Lie groups H, K−, K+ and G with inclusions H ⊂ K± ⊂ G
satisfying K±/H = S

ℓ±, the transitive action of K± on S
ℓ± extends to a linear action on the

disc D
ℓ±+1. We can thus define M = G ×K− D

ℓ−+1 ∪ G ×K+ D
ℓ++1 glued along the boundary

∂(G ×K± D
ℓ±+1) = G ×K± K±/H = G/H via the identity. G acts on M on each half via left

action in the first component. This action has principal isotropy group H and singular isotropy
groups K±. One possible description of a cohomogeneity one manifold is thus simply in terms of
the Lie groups H ⊂ {K−,K+} ⊂ G (see e.g. [AA]).

The first family of cohomogeneity one manifolds we denote by P(p−,q−),(p+,q+) and is given by
the group diagram

H = {±(1, 1),±(i, i),±(j, j),±(k, k)} ⊂ {(eip−t, eiq−t) ·H , (ejp+t, ejq+t) ·H} ⊂ S3× S3 .

where gcd(p−, q−) = gcd(p+, q+) = 1 and all 4 integers are congruent to 1 mod 4.
The second family Q(p−,q−),(p+,q+) is given by the group diagram

H = {(±1,±1), (±i,±i)} ⊂ {(eip−t, eiq−t) ·H , (ejp+t, ejq+t) ·H} ⊂ S3× S3,

where gcd(p−, q−) = gcd(p+, q+) = 1, q+ is even, and p−, q−, p+ are congruent to 1 mod 4.

The candidates for positive curvature in [GWZ] are Pk = P(1,1),(1+2k,1−2k), Qk = Q(1,1),(k,k+1)

with k ≥ 1, and the exceptional manifold R7 = Q(−3,1),(1,2).

We now describe the geometry of a general cohomogeneity one action. A G invariant metric
is determined by its restriction to a geodesic c normal to all orbits. At the points c(t) which are
regular with respect to the action of G, the isotropy is constant and we denote it by H. In terms
of a fixed biinvariant inner product Q on the Lie algebra g and corresponding Q-orthogonal
splitting g = h ⊕ h⊥ we identify, at regular points, ċ⊥ ⊂ Tc(t)M with h⊥ via action fields:

X ∈ h⊥ → X∗(c(t)). H acts on h⊥ via the adjoint representation and a G invariant metric on
G/H is described by an Ad(H) invariant inner product on h⊥. Along c the metric on M is thus
described by a collection of functions, which at the endpoint must satisfy certain smoothness
conditions.

Since G acts by isometries, X∗, X ∈ g, are Killing vector fields and hence the restriction
to a geodesic is a Jacobi field. This gives rise to an (n − 1)-dimensional family of Jacobi fields
along c defined by V := {X∗(c(t)) | X ∈ h⊥}. The self adjoint shape operator St of the regular
hypersurface orbit G/H at c(t) satisfies ∇ċ(t)X

∗ = ∇X∗ ċ = St(X
∗(c(t))), i.e. X ′ = St(X), X ∈

h⊥. Hence V is self adjoint.

A singular point of V is a point c(t0) such that there exists an X∗ ∈ V with X∗(c(t0)) = 0,
i.e. the isotropy group Gc(t0) satisfies dimGc(t0) > dimH and is thus a singular isotropy group
of the action. For simplicity set K := Gc(t0) and define a Q-orthogonal decompositions

g = k⊕m, k = h⊕ p and thus h⊥ = p⊕m.

Here m can be viewed as the tangent space to the singular orbit G/K at c(t0). The slice D, i.e.
the vector space normal to G/K at c(t0), can be identified with D := ċ(t0)⊕ p where p ⊂ D via
X ∈ p → (X∗)′(c(t0)). Notice that X∗(c(t0)) = 0. Since the slice is orthogonal to the orbit, we
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have 〈(X∗)′, Y ∗〉c(t0) = 0 for X ∈ p and Y ∈ m. K acts via the isotropy action Ad(K)|m of G/K
on m and via the slice representation on D. The second fundamental form of the singular orbit
can be viewed as a linear map B : D → S2(m), N → {(X,Y ) → 〈SN (X), Y 〉}. Since K acts by
isometries, B is equivariant with respect to the slice representation of K on D and the action
on S2(m) induced by its isotropy representation on m. An Ad(K) invariant irreducible splitting
m = m1 ⊕ · · · ⊕ mr induces a splitting of S2(m) into irreducible summands. If for some i, the
slice representation (which is irreducible) is not a subrepresentation of S2(mi), this implies that
〈Sċ(t0)X,Y 〉 = 〈X ′, Y 〉c(t0) = 0 for X,Y ∈ mi. In particular, ||X||′c(t0) = 0. This describes some

of the smoothness conditions that must be satisfied at the endpoints.

We now apply this to the P family and show:

Proposition 4.1. Let M be one of the 7-manifolds P(p−,q−),(p+,q+) with its cohomogeneity one

action by G = S3 × S3. Assume that M is not one of the candidates for positive curvature Pk or
P(1,q),(p,1). Furthermore, let c : (−∞,∞) → M be a geodesic orthogonal to all orbits. Then for
any invariant metric with non-negative curvature there exists a Jacobi field along c, given by the
restriction of a Killing vector field X∗, X ∈ g, such that X∗ is parallel on some interval but not
for all t. In particular, the metric is not analytic.

Proof. Since H is finite, we have h⊥ = p⊕m = g. Regarding S3 as the unit quaternions, we choose
the basis of g given by the left invariant vector fields Xi and Yi on G = S3× S3 corresponding to
i, j and k in the Lie algebras of the first and second S3 factor of G. Then the action fields X∗

i , Y
∗
i

are Jacobi fields along the geodesic c(t), ∞ < t < ∞ and are a basis of a self adjoint family V .

We start with three general observations.

Observation 1. Non-trivial irreducible representations of the identity component K0 = S1 =
{eiθ | θ ∈ R} consist of two dimensional representations given by multiplication by einθ on C,
called a weight n representation. If K0 = (eipθ, eiqθ) ⊂ S3 × S3 has slope (p, q) with gcd(p, q) = 1,
and H is finite, the vector space p is given by p = span{pX1 + qY1}. The tangent space m to
the singular orbit G/K (which is spanned by the action fields X∗) splits up into K irreducible
subspaces W

0
= span{X1, Y1}, W1 = span{X2,X3} and W2 = span{Y2, Y3}. Notice that W

0
is

one dimensional since pX1 + qY1 = 0. Thus we can also write W
0
= span{−qX1 + pY1}. The

isotropy action on m, which is given by conjugation on imaginary quaternions in each component,
is trivial on W

0
and has weight 2p on W1 and 2q on W2 since e.g. e

ipθje−ipθ = e2ipθj. If p 6= q 6= 0,
all representations in m are inequivalent and hence orthogonal by Schur’s Lemma. Furthermore,
the metric on Wi is a multiple of the Killing form, again by Schur’s Lemma, and since Xi, Yi

are orthogonal in the Killing form, they are orthogonal in the metric as well. Thus, unless
(p, q) = (1, 1), the vector fields −qX1+pY1,X2,X3, Y2, Y3 are orthogonal and pX1+qY1 vanishes.

Observation 2. In order to determine the derivatives ||X||′(0), we will use equivariance of the
second fundamental form B : S2m → D underK0, where D = R

2 is the slice. IfH∩K0 = Zk, then
the action ofK0 on the slice has Zk as its ineffective kernel since it acts via rotation of a circle and if
it fixes one point, as does H, then it acts trivially on D. Hence the slice representation has weight
k = |H∩K0|. The vector space S

2m splits as S2W0⊕S2W1⊕S2W2⊕W1⊗W2⊕W0⊗W1⊕W0⊗W2.
The action of K0 on S2m has weight 0 on S2W0, 4p on S2W1, 4q on S2W2, and 2p±2q on W1⊗W2,
2p on W0 ⊗W1 and 2q on W0 ⊗W2. Thus the second fundamental form vanishes on W0, on W1

if 4|p| 6= k, on W2 if 4|q| 6= k, on W1 ⊗W2 if |2p± 2q| 6= k and on W0 ⊗W1 if 2|p| resp. 2|q| 6= k.
This will be used to show that in some cases B(X,Y ) = 〈X ′, Y 〉 = 0 for X ∈ Wi, Y ∈ Wj.

Observation 3. We will also use the the Weyl group W ⊂ N(H)/H of the cohomogeneity one
action (see e.g. [AA], [Zi2]), which is defined as the subgroup of G which preserves the geodesic
c. One easily sees that there exists a so called Weyl group element w− ∈ W in the normalizer
of H in K− = Gc(0), unique modulo H, which, via the action of Gc(0) on the slice D, satisfies
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w−(c
′(0)) = −c′(0) and hence reverses the geodesic at t = 0. Similarly, there exists a w+ in

the normalizer of H in K+ = Gc(L), unique modulo H, which reverses the geodesic at t = L.
This implies that conjugation by w− takes the isotropy group Gc(rL) to Gc(−rL), r ∈ Z, and w+

takes Gc(rL) to Gc(2L−rL). Furthermore, W is the dihedral group generated by w− and w+. The
geodesic c is closed iff the Weyl group is finite, in which case the length of c is kL where k is
the order of W . Finally, since K0 acts via rotation on the 2-dimensional slice, the Weyl group
element w− can be represented by a rotation by π and hence can also be characterized as the
unique element in K−

0
which does not lie in H, but whose square lies in H.

We now apply these observations to the manifold P(p−,q−),(p+,q+). The Weyl group elements
are given by

w− = (ei
π

4 , ei
π

4 ) ∈ K−

0
mod H, and w+ = (ej

π

4 , ej
π

4 ) ∈ K+

0
mod H

since e.g. w2
− = (i, i) ∈ H, but w− /∈ H. Notice that conjugation by ei

π

4 interchanges j and k

and fixes i, and conjugation by ej
π

4 interchanges i and k and fixes j. Thus w− fixes X1 and Y1

but interchanges X2 with X3 and Y2 with Y3. One easily sees that W , which is generated by w−

and w+, has order 12 since (w−w+)
6 ∈ H but (w−w+)

3 /∈ H. Thus c has length 12L. This easily
implies that

Gc(0) = (eip−t, eiq−t) ·H , Gc(L) = (ejp+t, ejq+t) ·H , Gc(2L) = (ekp−t, ekq−t) ·H

Gc(3L) = (eip+t, eiq+t) ·H , Gc(4L) = (ejp−t, ejq−t) ·H , Gc(5L) = (ekp+t, ekq+t) ·H

and Gc(rL) = Gc((r−6)L) for r = 6, . . . , 11.

At t = 0 we have H ∩ K−

0
= {±(1, 1),±(i, i)} and hence k = 4. The tangent space to

G/K− is the direct sum of W
0
= span{X1, Y1} = span{X1} = span{Y1} (since p−, q− 6= 0), and

W1 = span{X2,X3} and W2 = span{Y2, Y3}. Observation 2 implies that the second fundamental
form vanishes on S2(W1) if p− 6= 1, on S2(W2) if q− 6= 1, and on W1 ⊗W2 if 2p− + 2q− 6= ±4,
i.e. p− + q− 6= ±2. Notice that p− − q− = ±2 is not possible since p−, q− ≡ 1 mod 4 and that
p− 6= −1 and q− 6= −1 as well. Similarly at t = rL, r ∈ Z since in all cases k = 4.

Claim 1: If p− 6= 1 and p+ 6= 1, then X∗
3 is a parallel Jacobi field on [0, L], but is not parallel

on [0, 2L]. Similarly, if q− 6= 1 and q+ 6= 1 for Y ∗
3 .

For this we will show that X∗
3 satisfies all properties of Proposition 3.2 on the interval [t0, t1] =

[0, L]. At t = L the tangent space of G/K+ is the direct sum of W
0
= span{−q+X2 + p+Y2},

W 1 = span{X1,X3} and W 2 = span{Y1, Y3}. Since X3 ∈ W1 ∩ W 1, we have X3(t) 6= 0 for
t = 0, L, and by Observation 2, the assumptions imply that ||X3||

′
t = 0 at t = 0, L as well.

Thus condition (a) is satisfied. For condition (b), observe that p− 6= q− since p− = q− implies
that (p−, q−) = (1, 1). Thus by Observation 1, the vectors −q−X1 + p−Y1,X2,X3, Y2, Y3 are
orthogonal at t = 0 and p−X1 + q−Y1 vanishes. Similarly, p+ 6= q+ and hence at t = L, the
vectors −q+X2+p+Y2,X1,X3, Y1, Y3 are orthogonal and p+X2+q+Y2 vanishes. Thus any Z ∈ V
orthogonal to X3 at t = 0 is also orthogonal to X3 at t = L. Condition (c) holds since there are
no interior singular points.

Finally, we come to condition (d). Here we use the action of the principal isotropy group
H = ∆Q on the tangent space of the regular orbits G/H. It acts via conjugation and thus (i, i)
acts via Id on span{X1, Y1} and as − Id on span{X2,X3, Y2, Y3}. Similarly for (j, j) and (k, k).
Hence the representation of H on span{X1, Y1}, span{X2, Y2}, and span{X3, Y3} are inequivalent
and thus by Schur’s Lemma these subspaces are orthogonal to each other for all t. Furthermore,
they are invariant under parallel translation since parallel translation commutes with isometries
and hence with the action of H. This implies condition (d) at t = 0 since Y = p−X1 + q−Y1 is
the only element in V with Y (0) = 0 and thus 〈X ′

3(0), Y
′(0)〉 = 0.
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Altogether, Proposition 3.2 now implies that X∗
3 is parallel on [0, L]. On the other hand,

Z := p−X3 + q−Y3 vanishes at 2L, but X∗
3 (0) is not orthogonal to Z(0) since X3(0) and Y3(0)

are orthogonal and p− 6= 0. Hence Proposition 3.4 implies that X∗
3 is not parallel on [0, 2L].

Claim 2: If p− 6= 1, q− 6= 1 and p− + q− 6= ±2 and (p−, q−) 6= (p+, q+), then a certain linear
combination of X∗

3 and Y ∗
3 is a parallel Jacobi field on [0, 2L], but not on [0, 3L]. Similarly, for

p+, q+.
The only Jacobi field that vanishes at 2L is Z = p−X3 + q−Y3. In order to satisfy condition

(b), we choose X = aX3 + bY3 such that 〈X(0), Z(0)〉 = 0. We will show that X∗ satisfies all
properties of Proposition 3.2 on the interval [t0, t1] = [0, 2L]. Notice that at 0 and 2L the slopes
are both (p−, q−).

We start with condition (a). At t = 0 we have X ∈ W1⊕W2 and henceX 6= 0. The assumptions
on the slopes imply that the second fundamental form vanishes on S2(W0⊕W1⊕W2), i.e. the orbit
G/K− is totally geodesic. This in particular implies that ||X||′(0) = 0. Similarly, ||X||′(2L) = 0
since the slopes are the same. We also have X(2L) 6= 0 since the only Jacobi field vanishing at
2L is Z. Thus X(2L) = 0 would contradict the orthogonality assumption at t = 0.

Condition (b) again follows from Observation 1 since (p−, q−) 6= (1, 1) implies that p− 6= q−.
Hence the vectors −q−X1+p−Y1,X2,X3, Y2, Y3 are orthogonal at t = 0 and p−X1+q−Y1 vanishes,
and at t = 2L, the vectors −q−X3+p−Y3,X1,X2, Y1, Y2 are orthogonal and p−X3+q−Y3 vanishes.
Since we have 〈X(2L), Z(2L)〉 = 0, we chose X such that 〈X(0), Z(0)〉 = 0 as well. Notice also
that 〈X(2L),−q−X3(2L)+ p−Y3(2L)〉 = 0 is not possible, since then Z(2L) would be orthogonal
to X3(2L) or Y3(2L) or both, but this is not possible since a, b, p−, q− are all non-zero.

Condition (c) holds since the only interior singularity is at t = L, and p+X2+ q+Y2 is the only
vector that vanishes there. But this vector is clearly orthogonal to X at t = 0.

For condition (d) we can argue as in Claim 1.

Thus X∗ is parallel on [0, 2L]. Finally, observe that X(0) is not orthogonal to the kernel at
t = 3L, which is spanned by p+X3 + q+Y3, unless 〈aX3 + bY3, p+X3 + q+Y3〉t=0 = ap+||X3||

2 +
bq+||Y3||

2 = 0. Since we also have 〈X, p−X3 + q−Y3〉 = 0, this would imply that (p−, q−) =
(p+, q+). This was excluded, and thus X∗ is not parallel on [0, 3L].

Now we combine Claim 1 and Claim 2. Claim 1 implies that, up to possibly switching the
two S3 factors or interchanging 0 and L, we have the desired Jacobi field, unless the slopes are
(1, q−), (p−, 1) or (p−, q−), (1, 1). The first family was excluded by assumption. In the second
family we can assume that p− 6= 1, q− 6= 1 and (p−, q−) 6= (p+, q+), since otherwise we are in
the first family. Thus Claim 2 implies that in the second family we have the desired Jacobi field
unless p− + q− = ±2. Reversing the orientation of the circle, we can assume p− + q− = 2. This
leaves only the candidates with slopes (1 + 2k, 1 − 2k), (1, 1). �

Remark. The exceptional family P(1, q),(p,1) contains several G-invariant analytic metrics with

non-negative curvature. Indeed, P(1,1),(−3,1) is S
7, and P(1,−3),(−3,1) is the positively curved Berger

space (see e.g. [GWZ] or [Zi2]). It also contains P(1,1),(1,1). This manifold is not primitive, and
hence does not admit positive curvature. But it does admit an analytic metric with non-negative
curvature. Indeed, we claim that the manifold is S

3 × S
4 and that the product metric of round

sphere metrics is invariant. For this we identify the action of S3 × S3 on S
3×S

4 as (r1, r2) ∈ S3 × S3

acting as (p, q) → (r1p r−1
2 , φ(r2)q) where φ(r2) acts via the well known cohomogeneity one

action of S3 on S
4 (effectively an SO(3) action) with group diagram H = {±1,±i,±j,±k} ⊂

{eit ·H , ejt ·H} ⊂ S3. One now easily identifies the isotropy groups of this action to be those
of P(1,1),(1,1).

We now prove Theorem C in the Introduction.
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Proposition 4.2. Let M be one of the 7-manifolds Q(p−,q−),(p+,q+) with its cohomogeneity one

action by G = S3 × S3. Assume that M is not of type Qk = Q(1,1),(k,k+1), k ≥ 0. Furthermore,
let c : (−∞,∞) → M be a geodesic orthogonal to all orbits. Then for any invariant metric with
non-negative curvature there exists a Jacobi field along c, given by the restriction of a Killing
vector field X∗, X ∈ g, such that X∗ is parallel on some interval but not for all t. In particular,
the metric is not analytic.

Proof. We indicate the changes that are necessary. The first difference is the Weyl group since
the Weyl group elements are now

w− = (ei
π

4 , ei
π

4 ) ∈ K−

0
mod H, and w+ = (j,±1) ∈ K+

0
mod H

and hence |W | = 8, i.e. the closed geodesic has length 8L. The isotropy groups are given by

Gc(0) = (eip−t, eiq−t) ·H , Gc(L) = (ejp+t, ejq+t) ·H , Gc(2L) = (e−ip−t, eiq−t) ·H

Gc(3L) = (e−kp+t, ekq+t) ·H , Gc(4L) = (eip−t, eiq−t) ·H , Gc(5L) = (e−jp+t, ejq+t) ·H

Gc(6L) = (e−ip−t, eiq−t) ·H , Gc(7L) = (ekp+t, ekq+t) ·H , Gc(8L) = (eip−t, eiq−t) ·H

A second difference is the normal weights. At t = 0 we still have H ∩K−

0
= {±(1, 1),±(i, i)}

and hence k = 4. But at t = L we have H ∩K+

0
= {(±1, 1)} and hence k = 2. Similarly, k = 4 at

t = 2L, 4L and k = 2 at t = 3L, 5L. In particular, Observation 2 implies that ||X3||
′ = ||Y3||

′ = 0
at t = L and t = 3L.

We first claim that (p−, q−) = (1, 1). Indeed, if e.g. p− 6= 1, then we can apply Proposition 3.2
to X3 on the interval [t0, t1] = [0, L] as in the proof of Claim 1 in Proposition 4.1, since k = 2 at
L. For condition (b) notice that p+ 6= q+ since p+ is odd, and q+ even. Furthermore, notice that
if q+ = 0, the vectors Y1, Y3,−q+X2 + p+Y2 do not need to be orthogonal to each other since K+

0

acts trivially on W
0
⊕W 2, but they are orthogonal to X3 ∈ W 1 which is sufficient for condition

(b).
For condition (d) we again use the action of the principal isotropy groupH = {(±1,±1), (±i,±i)}

on the tangent space of the regular orbits G/H. H acts via Id on span{X1, Y1} and as − Id on
span{X2,X3, Y2, Y3}. Thus by Schur’s Lemma these two subspaces are orthogonal for all t and are
also invariant under parallel translation. This implies condition (d) since Y = p−X1+q−Y1 is the
only element in V with Y (0) = 0 and thus 〈X ′

3, Y
′〉t=0 = 0. Finally, notice that Z = −p+X3+q+Y3

satisfies Z(3L) = 0, but 〈X3(0), Z(0)〉 = p+||X3(0)||
2 6= 0 and hence by Proposition 3.4 X∗

3 is not
parallel on [0, 3L].

Next, we claim that if p+ ± q+ 6= ±1, then we can argue as in the proof of Claim 2 in
Proposition 4.1. Indeed, we choose X = aX3 + bY3 so that 〈X,−p+X3 + q+Y3〉 = 0 at t = L and
apply Proposition 3.2 to X∗ on the interval [L, 3L]. At the endpoints, the second fundamental
form vanishes on S2Wi and W0⊗Wi since k = 2, and on W1⊗W2 since p+± q+ 6= ±1. Thus the
singular orbits at t = L and t = 3L are totally geodesic, which implies ||X∗||′ = 0 at t = L, 3L.
The orthogonality condition on X again implies condition (b), and for (c) we use the action of H
to conclude that −p−X1 + q−Y1, the only vanishing Jacobi field at t = 2L, is orthogonal to X at
t = L. For condition (d) we argue as in the previous case. Finally, notice that Z = p+X3 + q+Y3

satisfies Z(7L) = 0, but 〈X(L), Z(L)〉 6= 0 since otherwise ap+||X3(L)||+bq+||Y3(L)||
2 = 0, which

contradicts 〈X(L),−p+X3 + q+Y3〉 = −ap+||X3||
2 + bq+||Y3||

2 = 0 since p+ 6= 0 and a 6= 0. Thus
X∗

3 is not parallel on [L, 7L].

Altogether, we can now assume that (p−, q−) = (1, 1) and p++ q+ = ±1 or p+− q+ = ±1. We
can changes the sign of p+ by conjugating all groups with (1, j) and both signs by reversing the
orientation of the circle. Thus it is sufficient to assume q+ − p+ = 1. But this is precisely the
family Qk with slopes (1, 1), (k, k + 1), k ≥ 0, after possibly switching the two S3 factors. �
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Remark. Q1 is the positively curved Aloff Wallach space which admits an invariant analytic
metric with positive curvature. It is not known if Qk with k > 1 admit such metrics, not even if
they admit analytic metrics with non-negative curvature.

The manifold Q0 is special. In the language of our paper, any linear combination of Y2 and Y3

is orthogonal to all kernels, and hence a parallel Jacobi field for all t. But there is no Jacobi field
which is necessarily parallel for some t but not for all t. In [GWZ] it was shown that Q0 has the
cohomology of S2 × S

5, but we do not know if it is diffeomorphic to it. Furthermore, in [GZ3] it
was shown that it is also the total space of the SO(3) principle bundle over CP

2 with w2 6= 0 and
p1 = 1.

We finally come to the proof of Theorem D. Here we consider the cohomogeneity one manifolds
with group diagram

H = {e} ⊂ {∆S3, (eipt, eiqt)} ⊂ S3 × S3,

where ∆S3 is embedded diagonally and p, q are arbitrary relatively prime integers. Here we have
w− = (−1,−1) and w+ is one of (±1,±1) and thus the normal geodesic has length 4L. This
implies that Gc(2L) = Gc(0) and Gc(3L) = Gc(L). Here it is convenient to choose the base point
t0 to be regular in which case the Lagrange tensor satisfies At0 = Id and thus X = Atv with
v = X(t0). At has two kernels, at t = 0 and at t = L (which agree with the kernels at 2L and 3L
resp): kerA0 = span{X1 + Y1,X2 + Y2,X3 + Y3} and kerAL = span{pX1 + qY1}, all evaluated
at t0. If (p, q) = (1, 1), clearly kerAL ⊂ kerA0. There exists a 2-dimensional subspace W ⊂ Et0

(3-dimensional if (p, q) = (1, 1)) which is orthogonal to both kernels. Thus gW is concave for all
t, and hence constant. By Theorem B, this implies that the Jacobi fields X ∈ V with X(t0) ∈ W
are parallel, and hence R vanishes on this subspace. In particular, R cannot be 2-positive. This
finishes the proof of Theorem D
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