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Cyclic extensions and the local lifting problem

Andrew Obus and Stefan Wewers

May 10, 2012

Abstract

The local Oort conjecture states that, if G is cyclic and k is an al-
gebraically closed field of characteristic p, then all G-extensions of k[[t]]
should lift to characteristic zero. We prove a critical case of this con-
jecture. In particular, we show that the conjecture is always true when
vp(|G|) ≤ 3, and is true for arbitrarily highly p-divisible cyclic groups G

when a certain condition on the higher ramification filtration is satisfied.

1 Introduction

1.1 The local lifting problem Let Ȳ be a smooth, projective, connected
curve over an algebraically closed field k of characteristic p > 0. Results in
deformation theory going back to Grothendieck show that Ȳ can always be lifted
to characteristic zero. Specifically, one can always find a discrete valuation ring
(DVR) R in characteristic zero, with residue field k, such that there exists a
smooth relative R-curve Y with Y ×R k ∼= Ȳ .

In [25], Oort asked the natural question: can one lift a Galois cover of curves
to characteristic zero? That is, if G is a finite group, and f̄ : Ȳ → X̄ is a G-
Galois cover of smooth, projective, connected curves, is there a G-Galois cover
f : Y → X of smooth relative curves over a DVR R in characteristic zero
whose special fiber is f̄ : Ȳ → X̄? Clearly, the answer is not always “yes.” For
instance, the group G = Z/p×Z/p acts faithfully on Ȳ = P1

k via an embedding
into Ga(k). If X̄ = Ȳ /G, then the generic fiber of any lift f : Y → X of
f̄ : Ȳ → X̄ must be a G-Galois cover P1

K → P1
K , where K = Frac(R). But if

p ≥ 3, then G cannot act faithfully on P1 in characteristic zero, so such a lift
does not exist. However, Oort conjectured ([24]) that G-covers should always
lift when G is cyclic. Our main result (Theorem 1.4) proves the Oort conjecture
whenever vp(|G|) ≤ 3, and in many cases for arbitrarily large cyclic groups G.
Specific statements are in §1.3. The case we prove is critical, as Pop ([27]) is
able to reduce the conjecture to the case we have proven, thus proving the entire
conjecture. See Remark 1.5.
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Although this was not yet known at the time of [25], it turns out that the
nature of lifting Galois covers of curves is completely local. Let B be the branch
locus of the G-Galois cover f̄ : Ȳ → X̄. If, for each x ∈ B, one can lift the cover
f̄ when restricted to a formal neighborhood x̂ of x, then one can lift f as well.
This is known as the local-global principle. Proofs have been given by Bertin
and Mézard ([3]), Green and Matignon ([15]), and Garuti ([12]).

The restriction f̄ |x̂ is a disjoint union of covers of the form Spec k[[z]] →
Spec k[[t]]. Thus, the study of lifting Galois covers can be reduced to the fol-
lowing local lifting problem:

Problem 1.1 (The local lifting problem) Let k be an algebraically closed
field of characteristic p and G a finite group. Let k[[z]]/k[[t]] be a G-Galois
extension (i.e., an integral extension of integrally closed domains that is G-
Galois on the level of fraction fields). Does there exist a DVR R of characteristic
zero with residue field k and a G-Galois extension R[[Z]]/R[[T ]] that reduces to
k[[z]]/k[[t]]? That is, does the G-action on R[[Z]] reduce to that on k[[z]], if we
assume that Z (resp. T ) reduces to z (resp. t)?

Remark 1.2 If L/k[[t]] is any G-Galois extension, then the structure theorem
for complete DVRs shows that L is always abstractly isomorphic to k[[z]]. So in
the local lifting problem, we may as well talk about general G-Galois extensions
of k[[t]].

In light of the local-global principle, one translates the conjecture of Oort
above into the local context.

Conjecture 1.3 (Local Oort conjecture) The local lifting problem can al-
ways be solved when G is cyclic.

Note that a consequence of the local Oort conjecture and the local-global
principle is that any Galois cover of k-curves with cyclic inertia groups (not just
cyclic Galois group) lifts to characteristic zero.

The first author’s paper [23] is a detailed exposition of many aspects of the
local lifting problem.

1.2 Previously known results It is easy to prove that if Conjecture 1.3
is true for a given Z/pn-extension Ln/k[[t]], then it is also true for any Z/rpn-
extension (p ∤ r) whose unique Z/pn-subextension is Ln/k[[t]] (see, e.g., the proof
of [23], Proposition 6.3). Thus, we may reduce to the case where G ∼= Z/pn.

If G ∼= Z/p or Z/p2, then Conjecture 1.3 has already been shown to be
true. The original proof of the case G ∼= Z/p was given by Oort, Sekiguchi, and
Suwa in [26]. Their proof was given in the global context, for any Z/p-cover of
smooth, projective curves. The proof used essentially global techniques, such as
generalized Jacobians and abelian schemes.

Later, Green and Matignon reproved Conjecture 1.3 for G = Z/p, and also
proved it for G = Z/p2 ([15], II, Theorems 4.1 and 5.5). Their lifts were given
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by explicit Kummer extensions. The form of these extensions was inspired
by Sekiguchi-Suwa Theory (or Kummer-Artin-Schreier-Witt Theory), although
Green and Matignon developed their proofs independently. This theory gives
(in principle) explicit equations for group schemes classifying unramified Z/pn-
extensions of flat local R-algebras, where R is a complete discrete valuation
ring in mixed characteristic (0, p). When n ≤ 2, it is manageable to write down
these equations explicitly, and Green and Matignon were able to exploit this to
write down their lifts. See [28] for an overview of the general theory, [29] for an
expanded version with proofs included, [30] for a detailed account of the case
n ≤ 2, or [32] for a briefer overview of this case.

Unfortunately, when n ≥ 3, the equations involved in Sekiguchi-Suwa theory
become extremely complicated, and extraordinarily difficult to work with. No
one has been able to use the method of [15] to prove Conjecture 1.3 for any
Z/pn-extension with n ≥ 3. Indeed, prior to this paper, Conjecture 1.3 for
such extensions was only known to be true for sporadic examples arising from
Lubin-Tate formal group laws ([16], [14]).

However, there has long been evidence for the truth of Conjecture 1.3, in the
sense that all of the main known obstructions to lifting (such as the Bertin/Katz-
Gabber-Bertin obstructions of [2], [10], and the Hurwitz tree obstruction of [9],
[8]) vanish for cyclic extensions.

1.3 Main result To state our main result, Theorem 1.4, we recall that a
Z/pn-extension Ln/k[[t]] gives rise to a higher ramification filtration Gss≥0 on the
group G for the upper numbering ([31], IV). The breaks in this filtration (i.e.,
the values i for whichGi ) Gj for all j > i) will be denoted by (m1,m2, . . . ,mn).
One knows that mi ∈ N and

mi ≥ pmi−1, (1)

for i = 2, . . . , n (see, e.g., [13]).

Theorem 1.4 Let Ln/k[[t]] be a Z/p
n-extension with upper ramification breaks

(m1,m2, . . . ,mn). Suppose, for 3 ≤ i ≤ n− 1, that there is never an integer ai

such that mi

p − mi−1 < ai ≤
(

mi

mi−mi−1

)(

mi

p −mi−1

)

. Then Conjecture 1.3

holds for Ln/k[[t]].

Remark 1.5 (i) It is not hard to see that the condition in Theorem 1.4
is satisfied whenever Ln/k[[t]] has no “essential ramification,” i.e., that
mi < pmi−1 + p for 2 ≤ i ≤ n. Pop’s proof of the Oort conjecture in
in [27] reduces the (local) Oort conjecture to the case where there is no
essential ramification.

(ii) The condition in Theorem 1.4 is vacuous for n = 3, so Conjecture 1.3 for
G ∼= Z/p3 is an immediate consequence.

(iii) The condition that there is no integer ai such that mi

p − mi−1 < ai ≤
(

mi

mi−mi−1

)(

mi

p −mi−1

)

is equivalent to saying that, if mi = pmi−1 +
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pri − ηi, with ri and ηi integers such that 0 ≤ ηi < p, then 0 ≤ ri ≤ ηi.
See [27].

(iv) One can conjecture further that, if G ∼= Z/pn, one should be able to take
R = W (k)[ζpn ] in Conjecture 1.3, where ζpn is a pnth root of unity. This
is known when n ≤ 2. Unfortunately, our proof gives no effective bounds
on R. The proof of [27] gives, in theory, some effective bounds on R, but
they are much weaker than what is expected.

Remark 1.6 It would be interesting to investigate the local lifting problem
when G ∼= Z/pn ⋊ Z/m, with p ∤ m. One can show that a necessary condition
to lift a G-extension L/k[[t]] to characteristic zero is that the action of Z/m
on Z/pn is either faithful or trivial, and that, if it is faithful, then the upper
ramification breaks (m1, . . . ,mn) of the Z/pn-subextension are all congruent to
−1 (mod m). In light of [27], one can ask if this is the only restriction. For
instance, should all Dpn -extensions lift for odd p?

1.4 Outline of the paper We start with a short section (§2) overviewing
the basics of the Artin-Schreier-Witt theory, giving an explicit characterization
of the Z/pn-extensions of k[[t]]. In §3, we set up our induction on n, and show
how it proves Theorem 1.4. We prove the base cases n = 1 and n = 2 in §4. The
paper begins in earnest with §5. In §5.1 and §5.2 we introduce the language of
characters, which will often be more convenient than the language of extensions
for expressing our results. In §5.3, we introduce Kato’s Swan conductor in the
situation relevant to us. The Swan conductor serves several purposes in this
paper, most notably giving us a way to measure how bad the reduction of a
cover is. In §5.4 and §5.5, we examine the particular case of Z/p-extensions in
great detail. This is important, as Z/p-extensions are the building blocks of our
inductive process.

In §6, we give the main proofs. Unlike in [15], we do not try to write
down a lift of a given Z/pn-extension explicitly. In particular, we do not use
the Sekiguchi-Suwa theory at all, except in the relatively trivial case of Z/p-
extensions (i.e., Kummer-Artin-Schreier theory). Instead, we write down what
the form of the equations should be, in order that we might lift some Z/pn-
extension. Then, we show that if equations in this form do not reduce to a
Galois extension, then they can be deformed to yield something that comes
closer to reducing to a Galois extension, and this deformation process eventually
terminates. This proves Conjecture 1.3 for some Z/pn-extension. We then show
that, given a solution for some particular extension, we can find solutions to
many more. A more detailed outline of §6 is given in §6.1.

The proofs of several key technical results are postponed to §7. This is
partially because proving these results would disrupt the continuity of §6, and
partially because the proofs share much notation, and thus are more easily read
together.
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1.5 Conventions The letter K will always be a field of characteristic zero
that is complete with respect to a discrete valuation v : K× → Q. We assume
that the residue field k of K is algebraically closed of characteristic p. We
also assume that the valuation v is normalized such that v(p) = 1. The ring
of integers of K will be denoted R. We fix an algebraic closure K̄ of K, and
whenever necessary, we will replace K by a suitable finite extension within K̄,
without changing the above notation. The maximal ideal of R will be denoted
m. Furthermore, for each r ∈ N, we fix once and for all a compatible system of
rth roots p1/r in K̄ such that if ab = r, then (p1/r)a = p1/b. Thus pq ∈ K̄ is
well defined for any q ∈ Q. The greatest integer function of x is written [x].

Acknowledgements

The authors would like the thank Irene Bouw, Louis Brewis, David Harbater,
and Martin Rubey for useful conversations. In particular, Louis Brewis showed
us that the Hurwitz tree obstruction to the local Oort conjecture vanishes,
which helped us come up with the idea of where to place our branch points.
Irene Bouw showed us how to vastly simplify our proof of Theorem 7.7. We
also thank Michel Matignon and Florian Pop for helpful comments on earlier
versions of this article.

The first author was partially supported by an NSF Mathematical Sciences
Postdoctoral Research Fellowship. This work was completed during a visit by
the first author to the Max-Planck-Institut für Mathematik, and he thanks the
Institute for its support and pleasant atmosphere.

2 Artin-Schreier-Witt theory

If Ln/k[[t]] is a Z/pn-extension, then so is the extensionMn/k((t)), whereMn =
Frac(Ln). The classical Artin-Schreier-Witt theory states that Mn/k((t)) is
given by an Artin-Schreier-Witt equation

℘(x1, . . . , xn) = (f1, . . . , fn),

where (f1, . . . , fn) lies in the ring Wn(k((t))) of truncated Witt vectors, F is
the Frobenius morphism on Wn(k((t))), and ℘(x) := F (x) − x is the Artin-
Schreier-Witt isogeny. Adding a truncated Witt vector of the form ℘(y) to
(f1, . . . , fn) does not change the extension, and we obtain a group isomorphism
H1(k((t)),Z/pn) ∼= Wn(k((t)))/℘(Wn(k((t)))). Since we can add ℘(y) to a
Witt vector without changing the extension, we may assume that the fi are
polynomials in t−1, all of whose terms have prime-to-p degree. In this case, if

mi := max{ pi−j degt−1(fj) | j = 1, . . . , i }, (2)

then the mi are exactly the breaks in the higher ramification filtration of
Mn/k((t)) ([13], Theorem 1.1). From this, one easily sees that p ∤ m1, that
mi ≥ pmi−1 for 2 ≤ i ≤ n, and that if p|mi, then mi = pmi−1.

For more details, see [35] or the exercises on page 330 of [20].
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3 The induction process

Let Ln/k[[t]] be a Z/pn-extension. A theorem of Harbater-Katz-Gabber ([17],
[19]) shows that (after possibly changing the uniformizer t of k[[t]]) there exists
a unique cover Ȳn → X̄ := P1

k that is étale outside t = 0, totally ramified above
t = 0, and such that the formal completion of Ȳn → X̄ at t = 0 yields the
extension Ln/k[[t]]. The local-global principle thus shows that solvability of the
local lifting problem from Ln/k[[t]] is equivalent to the following claim, which
will be more convenient to work with:

Claim 3.1 Given a G-Galois extension Ln/k[[t]], with G ∼= Z/pn, then after
possibly changing the uniformizer t of k[[t]], there exists a G-Galois cover Yn →
X := P1

K (where K is the fraction field of some DVR R as above) with the
following properties:

(i) The cover Yn → X has good reduction with respect to the standard model
P1
R of X and reduces to a G-Galois cover Ȳn → X̄ = P1

k which is totally
ramified above the point t = 0 and étale everywhere else.

(ii) The completion of Ȳn → X̄ at t = 0 yields Ln/k[[t]].

Remark 3.2 Let T be a coordinate of P1
R reducing to t. Then Condition (i)

and (ii) in Claim 3.1 can be reformulated as follows:

(i) The cover Yn → X is étale outside the open disk

D := {T | |T | < 1 }.

(ii) The inverse image of D in Yn is an open disk.

(iii) If A = R[[T ]]{T−1} is the ring







∑

j∈Z

ajT
j | aj ∈ R, aj → 0 as j → −∞







,

then the cover Yn → X is unramified when base changed to SpecA
(which corresponds to the “boundary” of the disk D). The extension
of residue fields is isomorphic to the extension of fraction fields coming
from Ln/k[[t0]].

If R is a characteristic zero DVR with residue field k and fraction field K,
set D(r) = {T ∈ K̄ | |T | < |p|r}, using the non-archimedean absolute value on
K induced from the valuation.

We prove Theorem 1.4 (in the context of Claim 3.1) by induction using the
following base case (Lemma 3.3) and induction step (Theorem 3.4).
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Lemma 3.3 If n = 1 (resp. n = 2), let Ln/k[[t]] be a Z/pn-extension with
upper ramification break m1 (resp. breaks (m1,m2)). Then there exists a Z/pn-
cover Yn → X satisfying Claim 3.1 for Ln/k[[t]], which is étale outside the open
disk D(rn), where rn = 1

mn(p−1) .

Theorem 3.4 (i) Suppose n > 1, and let Ln/k[[t]] be a Z/pn-extension
with upper ramification breaks (m1, . . . ,mn) and Z/pn−1-subextension
Ln−1/k[[t]]. Suppose there exists a Z/pn−1-cover Yn−1 → X satisfying
Claim 3.1 for Ln−1/k[[t]], which is furthermore étale outside the open disk
D(rn−1), where rn−1 = 1

mn−1(p−1) . Then there is a Z/pn-cover Yn → X

satisfying Claim 3.1 for Ln/k[[t]].

(ii) If Ln/k[[t]] is as in part (i) and there is no integer a satisfying

mn

p
−mn−1 < a ≤

(

mn

mn −mn−1

)(

mn

p
−mn−1

)

,

then the Z/pn-cover Yn → X in part (i) can be chosen to be étale outside
D(rn), where rn = 1

mn(p−1) .

Theorem 1.4 now follows easily.

Proof: (of Theorem 1.4) Let Ln/k[[t]] be in the form of Theorem 1.4. We
note that, for any n′ ≤ n, the unique Z/pn

′

-subextension Ln′/k[[t]] of Ln/k[[t]]
has upper ramification breaks (m1, . . . ,mn′) ([31], IV, Proposition 14). Using
Lemma 3.3, Theorem 3.4, and induction, it follows that there is a Z/pn−1-cover
Yn−1 → X satisfying Claim 3.1 for Ln−1/k[[t]], that is étale outside D(rn−1).
Then Theorem 3.4 (ii) shows that Claim 3.1, thus Conjecture 1.3, holds for
Ln/k[[t]]. ✷

4 The base case

The proof of Lemma 3.3 is straightforward, using the explicit equations given
in [15].

Proof of Lemma 3.3 for Z/p-extensions: By Artin-Schreier theory, any
Z/p-extension of k((t)) is given by an equation yp− y = f1, where f1 ∈ k((t)) is
unique up to adding elements of the form ap−a, with a ∈ k((t)). Thus, we may
assume that f1 =

∑m1

i=1 ait
−i ∈ k[t−1] is a polynomial in t−1 such that ai = 0

for i ≡ 0 (mod p). Then the break in the ramification filtration is m1, which
is prime to p. Since m1

√

1/f1 is a uniformizer of k((t)), we may make a change
of variables and assume f1 = t−m1 . So we assume our equation is given by
yp − y = t−m1 . In [15], II, Theorem 4.1, a Z/p-cover Y → P1 satisfying Claim
3.1 is given by the Kummer extension

yp = G1(T ) = 1 + λpT−m1, (3)

7



where T reduces to t and λ = ζp − 1 for ζp a primitive pth root of unity. The
zeroes of G1 all have valuation p

m1(p−1) >
1

m1(p−1) =: r1, and the unique pole is

at T = 0. Since the branch points all have valuation greater than r1, the lemma
is proved. ✷

Proof of Lemma 3.3 for Z/p2-extensions: Let L2/k((t)) be a Z/p2-
extension with upper ramification breaks (m1,m2), and let ri = 1

mi(p−1) for

i ∈ {1, 2}. After a possible change of variables, [15], II, Theorem 5.5 gives a
Z/p2-cover Y → P1 satisfying Claim 3.1, in the form of a Kummer extension

zp
2

= G1(T )G2(T )
p.

Here G1 is as in (3) and G2 is a polynomial in T−1, which is called

G(T−1) + pµp
m1(p−1)
∑

s=1

AsT
−s (4)

in [15], II, Theorem 5.5. Also, v(µ) = 1
p(p−1) and v(As) ≥ 0 for all s. It is clear

from the expression for G(T−1) given in loc.cit. that the coefficient of each
non-constant term of G(T−1) has valuation at least 1

p−1 . The same holds for

the pµpAs by inspection. Furthermore, the proof of [15], II, Theorem 5.5 shows
that each term in (4) has degree less than m2 in T−1 (m2 is called d in loc.cit.).

Now, we have already seen that the zeroes and poles of G1 have valuation
greater than r1 > r2. The only pole of G2 is at T = 0, so it suffices to show that
the zeroes of G2 have valuation greater than r2, or equivalently (by the theory
of Newton polygons), that the coefficient of T−ℓ in G2− 1 has valuation greater
than ℓr2 = ℓ

m2(p−1) . But this is true because ℓ < m2 and the valuation is at

least 1
p−1 . ✷

5 Characters and Swan conductors

In this section we introduce the general geometric setup (characters) and our
most important tools (Swan conductors). As laid out in the introduction, our
goal is to construct pn-cyclic covers Y → X = P1

K of the projective line reducing
to a given cover Ȳ → X̄ = P1

k which is étale outside the origin. For technical
reasons it is more convenient to work with the corresponding character of the
Galois group of the function field of X .

5.1 Geometric setup Let X be a smooth, projective and absolutely irre-
ducible curve over K. We write K for the function field of X . We assume that
X has good reduction, and fix a smooth R-model XR. We let X̄ := XR ⊗R k
denote the special fiber of XR. We also fix a K-rational point x0 on X and
write x̄0 ∈ X̄ for the specialization of x0 with respect to the model XR. In our
main example, we have X = P1

K , XR = P1
R and x0 = 0, but we will not assume

this in §5.
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We let Xan denote the rigid analytic space associated to X . The residue
class of x0 with respect to the model XR,

D :=]x̄0[XR⊂ Xan,

is the set of points of Xan specializing to x̄0 ∈ X̄ ([5]). It is an open subspace
of Xan, isomorphic to the open unit disk. To make this isomorphism explicit
we choose an element T ∈ OXR,x̄0 with T (x0) = 0 and whose restriction to
the special fiber generates the maximal ideal of OX̄,x̄0

(this is possible because

X̄ is smooth). Then ÔXR,x̄0 = R[[T ]], and T induces an isomorphism of rigid
analytic spaces

D ∼= { x ∈ (A1
K)an | v(x) > 0 }

which sends the point x0 to the origin. We call T a parameter for the open disk
D with center x0. The choice of T having been made, we identify D with the
above subspace of (A1

K)an.
For r ∈ Q≥0 we define

D[r] := { x ∈ D | v(x) ≥ r }.

We have D[0] = D. For r > 0 the subset D[r] ⊂ D is an affinoid subdomain.
Let vr : K× → Q denote the “Gauss valuation” with respect to D[r]. This
is a discrete valuation on K which extends the valuation v on K and has the
property vr(T ) = r. It corresponds to the supremum norm on the open subset
D[r] ⊂ Xan.

Let κr denote the residue field of K with respect to the valuation vr. For
r = 0, κ0 is the function field of X̄. We let ordx̄0 : κ×0 → Z denote the normalized
valuation corresponding to the point x̄0 ∈ X̄.

Now suppose that r > 0. Then after replacingK by a finite extension (which
depends on r!) we may assume that pr ∈ K. Then D[r] is isomorphic to a closed
unit disk over K with parameter Tr := p−rT . Moreover, the residue field κr is
the function field of the canonical reduction D̄[r] of the affinoid D[r]. In fact,
D̄[r] is isomorphic to the affine line over k with function field κr = k(t), where
t is the image of Tr in κr. For a closed point x̄ ∈ D̄[r], we let ordx̄ : κ×r → Z
denote the normalized discrete valuation corresponding to the specialization of
x̄ on D̄[r]. We let ord∞ denote the unique normalized discrete valuation on κr
corresponding to the ‘point at infinity’.

For F ∈ K× and r ∈ Q≥0, we let [F ]r denote the image of p−vr(F )F in the
residue field κr.

5.2 Characters We fix n ≥ 1 and assume that K contains a primitive pnth
root of unity ζpn (this is true after a finite extension of K). For an arbitrary
field L, we set

H1
pn(L) := H1(L,Z/pnZ).

In the case of K, we have

H1
pn(K) := H1(K,Z/pnZ) ∼= K×/(K×)p

n

9



(the latter isomorphism depends on the choice of ζpn). Elements of H1
pn(K) are

called characters on X . Given an element F ∈ K×, we let Kn(F ) ∈ H1
pn(K)

denote the character corresponding to the class of F in K×/(K×)p
n

.
For i = 1, . . . , n the homomorphism

Z/piZ → Z/pnZ, a 7→ pn−ia,

induces an injective homomorphism H1
pi(K) →֒ H1

pn(K). Its image consists of

all characters killed by pi. We consider H1
pi(K) as a subgroup of H1

pn(K) via
this embedding.

A character χ ∈ H1
pn(K) gives rise to a (possibly branched) Galois cover

Y → X . If χ = Kn(F ) for some F ∈ K×, then Y is a connected component of
the smooth projective curve given generically by the Kummer equation yp

n

= F .
If χ has order pi as element of H1

pn(K), then the Galois group of Y → X is the

unique subgroup of Z/pnZ of order pi.
A point x ∈ X is called a branch point for the character χ ∈ H1

pn(K) if it is
a branch point for the cover Y → X . The branching index of x is the order of
the inertia group for some point y ∈ Y above x. The set of all branch points is
called the branch locus of χ and is denoted by B(χ).

Definition 5.1 A character χ ∈ H1
pn(K) is called admissible if its branch locus

B(χ) is contained in the open disk D.

5.2.1 Reduction of characters

Let χ ∈ H1
pn(K) be an admissible character of order pn, and let Y → X be

the corresponding cyclic Galois cover. Let G ∼= Z/pnZ denote the Galois group
of Y → X . Let YR be the normalization of XR in Y . Then YR is a normal
R-model of Y and we have XR = YR/G.

After enlarging our ground field K, we may assume that the character χ is
weakly unramified with respect to the valuation v0, see [11]. By definition, this
means that for all extensions w of v0 to the function field of Y the ramification
index e(w/v0) is equal to 1. It then follows that the special fiber Ȳ := YR ⊗R k
is reduced (see e.g. [1], §2.2).

Definition 5.2 We say that the character χ has étale reduction if the map
Ȳ → X̄ is generically étale.

In terms of Galois cohomology the definition can be rephrased as follows.
The character χ has étale reduction if and only if the restriction of χ to the
completion K̂0 of K with respect to v0 is unramified. The latter means that
χ|

K̂0
lies in the image of the cospecialization morphism

H1
pn(κ0) → H1

pn(K̂0)

(which is simply the restriction morphism induced by the projection Gal
K̂0

→
Galκ0). Since the cospecialization morphism is injective, there exists a unique

10



character χ̄ ∈ H1
pn(κ0) whose image in H1

pn(K̂0) is χ|
K̂0
. By construction, the

Galois cover of X̄ corresponding to χ̄ is isomorphic to an irreducible component
of the normalization of Ȳ .

Definition 5.3 If χ has étale reduction, we call χ̄ the reduction of χ, and χ a
lift of χ̄.

Remark 5.4 Assume that χ has étale reduction. Then the condition that χ is
admissible implies that the cover Ȳ → X̄ corresponding to the reduction χ̄ is
étale over X̄ − {x̄0} (the proof uses Purity of Branch Locus, see e.g. [22]). It
follows that Ȳ is smooth outside the inverse image of x̄0.

Definition 5.5 Let χ ∈ H1
pn(K) be an admissible character of order pn. We

say that χ has good reduction if it has étale reduction and the cover Ȳ → X̄
corresponding to the reduction χ̄ of χ is smooth.

Note that a Z/pn-cover of P1
k, unramified outside x0, is uniquely determined

by its germ above the branch point (see, e.g., [19]). Thus, with the above
notation, the local Oort conjecture (more specifically, Claim 3.1) may be refor-
mulated as follows.

Conjecture 5.6 Suppose that X = P1
K . Let χ̄ ∈ H1

pn(κ0) be a character
of order pn, unramified outside of x̄0. Then (after replacing K by a finite
extension, if necessary) there exists an admissible character χ ∈ H1

pn(K) with
good reduction lifting χ̄.

5.3 Swan conductors

5.3.1

Fix r ∈ Q≥0. We assume that pr ∈ K. Let K̂r denote the completion of K
with respect to the valuation vr. Let χ ∈ H1

pn(K) be a character of order ≤ pn.
By Epp’s theorem ([11]) we may assume that the restriction χ|

K̂r
is weakly

unramified. Under this condition, we can define three types of invariants which
measure in some way the ramification of χ with respect to the valuation vr.

First of all, we have the depth Swan conductor

δχ(r) := sw(χ|
K̂r
) ∈ Q≥0,

see [34], Definition 3.3. By definition, δχ(r) = 0 if and only if χ is unramified
with respect to vr. If this is the case then the reduction χ̄r ∈ H1

pn(κr) is well
defined (see the previous subsection on the case r = 0).

Let us now assume that δχ(r) > 0. Then we can define the differential Swan
conductor of χ with respect to vr,

ωχ(r) := dsw(χ|
K̂r
) ∈ Ω1

κr
,

11



see [34], Definition 3.9.
Finally, let ordx̄ : κ×r → Z be a normalized discrete valuation whose restric-

tion to k is trivial. Of course, ordx̄ corresponds either to a closed point x̄ on
the canonical reduction of the affinoid D[r], or it corresponds to the point at
infinity, x̄ = ∞. Then the composite of vr with ordx̄ is a valuation on K of
rank two, which we denote by η(r, x̄) : K× → Q × Z (see e.g. [36], §10, p. 43;
the group Q×Z is equipped with the lexicographic ordering). By definition, we
have

η(r, x̄)(F ) = (vr(F ), ordx̄([F ]r)),

for F ∈ K×. In [18] Kato defines a Swan conductor swK
χ (r, x̄) ∈ Q≥0 × Z of

χ with respect to η(r, x̄) (see [18], Definition 2.4 and 3.10; note that we have
ǫ := (0, 1)). By definition, the first component of swK

χ (r, x̄) is equal to δχ(r).
We define the boundary Swan conductor

swχ(r, x̄) ∈ Z

as the second component of swK
χ (r, x̄).

Remark 5.7 The invariant swχ(r, x̄) is determined by the invariants δχ(r) and
ωχ(r), as follows.

(i) If δχ(r) = 0 then
swχ(r, x̄) = swχ̄r (x̄).

Here χ̄r is the reduction of χ with respect to vr (well defined because
χ is unramified at vr) and swχ̄r (x̄) is the usual Swan conductor of χ̄r
with respect to the valuation ordx̄ (one less than the Artin conductor for
nontrivial characters, see [31], VI, §2). This formula follows easily from
the definitions. As a consequence we see that swχ(r, x̄) ≥ 0 and that
swχ(r, x̄) = 0 if and only if χ̄r is unramified with respect to ordx̄.

(ii) If δχ(r) > 0 then we have

swχ(r, x̄) = −ordx̄(ωχ(r)) − 1.

This follows from [18], Corollary 4.6.1

Proposition 5.8 Let χ1, χ2 ∈ H1
pn(K), and let χ3 = χ1χ2. For i ∈ {1, 2, 3}

and r ∈ Q≥0, set δi = δχi(r). If δi > 0 then we set ωi := ωχi(r). If δi = 0 then
χ̄i ∈ H1

pn(κr) denotes the reduction of χi with respect to vr.

(i) If δ1 6= δ2 then δ3 = max(δ1, δ2). If δ1 > δ2 then ω3 = ω1.

(ii) Assume δ1 = δ2 > 0. Then

ω1 + ω2 6= 0 ⇒ δ1 = δ2 = δ3, ω3 = ω1 + ω2

and
ω1 + ω2 = 0 ⇒ δ3 < δ1.

1The proof in [18] uses class field theory and works only if the residue field of K is quasi-
finite. For a much more direct and elementary proof, see [7].
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(iii) Assume δ1 = δ2 = 0. Then δ3 = 0 and χ̄3 = χ̄1χ̄2.

Proof: Parts (i)-(ii) follow from [34], Proposition 3.10. Part (iii) is clear,

because the cospecialization map H1
pn(κr) → H1

pn(K̂r) is a homomorphism. ✷

5.3.2

The finite extension of K that was necessary in order to define the invariants
δχ(r), ωχ(r) and swχ(r, x̄) depends on r. However, the values δχ(r) and ωχ(r)
do not depend on the choice of this extension. Therefore, it makes sense to
consider δχ, ωχ and swχ as functions in r ∈ Q≥0 and x̄.

Proposition 5.9 δχ extends to a continuous, piecewise linear function

δχ : R → R≥0

Furthermore:

(i) For r ∈ Q>0, the left (resp. right) derivative of δχ at r is −swχ(r,∞)
(resp. swχ(r, 0)).

(ii) If r is a kink of δχ (meaning that the left and right derivatives do not
agree), then r ∈ Q.

Proof: See e.g. [33], Proposition 2.9. A more direct proof of a special case
of the proposition can be derived from §5.4 below. ✷

Corollary 5.10 If r ≥ 0 and δχ(r) > 0, then the left and right derivatives of
δχ at r are given by ord∞(ωχ(r)) + 1 and −ord0(ωχ(r)) − 1, respectively.

Proof: Immediate from Proposition 5.9 (i) and Remark 5.7 (ii). ✷

5.3.3

We are going to characterize the case when χ has good reduction in terms of the
function δχ. Our main tool for this is a certain “local vanishing cycles formula”.
As a special case, we recover the criterion for good reduction from [15], §3.4. We
fix an admissible character χ ∈ H1

pn(K) of order pn and let Y → X denote the
corresponding Galois cover. Let us also fix r ∈ Q≥0 and assume that pr ∈ K.

Suppose first that r > 0. Then the affinoid subdomain D[r] ⊂ Xan gives rise
to an admissible blowup X ′

R → XR with the following properties ([1] §3.5 and
[6]): Firstly, X ′

R is a semistable curve whose special fiber X̄ ′ := X ′
R⊗Rk consists

of two smooth irreducible components which meet in exactly one point. The
first component is the strict transform of X̄ , which we may identify with X̄. The
second component is the exceptional divisor Z̄ of the blowup X ′

R → XR, which
is isomorphic to the projective line over k and intersects X̄ in the distinguished
point x̄0. By construction, the complement Z̄◦ := Z̄\{x̄0} is identified with

13



the canonical reduction D̄[r] of the affinoid D[r]. In particular this means that
the discrete valuation on K corresponding to the prime divisor Z̄ ⊂ X ′

R is
equivalent to the valuation vr and that the residue field κr may be identified
with the function field of Z̄.

Let Y ′
R denote the normalization of X ′

R in Y . We obtain a commutative
diagram

Y ′
R −−−−→ YR




y





y

X ′
R −−−−→ XR

in which the vertical maps are finite G-covers and each horizontal map is the
composition of an admissible blowup with a normalization. Let W̄ ⊂ Y ′

R be the
exceptional divisor of Y ′

R → YR. After enlarging the ground field K we may
assume that W̄ is reduced. Note that this holds if and only if the character χ
is weakly unramified with respect to the valuation vr, and that this is exactly
the condition we need to define δχ(r), ωχ(r) and swχ(r, x̄). We now choose a
closed point x̄ ∈ Z̄◦ = D̄[r] and a point ȳ ∈ W̄ lying over Z̄. We let

U(r, x̄) :=]x̄[D[r]

denote the residue class of x̄ on the affinoid D[r]. Clearly, U(r, x̄) is isomorphic

to the open unit disk. Finally, we let q : ˜̄W → W̄ denote the normalization of
W̄ and set

δȳ := dimk (q∗O ˜̄W
/OW̄ )ȳ.

Then δȳ ≥ 0 and we have δȳ = 0 if and only if ȳ ∈ W̄ is a smooth point.
The above notation extends to the case r = 0 as follows. If r = 0 then we let

Z̄ := X̄ denote the special fiber of the smooth model XR of X and W̄ := Ȳ the
special fiber of Y . We set x̄ := x̄0 and choose an arbitrary point ȳ ∈ W̄ above
x̄0. The residue class U(r, x̄) is now equal to the open disk D and the invariant
δȳ is defined in the same way as for r > 0.

Proposition 5.11 With the notation introduced above we have

swχ(r, x̄) = |B(χ) ∩ U(r, x̄)| − 1− 2δȳ.

Proof: This follows from [18], Theorem 6.7. To see this, note that the left
hand side of the formula in loc.cit. (the “vanishing cycles”) remains invariant
if the sheaf F is pulled back to a Galois cover of Spec (A) on which F becomes
constant. In our situation we take for A := Oh

X′

R,x̄
the henselian local ring of

x̄ on the scheme X ′
R and for F the étale sheaf corresponding to the character

χ. Then the ring extension B := Oh
Y ′

R,ȳ
/A gives rise to a Galois cover which

trivializes F . To prove Proposition 5.11, one applies the formula from loc.cit.
to F and its pullback. After equating the left hand side of both formulas and
tracing back the definitions of all terms appearing in the right hand side one
obtains the desired result. ✷
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As a first consequence of the above proposition we reprove the following
important criterion for good reduction from [15], §3.4.

Corollary 5.12 (i) Let χ ∈ H1
pn(K) be an admissible character of order pn.

Then
|B(χ)| ≥ swχ(0, x̄0) + 1.

Also, χ has good reduction if and only if δχ(0) = 0 and equality holds
above.

(ii) Suppose χ has good reduction with upper ramification breaks (m1, . . . ,mn).
If 1 ≤ i ≤ n, then

|{x ∈ B(χ) | ramification index of x is exactly pn−i+1}| = mi −mi−1,

where we set m0 = −1.

Proof: The inequality in part (i) follows immediately from Proposition 5.11
since B(χ) ⊂ D = U(0, x̄0) by assumption. Now, by definition χ has good
reduction if and only if δχ(0) = 0 and Ȳ = W is smooth in any point ȳ above
the distinguished point x̄0. The latter condition is equivalent to δȳ = 0. Thus,
the rest of part (i) also follows from Proposition 5.11.

In the situation of part (ii), the character χi := χp
n−i

n ∈ H1
pi(K) is an

admissible character with reduction χ̄i of order p
i with upper ramification breaks

(m1, . . . ,mi). Thus the Swan conductor of χ̄i ismi ([31], Corollary 2 to Theorem
1, noting that the Swan conductor is one less than the Artin conductor). By part
(i), |B(χi)| = mi+1. Since elements of B(χi) correspond exactly to elements of
B(χ) with ramification index at least pn−i+1, part (ii) follows. ✷

Corollary 5.13 Let χ ∈ H1
pn(K) be an admissible character of order pn, r ∈

Q>0 and x̄ a point on the canonical reduction of D[r]. Then

swχ(r, x̄) ≤ |B(χ) ∩ U(r, x̄)| − 1.

Moreover, if χ has good reduction then equality holds.

Proof: The inequality follows immediately from Proposition 5.11. To prove
the second statement we note that if χ has good reduction, then in the situation
of Proposition 5.11 the point ȳ ∈ W̄ is smooth. This is because the curve W̄ is
the exceptional divisor of the modification Y ′

R → YR. If χ has good reduction
then YR is smooth over R and hence regular. It follows from Castelnuovo’s
criterion (see e.g. [21], Theorem 9.3.8) that W̄ is smooth. ✷

Corollary 5.14 In the situation of Corollary 5.13, if δχ(r) > 0, we have
ordx̄(ωχ(r)) ≥ −|B(χ) ∩ U(r, x̄)|, with equality if χ has good reduction.

Proof: Immediate from Corollary 5.13 and Remark 5.7 (ii). ✷
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Remark 5.15 (i) If χ has good reduction, then Corollaries 5.10 and 5.14
show that δχ is a piecewise linear, weakly concave down function. More-
over, the position of the kinks of δχ correspond to the valuations of the
ramification points in B(χ). If r > 0 is a kink, then the number of ramifi-
cation points of χ with valuation r is precisely the difference between the
left and the right derivative of δχ at r.

(ii) Now assume that B(χ) ⊂ D(r0) for some r0 ∈ Q>0. Then it follows from
Remark 5.7, Corollary 5.10, and Corollary 5.14 that the restriction of δχ
to the interval [0, r0] is weakly concave up. Together with (i) this shows
that, if χ has good reduction, then δχ|[0,r0] is linear.

5.4 Characters of order p

5.4.1

We will now describe in the special case n = 1 how to determine the function δχ
explicitly in terms of a suitable element F ∈ K× corresponding to the character
χ ∈ H1

p (K) ∼= K×/(K×)p.

Proposition 5.16 Let F ∈ K×\(K×)p, χ := K1(F ) ∈ H1
p (K) and r ∈ Q≥0.

Suppose that vr(F ) = 0. Suppose, moreover, that χ is weakly unramified with
respect to vr.

(i) We have

δχ(r) =
p

p− 1
−max

H
vr(F −Hp),

where H ranges over all elements of K.

(ii) The maximum of vr(F −Hp) in (i) is achieved if and only if

g := [F −Hp]r 6∈ κpr .

If this is the case, and δχ(r) > 0, then

ωχ(r) =

{

dg/g if δχ(r) = p/(p− 1),

dg if 0 < δχ(r) < p/(p− 1).

If, instead, δχ(r) = 0, then χ̄ corresponds to the Artin-Schreier extension
given by the equation yp − y = g.

Proof: The assumption g 6∈ κpr shows that vr(H) ≥ 0. If vr(H) > 0 then
g = [F ]r. In this case, [34], Proposition 5.3, says that δχ(r) = p/(p − 1) and
ωχ(r) = dg/g. Otherwise,

FH−p = 1 + psG,

where s := vr(F −Hp) > 0 and G ∈ K is an element with vr(G) = 0 and residue
class g. By [34], Proposition 5.3, we now have δχ(r) = p/(p− 1)− s. Moreover,
if δχ(r) > 0 then ωχ(r) = dg.
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If δχ(r) = 0, then s = p
p−1 . Make a change of variable 1 + λY = FH−p,

where λ ∈ K is the unique element satisfying λp−1 = −p and v(1+ λ
p1/(p−1) ) > 0.

Then the equation (1+λY )p = 1+psG yields Y p−Y = G+o(1), which reduces
to the desired Artin-Schreier extension. ✷

5.5 Detecting the slope of δχ Let χ ∈ H1
p (K) be an admissible character

of order p, giving rise to a branched cover Y → X . Let m > 1 be a prime-to-p
integer. We assume that the following conditions hold.

(a) The branch locus of χ is contained in the closed disk D[r0], for some
r0 > 0, and T = 0 is one of the branch points.

(b) For all r ∈ (0, r0], the left derivative of δχ at r is ≤ m (equivalently, by
Proposition 5.9, swχ(r,∞) ≥ −m).

(c) For all r ∈ (0, r0], we have δχ(r) > 0.

Because of Condition (a) we can represent χ as the Kummer class of a power
series

F = 1 +

∞
∑

i=1

aiT
−i,

with ai ∈ R and v(ai) ≥ r0i. We wish to find a polynomial H in T−1 whose
pth power approximates F well enough to use Proposition 5.16 simultaneously
for all r in an interval (0, s] ∩Q, for some 0 < s < r0. We will then get explicit
expressions for the slopes of δχ on the interval [0, r0].

For any N ≥ 1, set

H := 1 +

N
∑

j=1

bjT
−j.

Here we consider the bj for the moment as indeterminates. Write

F −Hp =

∞
∑

k=1

ckT
−k,

where ck is a polynomial in b1, . . . , bmin(k,N). Note that ck = ak ∈ R for k > pN .

Lemma 5.17 Assuming condition (a), after replacing K by some finite exten-
sion, there exist b1, . . . , bN ∈ R such that

(i) v(ck) ≥ r0k for all k, and

(ii) ckp = 0 for all k ≤ N .
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Proof: For (ii) to hold we can solve the equations cpN = cp(N−1) = . . . =
cp = 0 inductively:

cpN = bpN − aNp = 0,

cp(N−1) = bpN−1 + . . . = 0,

...
...

One easily checks that these solutions verify v(bj) ≥ jr0 for all j. So we have
vr0(F ), vr0(H) ≥ 0. Thus we get vr0(F −Hp) ≥ 0, which is equivalent to (i).

✷

Remark 5.18 The proof above shows that there are only finitely many solu-
tions for the bj , and that they vary analytically as the ai do.

Proposition 5.19 Assume conditions (a), (b), and (c) hold. Choose s ∈
(0, r0) ∩Q and N ∈ N such that

pN ≥
p

(p− 1)(r0 − s)
. (5)

Let b1, . . . , bN be as in Lemma 5.17. Define λm(χ) ∈ [0, r0] by

λm(χ) := max
(

{r ∈ (0, r0] | swχ(r,∞) > −m} ∪ {0}
)

.

Set

µm(χ) := max
(

{
v(cm)− v(ck)

m− k
| 1 ≤ k < m} ∪ {0}

)

.

Then

(i) For all r ∈ (0, s] ∩Q we have

[F −Hp]r 6∈ κpr .

Therefore,

δχ(r) = p/(p− 1)− vr(F −Hp), swχ(r,∞) = −ord∞[F −Hp]r.

(ii) We have
λm(χ) < s ⇔ µm(χ) < s.

(iii) If λm(χ) < s then λm(χ) = µm(χ).

Remark 5.20 Note that, if λm(χ) 6= r0, then Proposition 5.9 implies that
λm(χ) is the largest value in (0, r0] where δχ has a kink.
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Proof: (of Proposition 5.19) Fix r ∈ (0, s]∩Q and setM := ord∞[F −Hp]r.
By definition and by Lemma 5.17 (i) we have

vr(F −Hp) = v(cM )− rM ≥M(r0 − r) ≥M(r0 − s). (6)

On the other hand, condition (c) shows that δχ(r) > 0 and Proposition 5.16
show that

vr(F −Hp) < p/(p− 1). (7)

Using (6), (7) and the choice of N we obtain the inequality

M <
p

(p− 1)(r0 − s)
≤ Np. (8)

If M was divisible by p then (8) and Lemma 5.17 (ii) would show that cM = 0,
which contradicts the definition of M . Therefore, M is prime to p, and Part (i)
of the lemma follows from Proposition 5.16 and Remark 5.7 (ii).

In order to prove (ii) and (iii) we note that, by condition (b), λm(χ) < s
is equivalent to swχ(s,∞) = −m. Let N be the Newton polygon of the power
series F − Hp =

∑∞
k=1 ckT

−k. By (i), the Swan conductor of χ on (0, s] is
determined by N . In particular, we have swχ(s,∞) = −m for some r ∈ (0, s]
if and only if the point (m, v(cm)) is a vertex of N and s1 ≤ s < s2, where s1
(resp. s2) is the slope of the edge to the left (resp. to the right) of the vertex
(m, v(cm)). Furthermore, in this case we have µm(χ) = s1 < s, and λm(χ) = s1,
which proves (iii).

To prove (ii), it remains to show that if µm(χ) < s, then λm(χ) < s. If
(m, v(cm)) is a vertex of N , then as in the paragraph above we have λm(χ) =
µm(χ), so λm(χ) < s. If (m, v(cm)) is not a vertex of N , then there exists a
line segment of N with slope s′ < µm(χ) < s connecting two points (i, v(ci))
and (j, v(cj)), where i < m < j. But this means that swχ(s,∞) ≥ −j, which
contradicts condition (b). This proves (ii). ✷

Proposition 5.19 will be the key to §6.4.

6 Proof of Theorem 3.4

6.1 Plan of the proof We continue with the notation of §5, and for the
rest of the paper, we set X ∼= P1 and x0 = 0. Recall that D is the unit disk in
(A1

K)an centered at 0. For r ∈ Q≥0, we set

D(r) = {T ∈ (A1
K)an | |T | < |p|r} ⊆ D.

We are given a character χ̄n ∈ H1
pn(κ0) of order exactly p

n, with upper ramifi-
cation breaks (m1,m2, . . . ,mn). We further assume that n ≥ 2. For 1 ≤ i ≤ n,
set ri =

1
mi(p−1) . Recall that p ∤ m1 and

mi ≥ pmi−1,
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for i = 2, . . . , n. Moreover, if the inequality above is strict then (mi, p) = 1. For

i = 1, . . . , n we set χ̄i := χ̄p
n−i

n ∈ H1
pi(κ0). By assumption, for each 1 ≤ i < n,

there is a character χi lifting χ̄i. We assume that B(χn−1) lies in the disk
D(rn−1), and we may further assume that T = 0 is a branch point of order
pn−1. In order to prove Theorem 3.4, we must show that there exists a character
χn ∈ H1

pn(K) with (good) reduction χ̄n. Furthermore, we must have B(χn) ⊆ D,
and if there is no integer a satisfying

mn

p
−mn−1 < a ≤

(

mn

mn −mn−1

)(

mn

p
−mn−1

)

, (9)

then we must even have B(χn) ⊆ D(rn). We will construct χn such that χpn =
χn−1.

We may assume that χn−1 corresponds to an extension of K given by a
system of Kummer equations

ypi = yi−1Gi, i = 1, . . . , n− 1

with y0 := 1 and Gi ∈ K. Any χ ∈ H1
pn(K) such that χp = χn−1 is given by an

additional equation
ypn = yn−1G. (10)

Since we must have B(χ) ⊆ D, we will search for G ∈ 1 + T−1
m[T−1], where m

is the maximal ideal of R. In particular,

G =
N
∏

i=1

(1− xiT
−1)ai , (11)

where ai ∈ N, (ai, p) = 1, and xi ∈ m are pairwise distinct. We will say that
the polynomial G gives rise to the character χ. If xi is a branch point of χn−1

then we may also transfer the term (1− xit
−1)ai into Gn−1. Therefore, we may

assume that none of the xi is a branch point of χn−1. If this is the case, then
Corollary 5.12 (ii) shows that a necessary condition for good reduction of χ is
that N = mn −mn−1. We assume this.

Our proof that a choice Gn for G exists giving rise to a character χn whose
(good) reduction is χ̄n will be done in two parts:

(Part A) We prove that there exists a polynomial Gmin ∈ 1+T−1
m[T−1] giving rise

to a character χmin with good reduction χ̄min having upper ramification
breaks (m1, . . . ,mn−1, pmn−1) at the ramified point.

(Part B) We construct the desired polynomial Gn by modifying Gmin.

Furthermore, we show that if there is no a satisfying (9), and if Gn gives rise to
χn, then B(χn) ⊆ D(rn). This will complete the proof of Theorem 3.4.

We remark that the basic strategy for our proof is adapted from the proof of
the case n = 2 by Green and Matignon, [15]. Essentially, Part (A) corresponds
to Lemmas 5.2 and 5.3 in loc.cit., whereas Part (B) corresponds to Lemma 5.4.
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The proof of Part (A) will be done in three steps. The first step (§6.2) is
to find an appropriate family of candidate polynomials for Gmin, which we will
call Gn. This family is defined in Definition 6.7. The second step (§6.3) is to
show that if a polynomial in Gn yields a character with bad reduction, it can
be altered (within Gn) to obtain a new polynomial whose reduction is “closer”
to being good (i.e., the depth Swan conductor of the corresponding character
is lower). The key result here is Proposition 6.13. Lastly (§6.4), we show there
must exist a polynomial in Gn that is “closest” to having good reduction (i.e.,
the depth Swan conductor of the corresponding character is minimal). This is
the content of Proposition 6.15. Combining these steps shows that there must
exist Gmin ∈ Gn giving a character with good reduction.

Proposition 6.21 proves Part (B), and is found in §6.5.

6.2 A family of candidate polynomials

6.2.1

We continue with the setup of §6.1. In particular, recall that χi is a lift of χ̄i
for 1 ≤ i < n, and χ is the character arising from G, as in (10). If r ∈ Q≥0,
then to simplify the notation we will write δi(r) and ωi(r) instead of δχi(r) and
ωχi(r) for the depth and differential Swan conductors of χi (§5.3). Furthermore,
write δn(r) and ωn(r) instead of δχ(r) and ωχ(r). As will become apparent in
Proposition 6.4 and its proof, it will be very important to control ωn(rn−1).
The polynomials G which give our desired ωn(rn−1) will comprise our candidate
family Gn.

Lemma 6.1 Assume 1 ≤ i < n. Then for r ∈ [0, ri] we have

δi(r) = mi · r. (12)

Moreover, for 0 < r ≤ ri we have

ωi(r) =
ci dt

tmi+1
. (13)

Here ci ∈ k× is a constant depending on i and r.

Proof: By hypothesis, χi has good reduction χ̄i. Therefore, δi(0) = 0. On
the other hand, the hypothesis that χi has good reduction and that all of its
mi + 1 branch points are contained in the disk D(ri) implies that

ord0(ωi(r)) = −mi − 1, ordx̄(ωi(r)) = 0

for all r ∈ (0, ri] and x̄ 6= 0,∞, using Corollary 5.14. So (12) follows, using
Corollary 5.10. But now the same corollary shows that

ord∞(ωi(r)) = mi − 1,

and (13) follows as well. ✷
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Remark 6.2 Suppose 1 < i < n and 0 < r < ri. Lemma 6.1 shows that

pδi−1(r) ≤ δi(r) < 1/(p− 1).

Moreover, the first inequality is an equality if and only if mi = pmi−1. It follows
from [34], Theorem 4.3 (ii) that C(ωi(r)) = 0 if and only if mi > pmi−1, where
C is the Cartier operator. This is consistent with (13). On the other hand, if
mi = pmi−1 then

C(ωi(r)) = ωi−1(r).

In particular, we have ci = cpi−1 in (13).

6.2.2

We now focus on the critical radius rn−1. To further simplify the notation we
will, until the end of §6.2, write ωi (resp. δi) instead of ωi(rn−1) (resp. δi(rn−1)).
By Lemma 6.1 we have δn−1 = 1/(p− 1). So [34], Theorem 4.3, says that

δn =
p

p− 1
(14)

and
C(ωn) = ωn + ωn−1. (15)

Let m be the minimal upper ramification break mi such that mn−1 is a power
of p times mi. Thus m is prime to p. Set ν = n − 1 − i. Thus 0 ≤ ν ≤ n − 2,
and mn−1 = mpν .

By Lemma 6.1 and Remark 6.2 we have

ωi =
c dt

tm+1
, . . . , ωn−1 =

cp
ν

dt

tpνm+1
,

for some c ∈ k×. After a change of parameter we may assume that c = m,
viewed as an element of k×. Note that mp = m. Set

η := −(ωi + . . .+ ωn−1) = −m
ν

∑

j=0

t−mp
j−1dt. (16)

Lemma 6.3 Let g = [G]rn−1 . Then

ωn = η +
dg

g
.

Proof: One easily checks that C(η) = η + ωn−1. Using (15) we conclude
that

ωn = η +
dh

h
,

for some h ∈ κ×rn−1
.

Let us first assume that G = 1. Then B(χn) lies in the disk D(rn−1). It
follows from Corollary 5.14 that the differential ωn has no poles outside t = 0.
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Since η has no poles outside t = 0, this can happen only if dh/h = 0. This
shows that the lemma is true if G = 1.

To prove the general case, we note that multiplying G by an elementH ∈ K×

has the effect of adding the character K1(H) ∈ H1
p (K) to χ. We may assume

that vrn−1(H) = 0 and let h ∈ κrn−1 denote the residue of H . Then we have

δK1(H) = p/(p− 1) and ωK1(H) = dh/h

if and only if h 6∈ κprn−1
, by Proposition 5.16. If h ∈ κprn−1

then δK1(H) <
p/(p − 1). In both cases, Proposition 5.8 shows that multiplying G by H has
the effect of adding dh/h to ωn. The lemma follows. ✷

The following proposition is not strictly necessary for the proof of Theorem
3.4, but it helps to narrow our search for the correct Gn. Recall that we assume
Gn to be in the form (11), and that N = mn −mn−1.

Proposition 6.4 If χ has good reduction then the following hold.

(i) For all i we have v(xi) ≤ rn−1 = 1
mn−1(p−1) .

(ii) For i, j with v(xi) = v(xj) = rn−1 we have x̄i 6= x̄j (where x̄i denotes the
reduction of xip

−rn−1).

(iii) Write N = N1 + N2, where N1 is the number of xi’s with v(xi) = rn−1.
We may assume that v(xi) < rn−1 for i = N1 + 1, . . . , n. Then

N
∑

i=N1+1

ai ≡ 0 (mod p).

In particular, if ai = 1 for all i then N2 ≡ 0 (mod p).

(iv) If mn = pmn−1 then N1 = mn−1(p − 1) and N2 = 0. Otherwise, N1 <
mn−1(p− 1) and N2 > 0.

Proof: By Lemma 6.3, we have

ωn = dg/g −m

ν
∑

j=0

t−mp
j−1 dt, (17)

where
g := [G]rn−1 ∈ k[t−1].

It follows that ord0(ωn) = −mn−1−1. So if χ has good reduction, then Corollary
5.14 shows that the number of branch points specializing to 0 (i.e. with valuation
> rn−1) must be equal to mn−1 + 1. Since χn−1 has exactly mn−1 + 1 branch
points with valuation > rn−1, none of the new branch points can have this
property. This proves (i).

By (17), ωn can have at most a simple pole at any point x̄ 6= 0, and then
good reduction and Corollary 5.14 implies that branch points with radius rn−1
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have to lie in distinct residue classes. This proves (ii). It follows similarly from
Corollary 5.14 that ωn has no zeroes outside t = ∞, so the fact that div(ωn)
has degree −2 means that ord∞(ωn) = mn−1 + N1 − 1 ≥ 0. But it is easy to
see that

ord∞(g) =

N
∑

i=N1+1

ai,

and (17) shows that ord∞(ωn) ≥ −1 if and only if ord∞g ≡ 0 (mod p). This
proves (iii).

On the other hand we have C(ωn) = ωn+ωn−1 and ord∞(ωn−1) = mn−1−1,
which implies, by an easy calculation, that

ord∞ωn ≤ pmn−1 − 1.

It follows that N1 ≤ mn−1(p− 1).
Now suppose that mn = pmn−1. Then Corollaries 5.10 and 5.14 show that

the right derivative of δn is at most mn−1 + N = pmn−1 on [0, rn−1). Since
δn(rn−1) = p

p−1 by (14), and good reduction requires δn(0) = 0, this slope
must be pmn−1 on the entire interval. Thus ord∞ωn = mn − 1 = pmn−1 − 1,
by Corollary 5.10. Hence N1 = N = mn−1(p − 1) and N2 = 0. Otherwise,
if mn > pmn−1, then the condition that δn is weakly concave down (Remark
5.15) and has right derivative mn at r = 0 (Proposition 5.9 (i)) implies that
δn(r) > pmn−1r for 0 < r < rn−1. But this means that ord∞ωn + 1 < pmn−1

at r = rn−1, hence N1 < mn−1(p− 1). It follows that

N2 = mn −mn−1 −N1 > mn − pmn−1 > 0.

This completes the proof of the proposition. ✷

It follows from Proposition 6.4 that, up to a constant factor that we may
eliminate by rescaling t, we have

[G]rn−1 = g = ta0
N1
∏

i=1

(1 − x̄it
−1)ai , (18)

where

a0 := −
N
∑

i=N1+1

ai ≡ 0 (mod p).

Hence

dg/g =

N1
∑

i=1

aix̄it
−2dt

1− x̄it−1
. (19)

Corollary 6.5 In the notation of Proposition 6.4, if χ has good reduction then

ωn = dg/g −m

ν
∑

j=0

t−mp
j−1dt =

c dt

tmn−1+1
∏N1

i=1(t− x̄i)
, (20)
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where c := (−1)N1+1m(
∏N1

i=1 x̄i) is a nonzero constant. In particular, ord∞ωn =
mn−1 +N1 − 1.

Proof: The middle expression is the expression deduced for ωn in (17). We
have seen in the proof of Proposition 6.4 that ωn has simple poles at the x̄i, a
pole of order mn−1 + 1 at 0, and no zero outside ∞. It follows that ωn is equal
to the right hand side of (20) times a constant. To determine this constant, one
computes the Laurent series representation in t of both sides. ✷

The next theorem, showing that we can often find a g satisfying the condi-
tions of 6.5, is critical.

Theorem 6.6 Suppose m|mn (equivalently, m|N = mn−mn−1). Then, under
the assumption that ai = 1 for i ≥ 1, there is a solution g ∈ k[t−1] to (20) as in
(18) of degree N .

Proof: This is contained in Corollary 7.8. ✷

Definition 6.7 If g is the solution to (20) guaranteed by Theorem 6.6, then we
define Gn to be the subset of all G of the form (11) with [G]rn−1 = g.

Remark 6.8 Corollary 7.8 also shows that, if ai = 1 for all i ≥ 1 and N1 is as
in (18), then we have m|N1 and

mn−1(p− 1)−mp < N1 ≤ mn−1(p− 1), N1 ≡ N (mod p).

This determines N1 uniquely. This means that if G is as in (11), has all ai =
1, and gives rise to χ with good reduction, then the number of zeroes of G
with valuation rn−1 is fixed. The importance of this condition is illustrated in
Example 6.9.

Example 6.9 Assume that p = 5, n = 3, and the upper ramification breaks of
χ̄3 are (m1,m2,m3) = (1, 5, 34). If G3 is in the form of (11) with all ai = 1, and
if G3 gives rise to a character χ3 with good reduction χ̄3, then N = 29. Remark
6.8 shows that χ3 gives rise to a cover with exactly N1 = 19 branch points at
radius r2 = 1/20 and N2 = 10 branch points at radius < 1/20. We know from
(14) that δ3(1/20) =

5
4 . By Corollaries 5.10 and 5.14, the (left) slope of δ3 at

r ≤ 1/20 is equal to 5 +N(r), where N(r) is the number of branch points with
valuation ≥ r. Since δ(0) = 0, one can show that there must be at least one
branch point with valuation ≤ 1/200. But r3 = 1/136 > 1/200, so B(χ3) cannot
lie in the disk D(r3).

See Remark 6.22 and Example 7.18 for such an example with 10 branch
points with valuation exactly 1/200. Note that this does not contradict Theorem
3.4 (ii), as we can take a = 2 there.

Remark 6.10 If we do not assume ai = 1 for all i, then (20) can still sometimes
be solved. In particular, in light of Example 6.9, it would be nice to find solutions
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to (20) with arbitrary ai and N1 not satisfying Remark 6.8. We might then have
some hope of finding a lift χn of χ̄n with B(χn) lying in the disk D(rn), even
when the condition in Theorem 3.4 (ii) does not hold. However, even when such
solutions to (20) exist, it seems as if our current techniques are often insufficient
to turn them into lifts. For further discussion, see Remark 7.12.

6.3 Reducing the depth Swan conductor We maintain the notation of
§6.2, and we assume further that mn = pmn−1. Then, by Proposition 6.4, we
have N = N1 = mn−1(p− 1).

Recall that any G ∈ Gn (Definition 6.7) gives rise to a character χ of order pn

lifting χn−1 as in (10), by adjoining the equation ypn = yn−1G. By Corollaries 6.5
and 5.10, we know that the left derivative of δn at rn−1 is mn. Recall also from
(14) that δn(rn−1) =

p
p−1 = mnrn−1. It follows that there exists 0 ≤ λ < rn−1

such that
δn(s) = s ·mn = psmn−1 = pδn−1(s)

for all s ∈ [λ, rn−1] (the last equality following from Lemma 6.1). Let λ(G) be
the minimal value of λ with this property. In other words, λ(G) is the largest
kink of the function δn on the open interval (0, rn−1) (or is zero if δn is linear
on [0, rn−1]). Note that δn(λ) = mnλ <

p
p−1 .

Proposition 6.11 If G ∈ Gn satisfies λ(G) = 0, then the corresponding char-
acter χ has good reduction.

Proof: By definition, λ(G) = 0 implies δχ(0) = 0. Now, If χ lifts χn−1

and has δχ(0) = 0, then swχ(0, x̄0) ≥ pmn−1, as the Swan conductor of a pn-
cyclic extension must be at least p times the Swan conductor of its index p
subextension (because each upper ramification break of a pn-cyclic extension
must be at least p times the previous one). On the other hand, by construction,
B(χ) has exactly N +mn−1 + 1 = pmn−1 + 1 branch points. The proposition
then follows by Corollary 5.12 (i). ✷

Thus, in order to prove Part (A), it suffices to show that λ(G) = 0 for some
G ∈ Gn. Proposition 6.13 will show that λ(G) = 0 is the only possible minimal
value of λ(G), as G ranges over Gn. In §6.4, we will show that this minimum is
realized. First, we state a lemma.

Lemma 6.12 Let G ∈ Gn and r ∈ [0, rn−1). Let f ∈ t−1k[t−1] be a polynomial
of degree < mn without constant term, which we regard as an element of κr.
Set s := p/(p − 1) − mnr. Then, after a possible finite extension of K, there
exists G′ ∈ Gn and F ∈ K such that vr(F ) = 0, [F ]r = f , and

G′/G ≡ 1− psF (mod (K×)p).

Proof: The proof is given as Corollary 7.11. ✷

Proposition 6.13 Suppose G ∈ Gn with λ(G) > 0. Then there exists G′ ∈ Gn
with λ(G′) < λ(G).
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Proof: If λ := λ(G) > 0 then by Corollary 5.10 we have that ord∞(ωn(λ))+1
is the left derivative of δn(r). Since δn is concave up at λ (Remark 5.15 (ii)),
we conclude that

ord∞(ωn(λ)) < mn − 1.

By hypothesis we have p δn−1(λ) = δn(λ) = mnλ < p/(p − 1). Therefore [34],
Proposition 4.3 (ii) shows that

C(ωn(λ)) = ωn−1(λ) =
c dt

tmn−1+1
,

for some c ∈ k. It follows that

ωn(λ) =
cp dt

tmn+1
+ df,

for some f ∈ κλ. Note that, by Corollaries 5.10 and 5.14,

ord0(ωn(λ)) = −mn − 1, ordx̄(ωn(λ)) ≥ 0 ∀ x̄ 6= 0.

We may therefore assume that f is a polynomial in t−1 of degree < mn and
without constant term.

By Lemma 6.12, there exists G′ ∈ Gn such that

G′/G ≡ 1− psF (mod (K×)p),

where vλ(F ) = 0, where [F ]λ = f , and where s := p/(p− 1)−mnλ. Replacing
G by the polynomial G′ has the effect of adding ψ := K1(G

′/G) to χ. Using
Proposition 5.16, we see that

δψ(λ) = p/(p− 1)− s = δn(λ).

Therefore, Proposition 5.8 shows that the effect on ωn(λ) is addition of −df and
the result is that

ord∞(ωn(λ)) = mn + 1.

We conclude, using Corollary 5.10, that λ(G′) < λ(G). ✷

Remark 6.14 An important reason we must assume that B(χn−1) ∈ D(rn−1)
is to ensure that no branch point of χn−1 has valuation less than λ. If there were
such a branch point, then ord∞(ωn(λ)) above could be negative, which would
allow f not to be a polynomial in t−1, which would prevent us from applying
Lemma 6.12.

6.4 The minimal depth Swan conductor We continue with the notation
of §6.3, as well as the assumption that mn = pmn−1 and all ai = 1 for i ≥ 1.
To finish the proof of Part (A) from §6.1, we must show that the function
λ : Gn → Q≥0 defined in §6.3 takes the value 0 for some χ ∈ Gn. By Proposition
6.13, the existence of such a χ is established by the following proposition.

Proposition 6.15 The function χ 7→ λ(χ) takes a minimal value on Gn.

The rest of §6.4 is devoted to the proof of this proposition.
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6.4.1 A lemma from rigid analysis

The following lemma, which is an easy consequence of the maximum modulus
principle, is a crucial ingredient in the proof of Proposition 6.15.

Lemma 6.16 Let X = Spm(A) be an affinoid domain over K and f1, . . . , fn ∈
A analytic functions on X . Then the function

φ : X → R, φ(x) := max
1≤i≤n

i
√

|fi(x)|

takes a minimal value. Equivalently, the function

x 7→ min
i

v(fi(x))

i

takes a maximal value on X .

Proof: Let B/A be a finite ring extension which contains elements gi ∈ B
such that gii = fi, for i = 1, . . . , n. Then B is again an affinoid K-algebra, and
the induced morphism q : Y := Spm(B) → X is finite and surjective. For any
point y ∈ Y we have

φ(q(y)) = max
1≤i≤n

|gi(x)|.

So by [4], Lemma 7.3.4/7, the function φ◦ q takes its minimal value on Y . Since
q is surjective, this shows that φ takes its minimal value on X . ✷

6.4.2 An affinoid containing Gn

Let G be the set of all polynomials of the form

G =

N1
∏

i=1

(1− xiT
−1),

where xi ∈ K̄ has valuation rn−1 and where the residue classes of xi/p
rn−1 in k

are all distinct. Given G ∈ G, we may assume (after passing to a finite extension
of K) that x1, . . . , xN1 ∈ K. In this way, we can consider G as a subset of affine
N1-space over K via the coordinates xi and G as a K-rational point. It is clear
that G is an affinoid subdomain of (AN1

K )an. We identify elements of G with the
characters χ that they give rise to (§6.1).

Recall that it is a consequence of Proposition 6.4 (iv) that Gn ⊆ G. In
particular,

Gn = {G ∈ G | [G]rn−1 = g},

where g is the unique solution of Equation (20) guaranteed by Theorem 6.6. As
a rigid analytic space, Gn is isomorphic to the open unit polydisk. The idea of
the proof is to show that λ(G) takes a minimal value on G, and that the point
where this minimum is achieved must lie in Gn.
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6.4.3

Let φn−1 : Yn−1 → X be the Galois cover corresponding to the character χn−1.
By our induction hypothesis, it has good reduction and is totally ramified above
T = 0. It follows that the rigid analytic subspace C := φ−1

n−1(D) ⊆ Yn−1 is an
open disk and contains the unique point yn−1 ∈ Yn−1 above T = 0. We choose
a parameter T̃ for the disk C such that T̃ (yn−1) = 0. Then

T = T̃ p
n−1

u(T̃ ), with u(T̃ ) ∈ R[[T̃ ]]×.

We conclude that for r > 0 the inverse image of the closed diskD(r) ⊂ D defined
by the condition v(T ) ≥ r is the closed disk C(r̃) defined by v(T̃ ) = r̃ := p−n+1r.
Set r̃n−1 := p−n+1rn−1. Let Kn−1 denote the function field of Yn−1.

Let us fix, for the moment, χ ∈ G such that χp = χn−1. Let χ̃ := χ|Kn−1 ∈
H1
p (Kn−1) denote the restriction of χ to Kn−1. If χ corresponds to a cover

Y → X , then χ̃ corresponds to the cover Y → Yn−1. If χ ∈ Gn, then in analogy
to λ(χ), we write λ(χ̃) for the minimum r̃ ∈ [0, r̃n−1] such that δχ̃ is linear on
[r̃, r̃n−1]. If χ ∈ G\Gn, then we define λ(χ̃) = r̃n−1.

Lemma 6.17

(i) For χ ∈ Gn, we have λ(χ̃) = p−n+1λ(χ).

(ii) Let

m̃ = pnmn−1 −
n−1
∑

i=1

mi(p− 1)pi−1.

Then p ∤ m̃ and the character χ̃ ∈ H1
p (Kn−1) satisfies the conditions (a),

(b), and (c) of §5.5 (with respect to m̃, the open disk C ⊂ Y an
n−1 and the

family of subdisks C(r̃), r̃ ∈ [0, r̃n−1]).

(iii) If λm̃(χ̃) is as in Proposition 5.19, and if we set r0 in Proposition 5.19
equal to r̃n−1, then λ(χ̃) = λm̃(χ̃) for all χ ∈ G.

Proof: For r > 0 we systematically use the notation r̃ := p−n+1r. Then the
valuation vr̃ on Kn−1 (corresponding to the Gauss norm on C(r̃)) is the unique
extension of vr. By [34], §7.1 we have

δχ̃(r̃) = ψKn−1/K(δχ(r))

= δχ(r) −
(

δ1(r)
p− 1

pn−1
+ . . .+ δn−1(r)

p− 1

p

)

,

where ψ is the inverse Herbrand function ([31], IV, §3). Since all the characters
χi (1 ≤ i < n) have good reduction and their branch points are contained in
D(rn−1), it follows from Remark 5.15 (ii) that each δi (1 ≤ i < n) is linear of
slope mi on the interval [0, rn−1]. Therefore, we have

δχ̃(r̃) = δχ(r) + (
m̃

pn−1
− pmn−1)r.
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Thus, the left slope of δχ̃ at r̃ is equal to pn−1c + m̃− pnmn−1, where c is the
left-slope of δχ at r. Part (i) follows immediately. Part (ii) follows from the
fact that c ≤ mn = pmn−1. Part (iii) also follows from this fact, along with
Proposition 5.9 and the fact that swχ(rn−1,∞) = pmn−1 iff χ ∈ Gn. ✷

Explicitly, the character χ̃ is the Kummer class of the element

F := G
1/pn−1

1 G
1/pn−2

2 · . . . ·G
1/p
n−1G ∈ K×

n−1.

We write F as a power series in the parameter T̃ :

F = 1 +

∞
∑

ℓ=1

aℓT̃
−ℓ

Note that, since G1, . . . , Gn are fixed, F is uniquely determined by the choice
of G. So we may consider the coefficients aℓ as functions on the space G. It is
easy to see that the aℓ are analytic functions on G which are bounded by 1. In
fact, aℓ is a polynomial in the coordinates xi with coefficients in R.

6.4.4

We continue with the proof of Proposition 6.15. Let χ0 ∈ Gn be an arbitrary lift
lying in the residue class determined by the reduction g. From the discussion
at the beginning of §6.3, it follows that λ(χ0) < rn−1. We may therefore choose
a rational number s ∈ (λ(χ0), rn−1). Recall from §6.4.3 that χ̃ is the restriction
of χ to the function field Kn−1 of Yn−1. Then by Lemma 6.17 we have

λ(χ̃) < s̃ := p1−ns < r̃n−1.

We also choose an integer N such that

Np ≥
p

(p− 1)(r̃n−1 − s̃)
.

Compare with (5).

Lemma 6.18 There exists a finite cover G′ → G and analytic functions b1, . . . , bN
on G′ with the following property. Set

H := 1 +
N
∑

j=1

bj T̃
−j
1

and write

F −Hp =

∞
∑

ℓ=1

cℓT̃
−ℓ
1 ,

where the cℓ are now analytic functions on G′. Then:

(i) For all ℓ ≥ 1 and all points x ∈ G′ we have v(cℓ(x)) ≥ r0ℓ.
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(ii) We have cpℓ = 0 for ℓ ≤ N .

Proof: By Lemma 5.17 and Remark 5.18, there are finitely many solutions
for the bj at each point in G and the solutions vary analytically as the aℓ vary
in G. This proves the lemma. ✷

6.4.5

We can now complete the proof of Proposition 6.15. Let m̃ be as in Lemma
6.17, and define the function µm̃ : G′ → R by the formula

µm̃(x) := max
(

{
v(cm̃(x)) − v(cℓ(x))

m̃− ℓ
| 1 ≤ ℓ < m̃} ∪ {0}

)

.

Let χ ∈ G, write χ̃ := χ|Kn−1 for its restriction to the function field of Yn−1,
and let x ∈ G′ be an arbitrary point above χ. By Lemma 6.18, we can apply
Proposition 5.19 to compare µm̃(x) to λm̃(χ̃), which by Lemma 6.17 is equal to
λ(χ̃). We conclude that µm̃(x) < s̃ if and only if λ(χ̃) < s̃. Moreover, if this
is the case then we have µm̃(x) = λ(χ̃). Note also that in any case we have
λ(χ) = pn−1λ(χ̃) when χ ∈ Gn.

We apply these arguments twice. Firstly, let χ0 ∈ Gn be the character with
λ(χ0) < s from the beginning of §6.4.4. Let χ′

0 ∈ G′ be a point above χ0. Then
µm̃(χ′

0) < s̃.
It follows from Lemma 6.16 that the function µm takes a minimum on G′.

Let x ∈ G′ be a point where this minimum is achieved, and let χ ∈ G be the
corresponding lift. We have µm̃(x) ≤ µm̃(χ′

0) < s̃. Since

λm̃(χ̃) = µm̃(x) < s < r̃n−1

we see that χ ∈ Gn. Applying the above arguments a second time, we conclude
that λ(χ) = pn−1µm̃(x), and that this is actually the minimal value of the
function λ : Gn → R. This completes the proof of Proposition 6.15. ✷

Combining Propositions 6.11, 6.13, and 6.15 finishes the proof of Part (A)
from §6.1. So there is a polynomial Gmin ∈ Gn giving rise to a character χmin

with good reduction and upper ramification breaks (m1, . . . ,mn−1, pmn−1) at
the ramification point.

6.5 Beyond minimality We now prove Part (B) from §6.1. Maintain the
notation of the previous parts of §6. Let Gmin ∈ Gn be such that its correspond-
ing character χmin has good reduction χ̄min. Such a Gmin exists by Part (A).
Note that Gmin is a polynomial in 1 + T−1

m[T−1] of degree mn−1(p− 1).
Recall that χ̄n is our original character, with upper ramification breaks

(m1, . . . ,mn), and that mn is not necessarily equal to pmn−1. Furthermore,
we saw in §2 that χ̄n corresponds (upon completion at t = 0) to a (truncated)
Witt vector wn := (f1, . . . , fn) ∈ Wn(k((t))), and we may assume that each fi
is a polynomial in k[t−1], all of whose terms have prime-to-p degree. Then (2)
shows that mn = max(pmn−1, deg(fn)). On the other hand, χ̄min has upper
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ramification breaks (m1, . . . ,mn−1, pmn−1), and corresponds to a Witt vector
wmin := (f1, . . . , fn−1, fmin), where fmin ∈ k[t−1] has degree < pmn−1 and only
terms of prime-to-p degree. Subtracting Witt vectors yields

wn − wmin = (0, . . . , 0, fn − fmin). (21)

Let f = fn − fmin, which has degree ≤ mn, and let F ∈ T−1R[T−1] be such
that degF = deg f , v0(F ) = 0, and [F ]0 = f .

Proposition 6.19 After a possible finite extension of K, there exists ǫ ∈ Q>0,
as well as Gn ∈ 1 + T−1

m[T−1] of degree at most mn − mn−1 and H ∈ 1 +
T−1

m[T−1] such that (H,Gn) is a solution to

GminH
p −Gn ≡ −p

p
p−1F (mod p

p
p−1+ǫR[T−1]).

Proof: This follows immediately from Corollary 7.16, substituting mn and
rn for m′

n and r′n. ✷

Proposition 6.20 Suppose that there is no integer a satisfying

mn

p
−mn−1 < a ≤

(

mn

mn −mn−1

)(

mn

p
−mn−1

)

. (22)

Then we can find H and Gn as in Corollary 7.16 such that vrn(Gn − 1) > 0,
where rn = 1

mn(p−1) . Thus all zeroes of Gn lie in the open disk D(rn).

Proof: This follows immediately from Proposition 7.17, substituting mn

and rn for m′
n and r′n. ✷

Proposition 6.21 There is a character χn whose (good) reduction is χ̄n, such
that B(χn) ⊆ D. If there is no a ∈ Z satisfying (22), then B(χn) ⊆ D(rn),
where rn = 1

mn(p−1) .

Proof: The character χn will correspond to Gn, in the notation of Proposi-
tion 6.19. From that proposition, we have

Gn
Gmin

H−p = 1 + p
p

(p−1)
F

GminHp
=: F̃ . (23)

Now, v0(F̃ − 1) = p
p−1 and [F̃ − 1]0 = f , which is not a pth power. Thus,

Proposition 5.16 shows that if χF̃ = K1(F̃ ) ∈ H1
p (K), then δχF̃

(0) = 0 and the
reduction χ̄F̃ corresponds to the Artin-Schreier extension given by yp − y = f .

Thus if χ′
F̃

= Kn(F̃
pn−1

) ∈ H1
pn(K), then we also have δχ′

F̃
(0) = 0 and the

reduction χ̄′
F̃
corresponds to the same extension, which is encoded by the Witt

vector (0, . . . , 0, f).
On the other hand, note that χmin corresponds to the element

G1G
p
2 · · ·G

pn−2

n−1 G
pn−1

min ∈ K×/(K×)p
n

,
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whereas the character χn coming from Gn corresponds to the element

G1G
p
2 · · ·G

pn−2

n−1 G
pn−1

n ∈ K×/(K×)p
n

.

By (23), we have χminχ
′
F̃

= χn as elements of H1
pn(K). By Proposition 5.8

(iv), we have that χ̄minχ̄
′
F̃

is the reduction of χn. Since χ̄′
F̃

corresponds to the
Witt vector (0, . . . , 0, f), it follows from (21) that the reduction of χn is, in fact,
χ̄n. Since Gn is a polynomial of degree ≤ mn − mn−1 in T−1, we have that
|B(χn)| ≤ mn + 1. By Corollary 5.12 (i), we have equality, and thus χn has
good reduction χ̄n, proving the first assertion of the proposition. The second
assertion then follows immediately from Proposition 6.20. ✷

Proposition 6.21 completes the proof of Part (B), and Theorem 3.4 follows
immediately.

Remark 6.22 Example 7.18 shows that it is possible for the result of Propo-
sition 6.20 not to hold when there is an a ∈ Z satisfying (22) (in particular, we
take p = 5, n = 3, (m1,m2,m3) = (1, 5, 34), and a = 2). When this is the case,
the branch locus of χn generated above does not lie in the disk D(rn).

7 Proofs of technical results

In this section, we give the proofs of Theorem 6.6, Lemma 6.12, and Propositions
6.19 and 6.20. In fact, we will prove Theorem 6.6 and Lemma 6.12 in somewhat
more generality. All the proofs are related to each other and will share much
notation.

Throughout §7, we will use notation parallel to that used in §6. Let (m1, . . . ,mn)
be a sequence of positive integers such that p ∤ m1, that mi ≥ pmi−1 for
1 ≤ i ≤ n, and that if p|mi, then mi = pmi−1. For 1 ≤ i ≤ n, set ri =

1
mi(p−1) .

Write N = mn − mn−1. Let N1 and N2 be nonnegative integers such that
N1 +N2 = N and p|N2. Lastly, let m be the minimal mi such that mn−1 is a
pth power times mi. Set ν = n− 1− i. Thus, mn−1 = mpν .

7.1 Arbitrary types We work under two helpful assumptions.

Assumption 7.1 There exist a0, a1, . . . , aN1 ∈ Z and x̄1, . . . , x̄N1 ∈ k× with
p|a0, with 0 < ai < p for i ≥ 1, and with x̄i 6= x̄j , such that the differential form

ω := dg/g −m

ν
∑

j=0

t−mp
j−1dt, with g := ta0

N1
∏

i=1

(1− x̄it
−1)ai ,

satisfies ord∞(ω) = mn −N2 − 1 = N1 +mn−1 − 1 (cf. (17)).

To formulate the second assumption we need more notation. We have, by
(19), that

dg/g =

N1
∑

i=1

aix̄it
−2dt

1− x̄it−1
=

∞
∑

ℓ=0

(

N1
∑

i=1

aix̄
ℓ+1
i

)

t−ℓ−2dt.
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Assumption 7.1 is therefore equivalent to the system of equations

∑

i

aix̄
ℓ+1
i =

{

m, ℓ = mpj − 1, 0 ≤ j ≤ ν

0, otherwise,

for ℓ = 0, . . . ,mn −N2 − 2 = N1 +mn−1 − 2. The Jacobi matrix of this system
of equation at the point (x̄i) is the (N1 +mn−1 − 1, N1)-matrix

(

(ℓ+ 1)aix̄
ℓ
i

)

ℓ,i

over k. The rows of this matrix corresponding to an index ℓ with ℓ ≡ −1
(mod p) vanish. Crossing out these trivial rows we obtain the matrix

(

(ℓ+ 1)aix̄
ℓ
i

)

ℓ 6≡−1(mod p),i
.

For our key result, Lemma 7.4, we need this matrix to be invertible; this is the
case if and only if the matrix

A :=
(

x̄ℓi
)

ℓ 6≡−1(mod p),i
(24)

is invertible.

Assumption 7.2 The matrix A in (24) is invertible.

Remark 7.3 Note that a trivial necessary condition for Assumption 7.2 is that
A is a square matrix. This is not in general true. For instance, if m = 1, so
that mn−1 = pn−2, then A is square if and only if

pn−1 − pn−2 − p < N1 ≤ pn−1 − pn−2.

Fix g as in Assumption 7.1, and assume Assumption 7.2. In the field K(T ),
set T̃ = p−rn−1T . Let Gn denote the family of polynomials in R[T−1] of the
form

G =

N1
∏

i=1

(1− xiT̃
−1)ai ,

such that xi reduces to x̄i. In particular, for any G ∈ Gn, we have [G]rn−1 =
t−a0g. Lastly, let m′ = N1 +mn−1.

Lemma 7.4 Under Assumptions 7.1 and 7.2, let G ∈ Gn, and let J ∈ 1 +
T̃−1

m[T̃−1].

(i) There exists a unique G′ ∈ Gn and a unique polynomial I ∈ 1+T̃−p
m[T̃−p]

of degree ≤ m′ − 1 in T̃−1 such that

G′

G
I ≡ J (mod T̃−m′

).

If J ≡ 1 (mod pσ, T̃−m′

) for σ ∈ Q>0, then vrn−1(
G′

G − 1) ≥ σ and
vrn−1(I − 1) ≥ σ.
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(ii) Let 0 < s < p
p−1 be a rational number. After a possible finite extension of

K, there exists G′ ∈ Gn and a polynomial H ∈ 1 + T̃−1
m[T̃−1] of degree

≤ [(m′ − 1)/p] such that we have

G′

G
Hp ≡ J (mod ps, T̃−m′

).

If J ≡ 1 (mod pσ, T̃−m′

) for some 0 < σ < p
p−1 , then we can choose G′

and H such that vrn−1(
G′

G − 1) ≥ σ and vrn−1(H
p − 1) ≥ σ.

Proof: By assumption we have

G =

N1
∏

i=1

(1− xiT̃
−1)ai ,

and where xi ∈ R is a lift of x̄i. We set

G′ =

N1
∏

i=1

(1− x′iT̃
−1)ai , x′i := xi + zi,

and where the zi are for the moment considered as indeterminates. We also set

I := 1 +

[(m′−1)/p]
∑

j=1

bj T̃
−pj,

for another system of indeterminates bj. Write

G′

G
I = 1 +

∞
∑

ℓ=1

cℓT̃
−ℓ,

where cℓ is a formal power series in (zi, bj). A simple computation shows that

∂cℓ
∂zi

|zi=bj=0 = aix
ℓ−1
i

∂cℓ
∂bj

|zi=bj=0 =

{

1, ℓ = pj

0, ℓ 6= pj.

(25)

The congruence
G′

G
I ≡ J (mod T̃−m′

) (26)

corresponds to a system of m′ − 1 equations (one equation for each monomial
cℓT̃

−ℓ, ℓ = 1, . . . ,m′−1) in the indeterminates (zi, bj). The Jacobi matrix of this
system of equations is invertible over R if and only if its reduction is invertible
over k. From (25) it is easy to see that this is true iff the matrix A from (24)
is invertible, which is the case by Assumption 7.2. We conclude that (26) has a
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unique solution with zi, bj ∈ m. In fact, by the effective Hensel’s Lemma, v(zi)
and v(bj) are all at least as large as vrn−1(J − 1). This proves (i).

To prove (ii), we will build G′ and H through successive approximation. Let

G′
1 and I1 = 1+

∑[(m′−1)/p]
j=1 bj,1T̃

−pj be the unique solution guaranteed by (i).

So
G′

1

G I1 ≡ J (mod T̃−m′

). Set

H1 := 1 +

[(m′−1)/p]
∑

j=1

b
1/p
j,1 T̃

−j

for any choice of pth roots, and set J1 :=
G′

1

G H
p
1 . Since Hp

1 ≡ I1 (mod p), we

have that J
J1

≡ 1 (mod p, T̃−m′

). Now, let G′
2 and I2 = 1+

∑[(m′−1)/p]
j=1 bj,2T̃

−pj

be the unique solution to

G′
2

G′
1

I2 ≡
J

J1
(mod T̃−m′

)

guaranteed by (i). Note that, since the coefficients of J
J1

(mod T̃−m′

) have
valuation at least 1, Part (i) gives that v(bj,2) ≥ 1 for all j. Let

H2 := 1 +

[(m′−1)/p]
∑

j=1

b
1/p
j,2 T̃

−j.

Then Hp
2 ≡ I2 (mod p1+1/p). Thus

G′
2

G
(H1H2)

p =
G′

2

G′
1

Hp
2 ·

G′
1

G
Hp

1 ≡
J

J1
· J1 ≡ J (mod p1+1/p, T̃−m′

). (27)

We can repeat this process for all i ∈ N, letting G′
i and Ii be the unique

solution to
G′
i

G′
i−1

Ii ≡
J

Ji−1
(mod T̃−m′

)

guaranteed by (i), and constructing Hi from Ii in the same manner as H1

and H2. Set Ji =
G′

i

G (H1 · · ·Hi)
p. If γi =

∑i−1
j=1 1/p

j, then
G′

i

G′

i−1
Hp
i ≡ J

Ji−1

(mod pγi). Analogously to (27), one derives

G′
i

G
(H1 · · ·Hi)

p =
G′
i

G′
i−1

Hp
i ·

G′
i−1

G
(H1 · · ·Hi−1)

p ≡ J (mod pγi , T̃−m′

).

Since s < p
p−1 , we have that γi > s for large enough i. Setting G′ = G′

i and

H = (H1 · · ·Hi) for such an i gives the desired solution to part (ii).
To check the last statement of part (ii), it suffices to show that vrn−1(H

p
i −

1) ≥ σ for all i ∈ N. Since vrn−1(I1 − 1) ≥ σ by (i), we have vrn−1(H
p
1 − 1) ≥ σ

(here we use that σ < p
p−1 to estimate the cross terms). Since part (i) also

shows vrn−1(
G′

1

G −1) ≥ σ, we see that vrn−1(J1−1) ≥ σ. An easy induction now
shows that vrn−1(H

p
i − 1) ≥ σ for all i. ✷
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Corollary 7.5 Under Assumptions 7.1 and 7.2, letG ∈ Gn, let r ∈ Q∩(0, rn−1),
and let f ∈ t−1k[t−1] be a polynomial of degree < m′ = mn−1 + N1 without
constant term. Fix some s ∈ Q with

m′(rn−1 − r) ≤ s ≤
p

p− 1
.

Then there exists G′ ∈ Gn, a polynomial H ∈ 1 + T−1R[T−1], and F ∈ K such

that G′

G H
p = 1− psF with vr(F ) = 0 and [F ]r = f .

Proof: Let F ′ be a polynomial in T−1 of the same degree as f such that
vr(F

′) = 0 and [F ′]r = f . Now, vrn−1(p
sF ′) = s − deg(f)(rn−1 − r), which is

positive by our assumptions. Choose σ such that s − (rn−1 − r) < σ < p
p−1 .

Then Lemma 7.4(ii) yields G′ and H such that

G′

G
Hp ≡ 1− psF ′ (mod pσ, T̃−m′

).

Lemma 7.4(ii) also allows us to assume that

vrn−1(
G′

G
Hp − 1) ≥ s− deg(f)(rn−1 − r).

If F is such that G
′

G H
p = 1−psF , then it suffices to show that vr(F−F ′) > 0.

Write psF−psF ′ as a power series
∑∞
j=0 αj T̃

−j. For j < m′, we have v(αj) ≥ σ.
For j ≥ m′, we have v(αj) ≥ s − deg(f)(rn−1 − r). In both cases, we have
v(αj) + j(rn−1 − r) > s, which shows that vr(p

sF − psF ′) > s, and thus
vr(F − F ′) > 0. ✷

7.2 Specialization to the context of Theorem 6.6 and Lemma 6.12
Maintain the notation of §7.1. In this section, we show that Assumptions 7.1
and 7.2 are satisfied in the situations of §6. In particular, we want to show that
there is a g satisfying Assumption 7.1 in the form

g = t−N2

N1
∏

i=1

(1− x̄it
−1). (28)

Such a solution (where a0 = −N2 and ai = 1 for i > 1) is called a solution with
simple type. In the situation where we only look for solutions with simple type,
(20) can be rewritten as

ω := dg/g −m

ν
∑

j=0

t−mp
j−1dt =

cdt

tN+mn−1+1g
, (29)

where c 6= 0. Recall that N = mn −mn−1 ≥ mn−1(p − 1) and that mn 6≡ 0
(mod p) if the inequality is strict.
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Lemma 7.6 Suppose g is of simple type as in (28). Then g satisfies (29) (and
thus (20)) if and only if it satisfies Assumption 7.1.

Proof: The “only if” direction is immediate from the right hand side of
(29). To prove the “if” direction, suppose that g is of simple type and satisfies
Assumption 7.1. Then ω has a zero of order mn−1 +N1 − 1 at ∞, simple poles
at all the N1 zeroes of g, a pole of order mn−1 + 1 at 0, and no other poles.
Thus, ω can have no other zeroes. So the differential forms on each side of (29)
have the same divisor, and we can choose c to get our desired equality. ✷

Theorem 7.7 Assume that m = 1 (i.e. (m1, . . . ,mn−1) = (1, p, . . . , pn−2 =
pν)). Then (29) has a unique solution g ∈ k(t). This solution is of the form
(28), with pairwise distinct x̄i ∈ k, and where

pν+1 − pν − p < N1 ≤ pν+1 − pν , N1 ≡ N (mod p)

Proof: We rewrite (29) as the nonhomogenous linear differential equation

dg − g ·
(

ν
∑

j=0

t−p
j−1dt

)

= ct−N−pν−1dt (30)

and we first look for solutions in k((t)) of the form g =
∑∞
i=−N αit

i. We obtain
a system of linear equations in the coefficients αi. In degree −N − pν − 1, we
obtain α−N = −c, and for i ≥ 1 we get a linear expression for α−N+i in terms
of α−N , . . . , α−N+i−1. In other words, (30) has a unique solution of the form
g = −ct−N + . . . ∈ k((t)). We also observe that the linear equations become
periodic in i, as soon as i ≥ pν , which means that the coefficients of g (which
only take values in Fp) are also eventually periodic. This means that g is actually
a rational function in t, i.e. g ∈ k(t) (as if P is the period of the coefficients of
g, then one can write an equation relating g and tP g). Now we can use (29) to
see that

ord0(g) = −N, ordx̄(g) ∈ {0, 1}, x̄ 6= 0,∞. (31)

It follows that g ∈ k[t, t−1] is a Laurent polynomial with leading term −ct−N

with only simple zeroes outside of t = 0,∞. Set

N2 := ord∞(g) (32)

and N1 := N −N2. Then g is of the form (28). It remains to see that N1 is as
claimed in the theorem.

Let ω denote the differential form in (29). By (32) we have

ord∞(ω) = pν − 1 +N1 ≥ pν − 1 ≥ 0, (33)

which implies that res∞(ω) = res∞(dg/g) = 0. We conclude that N2 ≡ 0
(mod p) and hence N1 ≡ N (mod p). It remains to prove the inequality for N1

stated in the theorem.
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First assume ν = 0. Then ord∞(ω) = N1. Also, C(ω) = dg/g = ω + t−2dt.
Thus, either N1 = 0 or ord∞C(ω) = 0. But it is easy to see that if ord∞C(ω) = 0
and ord∞(ω) ≥ 0, then ord∞ω < p. Thus 0 ≤ N1 < p, which is exactly the
condition of the theorem.

Now assume ν ≥ 1. Set

h := t−N2g−1 =

N1
∏

i=1

(1− x̄it
−1)−1.

Since N2 ≡ 0 (mod p), h satisfies the differential equation

dh+ h ·
(

ν
∑

j=0

t−p
j−1dt

)

= ct−N1−p
ν−1h2 dt (34)

which is derived from (30). If we write h = 1 + b1t
−1 + b2t

−2 + . . . and plug
this into (34), we see that the coefficients b1, . . . , bp−1 satisfy the simple linear
equations

b1 = 1, 2b2 = b1, . . . , (p− 1)bp−1 = bp−2.

We conclude that bi = 1/i! 6= 0 for i = 0, 1, . . . , p− 1. Write N1 = pM − a with
0 ≤ a < p and M ∈ Z. Then

ω = ct−N1−p
ν−1h dt = c(t−M−pν−1

)p(ta + b1t
a−1 + . . .) dt/t,

from which we see that

C(ω) = c1/p · t−M−pν−1

(b1/pa + b
1/p
p+at

−1 + . . .) dt/t.

Since ba 6= 0, it follows that

ord∞C(ω) =M + pν−1 − 1. (35)

In particular, this and (33) show that ord∞C(ω) < ord∞ω. Therefore, the
equality

C(ω) = ω + t−p
ν−1dt.

shows that
ord∞C(ω) = pν − 1. (36)

Combining (35) and (36) we conclude that M = pν − pν−1 and hence

N1 = pM − a = pν+1 − pν − a.

This completes the proof of the theorem. ✷

Corollary 7.8 If m|N , then (29) has a unique solution g(t) ∈ k(t). In this
case, the solution is given by g(t) = h(tm), where h(t) is the solution to (30)
with N replaced by N ′ := N/m and c replaced by c′ := c/m. In particular,
g(t) ∈ k[t−1] is of simple type, and of degree N in t−1. Furthermore, m|N1 and
we have

mn−1(p− 1)−mp < N1 ≤ mn−1(p− 1), N1 ≡ N (mod p).
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Proof: Equation (29) can be rewritten as

dg − g ·m ·
(

ν
∑

j=0

t−mp
j−1dt

)

= ct−N−mn−1−1dt, (37)

Since g(t) = h(tm), we have dg = mtm−1dh(tm). By definition, h satisfies

dh− h ·
(

ν
∑

j=0

t−p
j−1dt

)

= c′t−N
′−pν−1dt. (38)

Multiplying (38) by t, substituting tm for t on both sides, and then multiplying
by m

t yields (29). This shows that g(t) is as in the corollary. Then g is unique
because its Laurent series coefficients can be calculated by recursion. The prop-
erties of N1 follow easily. ✷

Remark 7.9 Suppose g ∈ k[t−1] is a solution to (29), thus (37). Let c̄i be the
coefficient of t−i in g (with c̄i = 0 if i < 0). Then (37) in degree −i − 1 gives
the equation

ic̄i +m(c̄i−m + c̄i−pm + · · ·+ c̄i−pνm) =

{

−c i = N +mn−1

0 otherwise.
(39)

Corollary 7.8 proves Theorem 6.6. Since m|mn−1 by definition and N =
mn−mn−1, we have that mn = pmn−1 implies m|N , and thus that the solution
g to (29) guaranteed by Corollary 7.8 satisfies Assumption 7.1.

Lemma 7.10 If g is a solution to (29) with simple type, and we further assume
that mn = pmn−1, then Assumption 7.2 holds as well.

Proof: Corollary 7.8 shows that N1 = mn−1(p− 1). One then sees that the
matrix A in (24) is square. We show that ker(A) = 0. Suppose ~v ∈ ker(A) is
non-zero, and let ~x be the vector (x̄1, . . . , x̄n). Then, if ǫ

2 = 0, the vector ~x+ ǫ~v
must also satisfy Assumption 7.1, and thus, by Lemma 7.6, ~x+ ǫ~v must satisfy
(37) (equivalent to (29)). Now, we claim that replacing ~x with ~x + ǫ~v replaces
g with g + ǫh(~v), where h(~v) is a nonzero polynomial in t−1. Given the claim,

Equation (37) then implies that dh− h ·m · (
∑ν

j=0 t
−mpj−1dt) = 0, or that

dh/h = m(

ν
∑

j=0

t−mp
j−1dt).

But the right-hand side is not logarithmic, as it has a multiple pole at t = 0.
This is a contradiction.

To prove the claim, we must show that h(~v) is nonzero. If ~ej is the jth

standard basis vector, then h(~ej) = t−N2−1
(

∏N1

i=1 (1− x̄it
−1)

)

/(1− x̄jt
−1). In
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particular, x̄i is a zero of h(~ej) for all i 6= j, but not when i = j. But then no
h(~ej) can be a linear combination of the h(~ei) with i 6= j, because that would
imply that x̄j is a zero of h(~ej). Thus h(~v) 6= 0 for ~v 6= 0. ✷

Corollary 7.11 Lemma 6.12 holds.

Proof: If mn = pmn−1, then Corollary 7.8 and Lemma 7.10 guarantee
that there is a unique g satisfying (29) (thus Assumption 7.1) and Assumption
7.2, and that N2 = 0. By Lemma 7.6, the family Gn from §7.1 (in particular,
Corollary 7.5) is the same as the family defined in Definition 6.7. Then Lemma
6.12 follows from Corollary 7.5, noting that, since N = N1 = mn−1(p− 1), we
have m′ = mn = pmn−1 in Corollary 7.5. ✷

Remark 7.12 Suppose m = 1, so that mn−1 = pν−2. Then the condition
pn−1 − pn−2 − p < N1 ≤ pn−1 − pn−2 from Theorem 7.7 is exactly the same as
the necessary condition for the matrix A in (24) to be square (Remark 7.3), and
thus it is necessary in order for Assumption 7.2 to be satisfied. So if g satisfies
Assumption 7.1, even if g does not have simple type, we still must have the
same bounds on N1 in order to proceed with any proof that uses Assumption
7.2, which is essential for our proof of Lemma 6.12. The importance of bounds
on N1 was shown in Example 6.9 and Remark 6.10.

7.3 An invertible matrix We give a result (Lemma 7.14) that will be used
in §7.4. Assume that mn = pmn−1, and that g is a simple type solution to (29).
By Corollary 7.8, we have N1 = N = mn−1(p − 1), and N2 = 0. Maintain the
notation Gn from §7.1. Recall that T̃ = p−rn−1T . Recall also that, if Γ ∈ Gn,
then Γ ∈ 1 + T̃−1R[T̃−1] has degree mn−1(p− 1) and simple zeroes.

Let V ∼= Rmn−1 be the free R-module of polynomials of the form

mn−1
∑

j=1

bj T̃
−pj (bj ∈ R),

and W ∼= Rmn−1 be the free R-module of polynomials of the form

pmn−1
∑

j=mn−1(p−1)+1

aj T̃
−j (aj ∈ R).

For Γ ∈ Gn, consider the linear map L : V →W defined by

LΓ(J) = (ΓJ)tr,

where (·)tr truncates a polynomial in T̃−1 to preserve only the terms of degree
mn−1(p− 1) + 1 through pmn−1, inclusive. Let AΓ ∈Mmn−1(R) be the matrix

of this linear map, relative to the input basis T̃−p, . . . , T̃−pmn−1, and the output
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basis T̃−(mn−1(p−1)+1), . . . , T̃−pmn−1. If ci is the coefficient of T̃−i in Γ (with
ci = 0 for i < 0), then the matrix AΓ is given by

AΓ =

















cmn−1(p−1)−p+1 cmn−1(p−1)−2p+1 · · · c−mn−1+1

cmn−1(p−1)−p+2 cmn−1(p−1)−2p+2 · · · c−mn−1+2

...
...

. . .
...

cpmn−1−p cpmn−1−2p · · · c0

















(40)

Lemma 7.13 For any Γ ∈ Gn, the matrix AΓ above lies in GLmn−1(R).

Proof: We note that AΓ lying in GLmn−1(R) is equivalent to the reduction
ĀΓ of AΓ lying in GLmn−1(k), which is equivalent to the linear transformation
given by ĀΓ being surjective. Since ĀΓ does not depend on the choice of Γ ∈ Gn,
it suffices to show that, for any w ∈W , there exists some Γ ∈ Gn and some v ∈ V
such that LΓ(v) = w. Consequently, it suffices exhibit an R-basis w1, . . . , wmn−1

of W such that each wi is in the image of some LΓ.
Take any G ∈ Gn, and let

w′
i = (T̃−(mn−1(p−1)+i)G)tr, 1 ≤ i ≤ mn−1.

One easily sees that the w′
i form an R-basis of W . If i = mn−1, take wmn−1 =

w′
mn−1

= T̃−pmn−1. Then, wi = LΓ(T̃
−pmn−1), regardless of Γ.

Now, suppose 1 ≤ i < mn−1. For any small ǫ ∈ Q>0, let r ∈ Q be such that

(mn−1 − i)(rn−1 − r) = ǫ

(we choose ǫ small enough so that r > 0). If s = pmn−1(rn−1 − r), then the
monomial

F = p(mn−1(p−1)+i)(r−rn−1)T̃−(mn−1(p−1)+i)

satisfies [F ]r = t−(mn−1(p−1)+i) and (psFG)tr = pǫw′
i. By Lemma 7.4(i) with

J = 1 + psF , there is a unique solution (G′, I) to

G′I −G ≡ psFG (mod T̃−pmn−1),

where G′ ∈ Gn and I is of the form 1+
∑mn−1−1
j=1 bjT̃

−pj, with all bj ∈ m. Then
LG′(I − 1) = pǫw′

i + cwmn−1 , with c ∈ R and I − 1 ∈ V . By continuity and
the linearity of LG′, it follows that there exists c′ ∈ R and v ∈ V such that
LG′(v) = w′

i + c′wmn−1 . If wi = w′
i + c′wmn−1 , then wi is in the image of LG′ .

Since w1, . . . , wmn−1 form a basis of W , we are done. ✷

Lemma 7.14 Let α = (mn − p[mn

p ]). Let C ∈ Mmn−1(R) be the matrix with

Cij = cmn−1(p−1)−pj+i+α. Then C ∈ GLmn−1(R).
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Proof: It suffices to show that the reduction C of C to Mmn−1(k) is invert-
ible. For all j, let cj be the reduction of cj to k. These are the coefficients of
t−j in g (see Remark 7.9).

By Lemma 7.13, the reduction A of AΓ in (40) to Mmn−1(k) is invertible.

Notice that A satisfies Aij = cmn−1(p−1)−pj+i. Thus, up to reordering rows, the

matrix C is derived from the matrix A by replacing each of the first α rows
R1, . . . , Rα of A with rows R′

1, . . . , R
′
α, such that each entry cℓ in Ri is replaced

by cℓ+mn−1 in R′
i.

Now, setting i = l+mn−1 in (39), we obtain that the cl satisfy the recursion

cℓ+mn−1 = −
m

ℓ+mn−1
(cℓ+mn−1−m + cℓ+mn−1−pm + · · ·+ cℓ+mn−1−pνm), (41)

so long as p ∤ ℓ +mn−1. Since 0 ≤ α < p, we see that in the first α rows of A,
no cl appears with p|ℓ +mn−1, so (41) holds. All entries of R1 are of the form
cℓ, with ℓ ≡ 1 −mn−1 (mod p), so (41) shows that R′

1 is a linear combination
of the rows of A, where the coefficient of R1 is the unit −m

1 . So replacing R1

with R′
1 gives a matrix A1 such that det(A1) = −m det(A). In particular, A1

is invertible. For the same reasons, replacing the row R2 of A1 with R′
2 gives a

matrix A2 which is again invertible. Repeating this process a total of α times
yields an invertible matrix Aα. Since C is obtained from Aα by reordering rows,
it is also invertible.

✷

7.4 Proof of Propositions 6.19 and 6.20 Maintain the notation and
assumptions of §7.3. Let Gmin ∈ Gn. Note that Gmin ∈ R[T̃−1] has degree
mn−mn−1 = mn−1(p− 1). Let m′

n ≥ mn = pmn−1, with m
′
n prime to p unless

m′
n = mn. Let F ∈ T−1R[T−1] have degree ≤ m′

n.
In order to prove Proposition 6.19, we begin by trying to find polynomials

I and G′
n in R[T ] such that

GminI −G′
n ≡ −p

p
p−1F (mod p

p
p−1+ǫR[T−1]) (42)

for some ǫ > 0, with I having only monomials of degree divisible by p and G′
n

having degree at most m′
n −mn−1. Consider instead the congruence

GminI −G′
n ≡ −p

p
p−1F (mod T̃−m′

n−1K[T̃−1]). (43)

Since F has degree at most m′
n in T̃−1, we look for I of the form

I =

[
m′

n
p ]

∑

i=0

biT̃
−pi.

Being able to choose G′
n affords us some freedom; we may choose the coefficients

bi for i ≤
m′

n

p − mn−1 at will. This is because the terms in GminI to which

these bi contribute have degree at most m′
n −mn−1. As in §7.3, write Gmin =

∑mn−1(p−1)
i=0 ciT̃

−i, with ci = 0 for i not between 0 and mn−1(p− 1).

43



Proposition 7.15 After a possible finite extension of K, there exists a solution
(I,G′

n) to the equation GminI − G′
n ≡ −p

p
p−1F (mod T̃−m′

n−1K[T̃−1]) as de-
scribed above with coefficients in K. Furthermore, a solution exists with b0 = 1,

bi = 0 for 1 ≤ i ≤ m′

n

p −mn−1, and v(bi) ≥
p
p−1 − m′

n

mn−1(p−1) for all other i.

Proof: We take b0 = 1 and bi = 0 for 1 ≤ i ≤ m′

n

p −mn−1. We rewrite (42)
as

Gmin(I − 1)−G′
n ≡ p

p
p−1F −Gmin (mod T̃−m′

n−1K[T̃−1]).

This is a system of m′
n + 1 equations (corresponding to the terms of degree 0

through m′
n) in m

′
n + 1 variables (corresponding to the coefficients c0 through

cm′

n−mn−1 of G′
n and b

[
m′

n
p ]−mn−1+1

through b
[
m′

n
p ]

of I). Let E be the matrix

representing this system. We will show that E ∈ GLm′

n+1(R). Let the columns
of E correspond to the variables just listed, and let the rows of E correspond
to degrees 0 through m′

n, in order. Then E can be written as a block matrix,

E =





−Im′

n−mn−1+1 B

0 C



 , (44)

where Im′

n−mn−1+1 is the identity matrix of size m′
n − mn−1 + 1. Since the

entries of B and C lie in R, being coefficients of Gmin, we see that showing
that E ∈ GLm′

n+1(R) is equivalent to showing that C ∈ GLmn−1(R). Now,

the ijth entry of C is cℓ, with ℓ = m′
n − mn−1 + i − p([

m′

n

p ] − mn−1 + j) =

mn−1(p − 1) − pj + i + (m′
n − p[

m′

n

p ]). By Lemma 7.14, the matrix C lies in

GLmn−1(R), thus so does E.

Lastly, we show that we have v(bi) ≥
p
p−1 −

m′

n

mn−1(p−1) for all i >
m′

n

p −mn−1.

Since F ∈ R[T−1], the coefficient of T̃−i in −p
p

p−1F has valuation at least
p
p−1 − i

mn−1(p−1) . Since F has degree at most m′
n in T̃−1, all coefficients of

−p
p

p−1F (in terms of T̃ ) have valuation at least p
p−1 − m′

n

mn−1(p−1) . The bi in

question are given as entries of the column vector E−1~v, where ~v is the column
vector whose entries are the coefficients of 1, T̃−1, . . . , T̃−m′

n in −p
p

p−1F . Since
E−1 has entries in R, we are done. ✷

We now prove Proposition 6.19.

Corollary 7.16 Let

I =

[
m′

n
p ]

∑

i=0

biT̃
−pi

be the solution to (43) found in Proposition 7.15. If

H =

[
m′

n
p ]

∑

i=0

b
1/p
i T̃−i,
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for any choice of pth roots, then there exists (after a possible finite extension of
K) Gn ∈ R[T−1] of degree at most m′

n −mn−1 such that (H,Gn) is a solution
to

GminH
p −Gn ≡ −p

p
p−1F (mod p

p
p−1+ǫR[T−1])

for some ǫ ∈ Q>0. Furthermore, H and Gn lie in 1 + T−1
m[T−1].

Proof: Working in terms of T̃ , we have that Hp − I =
∑p[

m′

n
p ]

i=1 paiT̃
−i,

where for all i, v(ai) ≥ minj(v(bj)) ≥
p
p−1 −

m′

n

mn−1(p−1) . Since Gmin ∈ R[T̃−1],

it follows that

Gmin(H
p − I) ≡

m′

n
∑

i=1

eiT̃
−i (mod T̃−m′

n−1R[T̃−1]),

where v(ei) ≥ 1 + p
p−1 − m′

n

mn−1(p−1) for all i. Set Gn = G′
n +

∑m′

n−mn−1

i=1 eiT̃
−i,

where G′
n is as in Proposition 7.15. We must show that GminH

p−Gn ≡ −p
p

p−1F

(mod p
p

p−1+ǫR[T−1]) for small enough ǫ ∈ Q>0

If 0 ≤ i ≤ m′
n −mn−1, then the terms involving T̃−i (and thus T−i) agree

exactly for GminH
p −Gn and −p

p
p−1F by construction.

If m′
n −mn−1 + 1 ≤ i ≤ m′

n, then the terms involving T̃−i (or T−i) agree

exactly for GminI and −p
p

p−1F (Gn and G′
n have no terms of these degrees). So

the coefficient of T̃−i in GminH
p−Gn+

p
p−1F is ei, which has valuation at least

1 + p
p−1 −

m′

n

mn−1(p−1) . Thus the coefficient of T−i in GminH
p −Gn + p

p
p−1F has

valuation at least

1 +
p

p− 1
−

m′
n

mn−1(p− 1)
+

i

mn−1(p− 1)
>

p

p− 1
+
p− 2

p− 1
≥

p

p− 1
,

so the desired congruence holds for these terms.
For i > m′

n, the coefficient of T̃−i inGminH
p−Gn+p

p
p−1F (which is the same

as in GminH
p, as F is of degree ≤ m′

n) has valuation at least p
p−1 − m′

n

mn−1(p−1) .

So the corresponding coefficient of T−i has valuation at least

p

p− 1
−

m′
n

mn−1(p− 1)
+

i

mn−1(p− 1)
>

p

p− 1
,

proving the desired congruence.
To prove the last assertion, note that any non-constant coefficient of H is of

the form b
1/p
i T̃ i, with v(bi) ≥

p
p−1 − m′

n

mn−1(p−1) and i >
m′

n

p −mn−1. It follows

easily that v(b
1/p
i ) + irn−1 > 0. Thus, when H is written in terms of T−1, all

non-constant coefficients have positive valuation. The same is then true for Gn.
✷

We examine our solution above in greater detail to prove Proposition 6.20.
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Proposition 7.17 Let Gn and H be as in Corollary 7.16. Suppose that there
is no integer a satisfying

m′
n

p
−mn−1 < a ≤

(

m′
n

m′
n −mn−1

)(

m′
n

p
−mn−1

)

. (45)

Then vr′n(H−1) > 0 and vr′n(Gn−1) > 0, where r′n = 1
m′

n(p−1) . Thus all zeroes

of Gn lie in the open disk D(r′n).

Proof: Since vr′n(Gmin−1) > 0, we need only show that vr′n(H−1) > 0. Let

T ′ = p−r
′

nT . Writing H − 1 as
∑

i γi(T
′)−i, we see from Proposition 7.15 and

the definition of H that γi is nonzero only when [
m′

n

p ] −mn−1 + 1 ≤ i ≤ [
m′

n

p ].

In particular, i >
m′

n

p −mn−1. Furthermore, if bi is the coefficient of T̃−pi in I

(Proposition 7.15), then by the definition of H (Corollary 7.16), we have

v(γi) =
v(bi)

p
+ i

(

1

mn−1(p− 1)
−

1

m′
n(p− 1)

)

≥
1

p− 1

(

1−
m′
n

pmn−1
+

i

mn−1
−

i

m′
n

)

If i >
(

m′

n

m′

n−mn−1

)

(
m′

n

p −mn−1), then v(γi) > 0, and we are done. ✷

Example 7.18 We give a counterexample to Proposition 7.17 when there is an
a satisfying (45). Let p = 5, n = 3, (m1,m2,m3) = (1, 5, 34), and F = T−34.
Take Gmin ∈ G3 as above. Then the matrix C from (44) becomes























c20 c15 c10 c5 c0

c21 c16 c11 c6 c1

c22 c17 c12 c7 c2

c23 c18 c13 c8 c3

c24 c19 c14 c9 c4























Now, based on (39) and the fact that c0 must be 1, one can calculate that the
reduction of this matrix to M5(k) is

C =























4 0 0 0 1

0 1 1 1 1

0 0 4 2 3

0 0 0 1 1

0 0 0 0 4
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and C
−1

has a nonzero entry in the upper righthand corner (easily checked using
the adjoint formula for the inverse).

Now, if E is as in (44), then E−1 =





−I30 BC−1

0 C−1



. We calculate the

coefficient b2 of T̃−10 in I (from Proposition 7.15). It is the entry of E−1~v
(see end of proof of Proposition 7.15) corresponding to the top row ~w of C−1

(i.e., the row (0|~w) of E−1). Here ~v is a vector whose only nonzero entry is in
the last position, and is the coefficient of T̃−34 in 55/4F , which has valuation
5
4 − 34( 1

5(4) ) = − 9
20 . Since C−1 has an entry of valuation zero in the upper

righthand corner, we see that v(b2) = − 9
20 . If T

′ = 5−r3T = 5r2−r3 T̃ , then if we
write I in terms of T ′, the coefficient of (T ′)−10 has valuation − 9

20 +
10
20 −

10
34(4) =

1
20 − 10

136 < 0. The coefficient of (T ′)−10 in Hp has the same valuation, as does
the coefficient of (T ′)−10 in GminH

p, as does the coefficient of (T ′)−10 in G3.
So the zeroes of G3 do not all lie in the disk D(r3). In fact, using the Newton
polygon, one can show that 10 zeroes of G3 have valuation 1

200 .
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