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THE RING OF EVENLY WEIGHTED POINTS ON THE LINE

MILENA HERING AND BENJAMIN J. HOWARD

Abstract. Let Mw = (P1)n//SL2 denote the geometric invariant theory quotient of
(P1)n by the diagonal action of SL2 using the line bundle O(w1, w2, . . . , wn) on (P1)n.
Let Rw be the coordinate ring of Mw. We give a closed formula for the Hilbert function
of Rw, which allows us to compute the degree of Mw. The graded parts of Rw are
certain Kostka numbers, so this Hilbert function computes stretched Kostka numbers.
If all the weights wi are even, we find a presentation of Rw so that the ideal Iw of this
presentation has a quadratic Gröbner basis. In particular, Rw is Koszul. We obtain this
result by studying the homogeneous coordinate ring of a projective toric variety arising
as a degeneration of Mw.

1. Introduction

The study of the ring of invariants for the action of the automorphism group of P1

on n points on P1 goes back to the 19th century. In 1894 Kempe [20] proved that this
ring is generated by the invariants of lowest degree. More than a century later Howard,
Millson, Snowden, and Vakil [17] were finally able to describe the ideal of relations between
Kempe’s generators, when the characteristic of the ground field k is zero or p > 11.

More generally, for w = (w1, . . . , wn) ∈ Zn, let Lw = O(P1)n(w1, . . . , wn). Assume
that all wi are positive, so that Lw is very ample. The group SL(2) acts diagonally on
(P1)n and the line bundle Lw admits a unique linearization. Let

Rw =

(

⊕

d≥0

H0
(

(P1)n, Ldw
)

)SL(2)

denote the corresponding ring of invariant sections, and let Mw = (P1)n//SL(2) denote
the GIT quotient. When wi = 1 for 1 ≤ i ≤ n, we write w = 1n.

In [16, Theorem 2.3] the authors show that Rw is generated by the invariants of
lowest degree for arbitrary w and in [17, Theorem 1.1] that, in characteristic zero or
p > 11, the ideal of relations Iw is generated by quadratic polynomials in the generators
unless w = 16, in which case there is an essential cubic relation. Moreover, in [16, Section
2.15], the authors obtain a recursive formula for the degree of Mw.
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Our first theorem is an extension of Howe’s formula [18, 5.4.2.3] for the Hilbert
function of Rw in the case w = 1n to arbitrary w. In particular, we obtain a closed
formula for the degree of Mw.

Theorem 1.1. Let [n] = {1, . . . , n}, and for J ⊆ [n], set |wJ | =
∑

j∈J wj, w∅ = 0 and

|w| = w1 + · · ·+ wn.

(1) The Hilbert function for Rw is given by

h(d) =
∑

J⊆[n]
|wJ |<|w|/2

(−1)|J |
(

d (|w|/2− |wJ |) + n− |J | − 2

n− 2

)

if d|w| is even, and zero otherwise.
(2) For |w| even, the degree of Mw is

1

n− 2









∑

J⊆[n]
|wJ |<|w|/2

(−1)|J | (|w|/2− |wJ |)
n−3

(

n−3
∑

i=0

n− |J | − 2− i

)









.

Let K(λ, µ) be the Kostka number counting semistandard Young tableaux of shape
λ with filling µ. The dimension of the d-th graded part (Rw)d of Rw is equal to the
stretched Kostka number K(dλ, dµ) where λ = (|w|/2, |w|/2) and µ = w (see 2.1). We
give a closed formula for Kostka numbers of this form in Proposition 3.2. It was shown in
[22] and [2] that for partitions λ and µ the function K(dλ, dµ) is a polynomial in d. Thus
the Hilbert function gives a closed formula for the polynomials K(dλ, dµ) in this special
case.

In [37] Jakub Witaszek studies the multigraded Poincaré-Hilbert series of the ho-
mogeneous coordinate ring of the Plücker embedding of the Grassmannian G(2, n) for a
certain Nn-grading. We obtain a closed formula for the multigraded Hilbert function and
for the Poincaré-Hilbert series, see Remark 3.3.

For a field k, recall that a graded k-algebra R is Koszul if k admits a linear free
resolution as an R-module. If R = k[X0, . . . , XN ]/I, then the existence of a quadratic
Gröbner basis for I implies that R is Koszul, which in turn implies that I is generated
by quadratic equations. In [19], Keel and Tevelev show that the section ring of the log-
canonical line bundle on M0,n is Koszul. However, while for w = 18, Iw is generated by
quadratic equations, we show in Example 3.9 that Rw is not Koszul.

In general, high enough Veronese subrings of graded rings are Koszul [1, 14], and
up to a linear transformation, they admit a quadratic Gröbner basis [8]. We show that
for Rw already the second Veronese subring satisfies these properties.

Theorem 1.2. Assume w ∈ (2Z)n. Then Iw admits a squarefree quadratic Gröbner basis.
In particular, Rw is Koszul.



THE RING OF EVENLY WEIGHTED POINTS ON THE LINE 3

Both theorems apply in all characteristics, and in fact more generally over the
integers. Note that Theorem 1.2 implies that for w with |w| odd, Iw admits a squarefree
quadratic Gröbner basis, since in this case Rw = R2w by Proposition 2.1. In particular, if
w = 1n with n odd, then Iw admits a quadratic Gröbner basis. However, it is not known
whether for w = 110, Rw is Koszul, see Remark 3.10.

As in [16, 17], our proof is based on a toric degeneration. This toric degeneration
is a SAGBI degeneration, and we show that this toric degeneration admits a quadratic
Gröbner basis. After we shared our result with Manon, he was able to extend it to more
general polytopes that arise as degenerations of the coordinate rings of the moduli stack
of quasi-parabolic SL(2,C) principal bundles on a generic marked projective curve in [24,
Theorem 1.10], see Remark 5.12.

Acknowledgments. We benefited from discussions with many people, including Federico
Ardila, Aldo Conca, Sergey Fomin, Nathan Ilten, Chris Manon, Sam Payne, Bernd Sturm-
fels, and Ravi Vakil. We would also like to thank the referee, Diane Maclagan, and Burt
Totaro for helpful comments on a previous version of this paper. Our main thanks is to
Vic Reiner who was shaping the direction of this project. Part of this work was done at
the Institute of Mathematics and its Applications, at the Mathematisches Forschungsin-
stitut Oberwolfach, and at the Max-Planck-Institut für Mathematik, and we would like
to thank these institutes for providing a great research environment.

2. The coordinate ring Rw of Mw

In this section we set up basic notation and describe the invariant ring Rw in terms
of certain semistandard Young tableaux. Let k be a field, and let

S = k[x1, y1, x2, y2, . . . , xn, yn],

which we view as the set of polynomial functions on the space A2×n of 2 × n matrices
with entries in the field k:

(

x1 · · · xn
y1 · · · yn

)

.

The polynomial ring S is graded by Nn, where the degree of the monomial
∏n

i=1 x
ai
i y

bi
i

is equal to (a1 + b1, a2 + b2, . . . , an + bn). Given r = (r1, . . . , rn) ∈ Nn, let Sr denote the
r-th graded part of S. Let Lr = O(r1, . . . , rn). Viewing xi, yi as homogeneous coordinates
for the i’th point in (P1)n, we have H0

(

(P1)
n
, Lr
)

= Sr. The line bundle Lr admits a
linearization for the diagonal action of SL(2,k) on (P1)n, (see [28, Chapter 3.1]) such that
the induced action on the section ring R(Lr) is given by matrix multiplication on the left.
It is easy to see that for i < j the polynomials

pij = det

(

xi xj
yi yj

)

are invariant under the SL(2,k) action. Note that pi,j are the Plücker coordinates on the
Grassmannian G(2, n). The First Fundamental Theorem of Invariant Theory says that
they generate the ring of invariants SSL(2,k), [6, Theorem 2.1]. Note that SSL(2,k) is the
homogeneous coordinate ring of G(2, n) in the Plücker embedding.
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For our purposes, it is most convenient to study this invariant ring using tableaux
of shape (k, k),

(2.1) τ =
i1
j1

i2
j2

· · ·
ik
jk
,

where 1 ≤ iℓ, jℓ ≤ n. A tableau τ is called semistandard if its entries are weakly increasing
in the rows and strictly increasing in the columns, i.e., in our setting we have i1 ≤ · · · ≤
ik, j1 ≤ · · · ,≤ jk, and i1 < j1, . . . , ik < jk. The content of a tableau τ is the n-tuple
w(τ) = (w(τ)1, . . . , w(τ)n), where w(τ)i denotes the number of times i occurs in τ .

To a semistandard tableau τ as in (2.1) we associate the polynomial

sτ = pi1,j1pi2,j2 · · · pik,jk ∈ SSL(2,k).

Note that sτ is homogeneous of degree w(τ).

The following proposition is an algebraic incarnation of the Gel’fand-MacPherson
correspondence [11]. Let Rw be the invariant ring of the introduction and let |w| =
w1 + · · ·+ wn.

Proposition 2.1. The polynomials sτ , where τ ranges over all semistandard tableaux

of shape (d|w|
2
, d|w|

2
) with content dw for some d ∈ N, form a vector space basis for the

invariant ring Rw.

Proof. Let X = (P1)n. The torus Tw = {diag(t1, . . . , tn) ∈ GL(n,k) | tw1

1 tw2

2 · · · twn

n = 1}
acts on the right of A2×n by matrix multiplication inducing an action on S such that
STw = ⊕Sdw. Thus we obtain

Rw =

(

⊕

d

H0
((

P1
)n
, Ldw

)

)SL(2,k)

=

(

⊕

d

Sdw

)SL(2,k)

=
(

STw
)SL(2,k)

.

Since the actions of SL(2,k) and Tw commute, we have (STw)SL(2,k) = (SSL(2,k))Tw .
Now, SSL(2,k) has a vector space basis consisting of sτ where τ ranges over semistandard
Young tableaux of shape (k, k), see for example [6, Theorem 2.3]. Let f =

∑

τ aτsτ ∈
SSL(2,k), where τ runs over semistandard tableaux. Since the action of Tw is linear, and
the sτ are linearly independent, f is invariant under Tw if and only if every sτ is invariant.

Note that for a tableau τ with content w(τ), we have t · sτ = t
w(τ)1
1 · · · tw(τ)nn sτ . In

particular, sτ is invariant if and only if there is d with w(τ) = dw. The claim follows. �

In particular, when w = 1n and n = 2m even, the dimension of the space of lowest
degree invariants in Rw is the Catalan number Cm.

Remark 2.2. One can view Rw as a multigraded Veronese subring of the Plücker algebra.
The Plücker algebra SSL(2,k) admits a Nn-grading determined by the weight under the
action of the diagonal torus T = diag(t1, . . . , tn) via t · pi,j = titjpi,j . Then for a tableau
τ with content w(τ), we have t · sτ = tw(τ)sτ and thus we can conclude as in the proof of
Proposition 2.1 that
(

SSL(2,k)
)

w
= 〈{sτ | τ is semistandard of shape (|w|/2, |w|/2) with filling w(τ) = w}〉.
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Here 〈· · · 〉 denotes the span as a vector space over k. In particular,
(

SSL(2,k)
)

w
= 0 if |w|

is odd. It then follows that Rw =
⊕

d∈N

(

SSL(2,k)
)

dw
.

Definition 2.3. To a tableau τ of shape (k, k) is associated a partition ντ = (ν1, . . . , νn)
of d, the content of the first row of τ , i.e., νi = |{j | ij = i}|.

The following Lemma can be easily deduced from the discussion in [15, Section 3].
We include a sketch of the proof for the convenience of the reader.

Lemma 2.4. The semistandard Young tableaux of shape (|w|/2, |w|/2) with filling w are
in bijection with partitions ν = (ν1, . . . , νn) of |w|/2 satisfying

0 ≤ νℓ ≤ wℓ and(2.2)

2(ν1 + · · ·+ νℓ−1) + νℓ ≥ w1 + · · ·+ wℓ(2.3)

for 1 ≤ ℓ ≤ n. These conditions imply ν1 = w1 and νn = 0.

Proof. To a tableau with filling w and increasing rows is associated a partition of |w|/2
by Definition 2.3. Conversely, to a partition ν satisfying (2.2), we associate a tableau τ

of shape ( |w|
2
, |w|

2
) by filling the first row with ν1 1’s, ν2 2’s, etc., and the second row with

(w1−ν1) 1’s, (w2−ν2) 2’s, etc. By construction the rows of this tableau are increasing and
it has filling w. These associations are inverse to each other. Moreoever, τ is semistandard
if and only if ν1 + · · ·+ νℓ−1 ≥ (w1 − ν1) + · · ·+ (wℓ − νℓ) for 1 ≤ ℓ ≤ n. This condition
is equivalent to (2.3). �

3. The Hilbert polynomial and degree of Mw

In this section we will prove the formulas for the Hilbert function of Rw and the
degree of Mw of Theorem 1.1. Our techniques are similar to those of Howe [18, 5.4.2.3.]
who computed the case when w = 1n.

Let λ = (|w|/2, |w|/2) and µ = w. For partitions λ and µ the Kostka numbers
K(λ, µ) are defined to be the number of semistandard Young tableaux of shape λ and
content µ. For a partition λ = (λ1, . . . , λs), we let dλ = (dλ1, . . . , dλs). Note that by
Proposition 2.1 the dimension of (Rw)d is equal to K(dλ, dµ).

In order to compute the Hilbert polynomial, we give a formula for these particular
Kostka numbers. The main step in proving this formula is to set up a relationship between
the Kostka numbers and numbers of the corresponding partitions of Definition 2.3. We
let Π(n,∞, k) = {(ν1, . . . , νn) | 0 ≤ νi for i ∈ [n] and ν1 + · · ·+ νn = k}, and let

(3.1) π(n,∞, k) = |Π(n,∞, k)| =

(

n− 1 + k

n− 1

)

.

Let w = (w1, . . . , wn) ∈ Nn. We let Π(n, w, k) = {(ν1, . . . , νn) | 0 ≤ νi ≤ wi for i ∈
[n] and ν1 + · · · + νn = k} and let π(n, w, k) = |Π(n, w, k)|. For a subset I ⊆ [n] =
{1, . . . , n}, we let Π(n, wI , k) = {(ν1, . . . , νn) ∈ Π(n,∞, k) | 0 ≤ νi ≤ wi for i ∈ I} and
π(n, wI , k) = |Π(n, wI , k)|.



6 MILENA HERING AND BENJAMIN J. HOWARD

Lemma 3.1. For any I ⊆ [n],

π(n, wI , k) =
∑

J⊆I

(−1)|J |π (n,∞, k − (|wJ |+ |J |))

=
∑

J⊆I

(−1)|J |
(

n− 1 + k − (|wJ |+ |J |)

n− 1

)

.

Proof. We proceed by induction on the cardinality of I. When I = ∅, the above claim is
immediate. If I 6= ∅, let j ∈ I. Since

π(n, wI , k) = π(n, wIr{j}, k)− π(n, wIr{j}, k − wj − 1),

the claim follows from the induction hypothesis. The last equality follows from (3.1). �

Proposition 3.2. Let w ∈ Nn and assume that |w| is even. Then for λ = (|w|/2, |w|/2)
and µ = w, we have

K(λ, µ) = π (n, w, |w|/2)− π (n, w, |w|/2− 1)

=
∑

J⊆[n]
|wJ |<|w|/2

(−1)|J |
(

|w|/2− |wJ |+ n− |J | − 2

n− 2

)

Proof. For the first equality, we need to express the Kostka numbers in terms of partitions.
For ν ∈ Rn, we define a function fν : [n] → R by

(3.2) fν(i) = 2ν1 + · · ·+ 2νi−1 + νi − (w1 + · · ·+ wi)

for 1 ≤ i ≤ n. Then Lemma 2.4 implies that for w ∈ Zn with |w| even, λ = (|w|/2, |w|/2),
and µ = w we have

(3.3) K(λ, µ) = |{ν ∈ Π (n, w, |w|/2) | fν(i) ≥ 0 for all 1 ≤ i ≤ n}|.

For ν ∈ Zn we let mν = min{fν(j) | j ∈ [n]} and iν = max{j | fν(j) = mν} and define

φ : {ν ∈ Π (n, w, |w|/2) | ∃ i such that fν(i) < 0} → Π (n, w, |w|/2− 1)

(ν1, . . . , νn) 7→ (ν1, . . . , νiν − 1, . . . , νn).

We claim that φ is well-defined and gives a bijection. Note that the first equality then
follows from this claim together with (3.3).

The following equalities follow easily from the definition of fν :

fν(i+ 1) = fν(i) + νi − wi+1 + νi+1(3.4)

fν(n) = 2|ν| − |w| − νn.(3.5)

To see that φ is well defined, we have to show that νiν > 0. When iν < n then fν(i+1) >
fν(i) and (3.4) implies νi > wi+1 − νi+1 ≥ 0. If iν = n, then fν(n) = mν < 0, since there
exists i such that fν(i) < 0 and mν ≤ fν(i). Since |ν| = |w|/2, fν(n) = −νn by (3.5), so
we have νn > 0.

To see that φ is a bijection, we exhibit the inverse map. For ν ′ ∈ Π (n, w, |w|/2− 1),
we let jν′ = min{i | fν′(i) = mν′} and define

ψ : (ν ′1, . . . , ν
′
n) 7→ (ν ′1, . . . , ν

′
j
ν′
+ 1, . . . ν ′n).
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We have

(3.6) fψ(ν′)(i) =







fν′(i) ≥ mν′ + 1 if i < jν′
fν′(i) + 1 = mν′ + 1 if i = jν′
fν′(i) + 2 ≥ mν′ + 2 if i > jν′ .

We have to show that ψ is well-defined. If jν′ > 1, then fψ(ν′)(jν′) = fψ(ν′)(jν′ −1)+
ν ′j

ν′
−1−wjν′ +ν

′
j
ν′
+1 by (3.4). Plugging in the values from (3.6), we see that wj

ν′
≥ νj

ν′
+1.

If jν′ = 1, then fψ(ν′)(1) = ν ′1 + 1− w1 = mν′ + 1. However, note that mν′ ≤ fν′(n) ≤ −2
by 3.5, and so it follows that ν ′1 + 2 ≤ w1. Moreover, (3.6) implies that iψ(ν′) = jν′ . One
can check similarly that jφ(ν) = iν and it follows that φ and ψ are inverse to each other.

For the second equality, note that Lemma 3.1 implies that

π (n, w, |w|/2)− π (n, w, |w|/2− 1)

=
∑

J⊆[n]

(−1)|J |
[(

n− 1 + |w|/2− (|wJ |+ |J |)

n− 1

)

−

(

n− 2 + |w|/2− (|wJ |+ |J |)

n− 1

)]

Using the identity
(

m
n

)

−
(

m−1
n

)

=
(

m−1
n−1

)

, one obtains the formula in the statement. Note
that if |wJ | ≥ |w|/2, the expression in the top of the binomial coefficient is less than n−2,
so it suffices to sum over those J ⊆ [n] such that |wJ | < |w|/2. �

Proof of Theorem 1.1. Fix w ∈ Nn, let λ = (|w|/2, |w|/2), and let µ = w. It follows from
Proposition 2.1 that dim(Rw)d = 0 if d|w| is odd and that dim(Rw)d = K(dλ, dµ) if d|w|
is even. The formula for h(d) then follows from Proposition 3.2.

The formula for the degree of Mw is obtained by computing the coefficient of dn−3

in the Hilbert polynomial and multiplying by (n− 3)!. �

Remark 3.3. Our formula also implies a closed formula for the multigraded Hilbert
function and Poincaré-Hilbert series of the coordinate ring of the Grassmannian G(2, n) in
the Plücker embedding with the multigrading described in Remark 2.2. In [37, Theorem
3.4.3] Jakub Witaszek gives a recursive formula for the multigraded Poincaré-Hilbert
series

∑

w∈Λ dim
(

SSL(2,k)
)

w
zw of the Plücker algebra for the multigrading described in

Remark 2.2. He also obtains a combinatorial formula for the Poincaré-Hilbert series.

Let Λ = {w ∈ Zn | |w| ∈ 2Z}. By Remark 2.2, we have dim
(

SSL(2,k)
)

w
= K(λ, µ),

where λ = (|w|/2, |w|/2) and µ = w. It follows that the support of the multigraded
Hilbert function h is {w ∈ Λ | |w|/2 ≥ wj for all 1 ≤ j ≤ n}. Then Proposition 3.2
implies that for w ∈ Λ,

h(w) = dim
(

SSL(2,k)
)

w
=

∑

J⊆[n]
|wJ |<|w|/2

(−1)|J |
(

|w|/2− |wJ |+ n− |J | − 2

n− 2

)

.

So we obtain a closed formula for the multigraded Poincaré-Hilbert series.

A point p = (p1, . . . , pn) ∈ (P1)n is stable (resp. semistable) for the SL(2,k)-
linearization of Lw if for all subsets of indices of colliding points J = {j ∈ [n] | pj =
p for some p} we have |wJ | < |w|/2 (resp. |wJ | ≤ |w|/2), see [28, Chapter 3], [36, Section
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6], or [13, Section 8]. Identifying Nn with the effective divisors on (P1)n, we see that the
fact that in the formula for the multigraded Hilbert function we sum over those J ⊆ [n]
such that |wJ | < |w|/2 reflects the chamber structure for the GIT chambers whose walls
are given by |wJ | = |w|/2. In particular, the multigraded Hilbert function is piecewise
polynomial in w ∈ Λ and the domains of polynomiality agree with the GIT chambers.

Remark 3.4. In the formula for the Hilbert polynomial of Theorem 1.1, the terms of
degree (n− 2) cancel out since dimMw = n− 3. Thus we obtain the following identity:

∑

J⊆[n]

(−1)|J |(|w|/2− |wJ |)
n−2 = 0.

Remark 3.5. Let g(d) denote the Hilbert function of G(2, n) in the Plücker embedding.
Recall the multigraded Hilbert function h for the Plücker embedding from Remark 3.3.
Then we have

g(d) =
∑

w∈Nn

|w|=2d

h(w),

implying the identity

(3.7)

(

n+ d− 1

d

)2

−

(

n + d

d+ 1

)(

n+ d− 2

d− 1

)

=
∑

w∈Nn

|w|=2d

∑

J⊆[n]
|wJ |<|w|/2

(−1)|J |
(

|w|/2− |wJ |+ n− |J | − 2

n− 2

)

.

Remark 3.6. While our formula counts semistandard tableaux, it contains negative signs.
It would be nice to have a formula with positive coefficients. In fact, King, Tollu and
Toumazet conjecture that for arbitrary λ, µ the coefficients of the polynomial K(dλ, dµ)
are positive in [21, Conjecture 3.2].

Remark 3.7. Narayanan shows in [29, Theorem 1] that the problem of computing Kostka
numbers K(λ, µ) is #P -complete. Note that for our formula, one has to compute first all
subsets of [n], where n is the length of µ.

Example 3.8. The formula in Theorem 1.1 shows that deg(M4) = 1, deg(M6) = 3,
deg(M8) = 40, deg(M10) = 1225, deg(M12) = 67956, deg(M14) = 5986134, deg(M16) =
769550496, so this sequence agrees with A012250 on Sloane’s online encyclopedia of integer
sequences [32], compare [16, Section 2.15]. Similarly, when w = (2, . . . , 2), the degrees of
Mw are deg(M24) = 2, deg(M25) = 5, deg(M26) = 24, deg(M27) = 154, deg(M28) = 1280,
deg(M29) = 13005, deg(M210) = 156800, deg(M211) = 2189726 which agrees with sequence
A012249 [33].

The following example shows that while for w = 18, Iw is generated by quadratic
equations by [17], the ring of invariants Rw is not Koszul.

Example 3.9. Recall that for a graded algebra R the Hilbert series is given by H(z) =
∑∞

d=0 dim(Rd)z
d. Similarly, the Poincaré series is given by P (z) =

∑∞
i=0 dimTorRi (k,k)z

i.
Let P(u, v) =

∑∞
i=0 dimTorRi (k,k)ju

ivj. Then we have H(z)P(−1, z) = 1 by [31, Chapter
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2, Proposition 2.1]. If R is Koszul, then the minimal free graded resolution of k over R
is linear, and so P (uv) = P(u, v). Then H(z)P (−z) = 1 if and only if R is Koszul, see
[10, Theorem 1]. In particular, the power series H(−z)−1 = P (z) must have positive
coefficients.

Note that for w = 18, the Hilbert function is given by

h(d) =
3
∑

j=0

(−1)j
(

8

j

)(

d(4− j) + 6− j

6

)

,

so the Hilbert series is

H(z) = 1 + 14z + 91z2 + 364z3 + 1085z4 + 2666z5 + 5719z6

+ 11096z7 + 19929z8 +O(z9)

=
1 + 8z + 22z2 + 8z3 + z4

(1− z)6
.

Then

(3.8) H(−z)−1 = 1 + 14z + 105z2 + 560z3 + 2296z4 + 6880z5 + 8904z6

− 62320z7 − 641704z8 +O(z9).

Remark 3.10. For w = 110 it is not known whether Rw is Koszul or whether the ideal
of relations between the generators admits a quadratic Gröbner basis. One can check
that the first 800 coefficients of H(−z)−1 are positive, however it is not known whether
the relation H(−z)P (z) = 1 is satisfied. In general one might hope that for n large and
w = 1n the ring Rw is Koszul or has other nice properties, such as Green’s property Np,
see for example [23, Section 1.8.D].

4. A SAGBI degeneration of Rw

A crucial part in the proof of [17, Theorem 1.1] is the existence of toric degenerations
of Mw indexed by trivalent trees on n leaves, see [17, Section 3.3]. The existence of
one of these toric degenerations had been established by Foth and Hu in [9, Theorem
3.2]. In fact, the toric degenerations are torus quotients of the toric degenerations of
the Grassmannian G(2, n) studied by Sturmfels and Speyer [34] and by Gonciulea and
Lakshmibai in [12]. Manon mentions in [26, Theorem 1.3.6] that the ring of invariants R
admits a SAGBI degeneration. In this section we will give an explicit description of this
SAGBI degeneration, by taking the torus invariants of the SAGBI degeneration described
in [27, Section 14.3].

Let R be a finitely generated subalgebra of the polynomial ring S = k[x1, . . . , xn],
and let ≺ be a term order on S. Let in≺(R) be the subalgebra of S generated by the inital
terms of the elements of R. Assume this subalgebra is finitely generated. (Note that this
is rarely the case). A set of generators {f1, . . . , fr} is called a SAGBI basis for R with
respect to ≺ if in≺f1, . . . , in≺fr generate in≺(R). Let I be the ideal of relations between
the generators of R. Then in≺(R) ∼= R/in≺I, see [4, Proof of Corollary 2.1]. Since in≺(R)
is a monomial algebra, it is toric, and therefore the existence of a SAGBI basis for an
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algebra implies the existence of a flat degeneration of this algebra to a toric algebra [7,
Theorem 15.17]. Note that the toric algebra need not be normal.

Now let S = k[x1, . . . , xn, y1, . . . , yn] and R the ring of invariants as in Section 2.
Let ≺ be the the purely lexicographic term order with x1 ≻ · · · ≻ xn ≻ y1 ≻ · · · ≻ yn.

Recall the polynomial sτ associated to a 2×n tableau τ =
i1
j1

i2
j2

· · ·
ir
jr

. We also

associate a monomial mτ = xi1 · · ·xiryj1 · · · yjr ∈ S.

Lemma 4.1. A monomial m is a leading monomial of an element in R if and only if
m = mτ , where τ is semistandard with filling dw, for some d. In particular, the set of
these mτ is a vector space basis for in≺(R).

Proof. By Proposition 2.1, the polynomials sτ , where τ ranges over semistandard Young

tableaux of shape 2× d|w|
2

with content dw form a vector space basis of R. Note that every
monomial occurring in sτ is of the form mτ ′ , where τ

′ is a (not necessarily semistandard)
tableau with the same shape and same content as τ . Among those monomials, the largest
with respect to the term order ≺ is mτ . In particular, mτ ∈ in≺(R). Moreover, the
leading monomial of an element

∑

τ∈T aτsτ ∈ R is mτ ′ , where mτ ′ is the largest monomial
in {mτ | τ ∈ T aτ 6= 0} with respect to the term order ≺. Since to distinct semistandard
tableaux are associated distinct monomials, the mτ are also linearly independent. See
also [27, Lemma 14.13]. �

Definition 4.2. Let w ∈ Nn. Let Qw ⊂ Rn be the polytope defined by ν1+ · · ·+ νn = |w|
2

and the inequalities (2.2) and (2.3).

Example 4.3. Let w = (2, 2, 2, 2, 2). Then the inequalities for Qw imply ν1 = 2, ν5 = 0,
and ν4 = 3 − ν2 − ν3. Thus Qw is the 2-dimensional polytope given by the inequalities
0 ≤ ν2, ν3 ≤ 2, 0 ≤ 3 − ν2 − ν3 ≤ 2, and 2ν2 + ν3 ≥ 2. From this we can see that Qw is
isomorphic to the convex hull of 〈(1, 0), (2, 0), (2, 1), (1, 2), (0, 2)〉.

Figure 1. The polytopes Qw of Example 4.3 (with reference lattice Zn)
and Pw of Example 5.2 (with reference lattice (2Z)n) for w = (2, 2, 2, 2, 2).

Note that when w = (1, 1, 1, 1, 1), Qw contains no lattice points; in particular, it is
not a lattice polytope. However, it follows from Lemma 5.3 and Lemma 5.4 that 2Qw is
a lattice polytope for all w.
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Remark 4.4. Note that Qw is a Gelfand-Tsetlin polytope, see for example [5].

Recall that to a rational polytope P is associated a graded monoid SP = {(u, d) |
u ∈ dP ∩ Zn, d ∈ N} and an algebra k[SP ] = 〈xuzd | (u, d) ∈ SP 〉.

Proposition 4.5. The subalgebra in≺R is isomorphic to the polytopal semigroup algebra
k[SQw

]. In particular, in≺R is finitely generated.

Proof. By Lemma 4.1, in≺(R) is generated as a vector space by mτ where τ runs over all

semistandard Young tableaux of shape 2 × d|w|
2

with content dw. Note that for such a
semistandard Young tableau τ we have mτ = xνyw−ν, where ν is the partition associated
to τ as in Definition 2.3. Let φ : in≺R → k[x1, . . . , xn, z] be the homomorphism induced by

letting φ(mτ ) = xνzd, when τ has shape 2× d|w|
2
. Since ν determines τ , this homomorphism

is injective. It follows from Lemma 2.4 that it is surjective onto k[SQw
]. Note that

for any rational polytope, the associated polytopal semigroup algebra k[SQw
] is finitely

generated. �

Remark 4.6. When w = 1n, one can show that this toric degeneration is a degeneration
of Fano varieties, and the corresponding line bundle the anticanonical line bundle. As
this seems well known, we omit the proof.

5. The quadratic Gröbner basis

We now assume that w ∈ (2Z)n. The goal of this section is to show that in this case,
the polytopal semigroup algebra k[SQw

] is generated in degree 1, and admits a presentation
such that the ideal of relations has a quadratic Gröbner basis. It then follows from general
properties of SAGBI degenerations that Rw also admits such a presentation.

Instead of showing these properties directly for the polytopes Qw, we will show them
for a family of isomorphic polytopes Pw. The latter ones exhibit more symmetry that we
will exploit later on. We denote the i’th component of a vector u ∈ Rn−3 by u(i + 1)
instead of ui.

Definition 5.1. We say that a point (x, y, z) ∈ R3 satisfies the triangle inequalities if
x + y ≥ z, x + z ≥ y, and y + z ≥ x. To w ∈ (2N)n is associated a polytope Pw ⊂ Rn−3

consisting of (u(2), . . . , u(n− 2)) such that

(w1, w2, u(2)) , (u(n− 2), wn−1, wn) , and (u(i− 1), wi, u(i))

satisfy the triangle inequalities for 3 ≤ i ≤ n− 2.

Example 5.2. When w = (2, 2, 2, 2, 2), the polytope Pw is given by the inequalities
0 ≤ u(2) ≤ 4, 0 ≤ u(3) ≤ 4, u(2) + u(3) ≥ 2, u(2) + 2 ≥ u(3), u(3) + 2 ≥ u(2). See
Figure 4.3.

It follows from Lemma 5.4 that Pw is a lattice polytope for the latticeM := (2Z)n−3.

Lemma 5.3. The polytopal semigroups SQw
= {(ν, d) | d ∈ N, ν ∈ dQw ∩ Zn} and

SPw
= {(u, d) | d ∈ N, u ∈ dPw ∩M} are isomorphic.
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Proof. Let V = {(ν1, . . . , νn, d) ∈ Rn × R | ν1 = dw1, νn = 0, and ν1 + · · · + νn = d|w|
2
},

an affine subspace of Rn × R. Then SQw
⊂ V . We identify V with Rn−3 × R via

(ν1, . . . , νn, d) 7→ (ν2, . . . , νn−2, d), with inverse (ν2, . . . , νn−2, d) 7→ (dw1, ν2, . . . , νn−2,
d|w|
2
−

dw1 − ν2 − · · · − νn−2, 0, d). Since |w| is even, this identification respects the lattices
V ∩ (Zn × Z) and Zn−3 × Z. Let

φ : Rn−3 × R → Rn−3 × R, (ν2, . . . , νn−2, d) 7→ (u(2), . . . , u(n− 2), d),

where u(ℓ) = 2(ν2 + · · ·+ νℓ)− d(w2 + · · ·+ wℓ − w1) for 2 ≤ ℓ ≤ n− 2. Then φ has an
inverse given by letting

ν2 =
u(2)− dw1 + dw2

2
and νℓ =

u(ℓ)− u(ℓ− 1) + dwℓ
2

for 3 ≤ ℓ ≤ n− 2. So φ is an isomorphism. Moreover, it induces an isomorphism between
Zn−3 × Z and M × Z.

We claim that φ(dQw×{d}) = dPw×{d}. Using the fact that for (ν1, . . . , νn) ∈ dQw

we have ν1 = dw1, νn = 0, and νn−1 =
d|w|
2

− (dw1 + ν2 + · · ·+ νn−2), the inequalities for
dQw ∩ Rn−3 are in the left column below, where 3 ≤ ℓ ≤ n − 2. The corresponding
inequalities for dPw are on the right.

ν2 ≥ 0 u(2) ≥ dw1 − dw2

ν2 ≤ dw2 u(2) ≤ dw1 + dw2

ν2 ≥ dw2 − dw1 u(2) ≥ dw2 − dw1

νℓ ≥ 0 u(ℓ− 1)− u(ℓ) ≤ dwℓ

νℓ ≤ dwℓ u(ℓ)− u(ℓ− 1) ≤ dwℓ

2(ν2 + · · ·+ νℓ−1) + νℓ ≥ d(w2 + · · ·+ wℓ − w1) u(ℓ) + u(ℓ− 1) ≥ dwℓ

ν2 + · · ·+ νn−2 ≤
d|w|

2
− dw1 u(n− 2) ≤ dwn−1 + dwn

ν2 + · · ·+ νn−2 ≥
d|w|

2
− dw1 − dwn−1 u(n− 2) ≥ dwn − dwn−1

ν2 + · · ·+ νn−2 ≥
d|w|

2
− dw1 − dwn u(n− 2) ≥ dwn−1 − dwn

where the last inequality on the left follows from (2.3) for ℓ = n − 1. It is now easy to
check that the inequalities on the left correspond to the inequalities on the right under φ,
so φ induces the required isomorphism of semigroups. �

Lemma 5.4. We have the following properties of Pw.

(i) The polytope Pw is normal with respect to M , i.e., every lattice point in mPw ∩M
is a sum of m lattice points in Pw ∩M .

(ii) For v, v′ ∈ Pw∩M there is u, u′ ∈ Pw∩M such that v+v′ = u+u′ and |u(i)−u′(i)| ≤ 2
for all 2 ≤ i ≤ n− 2.

Proof. The proof of (i) closely follows [16, Lemma 7.3] and is essentially the proof of
Lemma 6.4 in [15]. We first need to introduce some notation. Let σ ∈ {+,−} and let eσ

denote rounding to the nearest even integer, where for a ∈ Z, we let e+ (2a+ 1) = 2a+ 2
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and e− (2a+ 1) = 2a. For r = (r(2), . . . , r(n− 2)) ∈ mPw ∩M , we say that a sequence of
signs σ(i) ∈ {+,−} for 2 ≤ i ≤ n− 3 is (r,m)-admissible if it satisfies σ (i+ 1) = −σ (i)

if and only if r(i)
m

and r(i+1)
m

are odd integers and r(i)
m

+ r(i+1)
m

= wi+1. Such a sequence
exists and is unique up to a global sign change.

We claim that if σ(i) is (r,m)-admissible, then

ur = (u (2) , . . . , u(n− 2)) =

(

eσ(2)
(

r(2)

m

)

, . . . , eσ(n−2)

(

r(n− 2)

m

))

,

is a lattice point in Pw.

The following properties of eσ for σ ∈ {+,−}, a ∈ 2Z and x, y ∈ R will be useful:

(1) eσ is increasing.
(2) eσ (x+ a) = eσ (x) + a.
(3) If a ≥ x then a ≥ eσ(x).
(4) If x+ y ≥ a then eσ (x) + e−σ (y) ≥ a.
(5) eσ(x) + eσ(y) ≥ x+ y − 2.
(6) eσ(−x) = −e−σ(x).

That (w1, w2, u (2)) and (u (n− 2) , wn−1, wn) satisfy the triangle inequalities fol-

lows from the assumption that
(

w1, w2,
r(2)
m

)

and
(

r(n−2)
m

, wn−1, wn

)

satisfy the triangle

inequalities and (1), (2) and (3). For example, we have w1 + u (2) = w1 + eσ
(

r(2)
m

)

=

eσ
(

w1 +
r(2)
m

)

≥ eσ (w2) = w2 and w1 + w2 ≥ eσ
(

r(2)
m

)

= u(2).

When 2 ≤ i ≤ n− 3, we have to show

u (i) + wi+1 ≥ u (i+ 1)(5.1)

u (i+ 1) + wi+1 ≥ u (i)(5.2)

u (i) + u (i+ 1) ≥ wi+1.(5.3)

We consider two cases. We first assume that σ (i) = σ (i+ 1), and we let σ = σ (i) =

σ (i+ 1). Then r(i)
m

and r(i+1)
m

are not both odd integers or r(i)
m

+ r(i+1)
m

> wi+1. To see (5.2),

note that u (i+ 1)+wi+1 = eσ
(

r(i+1)
m

)

+wi+1 = eσ
(

r(i+1)
m

+ wi+1

)

≥ eσ
(

r(i)
m

)

= u (i) by

(1), (2) and the assumption that
(

r(i)
m
, r(i+1)

m
, wi+1

)

satisfy the triangle inequalities. (5.1)

follows similarly. For (5.3), if both r(i)
m

and r(i+1)
m

are odd integers then r(i)
m

+ r(i+1)
m

> wi+1

by assumption. Hence, by (5), u (i)+u (i+ 1) ≥ r(i)
m

+ r(i+1)
m

−2 > wi+1−2 which implies

(5.3) since u (i) , u (i+ 1) and wi+1 are even. Otherwise there exists x ∈
{

r(i)
m
, r(i+1)

m

}

that

is not an odd integer. Then eσ (x) = e−σ (x) and now (5.3) follows from (4).

Suppose now that σ (i+ 1) = −σ (i). Then r(i)
m

and r(i+1)
m

are odd integers and
r(i)
m

+ r(i+1)
m

= wi+1. Then (5.3) follows from (4). If σ (i) = + and σ (i+ 1) = − then (5.1)

follows easily. Since r(i+1)
m

is a positive odd integer, we have 2 r(i+1)
m

> 0, and using the

assumption r(i)
m

+ r(i+1)
m

= wi+1, we obtain u (i+ 1)+wi+1 =
r(i+1)
m

− 1+wi+1 >
r(i)
m

− 1 =
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u (i)− 2. Since u(i+1), u(i) and wi+1 are even integers, (5.2) follows. The case σ (i) = −
and σ (i+ 1) = + follows analogously.

To show (i), we proceed by induction on m. For m = 1 there is nothing to show.
Assume that m ≥ 2. For r ∈ mP ∩M , let u = ur as in the claim. Then by the claim,
u lies in Pw ∩M . Let v = (v(2), . . . , v(n− 2)), where v(i) = e−σ(i)

(

m−1
m
r(i)
)

. Note that
it follows from (4) and (6) that u(i) + v(i) = r(i), so u + v = r. Replacing u by v, σ by

−σ, wi by (m− 1)wi and
r(i)
m

by m−1
m
r(i), and noting that

(

m−1
m
r
)

∈ (m− 1)Pw and that
r(i)
m

is odd if and only if (m−1)r(i)
m

is odd, the same arguments as in the proof of the claim
show that v = r − u ∈ (m− 1)Pw ∩M . But v is a sum of m− 1 lattice points in Pw by
induction.

For (ii), we apply the claim to r = v + v′ and let (σ(2), . . . , σ(n − 2)) be a (r, 2)-
admissible sequence of signs. Then by the claim we have that

u =

(

eσ(2)
(

r(2)

2

)

, . . . , eσ(n−2)

(

r(n− 2)

2

))

and

u′ =

(

e−σ(2)
(

r(2)

2

)

, . . . , e−σ(n−2)

(

r(n− 2)

2

))

are lattice points in Pw. The assertion follows. �

Let J be the toric ideal associated to the polytope Pw, i.e., J is the kernel of the
map k[Xu | u ∈ Pw ∩M ] → k[SPw

], where Xu 7→ (u(2), u(3), . . . , u(n − 2), 1). Since Pw
is normal, the line bundle associated to Pw induces a projectively normal embedding of
the toric variety XPw

associated to Pw, with homogeneous coordinate ring k[Xu]/J . By
Proposition 4.5 and Lemma 5.3, the toric variety XPw

is isomorphic to Proj(in≺(R)).

Definition 5.5. Let m =
∏ℓ

t=1Xut be a monomial in k[Xu]. We define the norm of m
to be

N(m) =
ℓ
∑

t=1

‖ ut ‖
2=

ℓ
∑

t=1

n−2
∑

i=2

ut(i)
2.

Definition 5.6. We say that a monomialm is norm-minimal, if for allm′ withm′−m ∈ J ,
we have N(m′) ≥ N(m).

The following lemma characterizes norm-minimal monomials.

Lemma 5.7. A monomial m is norm-minimal if and only if for all XvXv′ dividing m,
we have |v(i)− v′(i)| ≤ 2 for all 2 ≤ i ≤ n− 2.

Proof. To prove the Lemma, we will need the following fact:

(⋆) Let ai, bi ∈ 2Z with a1 + · · ·+ aℓ = b1 + · · ·+ bℓ, and |ai − aj | ≤ 2 for all

i, j. Then
∑ℓ

i=1 a
2
i ≤

∑ℓ
i=1 b

2
i . Moreoever, equality holds if and only if

{a1, . . . , aℓ} = {b1, . . . , bℓ}.

Given (⋆), assume that m is norm-minimal, but that there exists a quadratic factor
XvXv′ of m and 2 ≤ i ≤ n − 2 such that |v(i) − v′(i)| > 2. By Lemma 5.4, there are
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u, u′ ∈ Pw ∩M with v+ v′ = u+u′ and |u(i)−u′(i)| ≤ 2 for all i. So XuXu′ −XvXv′ ∈ J ,

and by (⋆), N(XuXu′) < N(XvXv′). Thus for m′ = m
XuXu′

XvXv′
, we have m′ − m ∈ J , but

N(m′) < N(m), a contradiction. The converse follows immediately from (⋆).

For (⋆), note that since |ai−aj | ≤ 2 for all i, j, there exists α such that ai ∈ {α, α+2}
for all i. After renumbering, we may assume a1 = · · · = ap = α and ap+1 = · · · =

aℓ = α + 2. If we set bi = ai + ki, then
∑

ki = 0, and we have
∑ℓ

i=1 b
2
i −

∑ℓ
i=1 a

2
i =

∑ℓ
i=1 k

2
i +

∑ℓ
i=p+1 4ki. Note that when ki ≤ −4, then k2i + 4ki ≥ 0, and if ki ≥ 0, then

4ki ≥ 0, so it suffices to show that if
∑

ki ≥ 0, ki ∈ 2Z, and ki = −2 for p + 1 ≤ i ≤ ℓ,

then
∑ℓ

i=1 k
2
i +

∑ℓ
i=p+1 4ki ≥ 0. This in turn follows from the fact that for k ∈ 2N we

have k2 ≥ 2k, so for ki ∈ 2N with
∑p

i=1 ki ≥ 2(ℓ − p), we have
∑p

i=1 k
2
i ≥

∑p
i=1 2ki ≥

4(ℓ − p). Now suppose equality holds, so
∑ℓ

i=1 k
2
i +

∑ℓ
i=p+1 4ki = 0 where ki ∈ 2Z and

∑

ki = 0. Note that k2i + 4ki is non-negative unless ki = −2. If R = {i | ki = −2} and
T = {i | ki > 0}, then we must have

∑

i∈T ki ≥ 2|R| and
∑

i∈T k
2
i +
∑

i∈T,i≥p+1 4ki ≤ 4|R|,
but the only situation when this holds is when ki = 2 for all i ∈ T , no element in T is
larger than p, and |T | = |R|. The claim follows. �

We now proceed to define a term order on the monomials in the variables Xu,
u ∈ Pw.

We first use the standard lexicographic ordering <lex on M ∼= Zn−3 to order the
variables Xu, u ∈ Pw. Let ≺grevlex be the graded reverse lexicographic order on k[Xu | u ∈
Pw ∩M ] induced by this ordering of the variables, i.e., m′ ≺grevlex m if deg(m′) < deg(m)
or deg(m′) = deg(m) and for the smallest variable where the exponents of m and m′ differ
the exponent of m′ is larger than the exponent of m.

We define m′ ≺ m iff

• deg(m′) < deg(m), or
• deg(m′) = deg(m) and N(m′) < N(m), or
• deg(m′) = deg(m), N(m′) = N(m), and m′ ≺grevlex m.

We shall consider two types A, B of quadratic binomial relations.

Definition 5.8. (Type A) The type A relations are relations XvXv′ −XuXu′ ∈ J , where
N(XvXv′) > N(XuXu′).

Definition 5.9. (Type B at position j) Suppose that u, v ∈ Pw ∩M , and 3 ≤ j ≤ n− 2.
Suppose that (u(j − 1), wj, v(j)) and (v(j − 1), wj, u(j)) satisfy the triangle inequalities.
Let

u′ = (u(2), . . . , u(j − 1), v(j), . . . , v(n− 2)),

v′ = (v(2), . . . , v(j − 1), u(j), . . . , u(n− 2)).

We call XuXv −Xu′Xv′ a type B relation at position j.

Note that u′, v′ ∈ Pw and u + v = u′ + v′, so a type B relation is well-defined.
Moreover, N(XuXv) = N(Xu′Xv′) for any relation XuXv −Xu′Xv′ of type B.
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Theorem 5.10. The relations of type A and B form a quadratic Gröbner basis for the
ideal J .

Proof. It suffices to show that

in≺(J) = 〈in≺ f | f is a type A or a type B relation〉.

Let m ∈ in≺ J . Suppose m is not norm-minimal. By Lemma 5.7 there exists a quadratic
factor XvXv′ dividing m such that |v(i) − v′(i)| > 2 for some i. By Lemma 5.4 there
is u, u′ ∈ Pw ∩ M such that XvXv′ − XuXu′ ∈ J , and |u(i) − u′(i)| ≤ 2 for all i. By
Lemma 5.7, XuXu′ is norm-minimal, and XvXv′ is not, so XvXv′ − XuXu′ is a type A
relation and m ∈ 〈XvXv′〉 ⊂ 〈in≺ f | f is a type A relation〉.

Suppose m is norm-minimal. Let f ∈ J be such that in≺ f = m. Since J is a
homogeneous binomial ideal, we may assume that f = m − m′, where m′ is a norm-
minimal monomial of the same degree as m. Then N(m′) = N(m), but m′ ≺grevlex m.
Let m = Xu1Xu2 · · ·Xuℓ , where u1 ≤lex u2 ≤lex · · · ≤lex uℓ and m

′ = Xv1Xv2 · · ·Xvℓ where
v1 ≤lex v2 ≤lex · · · ≤lex vℓ. Note that since m−m′ ∈ J , we have

(5.4)

ℓ
∑

s=1

us =

ℓ
∑

s=1

vs.

Factoring out the largest common multiple of m and m′, we may assume v1 <lex u1. Let
j be the first index where v1(j) < u1(j). Note that if i < j then u1(i) = v1(i).

It follows from Lemma 5.7 and from (5.4) that for every 2 ≤ k ≤ n− 2 there exists
an even integer αk such that for every Xu dividing m or m′, u(k) ∈ {αk, αk + 2}.

This implies that v1(j) = αj and u1(j) = αj+2. It follows from (5.4) that there exists
some t > 1 such that ut(j) = v1(j) = αj . Note that, since u1 <lex ut and u1(j) > ut(j),
there is i′ < j such that u1(i

′) < ut(i
′) and u1(i) = ut(i) for i < i′. In particular, j > 2.

Now (u1(j − 1), wj, ut(j)) = (v1(j − 1), wj, v1(j)) satisfy the triangle inequalities, since
v1 ∈ Pw. If (ut(j − 1), wj, u1(j)) satisfy the triangle inequalities, then there exists a type
B relation at position j of the form Xu1Xut −Xu′

1
Xu′

t
. Since u′1 <lex u1 <lex ut, we have

Xu1Xut ≻grevlex Xu′
1
Xu′

t
. Therefore, m ∈ in≺{f | f is a type B relation}.

Now suppose (ut(j − 1), wj, u1(j)) do not satisfy the triangle inequalities. This
implies that whenever vs(j−1) = ut(j−1), then vs(j) 6= u1(j), since (vs(j−1), wj , vs(j))
satisfy the triangle inequalities and so vs(j) = v1(j). Note however that v1(j − 1) =
u1(j − 1) 6= ut(j − 1) by assumption. In particular,

{s | 1 ≤ s ≤ ℓ, vs(j − 1) = ut(j − 1)} ( {s | 1 ≤ s ≤ ℓ, vs(j) = v1(j)}.

Since
∑

us(j − 1) =
∑

vs(j − 1), we have

#{s | 1 ≤ s ≤ ℓ, vs(j − 1) = ut(j − 1)} = #{s | 1 ≤ s ≤ ℓ, us(j − 1) = ut(j − 1)}

and similarly

#{s | 1 ≤ s ≤ ℓ, vs(j) = v1(j)} = #{s | 1 ≤ s ≤ ℓ, us(j) = v1(j)}.
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Using ut(j) = v1(j), we obtain

#{s | 1 ≤ s ≤ ℓ, us(j − 1) = ut(j − 1)} < #{s | 1 ≤ s ≤ ℓ, us(j) = ut(j)}.

Pick an s such that us(j − 1) 6= ut(j − 1) but us(j) = ut(j). Since u1(j) 6= ut(j),
s 6= 1. By assumption, u1(j − 1) 6= ut(j − 1), hence us(j − 1) = u1(j − 1) since {us(j −
1), u1(j−1), ut(j−1)} ⊂ {αj−1, αj−1+2}. So (us(j−1), wj, u1(j)) = (u1(j−1), wj, u1(j))
satisfy the triangle inequalities. On the other hand, since us(j) = ut(j) = v1(j), we have
that (u1(j−1), wj, us(j)) = (v1(j−1), wj, v1(j)) satisfy the triangle inequalities. So there
exists a type B relationXu1Xus−Xu′

1
Xu′s at position j. Note thatXu1Xus ≻grevlex Xu′

1
Xu′s,

so m ∈ in≺{f | f is a type B relation}. �

Proposition 5.11. The initial ideal in≺(J) is radical.

Proof. Since the initial ideal is generated by quadratic monomials, we only need to check
there is no perfect square X2

v ∈ in≺(J). Suppose that X2
v − XuXw ∈ J is a non-zero

relation for some u, v, w. Then 2v = u + w, and so N(X2
v ) < N(XuXw), since by

Lemma 5.7 X2
v is norm-minimal, but XuXw is not. So X2

v is no leading term of any
binomial in J . �

Note that this implies that Pw admits a regular unimodular triangulation, see [35,
Corollary 8.9]

Proof of Theorem 1.2. By Kempe’s theorem [16, Theorem 2.3], Rw is generated by its
lowest degree invariants. Note that for w ∈ (2Z)n this also follows from Lemma 5.4,
Proposition 4.5, and Lemma 5.3. Recall that Iw denotes the ideal of relations between
these generators. Since the polytopal semigroup algebra k[SPw

] is a SAGBI degeneration
of Rw by Proposition 4.5, and since the toric ideal J associated to Pw has a square free
quadratic initial ideal by Theorem 5.10 and Proposition 5.11, the claim follows from [4,
Corollary 2.2]. The Koszul property follows for example from [8, Proposition 3]. �

Remark 5.12. In [24, Theorem 1.10] Manon generalizes Theorem 1.2 to certain sub-
polytopes of Pw. For L ≥ 0, the polytope PL is given by the adding to the inequal-
ities of Definition 5.1 the inequalities w1 + w2 + u(2) ≤ 2L, u(n − 2) + wn−1 + wn ≤
2L, u(i − 1) + wi + ui ≤ 2L. Note that when L is large, then Pw = PL. For L = 1, the
polytopes PL are slices of the polytopes studied in [3].

Remark 5.13. It is easy to see that for w = 1n, Pw is reflexive and that SPw
is Gorenstein.

This implies that the toric variety V associated to Pw is arithmetically Gorenstein and
Fano. In particular, V has canonical singularities. However, when w = 16, then V does
not have terminal singularities. Compare also [30, Proposition 1.4]. The Gorenstein
property for the toric varieties arising as degenerations of Rw corresponding to arbitrary
trivalent trees was studied by Manon in [25].
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