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Using the ¢-invariant constructed in our previous paper we prove a Mazur-Tate-Teitelbaum style formula for
derivatives of p-adic L-functions of modular forms at near central points.
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§0. Introduction

0.1. Trivial zeros of modular forms. In this paper we prove a Mazur-Tate-Teitelbaum style
formula for the values of derivatives of p-adic L-functions of modular forms at near central points.
Together with the results of Kato-Kurihara-Tsuji and Greenberg-Stevens on the Mazur-Tate-Teitelbaum
conjecture this gives a complete proof of the trivial zero conjecture formulated in [Ben2] for elliptic

modular forms. Namely, let f = Y a,¢" be a normalized newform on I'g(N) of weight £ > 2 and
n=1

o0
character € and let L(f,s) = Y a,n~° be the complex L-function associated to f. It is well known that
n=1

L(f,s) converges for Re(s) > % and decomposes into an Euler product

L(f,s)=[[E(f. 17"
[

where [ runs over all primes and Ey(f, X) = 1 — ;X + ¢(I){¥"1X2. Moreover L(f,s) has an analytic
continuation on the whole complex plane and satisfies the functional equation

(2m) 7 T(s) L(f, s) = i*eN*/275(2m)*F D(k — s) L(f*, k — s)

o0

where f* = 3" a,q" is the dual cusp form and c is some constant (see for example [Mi, Theorems 4.3.12
n=1
and 4.6.15]). More generally, to any Dirichlet character  we can associate the L-function

L(fm,) = 3 M,
n=1

The theory of modular symbols implies that there exist non-zero complex numbers QJJF and (15 such
that for any Dirichlet character n one has

')

— __L(f,n,j) €Q, 1<j<k—-1

(1) L(f.n.j) =
where £ = (—1)7715(-1). Fix a prime number p > 2 such that the Euler factor E,(f, X) is not
equal to 1. Let o be a root of the polynomial X? — a, X + e(p)p*~1 in @p. Denote by v, the p-adic
valuation on Q,normalized such that v,(p) = 1. Assume that « is not critical i.e. that v,(a) < k — 1.
Let w : (Z/pZ)* — Q; denote the Teichmiiller character. Manin [Mn], Vishik [Vi] and independently
Amice-Velu [AV] constructed analytic p-adic L-functions Ly, o(f,w™, s) which interpolate algebraic parts
of special values of L(f,s)!. Namely, the interpolation property writes

Lypa(f,w™ §) = Ealf,w™ ) L(f,w’™™,5), 1<j<k-1

where E,(f,w™,j) is an explicit Euler like factor. One says that L, (f,w™,s) has a trivial zero at

s=7if E(f,w™,j) =0 and Z(f, wi=™ ) # 0. This phenomenon was first studied by Mazur, Tate and
Teitelbaum in [MTT] where the following cases were distinguished:

e The semistable case: p || N, k is even and o = a,, = p¥/2=1. The p-adic L-function Lp,a(f,wk/z, s) has

I This construction was recently generalized to the critical case by Pollack-Stevens [PS] and Bellaiche [Bel]
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a trivial zero at the central point s = k/2.

e The crystalline case: pt N, k is odd and either a = p% or a = 6(p)p%. The p-adic L-function
Lp,a(f,w%,s)k (ﬁespectively Lp,a(f,w%,s)) has a trivial zero at the near central point s = &L (

spectively s = %5=).

re-

o The potentially crystalline case: p | N, k is odd and o = a,, = p%. The p-adic L-function L, o(f,w™= ,s)
has a trivial zero at the near central point s = %

0.2. The semistable case. Let
ps + Gal(@/Q) — GL(Wy).

be the p-adic Galois representation associated to f by Deligne [D1]. Assume that k is even, p || N and
ap = p¥/2=1_ Then the restriction of p ¢ on the decomposition group at p is semistable and non-crystalline
in the sense of Fontaine [Fo3]. The associated filtered (¢, N)-module Dy (W) has a basis eq, eg such
that e, = Neg, ¢(eq) = apeq and ¢(eg) = payes. The jumps of the canonical decreasing filtration of
Dy (Wy) are 0 and k£ — 1 and the Z-invariant of Fontaine-Mazur is defined to be the unique element
Zru(f) € Q, such that Fil* "Dy (Vy) is generated by eg + Lom(f)eqa. In [MTT] Mazur, Tate and
Teitelbaum conjectured that

(2) Lp.a(f,0"?,k/2) = Loni(f) LS, k/2).

We remark that L(f,k/2) can vanish. The conjecture (2) was proved in [GS] in the weight two case
and in [St] in general using the theory of p-adic families of modular forms. Another proof, based on
the theory of Euler systems was found by Kato, Kurihara and Tsuji (unpublished but see [Ka2], [PR5],
[Cz3]). Note that in [St] Stevens uses another definition of the Z-invariant proposed by Coleman [Co].
We refer to [CI] and to the survey article [Cz4] for further information and references.

0.3. The general case. Our main aim in this paper is to prove an analogue of the formula (2) in the
crystalline and potentially crystalline cases. In fact, we will treat all three cases simultaneously. Let f
be a newform of weight k. Fix an odd prime p and assume that the p-adic L-function L, (f, who . 5)
has a trivial zero at s = kg. Assume further that ky > k/2. Note that the last assumption holds
automatically in the semistable and potentially crystalline cases and in the crystalline case it is not
restrictive because we can use the functional equation (see Remark 3 below). Let Dgs(Wy) denote

the crystalline module associated to Wy. Our assumptions imply that Dy (Wf(ko))gD:p 1 is a one-
dimensional vector space which we denote by D,. The main construction of [Ben2| associates to D,, an
element ¢ (Wy(ko), D) € Q, which can be viewed as a direct generalization of Greenberg’s (-invariant
[Grel] to the non-ordinary case®. To simplify notation we set ¢, (f) = ¢ (Wy(ko), Dy) . The main result
of this paper states as follows.

Theorem. Let f be a newform on To(N) of character € and weight k and let p be an odd prime. Assume
that the p-adic L-function Ly o (f, wko, S) has a trivial zero at s = ko > k/2. Then

Ly o (f;0™, ko) = La(f) <1 - %) L(f,ko).

2Strictly speaking, in [Ben2] we define the f-invariant for p-adic representations which are semistable at p, but this
construction can be generalized easily to cover the potentially crystalline case (see Section 2.1 below).
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Remarks. 1) In the semistable case ,(f) = Zrm(f) (see [Ben2, Proposition 2.3.7]), e(p) = 0 and we
recover the Mazur-Tate-Teitelbaum conjecture. Our proof in this case can be seen as an interpretation
of Kato-Kurihara-Tsuji’s approach in terms of (¢,I')-modules. In the crystalline case some version of
our formula was proved by Orton [Or] (unpublished). She does not use (¢, I')-modules and works with
an ad hoc definition of the ¢-invariant in terms of Bloch-Kato exponential map in the spirit of [PR4].

2) In the crystalline and potentially crystalline cases L (f, ko) does not vanish by the theorem of
Jacquet-Shalika [JS].

k—1

3) In the crystalline case, trivial zeros at the symmetric point s = “7= can be easily studied using the

functional equation for p-adic L-functions [MTT, §17]. If « = p*=1/2 and therefore L, .(f, w ,8) has
a trivial zero at s = %, then a* = e71(p) a is a root of the Hecke polynomial associated to the dual

0 —
form f* = > anq™ and L, o= (f*, w T, s) has a trivial zero at s = k—gl Using the compatibility of the
n=1

trivial zero conjecture with the functional equation [Ben2, Section 2.3.5] (or just repeating the proof of
the main theorem with obvious modifications) we obtain a trivial zero formula for L;% o ( f, w%, %)

4) The Z-invariant of Fontaine-Mazur which appears in semistable case (2) is local i.e. it depends
only on the restriction of the p-adic representation py on the decomposition group at p. However, in
the crystalline and potentially crystalline cases our f-invariant is global and contains information about
the localisation map H'(Q, Wy(%EL)) — HY(Qp, Wy(£EL)). We remark that in the semistable case the
p-adic L-function has a zero at the central point and in the crystalline and potentially crystalline cases
it has a zero at a near central point.

5) Let n be a Dirichlet character of conductor M with (p,M) = 1. The study of trivial zeros

of Ly« ( f, nw%,s) reduces to our situation by considering the newform f ® n associated to f, =

o0
>>n(n) anqg™ (see Section 4.1.3).
n=1

Our theorem follows from a formula for the derivative of Perrin-Riou exponential map [PR2] in terms
of the f-invariant which we prove in Propositions 2.2.2 and 2.2.4 below applied to the Euler system
constructed by Kato [Kal.

0.4. Trivial zeros of Dirichlet L-functions. Let 1 be a primitive Dirichet character modulo N and
let p{ N be a fixed prime. The p-adic L-function of Kubota-Leopoldt L, (nw, s) satisfies the interpolation
property
Ly(mw,1—j) = 11— (' 7)(p)p’ ) Linw' 7,1 ~5),  j>1

Assume that 1 is odd and n(p) = 1. Then L(n, 0) # 0 but the Euler like factor 1—(nw'=7) (p)p’~! vanishes
at j = 1 and L,(nw, s) has a trivial zero at s = 0. Fix a finite extension L/Q, containing the values of
n. Let x denote the cyclotomic character and let ord, : Gal(Q,"/Qp) — L be the character defined by
ord,(Fr,) = —1 where Fr, is the geometric Frobenius. Then H'(Q,, L) = Hom(Gal(QZb/Qp), L) is the
two-dimensional L-vector space generated by log x and ord,. Since p{ N and 7(p) = 1 the restriction of
L(n) on the decomposition group at p is a trivial representation. The localization map

Kp : Hl(Q,L(W)) — Hl(@p>L)

is injective and identifies H'(Q, L(n)) with a one-dimensional subspace of H'(Q,, L). It can be shown
that Im(k,) is generated by an element of the form

(3) log x + Z(n) ord,

there £ (n) € L is necessarily unique. Applying Proposition 2.2.4 to the Euler system of cyclotomic
units we obtain a new proof of the trivial zero conjecture for Dirichlet L-functions

(4) Ly, (nw,0) = =Z(n) L(n,0).
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This formula was first proved in [Gro| as the combination of the result of Ferrero-Greenberg [FG] giving
an explicit formula for L, (nw, 0) in terms of the p-adic I'-function and the Gross-Koblitz formula [GK].
We also remark that Dasgupta, Darmon and Pollack [DDP] recently generalized (4) to totally real
number fields F' assuming Leopoldt’s conjecture and some additional condition on the vanishing of p-
adic L-functions.

0.5. The plan of the paper. The main contents of this article is as follows. In §1 we review the
necessary preliminaries. In particular, Sections 1.1-1.2 are devoted to the theory of (p, I')-modules which
plays a key role in our definition of the ¢-invariant. In Section 1.3 we review the construction and main
properties of Perrin-Riou’s large exponential map. In §2 we review the construction of the /-invariant
¢(V, D) from [Ben2] and prove an explicit formula for the derivative of the large logarithmic map in
terms of ¢(V, D) and the dual exponential map. In §3 we apply this formula to Dirichlet L-functions
and give a new proof of (4). Trival zeros of modular forms are studied in §4. In Section 4.1 we review
basic results about p-adic L-functions of modular forms and the representation Wy. In Section 4.2 we
specialize the general definition of the /-invariant to the case of modular forms. Finally in Section 4.3
we prove the main theorem.

Acknowledgements. I am grateful to Pierre Parent for a number of very valuable discussions. A part
of this work was done during my stay at the Max-Planck-Institut fiir Mathematik from March to May
2012. I would like to thank the institut for this invitation and excellent working conditions.

§1. Preliminaries

1.1. (p,I')-modules.
1.1.1. Definition of (¢,T')-modules (see [Fol], [CC1], [Cz5]). Let Q, be a fixed algebraic closure
of Q,. We denote by C the p-adic completion of @p and v, : C — RU{oo} the p-adic valuation

vp(x)
normalized so that v,(p) = 1 and set |z|, = (%) . Write B(r,1) for the p-adic annulus B(r,1) =
{z € C | r <|z|, < 1}. Fix a system of primitive roots of unity &€ = ({pn)n>0, such that {J. = (n-1 for
all n. If K is a finite extension of Q, we set G = Gal(Q,/K), K, = K ({,») and Ko = s~ K, Put
'k = Gal(K./K) and denote by x : I'x — Zj the cyclotomic character. We write O for the ring
of integers of K, K for the maximal unramified subextension of K and o for the absolute Frobenius of

K, O/ Qp-

For any r > 0 let B}{ denote the ring of overconvergent elements of Fontaine’s ring B (see [CC1],
[Berl]). Note that B}r{l C B}” if r1 < ro. The ring B is equipped with a continuous action of I' and
a Frobenius operator ¢ which commute to each other. We remark that B];g are stable under the action

of ' and that @(BJ}{) C B};p " for all . The following description of B];{ is sufficent for the goals of
this paper. Let F' denote the maximal unramified subextension of K., /Ky and let e = [K @ Ko((pee)]-
For any 0 < s < 1 define

R(K) = {f(XK) = ZakXﬁ | a € F and f is holomorphic on B(s, 1)} ,
keZ

ECNK) = {f(XK) = ZakXﬁ | ar € F and f is holomorphic and bounded on B(s, 1)} .
keZ

Then there exists r(K) > 0 such that for all » > r(K) the ring B}{ is isomorphic to éa(pfl/”)(K). Here
the group 'k acts trivially on the coefficients of power series and ¢ acts on & (=) (K) o-semilineary.
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In general, the action of ' and ¢ on Xg is very complicated. The situation is more simple when
K = Ky i.e. K is absolutely unramified. In this case F' = Ky and we will write X instead Xy . One has

f(r(X)) where 7(X) = (1+X)X(W -1, 7Tk,

Tf(X) :
foe(X)),  where o(X) = (1+X)" —1.

e f(X)

We come back to the general case. The union BJ}{ = TL>JOB];;T is a field which is stable under the
actions of ' and ¢ and is isomorphic to &T(K) = 0<L5J<1@@ ()(K). The operator ¢ has a left inverse
given by

W(f) = %@‘1 (Tret () o(st(x) (F) -

If K = Ky we can also write

B(I(X)) = }) A S e x) -

¢r=1

The field £T(K) is endowed with the valuation

w (Z aka') = min{v,(ax) | k € Z}

keZ

and we denote by Og+ (k) its ring of integers.

Set Z(K) = 0<LSJ<1,%(8)(K). The actions of I', ¢ and 1 can be extended to Z(K) by continuity.

If K C K’ then the natural inclusions B];g C B}g induce embeddings &T(K) c &T(K') and Z(K) C
[e.e]

Z(K'). Let t =log(1+ X) = > (-1)*"X*/k € Z(Q,). Note that p(t) = pt and 7(t) = x(7)t for all
k=1

Telk.

In this paper we deal with p-adic representations with coefficients in a finite extension L of Q,. By
this reason it is convenient to set é"LT(K) = &1(K) ®q, L, ,@z(K) = #'(K) ®g, L and Oéaz(K) =
Ogt (k) ®z, OL-

Definition. i) A (p,I'x)-module over é"LT(K) (resp. Zr(K)) is a free é"LT(K)-module (resp. Zr(K)-
module) D of finite rank d equipped with semilinear actions of I'xc and ¢ which commute to each other
and such that the induced linear map éag(K) ®eD — D (resp. Z1(K)®,D — D) is an isomorphism.

it) A (p,T'k)-module D over éaLT(K) is said to be etale if there exists a basis of D such that the matriz
of ¢ in this basis is in GLa(Og, 1 (k)

If D is a (¢, 'k )-module over A = c?LT(K) or Z1,(K) we write D* for the dual module Hom 4 (D, A) and
D(x) for the module obtained from D by twisting the action of I'x by the cyclotomic character.

Let Rep; (Gk) be the category of p-adic representations of G i with coefficients in L i.e. the category
of finite dimensional L-vector spaces equipped with a continuous linear action of G .

Theorem 1.1.2 ([Fol], [CC1]). There exists a natural functor V. — D' (V') which induces an equivalence
between Rep;, (Gx) and the category of etale (¢, Ik )-modules over é"LT (K).
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From Kedlaya’s theory it follows [Cz5, Proposition 1.4 and Corollary 1.5] that the functor D —
Z1,(K)® &1 (K) D establishes an equivalence between the category of étale (¢, 'k )-modules over éBLT(K )

and the category of (¢, ' )-modules over Z,(K) of slope 0 in the sense of [Ke]. Together with Theorem
1.1.2 this implies that the functor V — D (V) defined by D!, (V) = Z(K) ® &t () DT(V) induces
an equivalence between the category of p-adic representations and the category of (¢, I'x )-modules over
1, (K) of slope 0.

1.1.3. Crystalline and semistable (p,I'x)-modules (see [Fo3], [Ber3], [Berd]). Recall that a fil-
tered (¢, N)-module over K with coefficients in L is a free Ko ®q, L-vector space M equipped with the
following structures:

e a o-semilinear isomorphism ¢ : M — M (o acts trivially on L);

e a Ky ®q, L-linear nilpotent operator N such that N ¢ =pp N;

e an exhaustive decreasing filtration (Fil'M);cz on My = K ®, M by (K ®q, L)-submodules.
If K'/K is a finite Galois extension with Galois group G g/, then a filtered (¢, N, G g,k )-module is
a filtered (¢, N)-module M over K’ equipped with a semilinear action of G,k such that the filtration
Fil' My is Gy ic-stable. We say that M is a filtered (¢, N, G )-module if it is a filtered (¢, N, G/ /x)-
module for some K’/K. It is well known (see for example [Fo3]) that filtered (¢, N, G k)-modules form
a tensor category MngN’GK which is additive, has kernels and cokernels but is not abelian. The unit
object 1 of MngN’GK is the module K¢ ®q, L with the natural action of ¢ and the filtration given by

—— { Keg, L ifi <0,
0, if i > 0.
A filtered (¢, N)-module can be viewed as a filtered (¢, N, Gk )-module with the trivial action of Gx
and we denote by MF}’QN the resulting subcategory. A filtered Dieudonné module is an object M of
MF}'}’N such that N =0 on M. Filtered Dieudonné modules form a full subcategory MF¥, of MF%N.
If M is a filtered (¢, N, Gk ) - module of rank 1 and m is a basis vector of M, then ¢(m) = am for
some a € L. Set ty(M) = vy(a) and denote by t5 (M) the unique jump in the filtration of M. If M

has rank d > 1, set ty (M) = tN(;i\M) and ty (M) = tH(;i\M). A filtered (¢, N, Gk )-module M is said

to be weakly admissible if ¢ty (M) = tn(M) and tg(M') < txy(M’) for any (¢, N, Gk )-submodule M’

of M. Weakly admissible modules form a subcategory of MngN’GK which we denote by MF?J}[’GK .
Let Z110g(K) = Z1,(K)[log X] where log X is transcendental over %, (K) and

T(log X) =log X +log (1(X)/X), 7e€Tlk, ¢(log X) = plog X + log (¢(X)/X7).

N 4
Define a monodromy operator N : Zr 10g(K) — Zr10g(K) by N = — <1 — 5) Jlog X For any

(¢, Tk )-module D over Z(K) we set

-@cris(D) = (D ®%L(K) '%L(K)[l/t])FK ) QSt(D) = (D ®%L(K) '%LJOg(K)[l/t])FK :

Then Zeis(D) (resp. Zs(D)) is a K ®g, L-module of finite rank equipped with a natural action of
¢ (resp. with natural actions of ¢ and N). There exists a compatible system of embeddings ¢~ :
R (K)" — (L ® Ky)[[t]] which allows to define exhaustive decreasing filtrations on Zeis(D)x and
P4 (D) k) (see [Berd, proof of Theorem 111.2.3] ). Moreover Ze,is(D) = 25 (D)V=0 and

18(Zeris(D)) < 1g(Zs:(D)) < rg(D).
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We say that D is crystalline (resp. semistable) if rg(Zeis(D)) = rg(D) (resp. rg(Zst(D)) = rg(D)).
If K'/K is a finite extention, then %1 (K) C Zr(K') and we set Dg: = Z1(K') ®4, (k) D. The
projective limit
gpst(D) = ll_H>1 gst/K’(DK’)
K'/K
is a K" ®g, L-module of finite rank equipped with a discrete action of Gx and we say that D is
potentially semistable if rg(Zpst (D)) = rg(D). Denote by M £ Msf”g{ and M2 . the categories of

pst,K’ cris,
potentially semistable, semistable and crystalline (¢, 'k )-modules respectively.

Proposition 1.1.4. i) The functors Deis : Mcﬁig’K — MF%., Dy - Msff( - MF%N and Dps, -

Mg’;’tle — MngN’GK are equivalences of categories.
ii) If V' is a p-adic representation of Gk then chis(DLg(V)) (resp. gst(DLg(V)), resp. Dpst (DLg(V)))

is canonically and fonctorially isomorphic to Fontaine’s module Deyis(V') (resp. Dgi(V'), resp. Dpst(V)).

Proof. The first statement is the main result of [Berd]. The second statement follows from [Berl,
Theorem 0.2].

1.2. Cohomology of (¢, I')-modules.

1.2.1. Fontaine-Herr complexes (see [H1], [H2], [Liu]). Let A be either &) (K) or Z(K). We fix a
generator v € I'x. If D is a (¢, 'k )-module over A we shall write H*(D) for the cohomology of the
complex

Cprr(D) : 0D LDED LD 0

where f(z) = (¢ — 1)z, (yxk — 1)z) and g(y,2) = (yxk — 1)y — (¢ — 1) 2. A short exact sequence of
(¢, Tk )-modules

0—-D —D—=D"—0

gives rise to an exact cohomology sequence:
0— H(D') - H°(D) - H'(D") — HY(D') — --- — H*(D") — 0.

The cohomology of (p, 'k )-modules over Z, (K ) satisfies the following fondamental properties (see [Liu,
Theorem 0.2]):

e Euler characteristic formula. H*(D) are finite dimensional L-vector spaces and the usual formula
for the Euler characteristic holds

2
> (—1)'dim, H'(D) = —[K : Q)] rgg, ()(D).
i=0
e Poincaré duality. For each ¢ = 0, 1,2 there exist functorial pairings

H'(D) x H* {(D*(x)) = H*(#1(K)(x)) ~ L

which are compatible with the connecting homomorphisms in the usual sense.
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Proposition 1.2.2. Let V be a p-adic representation of Gy . Then

i) The continuous Galois cohomology H* (K, V') is canonically (up to the choice of vi ) and functorially
isomorphic to H*(DT(V)).

i) The natural map DT (V) — Djig(V) induces a quasi-isomorphism of complezes Cyy . (DT(V)) —
Coryre (Dfig(V)).
Proof. See [H1] and [Liu, Theorem 1.1].

1.2.3. Iwasawa cohomology (see [CC2]). If V is a p-adic representation of Gx and T is an Op-lattice
of V stable under G we define

and Hi (K,V) = H{ (K,T)®0, L. Since Df(V) is etale, each x € D(V) can be written in the form

d
x = Zal«p(ei) where {e;}L; is a basis of DT(V) and a; € éBLT(K) Therefore the formula
i=1

d
0 (Zai 90(61')> = Zﬂ}(ai) e;

defines an operator ¢ : Df(V) — Df(V) which is a left inverse for . The Iwasawa cohomology
H{ (K,V) is canonically (up to the choice of vk ) and functorially isomorphic to the cohomology of the
complex

. Df Y=l pt
(V) : DY(V) —= D' (V).

.|.
Clw

The projection map pry,, : H, (K,V) — H'(K,, V) has the following explicit description. Set vk ,, =
7%(":[{]. Let x € DT (V)¥=!. Then (¢ — 1)z € DT(V)¥=Y and by [CC1, Lemma 1.5.1] there exists
y € DT(V) such that (yx.,, — 1)y = (¢ — 1) z. Then pry,, sends z to cl(y, ). This interpretation of the
Iwasawa cohomology was found by Fontaine (unpublished but see [CC2]).

1.2.4. The exponential map (see [BK], [Ne], [Ben2]). Let D be a (¢,I'x)-module. To any cocycle
a = (a,b) € Z'(C, (D)) one can associate the extension

0—-D—-D, > Z,(K)—0

defined by
D, =D @ Z.(K)e, (p—1De=a, (yg—1)e=h.

As usual, this gives rise to a canonical isomorphism H'(D) ~ Ext%@ FK)(%L(K)’ D). We say that the

class cl(a) of a in H*(D) is crystalline if rg1.gx, Peris(Da) = 18Lg 1, Peris(D) + 1 and define
H}(D) = {cl(a) € H'(D) | cl(a) is crystalline }

(see [Ben2, Section 1.4]). Now assume that D is potentially semistable and define the tangent space of
D as
tp(K) = Z4r(D)/Fil’Z4r (D).

Consider the complex

5 (D) : gcris(D) i> 7fD([() @ -@(:ris(D)

cris
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where the modules are placed in degrees 0 and 1 and f(d) = (d (mod Fil’Z4r (D)), (1 — ¢) (d)) (see
[Ne|, [FP]). From Proposition 1.1.4 it follows the existence of a canonical isomorphism

H'(C2,,(D)) — Hj(D)

(see [Ben2, Proposition 1.4.4] for the proof). We define the exponential map
exppx ¢ tD(K)® Zeis(D) — H' (D)

as the composition of this isomorphism with the natural projection tp(K) & Zeis(D) — H(C2:. (D))
and the embedding H}(D) — HY(D).

If V is a potentially semistable representation and D = DLg(V) then the isomorphism H!'(D) ~
H'(K,V) identifies H}(D) with H}(K, V') of Bloch-Kato [Ben2, Proposition 1.4.2]. Let

tv(K) = Dar(V)/Fil’Dgar (V)

denote the tangent space of V. By [Ne, Proposition 1.21] the following diagram commutes and identifies
our exponential map with the exponential map expy, i of Bloch-Kato [BK, §4]

€eXP D, K

tp(K) H'(D)
| |
ty(K) 205 HY(K, V).

Let
[, ] 1 Zar(D) x Z4r(D*(x)) — L ®q, K

be the canonical duality. The dual exponential map
XD (o ¢ HYD* (X)) = Fil' Zn (D* (x))
is defined to be the unique linear map such that
expp k (7) Uy = Tri g, [7,eXPp () 1 (¥)]

for all x € Z4r(D), y € Zar(D*(x)).

1.2.5. (¢,I')-modules of rank 1 (see [Cz5], [Ben2]). In this paper we deal with potentially semistable
representations of Gg,. To simplify notation we set K, = Qp((pn), éaLT = éag((@p), K, = #1(Qp),
I' = T'p, and we fix a topological generator v of I'. With each continuous character § : Qp — L*
one can associate the (¢, I')-module of rank one % (0) = Zres defined by ~(es) = d(x(7))es and
p(es) = d(p)es. Colmez proved that any (p,I')-module of rank one over #, is isomorphic to one and
only one of Zr,(0) [Cz5, Proposition 3.1]. It is easy to see that % (0) is crystalline if and only if there
exists m € Z such that §(u) = u™ for all u € Z [Ben2, Lemma 1.5.2]. In this case Zeis(%1(6))
is the one-dimensional vector space generated by t~™es with Hodge-Tate weight equal to —m and ¢
acts on Zeis(Z1(9)) as multiplication by p~™d(p). The computation of the cohomology of crystalline
(¢, I')-modules of rank 1 reduces to the following four cases. We refer to [Cz5, Sections 2.3-2.5] and to
[Ben2, Proposition 1.5.3 and Theorem 1.5.7] for proofs and more details.
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o 0(u) = u™™ (u € Z}) for some m >0 but §(x) # z~™. In this case H'(Z(5)) = 0 for i = 0,2,
H'(Z1(9)) is a one-dimensional L-vector space and H (% (9)) = 0.

o §(x) = =™ for some m > 0. In this case H*(ZL(0)) = Deris(Z1(5)) and H?(#Z(5)) = 0. The

map
5 - A@cris(%L(a)) @ gcris(%L(a)) — Hl (‘%L(é))a
is(z,y) = cl(—z,log x(7)y)

is an isomorphism. We let i5 s and i5. denote its restrictions on the first and second direct summand
respectively. Then Tm(is y) = H(#1(9)) and we have a canonical decomposition

() HY(%1,(9)) ~ H}(%1(9)) © H, (%21 (9))
where H!(%1,(0)) = Im(is.). Set

Xm = 15,7 (t"es) = —cl(t™,0) es,
Ym = i5.c(t"es) = log x (v )Cl(oat ) es

o d(u) =u™ (u € L) for somem > 1 but §(x) # |x|x™. Then H'(Z1(6)) = 0fori =0,2, H'(ZL(5))
is a one-dimensional L-vector space and Hf (Z1(8)) = HY(ZL(0)).

o 0(x) = |x|z™ for some m > 1. Then H(%#,(8)) = 0 and H?(Z%(9)) is a one-dimensional L-vector

space. Moreover xd~!(z) = 2'~™ and there exists a unique isomorphism

Z.(; : @cris(%L(é)) D .@Cris(%L(é)) — Hl(%L(5))

such that
ié(aaﬁ) Uixﬁfl(l‘ay) = [ﬂal‘] - [Ol,y]

where [, ] ¢ Deris(ZL(0)) X Deris(Zr(x0~ 1)) — L is the canonical pairing. Denote is,y and is5. the
restrictions of i5 on the first and second direct summand respectively. Then Tm(is f) = H}(%1(9)) and
again we have a canonical decomposition

(6) HY(Z1.(0)) = H}(Z1.(6)) ® Ha (%1.(5))
where H)(#1,(0)) = Im(is.c).
. 1 1
More explicitly, let ¢, = — <1 - 5) cl(ayy,) and B, = <1 - 5) log x () cl(B,,) where

U = ((ml) )8 <%+%,a>65, (I—p)a=1-x()7) <%+%>

b= (L) e -0 (5) = a-xme

and 0 = (1 + X)% Then H} (#1,(6)) and H}(Z1(5)) are generated by av,, and 3, respectively and

one has

(7) oy UXy 1 = IBm UYm-1 = 0, Ay Uym_1 = _1> IBm Uxpmo1 = 1.
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Proposition 1.2.6. Let §(x) = |z|a™ where m > 1. Then d,, = t~™es is a basis of Deris(#Z1(9)) and
the exponential map sends (dp,,0) to Q.

Proof. See [Ben2, Theorem 1.5.7].

1.3. The large exponential map.

1.3.1. The large exponential map (see [PR2], [Cz1], [Benl], [Ber2]). In this section we review the
construction and basic properties of Perrin-Riou’s large exponential map [PR2]. We work with p-adic
representations of Gig, and keep notations of Section 1.2.5. Let p be an odd prime number. We let
denote A = Of[[I']] the Iwasawa algebra of T' over Oy, and set #Z; = %y, N L[[X]]. We remark that %,
is the ring of power series with coeflicients in L which converge on the open unit disk. Fix a topological
generator 7 of I' and define a compartible system of generators of T, setting v1 =47~ and v,41 =
for n > 1. Let A = Gal(K;/Q,). Define

H = {fn-DIfez}y,  HT) =LA@z, H#(T).
—92 .
Thus #(T') = "D H; where §; = FLZw_Z(g)g. We equip (') with twist operators Tw,, :
i=0
geEA
H(T) — A (1) defined by Tw,, (f(v1—1) ;) = f(x(71)™v1 — 1) §i—m. The ring 5(T) acts on %Z; and
(#])¥=0 is the free 5 (T')-module generated by (1 + X) [PR2, Proposition 1.2.7].

Let V be a potentially semistable representation of Gg,. Set D(V) = (%Z;)¥=° @1 Dais(V) and define
a map

=0+ D(V) = H' (K, Ciu(D(V)) = coker (Deris(V) 2 ty (K,) & Deris(V) )
by
(S @) FaGe ~ 1, —a0) ifaz1,
—(0,(1=p e ) a(0)) if n=0.
In particular, if Des(V)?=! = 0 the operator 1 — ¢ is invertible on Ds(V) and
=50(a) = <% a(O),O) .
For any m € Z let Twy,,, + H{, (Qp, V) — Hf,(Q,, V(m)) denote the twist map Twg,,,(z) =z @™,

Theorem 1.3.2. Let V' be a potentially semistable representation of Gg, such that H(K.,V) = 0.
Then for any integers h and m such that Fil-"Dgr (V) = Dgr(V) and m +h > 1 there exists a unique
A (T')-homomorphism

EXPY (), D(V(m)) = H(T) ®r, Hiy(Qp, V(m))

satisfying the following properties:
1) For any n > 0 the diagram

€
EXPY (m),h

D(V(m)) ——— D) @, Hiy(Qp, V(M)

E;(m),nl prV(m),nJ{

1 ° -I— <h71>!eva<m>aKn 1
H (K, Cis(Dyig(V(m))) H (K, V(m))

cris
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commutes.
ii) Let e; = e1 @t denote the canonical generator of Deyis(Qp(—1)). Then

EXP;(m+1),h+1 = _wa,(mm o Exp‘%/(m)ﬁ o (0®ey).
ii1) One has
Expi/(m),h—i—l = ghEXp%/(mLh

log(v1)
log x(v1) "

where £, = m —

Proof. This theorem was first proved in [PR2] for crystalline representations. Other proofs can be found
in [Czl], [KKT], [Benl] and [Ber2]. Note that in [Cz1] and [KKT] V is not assumed to be crystalline.
We also remark that in [PR2] Expy, ;, (o) was defined only for a such that 0™ a(0) € (1 —p™¢) Deyis(V)
for all m € Z. This condition is not necessary (see [PR4] or [Benl, Section 5.1}).

We recall now the construction of Exp{,, in terms of (¢,T')-modules found by Berger. This con-
struction will be used in the proof of Proposition 2.2.2 below. Again in [Ber2], Berger assumes that
V is crystalline, but his arguments work in the potentially semistable case. We refer to [Pt] for more
detail. The action of (") on DT(V)¥=! induces an isomorphism 7 (T') ® g, Df(V)¥=! - DI_(V)¥=!

rig
(see [Pt, Section 6.4]). Composing this map with the canonical isomorphism H{, (Q,, V) ~ Df(V)¥=!

we obtain an isomorphism J(I') ®4,, H} (Q,,V) — DLg(V)“’:l. It is not difficult to check that ¢,
h—1

acts on %1 as m — t0 and an easy induction shows that [] ¢; = (—1)""d". Let h > 1 be such that
k=0

Fil="D4gr (V) = Dgr(V). To simplify the formulation, assume that De,s(V)¢=! = 0. For any a € D(V)

the equation

h m
(@—I)F:a—za oz(())tm

has a solution in %f ® Deis(V) and we define
e _ logx(m)
Vale) = — bh1lp—2 - Lo(F(X)).

It is easy to see that Qf,, (a) € DY

rig(V)w:1 and in [Ber2, Theorem II.13] Berger shows that Qf,, (@)
coincides with Expy, , (a).

1.3.3. The logarithmic maps. The Iwasawa algebra A is equipped with an involution ¢ : A — A
defined by «(7) = 771, 7 € I". If M is a A-module we set M* = A ®, M and denote by m — m* the
canonical bijection of M onto M*. Thus Am* = (¢(A\)m)* for all A € A, m € M. Let T be a Op-lattice
of V stable under the action of Gig,. The cohomological pairings

(s )rn @ HY (K, T) x H' (K,,T*(1)) — Or,
give rise to a A-bilinear pairing
(s )p ¢ Hi(@p, T) x Hiy (Qp, T*(1)) — A

defined by

<,17,yL>T = Z (Tﬁl'xnayn)T,nT mod (’Yn - 1)a nz=l1
Tel'/Ty,
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(see [PR2, Section 3.6.1]). By linearity we extend this pairing to
(s )y 2 HT) ®n Hiy(Qy, T) x H(T) @4 Hyy (Qp, T*(1))" — H/(I).
For any 1 € D¢is(V*(1)) the element 1 =1 ® (1 4+ X) lies in D(V*(1)) and we define a map
Q%/,lfh,n : Hllw(Qp’V) — ()

by
1 ~
Vi () = <$>EXP§/*(1),h(77)L>V-
Lemma 1.3.4. For any j € Z one has

Q;(_1)7_h777®81 (TW%/7_1(:L')) = Tw, (£€/71_h777($)) .

Proof. A short computation shows that <TW%/7j($),TW§/*(1)7_j(y)> = Tw_;(z,y),. Taking into

V(j)
account that Twi/:l(l)’l = —TW%/*(l)’l we have
—1 —_—~— .
;(71),7h,n®el (TW§/7_1($)) = <TW§/7_1($),EXP;*(2)7;L+1(77 ® 61) >V(—1) =
-1 -1 . —1 .
(Tw, 1 (), =Twir 1y 1 (EXDYr (1) (7)) >V(,1) = (Twi,_1 (), TWire (1) 1 (EXDT- (1) (1) >v(f1) =
—1 .
TW1<x=EXp§/*(1),h(m >v = Tw, (Si/,l—h,n(x))

and the lemma is proved.

1.4. p-adic distributions (see [Cz6, Chapitre II], [PR2, Sections 1.1-1.2]). Let D(Z;, L) be the space
of distributions on Z; with values in a finite extensions L of Q,. To each y € D(Z;, L) one can associate

its Amice transform 7, (X) € L[[X]] by
Ci),u(a:)) X"

() = [ (4 X)) = 3 < /
ZZ n=0 Z;
The map p — 4,(X) establishes an isomorphism between D(Z3, L) and (2] )¥=". We will denote by
M(p) the unique element of 7 (I") such that
M(p) (1+X) = Au(X).
For each m € Z the character X" : I' — Z; can be extended to a unique continuous L-linear map
p—2
X" HT) — L*. i h= > 6hi(y1 — 1), then x™(h) = h;(x™ (1) — 1) with i =m (mod (p—1)). An
i=0
easy computation shows that
[ amnta) = 0"t (0) = (M),

If © € Z; we set (x) = w™'(z) z where w denotes the Teichmiiller character. To any p € D(Z, L) we
associate p-adic functions
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Write M(u) = I‘)Z::z&ihi(’yl —1). Then
(8) Ly(p, 0", 8) = hi (x(n)* = 1).

To prove this formula it is enough to compare the values of the both sides at the integers
s=1 (mod (p—1)).

We say that p is of order r > 0 if its Amice transform .7, ( Z a, X" is of order r i.e. if the

n=1
sequence |a,|,/n" is bounded above. A distribution of order r is completely determined by the values

of the integrals
(;fnzviu(:v), neN, 0<i<][r]
Zy
where [r] is the largest integer no greater then 7.

Set Z(®) = Ly, X l];[ Z;. A locally analytic function on ll;[ Z; is locally constant and we say that a
P P
distribution p on Z® is of order r if for any locally constant function g(y) on J[Z; the linear map
I#p

f— . f(x)g(y)u(z,y) is a distribution of order r on Zj.

§2. The /l-invariant

2.1. The /-invariant.

2.1.1. Definition of the /-invariant. In this section we review and generalise slightly the definition of
the ¢-invariant proposed in our previous article [Ben2] in order to cover the case of potentially crystalline
reduction of modular forms. Let S be a finite set of primes and Q(%) /Q be the maximal Galois extension
of Q unramified outside S U {oo}. Fix a finite extension L/Q,. Let V' be an L-adic representation of
(g i.e. a finite dimensional L-vector space equipped with a continuous linear action of Gg. We write
H§(Q, V) for the continuous cohomology of G'g with coefficients in V. We will always assume that the
restriction of V' on the decomposition group at p is potentially semistable. For all primes [ # p (resp.
for I = p) Greenberg [Grel] (resp. Bloch and Kato [BK]) defined a subgroup H} (Q, V) of HY(Q,V)
b

' ker(H'(Q;, V) — HY(Q,V)) if 1 # p,

ker(HY(Q,, V) — Hl(Qp, V®@Buis)) ifl=p

where Bis is the ring of crystalline periods [Fo2]. The Selmer group of V' is defined as

"Q,V
1 — k ’
H}(Q,V) = ker <HS Q,V @ HIQ.V )

es

Hi(Q,V) = {

We also define

HY(Q,V)
H! V) =ker | HL(Q,V) —
fAr} (Q,V) er 5(Q,V) 1656—9{12} H}(Ql, V)

Note that these definitions do not depend on the choice of S. From now until the end of this §we
assume that V satisfies the following conditions

1) HY(Q,V) = HHQ,V*(1)) = 0.

2) The action of ¢ on D (V) is semisimple at 1.
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3) dimLtv(Qp) =1.

We remark that the last condition can be relaxed but it simplifies the formulation of Proposition
2.2.4 below and holds for the situations considered in §§3-4.

The condition 1) together with the Poitou-Tate exact sequence (see [FP, Proposition 2.2.1])

H(Q,V
---—»Eﬁ(Q,V)—+EQKQQV)::GBEE%%?$%

les f

— HHQ V7 (1) — -

gives an isomorphism

Hl (Qla V)
HY(Q,V) ~ Pl
S(Q ) e Hjlc (Qh V)

In particular, we have

1 ~ Hl(@ aV)
(9) Hp (1 (Q, V) H}@Tz,\/)'

Let D be a one-dimensional subspace of Dis(V') on which ¢ acts as multiplication by p~!. Set Dqur =
D ®q, Qp" where Q" denotes the maximal unramified extension of Q. Using the weak admissibility of
D, (V) it is easy to see that D is not contained in Fil®D,s(V) and therefore

(10) D (V) = Fil"Dpg (V) @ Do

as Q)" ®q, L-modules. Let m denote the unique Hodge-Tate weight of D. By Berger’s theory [Ber4]
(see also [BC, Section 2.4.2]), the intersection Djig(V) N(D®rZL[1/t]) is a saturated (¢, I')-submodule
of Diig(V) of rank 1 which is isomorphic to Z(0) with §(x) = |z|x™. Thus we have an exact sequence
of (¢,I')-modules

(11) 0 — Z.(5) — DI

hig(V) > D —0

where D = DLg(V) /Z1,(9). Passing to duals and taking the long exact cohomology sequence we obtain

an exact sequence
(12) HY(Qy, V(1) = HY (Ze(x071)) — H*(D*(x))-

Proposition 2.1.2. Assume that one of the following conditions holds
a) D is not contained in the image of the monodromy operator N : Dpg(V) — Dps (V) and
D.is(V)?= = 0.
b) D is contained in the image of N and N~'(D) N Dg(V)?=! is a one-dimensional L-vector space.
Then the composition
2} 4y (Q.V (1) = H' (%0 (x5™)

of the localisation map H}y{p}((@, V(1)) — HYQp, V*(1)) with H*(Qp, V*(1)) — HY(ZL(xd™1)) is
injective. Moreover, Im(3¢) is a one-dimensional L-vector space such that

Im(3) N H}(%1(x0)) = {0}.

Proof. We consider the two cases separately.
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a) First assume that D satisfies a). Applying the functor Z,s to (11) we obtain an exact sequence
(13) 0 — Dgu — Dyt (V) 5 2 (D) — 0.
From (10) it follows that Fil®Z, (D) = Zpst(D) and by [Ben2, Proposition 1.4.4]

H°(D) =~ et (D)?=1N=0C = g (D)#=L.

Applying the snake lemma to (13) we obtain an isomorphism of Gg,-modules Dy, (V)?=! ~ Z (D)#=1
Thus Dg(V)¢=! ~ P (D)%, Let & € Peis(D)?~1. There exists a unique y € Dy (V)¥=! such that
f(y) = x. Since f(N(y)) = N(z) = 0, one has N(y) € D and by a) N(y) = 0 i.e. y € Des(V)#9=L.
Since Deyis(V)#=! = 0 by assumption a), we proved that H(D) = 0.

Now H?(D*(x)) = 0 by Poincaré duality and from the exact sequence (12) we obtain that the map
HY(Q,,V*(1)) — HY(ZL(x67 1)) is surjective. Since xd~!(x) = z'~™, the cohomology H'(Z(xd~'))
decomposes into the direct sum of one dimensional subspaces

H (%1 (x67")) ~ Hjlf (ZL(x0~")) & HY(ZL(x61)).

The image of H(Q,, V*(1)) in H'(ZL(xd")) is contained in H{(ZL(xd~")) and we have a surjective
map

HY(Qp V(1)  HYZL(x0™1))

(14 H}(Q, V(1) Hi@00 )

From De,s(V)¢=! = 0 it follows that H(Q,, V) = 0 and
dimy, (H;(Qp,V)) = dimy (ty (L)) + dimy (H°(Qp, V)) = 1.

Therefore H'(Q,, V*(1))/H(Q,, V*(1)) is one-dimensional and the map (14) is an isomorphism. The
Proposition follows now from this fact and from the isomorphism (9) for the cohomology with coefficients
in V*(1) instead V.

b) Now assume that D satisfies b). We follow the approach of [Ben2, Sections 2.1 and 2.2] with
some modifications ( see especially the proofs of Proposition 2.1.7 and Lemma 2.1.8 of op. cit.). The
Proposition will be proved in several steps.

bl) Consider the filtration on Dy (V') given by

0 ifi=-1

Dgyr if i =0
") D+ N YD) ND(V)F gy ifi=1

D,y (V) if i = 2.

By [Ber4] this filtration induces a unique filtration on DLg(V)

{0} = F_,D! (V) c RyD! (V) c D! (V) c D! (V) =D!

rig rig rig rig rig

(V)

such that .@pst(FiDLg(V)) = D,. Note that Fleig(V) is a semistable (p,I')-submodule of DLg(V).

To simplify notation set My = FoD, (V), M = FiD, (V) and M; = gr;DJ (V). We remark that
My ~ #1,(8) and since Fil°(Dy/Dg) = D1/Dgy and (Do/D1)¥=! = Dy/D; Proposition 1.5.9 of [Ben2]
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implies that M; ~ % (x~*) for some k > 0. By the assumption b) the monodromy operator N acts
non trivially on D; and therefore we have a non crystalline extension

0= Z(0) = M — Z(z7 %) =0

which is a particular case of the exact sequence from [Ben2, Proposition 2.1.7]. Passing to duals and
taking the long cohomology sequence we obtain a diagram
(15)

HY (5 (||t +1)) —

HY(M*(x)) — 2> B (%L(x07")) —2> H(%y(|2|2*+1)) — 0.

|

H} (0 (Q, V(1))

b2) The quotient D = grgDLg(V) is a potentially semistable (¢, I')-module with Hodge-Tate weights
> 0. Thus H° (D) =~ (Dps(V)/D1)¢%¥=1N=0 Tet 7 = 2 4+ D; € (Dypst(V)/ D)%% #=1N=0 For each
g € Gq, we can write g(z) = = + d for some d € D;. Since the inertia subgroup I, C Gg, acts on
D, (V) through a finite quotient and since the restriction of this action on D; is trivial, we obtain that

z € Dt (V)'» = D (V) ®q, Q" Thus

< ((Frvwintur=) © @5T>GWZLNZO - (77, ﬁwvﬁst(vw:l)w:w:o.

Since ¢ is semisimple at 1, we can assume that € Dy (V)¥=!. Then N(z) € D and therefore x €
N=1(D) N Dg(V)#=1. This shows that Z = 0 and we proved that H° (D) = 0. By Poincaré duality
we obtain immediately that H?(D*(x)) = 0. Now the Euler characteristic formula together with [Ben2,
Corollary 1.4.5] give

dimz, H'(D*(x))) = rg (D*(x)) + dimz H® (D*(x)) = dimz, H} (D*(x))

and therefore
(16) Hj (D*(x)) = H' (D*(x)).
b3) Consider the exact sequence

0 — D*(x) — D!

rig

(V*(1)) = M™(x) = 0.

Since HY(M*(x)) = 0, this sequence together with the isomorphism (16) give an exact sequence

(17) 0 — Hj (D*(x)) — H'(Q,,V*(1)) — H'(M*(x)) — 0.
On the other hand, by [Ben2, Corollary 1.4.6] the sequence
(18) 0 — Hj (D*(x)) = H}(Qp, V(1)) = Hf(M*(x)) = 0

is also exact.

b4) We come back to the diagram (15). The sequences (17) and (18) together with the isomorphism
(9) show that the map 7 is injective. By [Ben2, Lemma 2.1.8] one has ker(g1) = H(M*(x)) and
HY (%L (x671)) = H}(%L(X(S_l)) @ Im(g;). Since

H(Qp, V(1)) /H}(Qy, V(1)) = H' (M (x))/H(M*(x))

we obtain that ker(sc) = Tm(n) Nker(g1) = 0 and that Im(s¢) N H;(Z1(xd~")) = 0. The Proposition is
proved.
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Definition. The (-invariant associated to V and D is the unique element £(V, D) € L such that
Im(52) = L(ym1 + £V, D) Xon1).

Here {X;—1,Ym—1} is the canonical basis of H' (%1, (x6~ 1)) constructed in 1.2.5.

Remarks 2.1.3. 1) If V is semistable at p this definition agrees with the definition of ¢(V, D)
proposed in [Ben2, Sections 2.2.2 and 2.3.3].

2) The assumptions a) and b) imply both that H°(Q,, V) = 0.

3) One can express £(V, D) directly in terms of V and D. Assume that D satisfies the condition a) of
Proposition 2.1.2. Since H°(D) = 0 the sequence (11) shows that H'(Z%(J)) injects into H'*! (DLg(V)) ~
H'(Qp, V). Moreover, from dimz H(Q,, V) = 1 and the fact that dimp, H(%(5)) = 1 it follows that
H{(Qp, V) =~ H{(ZL(5)). Let Hp(V) denote the inverse image of H' (%L (0))/H ;(%1()) under the
isomorphism (9). Then
1Y (ZL(0))

- Hy(ZL(9))

and the localisation map HL(V) — H'(Q,,V) induces an injection H} (V) — H'(%L(6)). Using the
decomposition (6) we define .Z(V, D) as the unique element of L such that

Hp(V)

Im(Hp (V) = H'(Z1(6))) = L(Bm + Z(V, D)otn,)
where {@,, B} denotes the canonical basis of H'(Z%r(5)). Then
(19) UV,D)=-2(V,D)

(see [Ben2, Proposition 2.2.7]). Note that in op. cit. V is assumed to be semistable, but in the
potentially semistable case the proof is exactly the same.

A similar duality formula can be proved in the case b) too, but it will not be used in this paper. We
refer to [Ben2, Section 2.2.3] for more detail.

4) The diagram (15) shows that in the case b) the image of H}’{p}(@, V*(1)) in HY(ZL(xo™1))
coincides with Im(g;) and therefore that ¢(V, D) depends only on the local properties of V' at p. On the
other hand, in the case a) the £ invariant is global and contains information about the localisation map

H} (1 (Q, V(1)) = HY(ZL(xd™1)).

2.2. Relation to the large exponential map.

2.2.1. Derivative of the large exponential map. In this section we interpret ¢(V, D) in terms of
the Bockstein homomorphism associated to the large exponential map. This interpretation is crucial
for the proof of the main theorem of this paper. We keep the notations and conventions of Section 2.1.
Recall (see Section 1.3.2) that H'(Qy, #(I') ®q, V) = H(T) @y, Hi,(Qp, V) injects into DLg(V). Set

H3(Qy, #(T) @q, V) = Z1(5) N H (Q,, #(T) @g, V).
The projection map induces a commutative diagram
H(Qy, H#(T) ®g, V) —— H'(Q,, #(T) ®g, V)
1 |
HY (#1(9)) — HY(Qy,V)

where the bottom arrow is an injection. We fix a generator v € I' and an integer h > 1 such that
Fil="Dgr(V) = Dar(V).
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Proposition 2.2.2. Assume that D is a one-dimensional subspace of Deis(V) on which ¢ acts as
multiplication by p~t. For any a € D let x € D(V) be such that x(0) = a. Then
i) There exists a unique F € H}(Q,, #(T') @ V) such that
(v — 1) F' = Expy,(2).

ii) The composition map

6p : D — H§(Q,, ()2 V) — H (%L(5))
dp(a) = pro(F)

is well defined and is explicitly given by the following formula
!
sol@) = T(0) (1-3)  fogx() iufa)

Proof. 1) Since in both cases, a) and b) Des(V)?=1 = 0, the operator 1 — ¢ is invertible on Dis(V)
and we have a diagram

Exp5 ),
D(V) VL HYQ,, #(D) 2 V)
lE@,o lpro
(h—1)!ex
ty (Qp) ® Deris (V) 2 HY(Q,, V).
1—plte™!

where =5, (f) = < 1~

On the other hand, as Hi,,(Q,, V) is Ag,-free, the map <%”(F) ®ng, H}(Qp, V))F — HY(Q,,V) is
injective and therefore there exists a unique F' € 72 (I')®x,, Hi},(Qp, V) such that Expj, ,(z) = (y—=1) F.
Let y € D ® %’fzo be another element such that y(0) = a and let Expj,,(y) = (v — 1) G. Since

,@2:0 = (I') (14 X) we have y = . + (v — 1)g for some g € D ®%1Lb:0. As Expy, 1, (9) = 0, we obtain
immediately that pro(G) = pro(F') and we proved that the map dp is well defined.

2) Take a € D and set
(14 X)X -1
X

f(()),()). IfxeD ®%1Ll’:0 then =7, ,(z) = 0 and prog (Exp;h(az)) = 0.

r=a®/

)

o(u)

1
where ¢(u) = - log < > . An easy computation shows that
p

Z ' (CX(’Y)(l _|_X)x(*/) _ 1) o

= (1+X)-1

Thus z € D ® Or[[X]]¥=°. Write z in the form f = (1 —¢) (y — 1) (a ® log(X)). Then

fae) = (1) 2O 092 (g - 1) atog(x)) = (1= ) logx() (- 1) F
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where

F = (-1)"'"0"(alog(X)) = (-1)"'atho"! (%)

This implies immediately that F € H}(Q,, #(I') ® V). On the other hand, as D = Deyis(ZL(9))
without lost of generality we may assume that a = t~™es where §(x) = |z|x"™. Then

F = (=D 1th=m9" log(X) es.

One has pro(F') = cl(G, F') where (1 —v)G = (1 —¢) F' (see Section 1.2.3) and by [CC1, Lemma 1.5.1]
there exists a unique b € éirw:o such that (1 —~v)b=¢(X). One has

(1—=7) (th_mahbe(;) = (1—¢) (th_mﬁh log(X)e(;) = (—1)h_1(1 — ) F.
Thus G = (—1)""1h=m9"(b)es and res (Gt™1dt) = (—1)""'res (t" 19" (b)dt) es = 0. Next from the

congruence F' = (h — 1)!t"™es (mod Q,[[X]] es) it follows that res(Ft™ 'dt) = (h — 1)!es. Therefore
by [Ben2, Corollary 1.5.5] we have

(20) (1 - %) (log (1)) cl(G, F) = (h— D1el(Bn) = (h— 1)lic(a).

On the other hand

(1) £(0) = a®€<(1+X§m) ‘1>'X0 _ a<1_ %) log x(7).

The formulas (20) and (21) imply that

5p(a) = (h— 1) (1 - }9) (tog x(+)) " (a).

and the Proposition is proved.

2.2.3. Derivative of the large logarithmic map and /-invariant. Fix a non-zero element d € D
and consider the large logarithmic map

2?/*(1),1—h,d : Hllw(Qim V(1)) — ()
(see Section 1.3.3). Let

Hi, 5(Q,T%(1)) = bmHg(Q(Gpr), T7(1))

cor

denote the global Iwasawa cohomology with coefficients in 7*(1) and let

HIlw,S(Q7 V*(l)) = HIlw,S(Q7T*(1)) ®Zp Qp'

The main results of this paper will be directly deduced from the following statement.
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Proposition 2.2.4. Assume that D is a one-dimensional subspace of Deis(V) on which ¢ acts as
multiplication by p~! and which satisfies one of the conditions a-b) of Proposition 2.1.2. Let z €
H11W7S(Q, V*(1)). Assume that zg = pro(z) € H§(Q,V*(1)) is non-zero and denote by p, € D(Z;, L)
the distribution defined by

M(pz) = £5-(1)1-n,a(2)-

Consider the p-adic function

Ly (s 5) = /Z*<x>8#z(x)-

Then Ly(p,,0) =0 and
1L
L, (15,0) = £(V, D) T (h) (1 - 5) [d, exp’{,*(l)(zo)]v
where [, ]y Deris(V) X Deyis(V*(1)) — L is the canonical duality.

Proof. First note that by [PR1, Section 2.1.7] for [ # p one has H{, (Qq, V*(1)) ~ H*(Qi({p=), V*(1))
and therefore H{, (Q;,V*(1)) is contained in H}(Ql,V*(l)). Thus Hi, 5(Q, V*(1)), injects into
H}’{p}((@, V*(1)) and zg € H}’{p}((@, V*(1)). Recall that we fixed a basis d of the one-dimensional
L-vector space D = Deis(#1(9)). Let d* be the basis of Zeris(Zr(xd~ 1)) which is dual to d. Let Zg

denote the image of zy under the projection map HI(DLg(V*(l))) — HYZ(x671)). Write zg =

aif(d*) 4+ bic(d*). Then ¢(V, D) = a/b. By Proposition 1.2.6 and (7) we have

(22)  |d,expy-(1y(2o) . —expy (d) U 29 = —expy, 5 (d)U Zo =
= —b(if(d) Uic(d")) = =b (am Uym-1) = b.

p—2

Let M(u,) = > 6;hi(y1—1). Then L, (15, s) = ho (x(71)° — 1) by (8). From Proposition 2.2.2 it follows
i=0

that there exists F' € H}(Q,, # (') ® V) such that Exp‘{,}i (do(1+X))=(y—1)F and

M) = €511 nal?) = (7, Bxpin (@@ (1+ X)) = (7= 1) (2, 7).

p—2

Put (z,F)y, = 2, 0iHi(n — 1) Then Ly(pz, 5) = (x(7)* = 1) Ho(x(m)* — 1). Since x(y1) = x()r

the last formula implies that L, (4, s) has a zero at s = 0 and

(23) Ly, (p12,0) = —(log x(7)) Ho(0).
On the other hand, by Proposition 2.2.2

(20) Ho(0) = 20U (proF) =0 U () =T () (1= 3 ) (log (1) (B Uicld) =

— T (h) <1 - 1%)_ (log x(7)) .
From (22), (23) and (24) we obtain that
1 1

L (1,0) =T (h) <1 - 5>_1 a = ((V,D) T (h) <1 - 5>_1 [da,exp*v*(l)(Zo)}V

and the Proposition is proved.
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§3. Trivial zeros of Dirichlet L-functions

3.1. Dirichlet L-functions. Let n : (Z/NZ)* — C* be a Dirichlet character of conductor N. We

fix a primitive N-th root of unity (x and set 7(n) = > n(a)(%. The Dirichlet L-function
a mod N
Lins) =3 M Re(s) > 1
n=1

has a meromorphic continuation on the whole complex plane and satisfies the functional equation

s/2 (1—s)/2 -
<E> T <S + 5’7> L(n,s) = W, <E> I <ﬂ> L(7,1 - s)
m 2 m 2

where W, =i =% N~1/27(n) and 6, = 1*’77(*1) . From now until the end of this § we assume that 7 is not
trivial. For any j = 0 the special Value L(777 Jj) is the algebraic integer given by

@ F,(0)

(25) L(n,—j) = =2

where

Fn(t) = ! Z 71771(&)

7'(77_1) a mod N1 N <%€t
(see for example [PR3, proof of Proposition 3.1.4] ). In particular

nla

(26) L(n,0) myoR

a modN

Moreover L(n, —j) = 0 if and only if j = 4, (mod 2).

Let p be a prime number such that (p, N) = 1. We fix a finite extension L of Q, containing the values
of all Dirichlet characters n of conductor N. The power series

B 1 n~1(a) n~ ' (a)
Dy (X) = =201 2 <(1+X)§]‘i,—1 N (1+X)7’Czpv“—1>

a mod N

lies in OL[[X]]¥=" and therefore can be viewed as the Amice transform of a unique mesure j, on Z.
The p-adic L-functions associated to 7 are defined to be

Ly(nw™,s) = / W (@) (@) (), 0<m<p-—2.

From (6) and (25) it follows that these functions satisfy the following interpolation property (Iwasawa
theorem)

Ly(nw™ 1—3j)=1—= o™ ) (pp' ) Linw™ 7, 1-4)  j>1

Note that the Euler factor 1 — (nw™ ")(p)p' =7 vanishes if m = j = 1 and 7(p) = 1 and that L(n,0)
does not vanish if and only if 7 is odd i.e. n(—1) = —1.
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3.2. p-adic representations associated to Dirichlet characters. We continue to assume that
(p,N)=1.Set F =Q({n), G =Gal(F/Q) and let p : G ~ (Z/NZ)* denote the canonical isomorphism

normalized by g({y) = (]p\,(g )71. Fix a finite extension L/Q, containing the values of all Dirichlet char-
acters modulo N. If n is such a character, we identify 1 with the character 1) o p of G and denote by
L(%)) the associated one-dimensional Galois representation. Let S denote the set of primes dividing N.

Assume that 7 is a non trivial character of conductor N. We need the following well known results
about the Galois cohomology of L(n).

i) H*(Q, L(n)) = H*(Qu, LOxn 1)) = 0 for L € .

dili) H}(Q, L(n)) = 0 and H}(Q, L(xn™')) ~ (Of ©z L)™. In particular, H}(Q, L(xn™*)) = 0 if 5 is
odd.

iii) The restriction of L(n) on the decomposition group at p is crystalline. More precisely, ¢ acts on
D..is(L(n)) as multiplication by n(p) and the unique Hodge-Tate weight of L(n) is 0.

Note that H°(Q;, L(n)) = 0 if [|N because in this case the inertia group acts non-trivially on L(n).
Together with Poincaré duality and the Euler characteristic formula this gives i). To prove ii) it is enough
to remark that H}(F, Q,(1)) ~ 0:®Q, (see for example [Kal, §5]). Finally iii) follows immediately
from the definition of D ;s.

1

Assume now that 7 is odd and n(p) = 1. Then ¢ acts on D¢is(L(xn~ 1)) as multiplication by p~! and

D = Dyis(L(xn™')) satisfies the conditions 1-4) from Section 2.1.1. The isomorphism (9) writes

H'(Qp, L(x))

Hg(Q,L(xn ")) ~ m-

3.3. Trivial zeros. .

3.3.1. Cyclotomic units. Set F,, = F((,»). The collection zcyes = (1 — (¥ {pn)n>1 form a norm

compartible system of units which can be viewed as an element of Hy, ¢(F, L(x)) using Kummer maps

Fr — HL(F,,L(x)). Twisting by e~ we obtain an element z.yc(—1) € H11W7S(F, L). Shapiro’s lemma
1

gives an isomorphism of G-modules Hj, (F ® Q,, L) ~ H{, (Q,, L[G]*). Let e, = @ZU_l(g) g. Since

geG
e, L|G]" = Le, -1 is isomorphic to L(n~') we have

enHiy(F ® Qp, L) = Hiy (Qp, L(n™)).

Moreover Dis(L[G]) =~ (L[G]®F)¢ ~ L® F. The isomorphism Q[G] ~ F defined by A — A\((x') induces
an isomorphism D.is(L[G]) ~ L[G] and therefore we can consider e, as a basis of Deis(L(n™1)). Let

zZyd(—l) denote the image of Zcyc(—1) in Hi, (Qp, L(n~')). We need the following properties of these

elements:

1) Relation to the complex L-function. Let zg;l (—1)o denote the projection of zg;l (=1) on H'(Qy, L(n)).
Then

exp} () (2l (—1)o) = — (1 — %@) L(n,0) e,

2) Relation to the p-adic L-function. Let e;_, € Deris(L(xn™')) be the basis which is dual to e,-1

and let S(LE()n),o : HL, (Qp, L(n)) — 4(T) denote the associated logarithmic map. Then

-1

i(ﬁ),O(ZZycl(_l)) = _M(/Ln).
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We remark that 1) follows from the explicit reciprocity law of Iwasawa [Iw] together with (26). See
also [Kal, Theorem 5.12] and [HK, Corollary 3.2.7] where a more general statement is proved using the
explicit reciprocity law for Q,(r). The statement 2) is a reformulation of Coleman’s construction of
p-adic L-functions in terms of the large logarithmic map [PR3, Proposition 3.1.4].

Theorem 3.3.2. Let n be an odd character of conductor N. Assume that p is a prime odd number
such that p4 N and n(p) = 1. Then

L'(nw,0) = —Z(n) L(n,0)

where £ (n) is the invariant defined by (3).
Proof. Tt is easy to see that .Z(n) coincides with ¢(L(xn~!), D). Applying Proposition 2.3.4 to V =

L(xn™1), D = Deis(L(xn™1)) and z = zZyCl(—l) and taking into account 1-2) above we obtain that

L (nw,0) = L (12,0) = {(L(xn ™), D) (1 - }9) (a1, expi ) (20)| = =2(n) L(1,0)

and the Theorem is proved.

§4. Trivial zeros of modular forms

4.1. p-adic L-functions.
4.1.1. Construction of p-adic L-functions (see [AV], [Mn], [Vi], [MTT]). Let f = > anq™ be a

n=1
(o]
normalized newform on T'g(V) of weight k and character €. The complex L-function L(f,s) = > a,n~*°
n=1

decomposes into an Euler product

L(f,s) = [[Eu(f.p )"

with E,(f, X) =1 —a,X + (p)p* 1 X2 Let p > 2 be a prime such that the Euler factor E,(f, X) is
not equal to 1 and let o € @p be a root of the polynomial X2 — a,X + e(p)p*~!. Assume that « is not
critical i.e. that v,(a) < k — 1. Manin-Vishik [Mn], [Vi], and independently Amice-Velu [AV] proved
that there exists a unique distribution s, on 7.%) of order vp(cr) such that for any Dirichlet caracter
1 of conductor M prime to p and any Dirichlet character £ of conductor p™

<1_M> <1—5n—(m>f(f,17,j) if1<j<k—1andm=0,

/ n(@)g(@)2’ ppale) =4 i( m?~ ’
2 e LU ) f1<j<k-landm>1
a7 ()

_ pPTo1_ ~
where 7(§) = > &(a)(im and L(f,n,7) is the algebraic part of L(f,7,j) (see (1)). For us it will be
a=1

more convenient to work with the distribution Af, = 27 'us,. The p-adic L-functions associated to
n: (Z/MZ)* — @; are defined by?

(27) Ly o(f,nw™,s) = / nwm(:v)<:v>s)\f7a(3:) 0<m<p-—2.

7.(p)

30ur Lyp,q(f,nw™, s) coincides with Ly(f, a, iw™ 1, s — 1) of [MTT]
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It is easy to see that L, o (f,nw™, s) is a p-adic analytic function which satisfies the following interpolation
property

(28) Lp7a(f’77wm,j)zga(f”r/wm’j) E(fanwj_maj)a 1<]<k_1

where

(1 _ M) (1 B n(p)s(p)p’““) 7= m (mod p— 1)

. o e
(29)  &(finw™,j) = _—
4.1.2. p-adic representations associated to modular forms. For each prime p Deligne [D1]
constructed a p-adic representation

ps + Gal(Q/Q) — GL(Wy)

with coefficients in a finite extension L of Q. This representation has the following properties:
i) det py is isomorphic to ex*~! where x is the cyclotomic character.
ii) If I 1 Np then the restriction of py on the decomposition group at [ is unramified and

det(1 — Fr, X | Wy) =1 — a, X + (1) IF 1 X2

(Deligne-Langlands-Carayol theorem [Cal, [La]).

ili) The restriction of ps on the decomposition group at p is potentially semistable with Hodge-
Tate weights (0,k — 1) [Fal]. It is crystalline if p { N and semistable non-crystalline if p || N and
(p,cond(e)) = 1. If p | N and ord,(NN) = ord,(cond(e)) the restriction of p; on the decomposition group

at p is potentially crystalline and Ds(Wy) = DpcriS(Wf)Gal(@P/ @) is one-dimensional. In all cases
det(1 — X | Deis(Wy)) =1 — a, X +e(p) p" 1 X2
(Saito theorem [Sal, see also [Fa2], [Ts]).

4.1.3. Trivial zeros (see [MTT]). We say that L, (f,nw™,s) has a trivial zero at s = j if

L(fnw ™™, ) #0 and  E(f,mw™, j) = 0.

From (29) it is not difficult to deduce that this occurs in the following three cases [MTT, §15]:

o The semistable case: p || N, k is even and (p,cond(e)) = 1. Thus e(p) = 0, E,(f, X) =1—a,X and
a, is the unique non-critical root of X 2 apX. The restriction of Wy on the decomposition group at p
is semistable and the eigenvalues of ¢ acting on Dg(Wy) are a = a, and § = pa. The module Dy (W)
has a basis {eq, es} such that p(eq) = apeq, p(es) = feg and N(eg) = eq. Moreover De,is(Wy) = Leq.
Let & be the primitive character associated to e. Then &(p) # 0 and a2 = &(p)p"~2 [Li, Theorem 3].
Write a, = £pF/2=1 where ¢ is a root of unity. Then &, (f,nw™,j) = 0 if and only if j = k/2, m = k/2
mod (p — 1) and 7(p) = &. Therefore the p-adic L-function L, .(f,nw"/?,s) has a trivial zero at the
central point s = k/2 if and only if 7j(p) = &.

o The crystalline case: p{ N. The restriction of W on the decomposition group at p is crystalline and
by Deligne [D2] one has |a| = p¥=1)/2 Write a = £p% with |£| = 1. Then &,(f, nw™, 7) vanishes if and
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L and n(p)e(p) = €.

k+1
2

1 k
only if m = j (mod p — 1), k is odd, and either j = and 7j(p) =§ or j =

The p-adic L-function Ly, ,(f, nw% ,s) has a trivial zero at the near-central point s = if and only

if o = ﬁ(p)p% and Ly o (f, nw%,s) has a trivial zero at s = 551 if and only if o = n(p) E(p)p%.

e The potentially crystalline case: p | N and ord,(N) = ord,(cond(¢)). One has E,(f,X) =1—a,X
and « = a,, is the unique non-critical root of X? — a,X. Moreover £(p) = 0 and it can be shown that
la,| = pT [O], [Li]. The restriction of Wy on the decomposition group at p is potentially crystalline
and Dg,is(Wy) is a one-dimensional vector space on which ¢ acts as multiplication by a,. The factor
Ea(fymw™, j) vanishes if and only if k is odd, j = m = % and a, = 7(p)p **. The p-adic L-function

k+1 k 1
2

Lo p(f, nw s, s) has a trivial zero at the near-central point s = if and only if a, = n(p)p

If n is a Dirichlet character of conductor M, the twisted modular form f, = Z n(n) a,q™ is not

necessarily primitive, but there exists a unique normalized newform f ® n such that

L(fn,s) = L(f@n,s) [[E(f @n,17%)

1M

(see for example [AL]). Write L(f ® n,s) = > a;—’sn. If pt M, the Euler factors at p of Ly (f ®n,s)
n=1

and L(f,n,s) coincide and «,, = an(p) is a root of X? — a, ,X + e(p)n?(p)p*~1. It is easy to see that
Ea, (fr,w™,§) = Ea(f,mw™, j) and from the interpolation formula (28) it follows immediately that the
behavior of L o(f,nw™,s) and L, o, (f ® n,w™,s) is essentially the same. Therefore the general case
reduces to the case of the trivial character 7.

4.2. Selmer groups and /-invariants of modular forms.
4.2.1. The Selmer group. From now until the end of this § we assume that L, ,(f,w*,s) has a

trivial zero at ko. Thus kg = k/2 in the semistable case and kg = k—ﬂ in the crystalline or potentially

crystalline case. Set Vy = Wy (ko). Let f* denote the complex conjugation of f ie. f* = Z an,q". The

canonical pairing Wy x Wy- — L(1 — k) induces an isomorphism Wy (k — ko) =~ V(1). We need the
following basic results about the Galois cohomology of V:

i) H°(Qp, Vy) = H°(Q,, Vf*(l)) =0 and dimy, H'(Qy, V) = dimy H(Q,, Vf*(l)) =2

ii) Hf(Qp, Vy) and H(Qp, V{(1)) are one-dimensional L-vector spaces.

iii) HH(Q,Vy) = H}(Q, V(1)) = 0.

We remark that using the fact that the Hodge-Tate weights of Wy are 0 and £ —1 and the eigenvalues
of ¢ on Dgis(Wy) have absolute value plk—1)/2 (respectively ph/ 2) in the crystalline and potentially
crystalline case (respectively in the semistable case) one deduce that H%(Q,, W¢(m)) = 0 for all 1 <
m < k — 1 (see [Ka2, Proposition 14.12 and Section 13.3]). Applying Poincaré duality and the Euler
characteristic formula we obtain i). Next ii) follows from i) together with the formula

dimj, H}(@p, Vi) = dimy ty, (L) + dimg, H°(Q,, Vy).

Finally iii) is a deep result of Kato [Ka2, Theorem 14.2]. Note that in the semistable case we assume
that L(f,k/2) # 0.

From i-iii) above it follows that V; satisfies the conditions 1-3) of Section 2.2.1. Assume that
ko > &L, This holds automatically in the semistable (ko = k/2) and potentially crystalline (kg = £41)
cases. In the crystalline case a* = e~!(p)a is a root of 1 —a, X +&~*(p)p* "1 X? and using the functional
equation for p-adic L-functions one can reduce the study of L, »(f, wko s) at s = % to the study of

Lp o (f*,whot s) at s = EHL



28

Lemma 4.2.2. Assume that L, .(f,w*0,s) has a trivial zero on the right of the central point (i.e.

ko > k/2). Then D, = Dcris(Vf)*D:’f1 is a one dimentional L-vector space which satisfies one of the
conditions a-b) of Proposition 2.1.2.

Proof. From 4.1.2 it follows that ap=%° = p~! is an eigenvalue of ¢ acting on Devis(Vy). Thus dimpg, Dy >
1. If dimy, D, = 2 then V; would be crystalline and ¢ would act on Dgyis(Vy) as multiplication by
p~'. This contadicts the weak admissibility of Dis(Vy). Finally D,, satisfies a) in the crystalline and
potentially crystalline cases and b) in the semistable case.

4.2.3. The /-invariant of modular forms. From Lemma 4.2.2 it follows that if L, ,(f,w", s) has
a trivial zero at ko > k/2 the (-invariant £(Vy, D) is well defined. To simplify notation we will denote
it by £, (f). The general definition of the ¢-invariant can be made more explicit in the case of modular
forms.

o The semistable case. Let {e,,eg} denote the basis of Dy (W) as in 4.1.3. In [Ben2, Proposition
2.3.7] it is proved that

(30) ta(f) = Zrm(f)

where v (f) is the Fontaine-Mazur invariant [Mr] which is defined as the unique element of L such
that
es + Lru(f) ea € Fil* "Dy (Wy).

e The crystalline and potentially crystalline cases. The (¢, T)-module D! (V)N (Do @1, ZL[1/1]) is

rig
isomorphic to Zp(0) with 6(x) = |x|x% and the exact sequence (11) writes

0 — #1(5) — DI

rig

(Vi) = Z1(8") =0

for some character &' : Q5 — L*. Since dimy H'(#L(6)) = 2 we have H'(Q,,Vy) ~ H'(ZL(9)).
Therefore Hy, (V) = H}{p} (Q,Vy) and Z,(f) = Z(Vy, D,) is the slope of the image of the localization
map H}’{p}(Q, Vi) — H'(Qp, Vy) under the canonical decomposition (6)

H'(Qp, Vy) = Hy(#1(5)) x Ho (%1(5)).
The formula (19) writes

(31) ga(f) = _Za(f)'

4.3. The main result.

4.3.1. Kato’s Euler systems. Using the theory of modular units Kato [Ka2] constructed an element
ZKato € Hllw’ 5(Wy+) which is closely related to the complex and the p-adic L-functions via the Bloch-
Kato exponential map. The CM-case was considered before by Rubin [Ru]. Set

ZKato(J) = TW;(ZKatO) € Hllw,S(Wf* (7))

and denote by Zkato(j)y = Pro(zkato(j)) the projection of zkato(j) on H&(Wp«(4)). The following state-
ments are direct analogues of properties 1-2) of cyclotomic units from Section 3.3.1:
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1) Relation to the complex L-function. One has
(82)  expiy,. ) (mao(io) = Dk — ) By (£,0"7) T(fk—)w),  1<j<k—1
for some canonical basis w} of Fil®Des(W(4)) [Ka2, Theorem 12.5]. Note that w¥,; = wj ® e; where

—1
e1 =€ " ®t.
2) Relation to the p-adic L-function. Fix a generator d, of D,. Let S(Mo,‘if(k) , denote the large

logarithmic map Sg,f,l (k)1 associated to n = d, ® eep1 € De.is(Wy). Then

(33) 840 (oK) = Mg [do @ enga i

[Ka2, Theorem 16.2].
We can now prove the main result of this paper.

Theorem 4.3.2. Let f be a newform on I'o(N) of character ¢ and weight k and let p be an odd prime.
Assume that the p-adic L-function L, o (f,wko, s) has a trivial zero at s = ko > k/2. Then

Ly (100) = 60l (1= 2 E (7,00

Proof. To simplify notation set z = Zkato (kK — ko). By Lemma 1.3.4 one has
(@),e (@)e
S 1k, (2) = Twig (wa* (W(zKato(k))) .
Let p, be the distribution defined by M(p,) = £§,'})(’i)71_k0 (z). Then (33) gives
M) = Twg, (M()‘f,a)) [do ® ekova]Wf = Twy, (M()‘f,a)) [daawlzo—l]vf
and from (8) and (27) it follows that

Lp(,um 5) = Lp,a (fa Wk07 5+ k()) [da?w;:o*l] Vi

Now, applying Proposition 2.2.4 we obtain

(34) L;,a (f, wk‘o,kO) [daawko—l]vf = fa(f) r (k‘o) <1 - 5) [dmeXPv;u)(Zo)] Vf'
On the other hand, for j = k — ko the formula (32) gives
(35) exp(1)(20) = T (ko) ™" By (£,9") L(f, ko) wi, 1.

1
Since E, (f,pkO) = <1 — 5) <1 — %) and [da,w,’go_l]vf # 0, from (34) and (35) we obtain that

L o (f, 0’ ko) = Ca(f) <1 — %) L(f, ko)



30

and the Theorem is proved.

Corollaries 4.3.3. 1) In the semistable case k is even and £(p) = 0. Theorem 4.3.2 together with (30)
give the Mazur-Tate-Teitelbaum conjecture

L, o (f2,k/2) = Zoni(£) D (f,5/2)

and our proof can be seen as a revisiting of Kato-Kurihara-Tsuji approach using the theory of (¢,T’)-
modules.
2) In the crystalline and potentially crystalline cases Theorem 4.3.2 writes

Lo (10 ) 2 (1- ) 2 (1 51)

(see (31)).
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