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Abstract. We study Le Potier’s strange duality conjecture for moduli spaces of sheaves over
generic abelian surfaces. We prove the isomorphism for abelian surfaces which are products of
elliptic curves, when the moduli spaces consist of sheaves of equal ranks and fiber degree 1. The bi-
rational type of the moduli space of sheaves is also investigated. Generalizations to arbitrary product
elliptic surfaces are given.
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1. Introduction

There are three versions of Le Potier’s strange duality conjecture for abelian surfaces,
formulated and supported numerically in [MO2]. In this article, we confirm two of them
for product abelian surfaces. This establishes the conjecture over an open subset in the
moduli space of polarized abelian surfaces.

1.1. The strange duality morphism

To set the stage, let (X,H) be a polarized complex abelian surface. For a coherent sheaf
V → X, denote by v = chV ∈ H ?(X,Z) its Mukai vector. Fix two Mukai vectors
v and w such that the orthogonality condition χ(v · w) = 0 holds. We consider the
two moduli spaces M+v and M+w of H -semistable sheaves of type v and w with fixed
determinant. They carry two determinant line bundles 2w → M+v , 2v → M+w , whose
global sections we seek to relate.

More precisely, according to Le Potier’s strange duality conjecture [LP], [MO2], if
the condition

c1(v · w) ·H > 0
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is satisfied, the jumping locus

2+vw = {(V ,W) : h
1(V ⊗W) 6= 0} ⊂M+v ×M+w

is expected to be a divisor. Further, its defining equation is a section of the split bundle

2w �2v →M+v ×M+w,

conjecturally inducing an isomorphism

D+ : H 0(M+v ,2w)
∨
→ H 0(M+w,2v).

This expectation is supported numerically: it was established in [MO2] that

χ(M+v ,2w) = χ(M
+
w,2v) =

χ(X,L+)

dv + dw

(
dv + dw

dv

)
,

where L+ is a line bundle on X with

c1(L
+) = c1(v · w) and dv =

1
2 dimM+v , dw =

1
2 dimM+w .

Similarly, letting M−v and M−w denote the moduli spaces of sheaves with fixed deter-
minant of their Fourier–Mukai transforms, we have the symmetry

χ(M−v ,2w) = χ(M
−
w,2v) =

χ(X,L−)

dv + dw

(
dv + dw

dv

)
,

where L− is a line bundle on X with c1(L
−) = c1(̂v · ŵ), the hats denoting the Fourier–

Mukai transforms. The map

D− : H 0(M−v ,2w)
∨
→ H 0(M−w,2v)

induced by the theta divisor 2−vw ⊂M−v ×M−w is expected to be an isomorphism.

1.2. Results

We will establish the isomorphisms for abelian surfaces which split as products of elliptic
curves

X = B × F.

We regard X as a trivial fibration πB : X → B, and write σ and f for the class of the
zero section and of the fiber over zero. We assume that the polarization H is suitable in
the sense of [F], i.e.

H = σ +Nf for N � 0.

Over simply connected elliptic surfaces, for coprime rank and fiber degree, the moduli
space of sheaves is birational to the Hilbert scheme of points, as shown by Bridgeland [B].
For sheaves with fixed determinant, the situation is subtler over elliptic abelian surfaces.
A refinement of Bridgeland’s argument, using a Fourier–Mukai transform with kernel
given by a universal Atiyah bundle, allows us to prove the following result.
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Theorem 1.1. Let X = B ×F be a product abelian surface, and let v be a Mukai vector
such that the rank r and the fiber degree d = c1(v) · f are coprime. Let

aB : X
[dv]→ B

be the composition of the addition map a : X[dv] → X on the Hilbert scheme of points
with the projection to the base elliptic curve. Then the moduli space M+v is birational to

X+v = {(Z, b) : aB(Z) = rb} ⊂ X
[dv] × B.

A similar statement holds for the moduli space M−v . By contrast, the generalized Kummer
variety Kv associated to the higher rank vectors is birational to the Kummer variety in
rank 1, as noted in [Y]. This fact is recovered in two ways while establishing Theorem 1.1.

The following two theorems capture our main results concerning strange duality.

Theorem 1.2. Let X = B ×F be a product abelian surface. Let v and w be two orthog-
onal Mukai vectors of equal ranks r ≥ 3, with

c1(v) · f = c1(w) · f = 1.

Then D+ : H 0(M+v ,2w)
∨
→ H 0(M+w,2v) is an isomorphism.

Similarly, we show

Theorem 1.3. Let X = B × F be a product abelian surface. Assume v and w are two
orthogonal Mukai vectors of ranks r, s ≥ 3 and equal Euler characteristics χ = χ ′, with

c1(v) · f = c1(w) · f = 1.

Then D− : H 0(M−v ,2w)
∨
→ H 0(M−w,2v) is an isomorphism.

In particular, the theorems imply that 2± are divisors in the products M±v ×M±w .

1.2.1. Higher genus. The requirement that B be elliptic can in fact be removed in The-
orem 1.2. Indeed, keep F a smooth elliptic curve, and consider a smooth projective
curve C of arbitrary genus g ≥ 1. Let σ denote the zero section of the trivial fibration
X = C × F → C. We show

Theorem 1.4. Assume that X = C × F is a product surface as above, and let v,w be
orthogonal Mukai vectors of equal ranks r ≥ g and r 6= 2, such that

(i) the determinants are fixed of the form

det v = O(σ )⊗ `v, detw = O(σ )⊗ `w,

for generic line bundles `v and `w of fixed degree over the curve C;
(ii) dimM+v + dimM+w ≥ 8r(g − 1).

Then D+ : H 0(M+v ,2w)
∨
→ H 0(M+w,2v) is an isomorphism.
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1.3. Comparison

Theorems 1.2 and 1.4 parallel the strange duality results for simply connected elliptic
surfaces. Let π : Y → P1 be a simply connected elliptic fibration with a section and at
worst irreducible nodal fibers. The dimension of the two complementary moduli spaces
Mv and Mw will be taken large enough compared to the constant

1 = χ(Y,OY ) · ((r + s)
2
+ (r + s)+ 2)− 2(r + s).

The polarization is still assumed suitable. The following was proved by combining
[MOY] and [BH]:

Theorem. Let v and w be two orthogonal topological types of rank r, s ≥ 3, such that

(i) the fiber degrees satisfy c1(v) · f = c1(w) · f = 1,
(ii) dimMv + dimMw ≥ 1.

Then D : H 0(Mv,2w)
∨
→ H 0(Mw,2v) is an isomorphism.

We suspect that an analogous statement can be made for all (not necessarily simply con-
nected, with possibly reducible fibers) elliptic surfaces Y → C, going beyond the scope
of Theorems 1.2 and 1.4.

The results for simply connected fibrations and abelian surfaces both rely on Fourier–
Mukai techniques, but the geometry is more involved in the abelian case, as already il-
lustrated by the birationality statement of Theorem 1.1. Via Fourier–Mukai, instead of a
rather standard analysis of tautological line bundles over Hilbert scheme of points in the
simply connected case, one is led here to studying sections of suitable theta bundles over
the schemes X+v . This requires new ideas. We prove the duality for spaces of sheaves of
equal ranks and fiber degree 1, but believe these assumptions may be relaxed. The case
r = s = 2 is also left out of our theorems: while the Fourier–Mukai arguments do not
cover it, we believe strange duality holds here as well.

1.4. Variation in moduli

Let Ad be the moduli space of pairs (X,H), where X is an abelian surface and H is an
ample line bundle inducing a polarization of type (1, d) on X. For a Mukai vector v with
c1(v) = c1(H), we consider the relative moduli space of sheaves π : M[v]+ → Ad

whose fiber over a surface (X,H) is the moduli space of H -semistable sheaves with
Mukai vector v and fixed determinant equal toH . Associated with two orthogonal Mukai
vectors v and w, there is a universal canonical theta divisor

2+vw = {(X,H, V,W) : h
1(X, V ⊗W) 6= 0} ⊂M[v]+ ×Ad

M[w]+,

giving rise to a line bundle which splits as a product

2+vw = 2w �2v on M[v]+ ×Ad
M[w]+.
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Pushforward via the morphisms

M[v]+→ Ad , M[w]+→ Ad

yields two coherent sheaves of generalized theta functions over Ad ,

W = R0π?2w, V = R0π?2v.

Let H ⊂ Ad be the Humbert hypersurface parametrizing split abelian surfaces (X,H)
with

X = B × F and H = LB � LF ,

for line bundles LB , LF over B and F of degrees d and 1 respectively.
Theorem 1.2 can be rephrased as the following generic strange duality statement:

Theorem 1.5. Assume v and w are orthogonal Mukai vectors of equal ranks r ≥ 3 with

(i) c1(v) = c1(w) = H ;

(ii) 〈v, v〉 ≥ 2(r2
+ r − 1), 〈w,w〉 ≥ 2(r2

+ r − 1). 1

The sheaves V and W are then locally free when restricted to the Humbert hypersurface
H, and 2+vw induces an isomorphism

D :W∨→ V

along H.

2. Moduli spaces of sheaves of fiber degree 1

2.1. Setting

We consider a complex abelian surface X which is a product of two elliptic curves,
X ' B × F. Letting oB , oF denote the origins on B and F , we write σ and f for
the divisors B × oF respectively oB × F in the product B × F . Note that

σ 2
= f 2

= 0, σ · f = 1.

2.1.1. Line bundles overX. For any positive integers a and b, the line bundle O(aσ+bf )
on X is ample. Its higher cohomology vanishes, and we have

h0(X,O(aσ + bf )) = χ(X,O(aσ + bf )) = ab. (2.1)

Letting πB : X → B and πF : X → F be the natural projections from X, we also note
that for any ` > 0,

h0(X,O(`σ )) = h0(X, π?FO(`oF )) = h
0(F,O(`oF )) = `,

h0(X,O( f̀ )) = h0(X, π?BO(`oB)) = h
0(B,O(`oB)) = `.

(2.2)

1 Assumption (ii) allows us to exchange H -stability with stability with respect to a suitable po-
larization, since in this case the ensuing moduli spaces agree in codimension 1. This was proved
for K3 surfaces in the appendix of [MOY]. The case of abelian surfaces follows by the same argu-
ment.
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Thus every section of OX( f̀ ) corresponds to a divisor of the form⊔̀
i=1

zi × F for z1 + · · · + z` = oB .

Furthermore, (2.1) and (2.2) imply that every section of the line bundle OX(σ + f̀ )

vanishes along a divisor of the form

σ ∪
⊔̀
i=1

zi × F for z1 + · · · + z` = oB .

2.1.2. Fourier–Mukai functors. Two different Fourier–Mukai transforms will be consid-
ered on X. First, there is the Fourier–Mukai transform with respect to the standardly
normalized Poincaré bundle P → X × X̂. We identify X̂ ∼= X using the polariza-
tion oB × F + B × oF . Specifically, our (perhaps nonstandard) sign choice is so that
y = (yB , yF ) ∈ X is viewed as a degree 0 line bundle y → X via the association

y 7→ OB(yB − oB) � OF (yF − oF ).

The Poincaré bundle is then given by

P → X ×X, P = PB � PF ,

where

PB → B × B, PB = OB×B(1B)⊗ p
?OB(−oB)⊗ q

?OB(−oB), and
PF → F × F, PF = OF×F (1F )⊗ p

?OF (−oF )⊗ q
?OF (−oF ).

The Fourier–Mukai transform with kernel P is denoted

RS : D(X)→ D(X).

A second Fourier–Mukai transform is defined by considering the relative Picard va-
riety of πB : X → B. We identify F ∼= F̂ so that yF ∈ F 7→ OF (yF − oF ), and we
let

RS†
: D(X)→ D(X)

be the Fourier–Mukai transform whose kernel is the pullback of the Poincaré sheaf PF →
F ×F to the product X×B X ∼= F ×F ×B. Both Fourier–Mukai transforms are known
to be equivalences of derived categories.

Several properties of the Fourier–Mukai will be used below. First, for integers a, b we
have

det RS(O(aσ + bf )) = O(−bσ − af ), det RS†(O(aσ + bf )) = O(−σ + abf ).

Next, we have the following standard result, which will in fact be proved in greater gen-
erality in Lemma 3.4.

Lemma 2.1. For x = (xB , xF ) ∈ X and y = (yB , yF ) ∈ X̂, we have

RS†(t?xE) = t
?
xB

RS†(E)⊗ x∨F , RS†(E ⊗ y) = t?yF RS†(E)⊗ yB .
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2.2. Moduli spaces of sheaves

We consider sheaves over X of Mukai vector v such that

rank v = r, χ(v) = χ, c1(v) · f = 1.

We set

dv =
1
2 〈v, v〉 =

c1(v)
2

2
− rχ,

which is half the dimension of the moduli space M+v below. Recall from the introduction
that the polarization H is suitable, i.e.,

H = σ +Nf for N � 0.

As in [MO2], we are concerned with three moduli spaces of sheaves:

(i) The moduli space Kv of H -semistable sheaves V on X with

detV = O(σ +mf ), det RS(V ) = O(−mσ − f ).

Thus the determinants of the sheaves and of the Fourier–Mukai transforms of sheaves
in Kv are fixed. Here, we wrote

c1(v) = σ +mf where m = dv + rχ.

(ii) The moduli space M+v of H -semistable sheaves V on X with

detV = O(σ +mf ).

The two spaces (i) and (ii) are related via the degree d4
v étale morphism

8+v : Kv ×X→M+v , 8+v (V , x) = t
?
rxV ⊗ t

?
x detV −1

⊗ detV.

In explicit form, we write equivalently

8+v (V , x) = t
?
rxV ⊗ (xF � xmB ). (2.3)

(iii) Finally, there is a moduli space M−v of semistable sheaves whose Fourier–Mukai
transform has fixed determinant

det RS(V ) = O(−f −mσ).

In this case, we shall make use of the étale morphism

8−v : Kv ⊗ X̂→M−v , 8−v (V , y) = t
?
(yB ,myF )

V ⊗ yχ .

Note that we have indeed

det RS8−v (V , y) = det RS(t?(yB ,myF )V ⊗ y
χ ) = t?χy det RS(t?(yB ,myF )V )

= t?χy det(RS(V )⊗ (yB , myF )−1)

= t?χyO(−f −mσ)⊗ (yB , myF )−χ = O(−f −mσ).

For further details regarding the morphisms 8+v ,8
−
v , we refer the reader to [MO2, Sec-

tions 4 and 5].



1228 Alina Marian, Dragos Oprea

2.3. Birationality of Kv with the generalized Kummer variety K [dv]

We now establish in two different ways an explicit birational map

9r : K
[dv] 99K Kv,

where K [dv] is the generalized Kummer variety of dimension 2dv − 2,

K [dv] = {Z ∈ X[dv] : a(Z) = 0}.

As usual, a : X[dv]→ X denotes the addition map on the Hilbert scheme.

2.3.1. O’Grady’s construction. We first obtain the map 9r by induction on the rank r of
the sheaves, following O’Grady’s work [OG] for elliptically fibered K3 surfaces. To start
the induction, we let Z ⊂ X be a zero dimensional subscheme of length ` = `(Z) = dv,
such that a(Z) = 0, and further satisfying the following conditions:
(i) Z consists of distinct points contained in different fibers of πB ,

(ii) Z does not intersect the section σ.
Such a Z is a generic point in the generalized Kummer variety K [dv]. We let

m1 = χ + dv,

which is the correct number of fibers needed when r = 1, and set

V1 = IZ ⊗O(σ +m1f ).

Note that χ(V1) = χ, and that V1 thus constructed belongs toKv . Indeed, the determinant
of the Fourier–Mukai of V1 is fixed since

det RS(V1) = det RS(O(σ +m1f ))⊗ det RS(OZ)
∨
= O(−m1σ − f )⊗ P−a(Z)

= O(−m1σ − f ).

For the last equality, we made use of the fact that a(Z) = 0.
We claim that for Z as above we have

h1(V1(−χf )) = h
1(IZ ⊗O(σ + f̀ )) = h0(IZ(σ + f̀ )) = 1. (2.4)

Indeed, as explained in Section 2.1, every section of OX(σ + f̀ ) vanishes along a divisor
of the form

σ + π?B(z1 + · · · + z`)

where z1, . . . , z` are points of B with z1 + · · · + z` = oB . Conditions (i) and (ii) ensure
that there is a unique such divisor passing through Z: z1, . . . , z` are the B-coordinates of
the distinct points of Z.

We inductively construct extensions

0→ O(χf )→ Vr+1 → Vr → 0, (2.5)

with stable middle term. The sheaves obtained will satisfy χ(Vr(−χf )) = 0. In order to
get (2.5), we show

ext1(Vr ,O(χf )) = ext1(O(χf ), Vr) = h1(Vr(−χf )) = h
0(Vr(−χf )) = 1.

In the above calculation, we used H 2(Vr(−χf )) = 0, which follows from the stability
of Vr . We will inductively prove the following four statements at once:
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(a) h0(Vr(−χf )) = 1;
(b) for all fibers f, we have h0(Vr(−χf − f)) = 0;
(c) for fibers fη avoiding Z, we have

Vr |fη
∼= Er,o, (2.6)

where the Atiyah bundle Er,o is the the unique stable bundle over fη of rank r and
determinant Ofη (o);

(d) for fibers fz containing points z ∈ Z we have

Vr |fz = Er−1,z ⊕Ofz(o− z). (2.7)

Here, Er−1,z is the Atiyah bundle of rank r − 1 and determinant Ofη (z).

Equations (2.6) and (2.7) are analogous to Lemma 1 in [MOY].
The base case r = 1 of the induction is easily verified. Indeed, the ext-dimension

in (a) follows by (2.4), and (b) is checked in the same way. Items (c) and (d) are shown by
direct calculation (cf. [MOY]). Assuming these four statements hold for Vr , we construct
the unique nontrivial extension (2.5). We now argue for stability of the middle term Vr+1,
and we explain that statements (a)–(d) hold for Vr+1.

First, Proposition I.4.7 of [OG] gives stability of the middle term Vr+1 if a suitable
vanishing hypothesis holds. Precisely, we require that for all fibers f, we have

Hom(Vr |f ,Of) = 0. (2.8)

This vanishing is indeed satisfied, as the restriction of Vr to fibers is given by (c) and (d).
Proposition I.4.7 also asserts that the restriction of (2.5) to any fiber f does not split. Thus,
we obtain nontrivial extensions

0→ Of → Vr+1|f → Vr |f → 0.

From the inductive hypothesis (c) and (d) we now deduce

Vr+1|fη
∼= Er+1,o

for fibers fη avoiding Z, while for fibers fz containing points z ∈ Z we have

Vr+1|fz = Er,z ⊕Ofz(o− z).

We have therefore established statements (c) and (d) for Vr+1. Next we prove (b):

h0(Vr+1(−χf − f)) = 0.

This is immediate from the short exact sequence (2.5). In fact, the same exact sequence
shows that h0(Vr+1(−χf )) ≥ 1.

To complete the argument, we establish now that (a) holds for Vr+1, i.e., we show
that h0(Vr+1(−χf )) = 1. Assume for a contradiction that h0(Vr+1(−χf )) ≥ 2. The
cohomology of the exact sequence

0→ Vr+1(−χf − f)→ Vr+1(−χf )→ Vr+1|f → 0
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yields an injective mapH 0(Vr+1(−χf ))→ H 0(Vr+1|f), so h0(Vr+1|f) ≥ 2. This contra-
dicts (2.6) and (2.7) for Vr+1. We deduce h0(Vr+1(−χf )) = 1, completing the inductive
step.

Finally, (2.6) and (2.7) show that Vr uniquely determines the subscheme Z, proving
that the map 9r is injective. Therefore, we obtain a birational map

9r : K
[dv] 99K Kv,

by the equality of dimensions for the two irreducible spaces.

2.3.2. Fourier–Mukai construction. We next point out that 9r can also be viewed as a
fiberwise Fourier–Mukai transform. This is similar to the case ofK3 surfaces analyzed in
[MOY]. We show

Proposition 2.2. For subschemes Z with a(Z) = 0, satisfying (i) and (ii), we have

RS†(V ∨r ) = IZ̃(rσ − χf )[−1], RS†(Vr) = I
∨

Z (−rσ + χf ),

where Z̃ is the reflection of Z along the zero section σ .
Proof. We prove the first equality. By the calculation of the restrictions of Vr to the fibers
in (2.6) and (2.7), it follows that V ∨r contains no subbundles of positive degree over each
fiber. Therefore, RS†(V ∨r )[1] is torsion free, by Proposition 3.7 of [BH]. The agreement
of the two sheaves RS†(V ∨r )[1] and IZ̃(rσ −χf ) holds fiberwise. This can be seen using
(2.6) and (2.7), just as in [MOY, Proposition 1]. Hence, the two sheaves have rank 1, and
furthermore, the ideal sheaves they involve must agree (recall that Z consists of distinct
points). The proof is completed by proving equality of determinants. In turn, this follows
inductively from the exact sequence (2.5):

det RS†(V ∨r+1) = det RS†(V ∨r )⊗ det RS†(O(−χf )) = det RS†(V ∨r )⊗O(−σ).

The base case r = 1 is immediate, as

det RS†(I∨Z (−σ −m1f )) = det RS†(O(−σ −m1f ))⊗
⊗
z∈Z

det(RS†(O∨z ))∨

= O(−σ +m1f )⊗
⊗
z∈Z

det(RS†(Oz[−2]))∨

= O(−σ +m1f )⊗
⊗
z∈Z

O(−fz)

= O(−σ +m1f )⊗O(− f̀ ) = O(−σ + χf ),

using that a(Z) = 0. Here fz denotes the fiber through z ∈ Z. A similar calculation can
be carried out for the Fourier–Mukai with kernel P∨.

The second statement follows then by Grothendieck duality. We refer the reader to
[MOY, Proposition 2] for an identical computation. ut

Proposition 2.2 gives an explicit description of O’Grady’s construction in terms of the
Fourier–Mukai transform, at least along the loci (i) and (ii) whose complements have
codimension 1. Explicitly, under the correspondence

K [dv] 3 Z 7→ I
Z̃
(rσ − χf )[−1],
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the birational map 9r : K [dv] 99K Kv is given by the inverse of RS†, followed by
dualizing,

9r ∼= DX ◦ (RS†)−1.

However, viewed as a Fourier–Mukai transform, 9r extends to an isomorphism in codi-
mension 1, whenever r ≥ 3. This is established in [BH, Sections 3 and 5] on general
grounds, but can also be argued directly.

Indeed, the inverse of RS† is, up to shifts, the Fourier–Mukai transform with kernel
the dual π?F×FPF

∨ of the fiberwise Poincaré line bundle on X ×B X ' F × F × B. We
claim that as long as r ≥ 3 and Z contains no more than two points in the same fiber of
πB : X → B, the Fourier–Mukai image of the sheaf IZ(rσ − χf ) is a vector bundle.
Stability is automatic, as the restrictions to all elliptic fibers which do not pass through Z
are isomorphic to the Atiyah bundle of rank r and degree 1, therefore the restriction to
the generic fiber is stable. The locus of Z ∈ K [dv] with at least three points in the same
elliptic fiber has codimension 2.

To see the claim above, note that the restriction of the ideal sheaf of a point to the
elliptic fiber f through that point is

Ip|f = Of(−p)+Op,

and similarly
Ip,p′ |f = Of(−p − p

′)+Op +Op′ ,
for (possibly coincident) points p, p′ in the fiber f. Thus, the restriction of IZ(rσ − χf )
to fibers f can take the form

Of(roF ), Of(roF )⊗ (Of(−p)+Op) or Of(roF )⊗ (Of(−p − p
′)+Op +Op′)

which are all IT0 with respect to P∨F , for r ≥ 3. Thus the Fourier–Mukai transform
(RS†)−1 of IZ(rσ − χf )[−1] is a vector bundle by cohomology and base-change.

When r = 2, 92 is defined away from the divisor of subschemes Z ∈ K [dv] with at
least two points in the same elliptic fiber. As K [dv] and Kv are irreducible holomorphic
symplectic, 92 extends anyway to a birational map which is regular outside of codimen-
sion 2, but this extension is no longer identical to the Fourier–Mukai transform. In fact,
semistable reduction is necessary to construct the extension, as in [OG, Section I.4]. We
will not pursue it in this paper.

2.4. The moduli space M+v via Fourier–Mukai

We investigate how sheaves of fixed determinant change under Fourier–Mukai. Recall the
morphism (2.3), and let

V = 8+v (E, x),

for a pair (E, x) ∈ Kv ×X. Using Lemma 2.1 and Proposition 2.2, we calculate

RS†(V ) = RS†(t?rxE ⊗ (x
m
B � xF )) = t

?
xF

RS†(t?rxE)⊗ x
m
B

= t?xF (t
?
rxB

RS†(E)⊗ x−rF )⊗ xmB = t
?
xF+rxB

(I∨Z (−rσ + χf ))⊗ (x
−r
F � xmB )

= I∨
Z+
(−rσ + χf )⊗ x

dv
B ,
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where
Z+ = t?xF+rxBZ, so that aB(Z

+) = −dvrxB .

In a similar fashion, we prove that

RS†(V ∨) = IZ+(rσ − χf )[−1] ⊗ x−dvB ,

where now
Z+ = t

?
−xF+rxB

Z̃ = Z̃+.

From the first equation, we obtain the rational map

RS†
: Kv ×X 99K X+v

where
X+v = {(Z

+, zB) : aB(Z
+) = rzB} ⊂ X

[dv] × B

via the assignment
(E, x) 7→ (Z+,−dvxB).

This map has degree d4
v and descends to M+v . Since 8+v is also of degree d4

v and X+v is
irreducible of the same dimension as M+v , we obtain a birational isomorphism M+v 99K
X+v in such a fashion that

RS†(V ) = I∨
Z+
(−rσ + χf )⊗ z−1

B , RS†(V ∨) = I
Z̃+
(rσ − χf )⊗ zB [−1].

The discussion of the previous subsection shows the birational isomorphism is given (ex-
plicitly as a Fourier–Mukai transform) away from codimension 2.

2.5. The moduli space M−v via Fourier–Mukai

A similar argument applies to the moduli space M−v of sheaves with fixed determinant of
their Fourier–Mukai transform

det RS(V ) = O(−f −mσ).

In this case, we have a morphism

8−v : Kv ⊗ X̂→M−v given by 8−v (E, y) = t
?
(yB ,myF )

E ⊗ yχ .

We calculate

RS†(8−v (E, y)) = RS†(t?(yB ,myF )E ⊗ y
χ ) = t?χyF RS†(t?(yB ,myF )E)⊗ y

χ
B

= t?χyF (t
?
yB

RS†(E)⊗ y−mF )⊗ y
χ
B

= t?yB+χyF (I
∨

Z (−rσ + χf ))⊗ (y
−m
F � y

χ
B ) = I

∨

Z−
(−rσ + χf )⊗ y

−dv
F

where Z− = t?yB+χyFZ, so that the addition in the fibers is aF (Z−) = −χdvyF . We
therefore obtain the birational isomorphism

M−v 99K X−v , 8−v (E, y) 7→ (Z−,−dvyF ),
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where
X−v = {(Z

−, zF ) : aF (Z
−) = χzF } ↪→ X[dv] × F.

For further use, we record the identities

RS†(V ) = I∨
Z−
(−rσ + χf )⊗ zF , RS†(V ∨) = I

Z̃−
(rσ − χf )⊗ zF [−1].

3. Rank-coprime arbitrary fiber degree

Theorem 1.1 was proved in the previous section for fiber degree 1 in two ways: via an
explicit analysis of O’Grady’s description of the moduli space, and via Fourier–Mukai
methods. In this section, we use Fourier–Mukai to prove Theorem 1.1 for arbitrary fiber
degree. The argument builds on results of Bridgeland [B]. At the end of the section, we
briefly consider the case of a surface X = C × F with F elliptic, but C of higher genus.

3.1. Fourier–Mukai transforms in the general coprime setting

We write
d = c1(v) · f

for the fiber degree, which we assume to be coprime to the rank r . Thus c1(v) = dσ+mf .
Pick integers a and b such that

ad + br = 1,

with 0 < a < r . The following lemma gives the kernel of the Fourier–Mukai transform
we will use:

Lemma 3.1. There exists a vector bundle U → F × F with the following properties:

(i) the restriction of U to F × {y} is stable of rank a and degree b;
(ii) the restriction of U to {x} × F is stable of rank a and degree r .

Furthermore,
c1(U) = b[oF × F ] + r[F × oF ] + c1(PF ).

Proof. This result is known (see for instance [B]), and can be explained in several ways.
We consider the moduli space MF (a, b) of bundles of rank a and degree b over F . By
the classical result of Atiyah [A], we have MF (a, b) ∼= F. We let U → F × F denote
the universal bundle. Therefore, for all y ∈ F , U |E×y has rank a and degree b; in fact
the determinant equals OF ((b − 1) · oF + y). The bundle U is not unique and we can
normalize it in several ways. Indeed, for any matrix

A =

[
λ a

µ b

]
∈ SL2(Z),

we may assume that U |x×F has type (a, λ). In fact, we can regard the first factor F as
the moduli space of bundles of rank a and degree λ over the second factor F (cf. [B]).
We may pick the pair λ = r and µ = −d . What we showed above allows us to conclude
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c1(U) = b[oF × F ] + r[F × oF ] + c1(PF ). Replacing U by a suitable twist, we may in
fact achieve

detU = O(b[oF × F ] + r[F × oF ])⊗ PF .

The lemma is proved. ut

Lemma 3.2. The sheaf U → F × F is semihomogeneous. More precisely,

t?(x,y)U = U ⊗ π?1 (x
−b/ay1/a)⊗ π?2 (x

1/ay−r/a). (3.1)

In particular,

chU = a exp
(
c1(U)
a

)
, so χ(U) = −d.

Proof. By symmetry it suffices to argue that

t?(x,0)U = U ⊗ π?1x
−b/a
⊗ π?2x

1/a .

We note that the choice of roots for the line bundles on the right hand side is not relevant.
The restrictions of both sides to F × {y} agree: Uy = U |F×{y} is stable on F , and thus
semihomogeneous, satisfying

t?xUy = Uy ⊗ x−b/a .

We check agreement over oF × F . This is the statement that

U |x×F = U |o×F ⊗ x1/a,

which holds by comparing ranks and determinants. Finally, agreement over F×F follows
from the generalized see-saw Lemma 2.5 of Ramanan [R].

The second part of the lemma concerning the numerical invariants of U follows from
general facts about semihomogeneous bundles [M]. ut

Remark 3.3. A family of semihomogeneous bundles with fixed numerical invariants
were constructed in arbitrary dimension in [O], and played a role in the decomposition of
the Verlinde bundles. The dimension 1 case specializes to the bundle U considered here.

Letting πF×F : F ×F ×B → F ×F be the projection, we consider the relative Fourier–
Mukai transform RS†

: D(X)→ D(X) with kernel

π?F×FU → F × F × B ∼= X ×B X.

This is a higher rank generalization of the relative Fourier–Mukai functor RS† considered
in the previous section. It follows from [B] that the kernel U is strongly simple over each
factor, hence RS† is an equivalence, with inverse having kernel π?F×FU

∨
[1]. We further

show:

Lemma 3.4. Let x, y be points in X, suitably identified with points in X̂ as needed. Then

RS†(E ⊗ y) = t?ayF RS†(E)⊗ (yB � yrF ), RS†(t?xE) = t
?
xB+bxF

RS†(E)⊗ x−dF .
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Proof. Both formulas follow from (3.1). For the first, note that over F × F we have

U ⊗ π?1yF = t
?
(0,ayF )U ⊗ π

?
2y
r
F ,

by (3.1). Using the projections from F × F × B onto its factors, we compute

RS†(E ⊗ y) = Rπ23?(π
?
12U ⊗ π

?
13(E ⊗ y))

= Rπ23?((π
?
12U ⊗ π

?
1yF )⊗ π

?
13E ⊗ π

?
3yB)

= Rπ23?((t
?
(0,ayF ,0)π

?
12U ⊗ π

?
2y
r
F )⊗ π

?
13E)⊗ yB

= t?ayF Rπ23?(π
?
12U ⊗ π

?
13E)⊗ (y

r
F � yB) = t

?
ayF

RS†(E)⊗ (yrF � yB).

We now explain the second formula. First, note that

RS†(t?xE) = Rπ23?(π
?
12U ⊗ π

?
13t

?
xE) = t

?
xB

Rπ23?(π
?
12U ⊗ π

?
13t

?
xF
E).

It suffices to prove that

Rπ23?(π
?
12U ⊗ π

?
13t

?
xF
E) = t?bxF RS†(E)⊗ x−dF .

Now, (3.1) shows that over F × F we have

t?(xF ,0)U = U ⊗ π?1x
−b/a
F ⊗ π?2x

1/a
F ,

so we calculate

Rπ23?(π
?
12U ⊗ π

?
13t

?
xF
E) = Rπ23?(π

?
12t

?
(xF ,0)U ⊗ π

?
1x
b/a
F ⊗ π

?
2x
−1/a
F ⊗ π?13t

?
xF
E)

= Rπ23?(t
?
(xF ,0,0)(π

?
12U ⊗ π

?
13E ⊗ π

?
1x
b/a
F ))⊗ x

−1/a
F

= Rπ23?(π
?
12U ⊗ π

?
13E ⊗ π

?
1x
b/a
F )⊗ x

−1/a
F = RS†(E ⊗ x

b/a
F )⊗ x

−1/a
F

= t?bxF RS†(E)⊗ x
br/a
F x

−1/a
F (using the first half of the lemma)

= t?bxF RS†(E)⊗ x−dF .

The proof is complete. ut

Proposition 3.5. For a generic sheaf V of fixed determinant and determinant of Fourier–
Mukai

detV = O(dσ +mf ), det RS(V ) = O(−mσ − df )

we have

RS†(V ) = I∨Z ⊗OX((aχ + bm)f ),

for a subscheme Z of length dv with a(Z) = 0.
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Proof. In the proof, it will be important to distinguish between the two copies ofX which
are the source and the target of the Fourier–Mukai transform, because of the asymmetry
present in the bundle U . We will write X1 and X2 for these two copies.

By Grothendieck duality, to prove that

RS†(V ) = I∨Z ⊗OX((aχ + bm)f ),

it suffices to show that

9U∨
X1→X2

(V ∨) = IZ ⊗O(−(aχ + bm)f )[−1],

where 9 is the Fourier–Mukai transform with kernel U∨. Using [B, Lemma 6.4], we
know that V ∨ is WIT1 with respect to 9, since the restriction to the general fiber is
stable, of slope −d/r < b/a. Note that 9(V ∨)[1] has rank

−χ(V ∨|F×y ⊗ U∨|F×y) = ad + br = 1.

Section 7 of [B], or Sections 3 and 5 in [BH], show that for generic V , the 9-transform is
torsion-free, hence it must be of the form IZ⊗L[−1] for some line bundleL. Bridgeland’s
argument moreover shows that the subscheme Z has length dv .

The fiber degree of 9(V ∨) equals

c1(Rπ2?(π
?
1V |
∨

f ⊗ U∨)) = π2?(π
?
1 (r − dω)(a − c1(U)+ ch2(U)))(2) = 0,

where Lemmas 3.1 and 3.2 are used to express the numerical invariants of U . In fact more
is true. Since the restriction of V to a generic fiber is stable, it must equal the Atiyah
bundle Er,d . This implies that the restriction of L to a generic fiber must coincide with
9(Er,d)[1], which is trivial. Therefore, L must be a sheaf of the form π?BM

∨, where M
is a degree −β line bundle over B. We will establish that

β = −aχ − bm.

To this end, we calculate the Euler characteristic of 9(V ∨(σ )):

χ(9(V ∨)(σ )) = χ(F × F × B, π?13V
∨
⊗ π?12U

∨
⊗ π?23O(σ ))

=

∫
F×F×B

π?13(r − (dσ +mf )+ χω) · π
?
12(a − c1(U)+ ch2(U)) · π?23(1+ σ)

= bm+ aχ − χr +md.

On the other hand,

χ(IZ ⊗ L(σ)) = β − dv = β − (dm− rχ),

hence β = −aχ − bm.
When the determinant and the determinant of Fourier–Mukai of V are fixed, we show

that a(Z) = 0. First, we analyze the requirement that the determinant be fixed. The in-
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verse of RS† is given by8U∨[1]
X2→X1

, the Fourier–Mukai whose kernel is U∨[1], considered
as a transform X2 → X1. Hence,

V = 8
U∨[1]
X2→X1

(L∨ ⊗ I∨Z ), L = π?BM
∨,

has fixed determinant O(dσ +mf ). In order to make the computations more explicit, we
write

M = OB(−(β + 1)[oB ] + [µ])

for some µ ∈ B. We have

detV ∨ = det8U∨(L∨)⊗
⊗
z∈Z

det Rπ13?(π
?
12U
∨
⊗ π?23O

∨
z )
∨

= det8U∨(L∨)⊗
⊗

det(U∨|F×zF � OzB [2])
∨

= det8U∨(L∨)⊗
⊗
z∈Z

(OF � OB(−a[zB ]))

= det8U∨(L∨)⊗
(
OF � OB(−(adv − 1)[oB ] − [a · aB(Z)])

)
= O(−dσ −mf )⊗ π?OB(−[a · aB(Z)+ rµ] + [oB ]). (3.2)

This gives
a · aB(Z)+ rµ = oB .

In (3.2), we used the calculation

det8U∨(L∨) = det Rp13?(p
?
12U
∨
⊗ p?3M) = det(Rp1?U∨ �M)

= det Rp1?(U∨) �M−r = OF (−doF ) � OB((rβ + 1)[oB ] − [rµ]),

where by Lemma 3, the pushforward of U∨ has rank −r and degree −d . Equation (3.2)
also makes use of the identity rβ − adv = −m.

We now analyze the requirement that the determinant of the Fourier–Mukai be fixed.
We know that

RS(V ) = RS ◦8U∨[1]
X2→X1

(L∨ ⊗ I∨Z ).

This composition can be re-expressed as a Fourier–Mukai whose kernel equals the con-
volution of the following two kernels: Ũ∨[1] for 8, and P = PF × PB for RS. The
tilde indicates that the kernel U∨[1] is considered in the opposite direction for 8 than it
is for 9. This is the same as applying to U → F × F the involution that exchanges the
factors. The new kernel can be expressed as

Rp13?(p
?
12Ũ
∨
[1] ⊗ p?23P) = Rπ13?(π

?
12Ũ
∨
⊗ π?23PF )[1] � PB = V � PB

where
V → F × F, V = Rπ13?(π

?
12Ũ
∨
⊗ π?23PF )[1],

is the fiberwise Fourier–Mukai image of Ũ∨ up to a shift. The complex V has rank b, and
a Riemann-Roch calculation shows that

c1(V) = d[oF × F ] + a[F × oF ] + c1(PF ).
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The pushforward R(pF2 )?(V) has rank d and determinant −r[oF ]. This will be used be-
low. Fiberwise, note that

detV∨|zF×F = det Rp2?(p
?
1Ũ |
∨

zF×F
⊗ PF ) = −[zF ] − (a − 1)[oF ].

Now, we calculate

det RS(V ) = det Rp2?(V � PB ⊗ p?1(L
∨
⊗ I∨Z ))

= det Rp2?(V � PB ⊗ p?1L
∨)⊗ det Rp2?(V � PB ⊗ p?1OZ[2])∨. (3.3)

The first determinant is constant:

det Rp2?(V � PB ⊗ p?1L
∨) = det(R(pF2 )?(V) � R(pB2 )?(PB ⊗ (p

B
1 )
?M))

= (det R(pF2 )?(V))
−β � OB(−[−µ])

d
= OF (rβ[oF ]) � OB(−d[−µ]).

The second determinant appearing in (3.3) needs to be fixed, and it equals⊗
z∈Z

detV∨|zF×F � OB(−[zB ] + [oB ])
b

=

⊗
z∈Z

OF (−[zF ] − (a − 1)[oF ]) � OB(−[zB ] + [oB ])
b

= OF (−[aF (Z)] − (adv − 1)[oF ]) � OB(−[b · aB(Z)] + [oB ]).

Therefore

det RS(V ) = O(−mf −dσ)⊗OF (−[aF (Z)]+ [oF ])�OB(−[b ·aB(Z)−dµ]+ [oB ]).

Since det RS(V ) = O(−mf − dσ), this immediately yields

aF (Z) = oF , b · aB(Z)− dµ = oB .

Combining these two equations with a · aB(Z)+ rµ = oB shown above, and the fact
that ad + br = 1, we obtain aB(Z) = 0 and µ = 0. Thus

a(Z) = 0, L = O((aχ + bm)f ).

This completes the proof. ut

Proof of Theorem 1.1. In the course of the above proof, we showed that for a generic
sheaf V of rank r and determinant

detV = O(dσ +mf ),

the Fourier–Mukai transform takes the form

RS†(V ) = I∨Z ((aχ + bm)f )⊗ π
?
Bµ

for some µ ∈ B ∼= B̂ such that

a · aB(Z)+ rµ = oB .

The assignment V 7→ (Z, baB(Z)− dµ) gives the birational isomorphism M+v 99K X+v ,
claimed by Theorem 1.1.
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Remark 3.6. In a similar fashion we could find the birational type of the moduli
space M−v . However, it is not necessary to repeat the argument above to deal with this
new case. We could instead make use of the map

8−v : Kv ×X→M−v , (E, y) 7→ t?(dyB ,myF )E ⊗ y
χ ,

and apply Lemma 3.4 to calculate

RS†(8−v (E, y)) = RS†(t?(dyB ,myF )E ⊗ y
χ ) = t?aχyF RS†(t?(dyB ,myF )E)⊗ (y

χ
B � y

rχ
F )

= t?aχyF (t
?
dyB+bmyF

RS†(E)⊗ y−dmF )⊗ (y
χ
B � y

rχ
F )

= t?dyB+(aχ+bm)yF (I
∨

Z ((aχ + bm)f ))⊗ (y
χ
B � y

−dv
F )

= I∨
Z−
((aχ + bm)f )⊗ (y

χ−(aχ+bm)d
B � y

−dv
F )

= I∨
Z−
((aχ + bm)f )⊗ (y

−bdv
B � y

−dv
F )

where Z− = t?dyB+(aχ+bm)yFZ. Thus, the assignment

V 7→ (Z−,−dvy)

gives a birational isomorphism

M−v 99K X−v = {(Z
−, z) : a(Z−) = f (z)} ↪→ X[dv] ×X

where the isogeny f : X→ X is given by

f (z) = (dzB , (aχ + bm)zF ).

In the case of fiber degree 1, this specializes to the subvariety

X−v = {(Z
−, zF ) : aF (Z

−) = χzF } ↪→ X[dv] × F

of Section 2.

3.2. Higher genus

Assume now (C, o) is a pointed smooth curve of genus g ≥ 1, and F is still an elliptic
curve. We set ḡ = g − 1. Consider the product surface X = C × F → C. Let M+v be
the moduli space of sheaves over X of rank r and determinant O(σ + mf ), where σ is
the zero section and f denotes the fiber over o. We describe the birational type of M+v ,
in codimension 1 for r 6= 2, using the Fourier–Mukai transform with kernel the Poincaré
bundle

π?F×FPF → F × F × C.

The proof is entirely similar to that of Proposition 3.5, so we just record the result.
Let aC : X[dv] → C[dv] be the map induced by the projection X → C. Thus, each

scheme Z of length dv in X yields a divisor aC(Z) of degree dv over the curve C. The
line bundle

MZ = OC(aC(Z)− dv · o)

has degree 0, and therefore admits roots of order r . We define

X+v = {(Z, c) : c
r
=MZ} ↪→ X[dv] × Pic0(C).
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Then, for V ∈M+v , we have

RS†(V ) = I∨Z (−rσ + (χ + ḡ)f )⊗ c
−1,

establishing the birational isomorphism M+v 99K X+v . The same statement holds in any
fiber degree coprime to the rank, but we will not detail this fact.

4. The strange duality isomorphism

We now proceed to prove Theorems 1.2–1.4 stated in the introduction. Throughout this
section, we place ourselves in the context when the fiber degree is 1.

4.1. Reformulation

Let X = B × F be a product abelian surface. As a consequence of Section 2, under the
birational map

M+v ×M+w 99K X+v × X+w
induced by the relative Fourier–Mukai transform, the standard theta divisor

2+vw = {(V ,W) : h
1(V ⊗W) 6= 0} ⊂M+v ×M+w

is identified with a divisor
2+ ⊂ X+v × X+w .

Note that for sheaves (V ,W) ∈ M+v ×M+w corresponding to pairs (Z+, zB) ∈ X+v and
(T +, tB) ∈ X+w, we have

H 1(V ⊗W) = Ext1(W∨, V ) = Ext1(RS†(W∨),RS†(V ))

= Ext1(I
T̃ +
(sσ − χ ′f )[−1] ⊗ tB , I∨Z+ ⊗O(−rσ + χf )⊗ z−1

B )

= Ext1(I∨
Z+
⊗O(−rσ + χf )⊗ z−1

B , I
T̃ +
(sσ − χ ′f )[−1] ⊗ tB)∨

= H 0(IZ+ ⊗ IT̃ + ⊗ zB ⊗ tB ⊗O((r + s)σ − (χ + χ ′)f ))∨.
(The notation above has the obvious meaning: r, s are the ranks of v and w, while χ, χ ′

are their Euler characteristics.) We set

L = O((r + s)σ − (χ + χ ′)f ) on X. (4.1)

For r, s 6= 2 the birational isomorphisms M+v 99K X+v and M+w 99K X+w are regular
in codimension 1. We argued above that the theta divisor 2+vw in the product M+v ×M+w
corresponds to the divisor

2+ = {(Z+, zB , T
+, tB) : h

0(IZ+ ⊗ IT̃ + ⊗ zB ⊗ tB ⊗ L) 6= 0}

in the product X+v × X+w . Furthermore, the theta bundles on M+v and M+w also yield line
bundles 2w → X+v and 2v → X+w such that

O(2+) = 2w �2v.

Consequently, strange duality is demonstrated if we show that the divisor 2+ induces an
isomorphism

D+ : H 0(X+v ,2w)
∨
→ H 0(X+w,2v).
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4.2. Theta bundles

For r 6= 2, we are interested in an explicit description of the determinant line bundle

2w → X+v .

For a line bundle L on X, we standardly let

L[dv] = det Rp?(OZ ⊗ q
?L) on X[dv],

where Z ⊂ X[dv] × X is the universal subscheme, and p, q are the two projections. We
also note the natural projections

cv : X
+
v → X[dv], (Z+, zB) 7→ Z+,

π2 : X
+
v → B, (Z+, zB) 7→ zB .

The theta bundle is calculated by the following result:

Proposition 4.1. We have

2w = c
?
vL
[dv] ⊗ π?2OB((s − r)oB),

with L given by (4.1).

Proof. We give one proof here; another one is essentially contained in Section 4.4. We
begin by noting the degree d4

v étale morphism

qv : K
[dv] ×X = K [dv] × B × F → X+v , (Z, x) 7→ (t?rxB+xFZ,−dvxB).

It is related to the standard less twisted map

µv : K
[dv] ×X→ X[dv], µv(Z, x) = t

?
xZ,

via the commutative diagram

K [dv] × B × F

(1,r,1)
��

qv // X+v

cv

��
K [dv] × B × F

µv // X[dv]

Using the diagram, we calculate

q?vc
?
vL
[dv] = (1, r, 1)?µ?vL

[dv] = (1, r, 1)?(L[dv] � Ldv ) = L[dv] � ((r, 1)?L)dv ,

and further,

(r, 1)?L = (r, 1)?O((r + s)σ − (χ + χ ′)f ) = O((r + s)σ − r2(χ + χ ′)f ).

If πB : K [dv] × B × F → B is the projection to B, from the definitions we also have
π2 ◦ qv = −dv hence

q?vπ
?
2OB((s − r)oB) = π

?
BOB((s − r)d

2
voB).
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Putting the previous three equations together we find

q?v(c
?
vL
[dv] ⊗ π?2OB((s − r)oB))

= L[dv] � O((r + s)σ + ((s − r)dv − r2(χ + χ ′))f )⊗dv . (4.2)

On the other hand, Proposition 2 of [MO2] (written in holomorphic K-theory, as in [O])
gives

q?v2w = L
[dv] � O((r + s)σ + (rn+ sm)f )⊗dv . (4.3)

The two pullbacks (4.2) and (4.3) are seen equal on K [dv] ×X, as one shows that

rn+ sm = (s − r)dv − r
2(χ + χ ′).

This uses the numerical identitym+n = −rχ ′− sχ , which expresses the strange duality
orthogonality χ(v · w) = 0, also remembering that dv = m− rχ.

Now, consider

Q = 2w ⊗ (c
?
vL
[dv])∨ ⊗ π?BOB((r − s)oB).

We showed that q?vQ is trivial. Note the morphism

pv : X
+
v → X, (Z, xB) 7→ (aF (Z), xB),

with fibers isomorphic to K [dv]. In fact, each fiber ι : p−1
v (x) ↪→ X+v factors through the

morphism
qv : K

[dv] ×X→ X+v .

Indeed, ι = qv ◦ j, where j : p−1
v (x)→ K [dv] ×X is the map

j (Z) = (t?−ryB−yFZ, y),

for any choice of y ∈ X such that dvy = −x. Therefore, the above argument implies
that the restriction of Q to each fiber p−1

v (x) is trivial. Hence, Q = p?vN for some line
bundle N over X.

We now argue that N is trivial, by constructing a suitable test family. Consider a
subscheme Z0 of length dv − 1 supported at 0, and define

α : X 99K X+v , x 7→ (Z0 + (rxB , xF ), xB).

The map α is defined away from the r2 points in B[r]×oF . It suffices to showN is trivial
along this open set. Pulling back the equality

p?vN = 2w ⊗ (c
?
vL
[dv])∨ ⊗ π?BOB((r − s)oB)

under α, and noting α ◦ pv = 1, it suffices to prove that

α?2w = c
?
vL
[dv] ⊗ π?BOB((s − r)oB) (4.4)

where
cv = cv ◦ α : X 99K X[dv], cv(x) = Z0 + (rxB , xF ).
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We calculate the right hand side of (4.4). The universal family Z ⊂ X[dv]×X becomes
under pullback by cv the family Z0+1r ∼= 1r , where1r ⊂ X×X is the r-fold diagonal

1r = (rxB , xF , xB , xF ).

Then

c?vL
[dv] = c?v det Rp?(OZ ⊗ q

?L) = det Rp?(O1r ⊗ q
?L) = (rB , 1F )?L,

hence
c?vL
[dv] = O((r + s)σ − r2(χ + χ ′)f ).

For the left hand side of (4.4), fix (T , c) in X+w , where c ∈ B ∼= B̂, so that aB(T ) = sc.
Writing T̃ for the reflection of T in the fibers, we have

2w = det Rp?(IZ ⊗ PB ⊗ q?(L⊗ c ⊗ IT̃ ))
∨,

where PB is the Poincaré bundle over B × B. Write M = L ⊗ c ⊗ IT̃ , so that in the
K-theory of X we have

M = MB �MF −

∑
t∈T

OtB×−tF

for
MB = c ⊗OB(−(χ + χ

′)oB),MF = O((r + s)oF ).
Since the universal family pulls back to α?Z ∼= 1r , we find that K-theoretically we have
α?IZ = O −O1r . Therefore,

α?2w = det Rp?(PB ⊗ q?(MB �MF ))
∨
⊗ det Rp?(O1r ⊗ PB ⊗ q?(MB �MF ))

⊗

⊗
t∈T

(
det Rp?(PB ⊗ q?OtB×−tF )⊗ det Rp?(O1r ⊗ PB ⊗ q?OtB×−tF )

∨
)
.

We calculate the first term:

det Rp?(PB ⊗ q?(MB �MF ))
∨
= det(R(pB)?(PB ⊗ q?BMB) �H

•(MF )⊗OF )
∨

= det(R(pB)?(PB ⊗ q?BMB))
−(r+s) � OF = (c ⊗OB(−oB))

−(r+s) � OF .

The second term becomes

det Rp?(O1r ⊗ PB ⊗ q?(MB �MF )) = det(R(pB)?(O1Br
⊗ PB ⊗ q?BMB) �MF )

where 1Br is the image of

j : B → 1Br , xB 7→ (rxB , xB).

We calculate

R(pB)?(O1Br
⊗ (PB ⊗ q?BMB)) = j

?PB ⊗ r?MB = OB(−2roB)⊗ r?MB .

Therefore, the second term equals

cr ⊗OB(−2roB − r2(χ + χ ′)oB) � OF ((r + s)oF ).
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The third term now equals

det Rp?(PB ⊗ q?OtB×−tF ) = PtB � OF ,

hence the tensor product over all t ∈ T yields

PaB (W) � OF = c
s � OF .

Finally, the fourth term is easily seen to be trivial,

det Rp?(O1r ⊗ PB ⊗ q?OtB×−tF ) = OX.

Equation (4.4) follows by putting all the terms together. This concludes the proof of
Proposition 4.1. ut

4.2.1. Fixed determinant of Fourier–Mukai. The discussion for the moduli space of
sheaves with fixed determinant of their Fourier–Mukai is entirely parallel. We identify
the theta divisor 2−vw ⊂M−v ×M−w with the divisor

2− = {(Z−, zF , T
−, tF ) : h

0(IZ− ⊗ IT̃ − ⊗ z
−1
F ⊗ tF ⊗ L) 6= 0} ↪→ X−v × X−w,

where as before
L = O(−(χ + χ ′)f + (r + s)σ ).

For r, s ≥ 3, the birational isomorphisms are defined in codimension 1, and we have

2w = (c
−
v )
?L[dv] ⊗ π?FOF ((χ − χ

′)oF ),

where c−v : X
−
v → X[dv] is the forgetful morphism.

4.3. Equal ranks and the proof of strange duality

We now consider the case r = s ≥ 3, when we simply have

2w = c
?
vL
[dv], 2v = c

?
wL
[dw].

Furthermore, tensor product gives a rational map defined away from codimension 2,

τ+ : X+v × X+w 99K X+, (IZ, zB , IT , tB) 7→ (IZ ⊗ IT̃ , zB ⊗ tB).

Here
X+ = {(U, uB) : aB(U) = ruB} ⊂ X

[dv+dw] × B.

In other words, X+ is the fiber product

X+

π2

��

c // X[dv+dw]

aB

��
B

r // B
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where c and π2 are the natural projection maps,

c(U, uB) = U, π2(U, uB) = uB .

The divisor 2+ ↪→ X+v ×X
+
w is the pullback under τ+ of the divisor

θ+ = {(U, uB) : h
0(IU ⊗ uB ⊗ L) 6= 0},

with corresponding line bundle

O(θ+) ' c?L[dv+dw]

on X+.
To identify the space of sections H 0(X+,O(θ+)), we let B[r] denote the group of

r-torsion points on B, and fix an isomorphism

r?O '
⊕
τ∈B[r]

τ.

Then

H 0(X+,O(θ+)) = H 0(X+, c?L[dv+dw]) = H 0(X[dv+dw], L[dv+dw] ⊗ (c)?O)
=

⊕
τ∈B[r]

H 0(X[dv+dw], L[dv+dw] ⊗ a?Bτ) =
⊕
τ∈B[r]

H 0(X[dv+dw], (L⊗ τ)[dv+dw]).

Under the isomorphism above, the divisor θ+ corresponds up to a C?-scaling ambi-
guity to a tuple of sections,

θ+ ↔ (sτ )τ∈B[r], sτ ∈ H
0(X[dv+dw], (L⊗ τ)[dv+dw]).

The space of sections of (L⊗ τ)[dv+dw]→ X[dv+dw] can be identified with

3dv+dwH 0(L⊗ τ),

which is one-dimensional since h0(L ⊗ τ) = χ(L ⊗ τ) = dv + dw. Furthermore, any
nonzero section vanishes along the divisor

2L⊗τ = {IU : h
0(IU ⊗ L⊗ τ) 6= 0}.

We have the important

Proposition 4.2. For each τ, sτ is not the trivial section, hence it vanishes along 2L⊗τ .

The proposition completes the proof of Theorem 1.2. Indeed, as explained in [MO1], each
of the sections sτ induces an isomorphism between spaces of sections⊕

τ∈B[r]

sτ :
⊕
τ∈B[r]

H 0(X[dv , (L⊗ τ)[dv])∨→
⊕
τ∈B[r]

H 0(X[dw], (L⊗ τ)[dw]).

Since we argued that the strange duality map coincides with
⊕

τ∈B[r] sτ , Theorem 1.2
follows. 2

The proof of Theorem 1.3 is identical. ut

2 Here, we assumed the determinant is O(σ + mf ) where f denotes the fiber over zero. If the
determinant involves the fiber over a different point, the same argument applies with the obvious
changes in the definition of L.
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Proof of Proposition 4.2. This is easily seen by restriction to X[dv+dw]F , the fiber over zero
of the addition map aB : X[dv+dw]→ B. Letting X+F be the fiber product

X+F

ι

��

c // X[dv+dw]F

ι

��
X+

c // X[dv+dw]

we have a commutative diagram

H 0(X+, θ+)

��

//⊕
τ∈B[r]H

0(X[dv+dw], (L⊗ τ)[dv+dw])

��
H 0(X+F , θ

+) //⊕
τ∈B[r]H

0(X
[dv+dw]
F , (L⊗ τ)[dv+dw])

where the horizontal maps are isomorphisms and the vertical maps are restrictions of
sections. The bottom isomorphism is particularly easy to understand since

X+F ' X
[dv+dw]
F × B[r].

Let θ+F be the restriction of θ+ to X+F . Further restricting θ+F to X[dv+dw]F × {τ } we ob-
tain the divisor 2L⊗τ . We claim that each of the divisors 2L⊗τ restricts nontrivially to
X
[dv+dw]
F . This implies in turn that sτ is not the trivial section for any τ . The following

lemma proves the claim above when τ = O; the arguments are identical for τ 6= O. ut

Lemma 4.3. Consider the line bundle Lk,n = O(kσ + nf ) on X = B × F, and assume
that k ≥ 2 and n ≥ 1. Then for a generic IZ ∈ X

[kn]
F , we have

H 0(IZ ⊗ Lk,n) = 0.

Proof. We argue by induction on n. For n = 1, as established before, all sections of L
vanish along divisors of the form

k⊔
i=1

(B × yi) ∪ f for y1 + · · · + yk = oF .

A zero-dimensional subscheme IZ in X[k]F consisting of distinct points zi = (xi, yi) ∈

B × F , 1 ≤ i ≤ k, must satisfy

x1 + · · · + xk = oB .

Choose Z so that y1 + · · · + yk 6= oF , with yi 6= yj for i 6= j , and so that xi 6= oB for all
1 ≤ i ≤ k. Then no section of L vanishes at Z.

To carry out the induction, note the exact sequence of X,

0→ Lk,n→ Lk,n+1 → Of (koF )→ 0,
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and the associated exact sequence on global sections,

0→ H 0(X,Lk,n)→ H 0(X,Lk,n+1)→ H 0(X,Of (koF ))→ 0.

Let IZ ∈ X
[kn]
F be such that

H 0(IZ ⊗ Lk,n) = 0 and Z ∩ (oB × F) = ∅.

Then H 1(IZ ⊗ Lk,n) = 0. Choose k additional points

zi = (oB , yi), 1 ≤ i ≤ k, so that y1 + · · · + yk 6= oF .

From the exact sequence of global sections, it follows that no section of Lk,n+1 vanishes
at

Z ∪ {z1, . . . , zk} ∈ X
[k(n+1)]
F .

Indeed, the exact sequence and the induction hypothesis on Z show that

H 0(X,Lk,n+1 ⊗ IZ) ∼= H
0(F,OF (koF )⊗ IZ) ∼= H

0(F,OF (koF ))

via restriction. But no section of OF (koF ) on the central fiber vanishes at the points
z1, . . . , zk , so no section of Lk,n+1 vanishes at Z ∪ {z1, . . . , zk}. We conclude that for a
general IZ′ ∈ X

[k(n+1)]
F , we have

H 0(IZ′ ⊗ Lk,n+1) = 0.

This ends the proof of the lemma. ut

4.4. Proof of Theorem 1.4

The strategy of proof is similar to that of Theorem 1.2. We indicate the necessary changes.
We write

det v = O(σ +mvf )⊗Q−rv , detw = O(σ +mwf )⊗Q−sw ,

for line bundles Qv,Qw of degree 0 over C. We recall the birational isomorphism in
Subsection 3.2:

M+v 99K X+v = {(Z, zC) : z
r
C =MZ} ⊂ X

[dv] × Pic0(C)

where we set
MZ = OC(aC(Z)− dv · o).

This was noted when Qv is trivial in Section 3.2, but the twist by Qv is an isomorphism
of moduli spaces, yielding only a modified formula

RS†(V ) = I∨Z (−rσ + (χ + ḡ)f )⊗ z
−1
C ⊗Q

−1
v .

There is a similar birational isomorphism M+w 99K X+w .
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The divisor 2+vw ⊂M+v ×M+w is identified with 2+ ⊂ X+v × X+w where

2+ = {(Z, T , zC, tC) : h
0(IZ ⊗ IT ⊗ zC ⊗ tC ⊗ L) 6= 0},

for the line bundle

L = O((r + s)σ − (χv + χw + 2ḡ)f )⊗Q with χ(L) = dv + dw.

Here, we wroteQ = Qv ⊗Qw, which by assumption is a generic line bundle of degree 0
over the curve C. It can be seen that L has no higher cohomology if χv + χw ≤ −3ḡ. In
turn, when r = s, this is equivalent to the requirement

dv + dw = −2r(χv + χw + ḡ) ≥ 4rḡ

of the theorem.
There are a few steps in the proof of Theorem 1.4 that need modifications from the

genus 1 case. They are:

(i) The identification of the theta bundles. We carry this out for r = s only, making
use of the natural addition map τ+ : X+v × X+w 99K X+, where

X+ = {(U, uC) :MU = u
r
C} ⊂ X

[dv+dw] × Pic0(C).

We have 2+ = (τ+)?θ+ for

θ+ = {(U, uC) : h
0(IU ⊗ uC ⊗ L) 6= 0}.

As before, we note the natural projections c : X+ → X[dv+dw] and pr : X+ → Pic0(C).

We claim that
O(θ+) = c?L[dv+dw] ⊗ pr?Prα, (4.5)

where Pα is the line bundle over Pic0(C) associated to the point

α = KC(−2ḡ · o)⊗Q−2
∈ Pic0(C). (4.6)

Pulling back under τ+, it follows that

2w = c
?
vL
[dv] ⊗ pr?Prα, 2v = c

?
wL
[dw] ⊗ pr?Prα.

Before proving (4.5), we simplify notations. We write ` = χ(L) = dv + dw. Over the
Jacobian A = Pic0(C), we fix a principal polarization, for instance

2 = {y ∈ A : h0(y ⊗OC(ḡ · o)) 6= 0}.

The standardly normalized Poincaré bundle P → A× A takes the form

P = m?2−1
⊗ (2 �2).

This differs in sign from the usual conventions, but it is compatible with our conventions
on the Abel–Jacobi embedding

C → A, x 7→ OC(x − o),
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in the sense that P|A×α restricts to α over C. For degree `, we consider the Abel–Jacobi
map

π : C(`)→ A, D 7→ O(D − ` · o),

and set
P(`)C = (π, 1)?P → C(`) × A.

The bundle P(`) satisfies

P(`)|C(`)×{y} ∼= y(`), P(`)|`[o]×A is trivial over A.

When ` = 1, P(1) is the Poincaré bundle PC → C × A normalized over o.
With these notations out of the way, we first consider O(θ+) over the productX[`]×A.

We claim that
O(θ+) = c?L[`] ⊗ (aC, 1)?P(`) ⊗ pr?AM (4.7)

for some line bundle M→ A. This follows from the see-saw theorem. The restriction of
O(θ+) to X[`] × {uC} is

(L⊗ uC)
[`]
= L[`] ⊗ a?Cu

(`)
C .

This agrees with the restriction of c?L[`]⊗ (aC, 1)?P(`) and proves (4.7). To identify M,
we restrict to {U}×A, where U is a length ` subscheme of X supported over o× oF . We
obtain

M = det Rp?(PC ⊗ q?(L⊗ IU ))−1.

We can rewrite M expressing in K-theory

IU = O − ` ·Oo×oF .

Recalling the normalization of PC over o, and that

L = (OC(t · o)⊗Q) � OF (2r · oF )

for t = −(χv + χw + 2ḡ), we obtain

M = det Rp?(PC ⊗ q?L)−1
= det Rp?(PC ⊗ q?(OC(t · o)⊗Q))

−2r

= det Rp?(PC ⊗ q?(OC(ḡ · o)⊗Q))
−2r
= 22r

⊗ P2r
−Q.

Therefore

O(θ+) = c?L[`] ⊗ (aC, 1)? ◦ (π, 1)?P ⊗ pr?A(2⊗ P−Q)2r .

Over X+ ↪→ X[`] × A, we have the commutative diagram

X+

prA
��

(aC ,1) // C(`) × A

(π,1)
��

A
(r,1) // A× A
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so that (π, 1) ◦ (aC, 1) = (r, 1) ◦ prA. Hence, we obtain

O(θ+) = c?L[`] ⊗ pr?A((r, 1)?P ⊗22r
⊗ P2r

−Q)

= c?L[`] ⊗ pr?A(r
?2⊗2⊗ (r + 1)?2−1

⊗22r
⊗ P2r

−Q)

= c?L[`] ⊗ pr?A(2⊗ (−1)?2−1
⊗ P2

−Q)
r
= c?L[`] ⊗ pr?AP

r
α,

as claimed.
(ii) Next, we identify the space of sections H 0(X+,O(θ+)) using the cartesian dia-

gram

X+

prA
��

c // X[`]

f

��
A

r // A

where f = π ◦ aC . We have

H 0(X+,O(θ+)) = H 0(X+, c?L[`] ⊗ pr?AP
r
α) = H

0(X[`], L[`] ⊗ c?pr?AP
r
α)

= H 0(X[`], L[`] ⊗ f ?r?Prα) = H 0(X[`], L[`] ⊗ f ?r?r
?Pα)

=

⊕
τ∈A[r]

H 0(X[`], L[`] ⊗ f ?(Pα ⊗ τ))

=

⊕
τ∈A[r]

H 0(X[`], L[`] ⊗ a?C(α ⊗ τ))

=

⊕
τ∈A[r]

H 0(X[`], (L⊗ α ⊗ τ)[`]).

Similar expressions hold over each of the factors X+v and X+w .
(iii) Finally, we need a suitable analogue of Lemma 4.3. This concerns subschemes Z

in X, belonging to

X
[`]
F = {Z : aC(Z) is rationally equivalent to ` · o}.

We show that if Lk,n = O(kσ +nf ) for k ≥ 2g, n ≥ g, then for all r-torsion line bundles
τ over C, we have

H 0(Lk,n ⊗ α ⊗ τ ⊗ IZ) = 0

provided Z is generic in X[k(n−ḡ)]F , and Q, which appears in the definition of α in (4.6),
is generic over C. This is then applied to the line bundle L appearing in the expression of
the theta bundles above.

We induct on n, starting with the base case n = g. Just as in genus 1, for generic Q,
the sections of Lk,g ⊗ α ⊗ τ vanish along divisors of the form

k⊔
i=1

(C × yi) ∪ fp1 + · · · + fpg for y1 + · · · + yk = oF ,
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and some p1, . . . , pg ∈ C. Indeed, it suffices to explain that

h0(OC(g · o)⊗ α ⊗ τ) = 1,

the unique section vanishing at g points p1(o), . . . , pg(o), which depend on o. Equiva-
lently, recalling the definition of α in (4.6), and using Riemann–Roch and Serre duality,
we prove that

h0(τ−1
⊗OC((g − 2) · o)⊗Q2) = 0.

As the Euler characteristic of the above line bundle is −1, the space of sections vanishes
for generic Q of degree 0.

To complete the proof of the base case, fix a genericQ as above. It suffices to explain
that for all k ≥ 2g, we can find x1, . . . , xk ∈ C such that

x1 + · · · + xk ≡ k · o, xi 6= pj for all i, j.

This amounts to choosing a section from the nonempty set

H 0(OC(k · o))−

g⋃
j=1

H 0(OC(k · o− pj ))−H
0(OC((k − 1) · o)),

and letting x1, . . . , xk be its zeros. This ends the argument for the base case.
The inductive step does not require any changes from the original Lemma 4.3.

The proof of Theorem 1.4 is now completed. ut
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