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HURWITZ-TYPE BOUND, KNOT SURGERY, AND SMOOTH

S1-FOUR-MANIFOLDS

WEIMIN CHEN

Abstract. In this paper we prove several related results concerning smooth Zp

or S1 actions on 4-manifolds. We show that there exists an infinite sequence of
smooth 4-manifolds Xn, n ≥ 2, which have the same integral homology and inter-
section form and the same Seiberg-Witten invariant, such that each Xn supports no
smooth S1-actions but admits a smooth Zn-action. In order to construct such man-
ifolds, we devise a method for annihilating smooth S1-actions on 4-manifolds using
Fintushel-Stern knot surgery, and apply it to the Kodaira-Thurston manifold in an
equivariant setting. Finally, the method for annihilating smooth S1-actions relies
on a new obstruction we derived in this paper for existence of smooth S1-actions
on a 4-manifold: the fundamental group of a smooth S1-four-manifold with nonzero
Seiberg-Witten invariant must have infinite center. We also include a discussion on
various analogous or related results in the literature, including locally linear actions
or smooth actions in dimensions other than four.

1. Introduction

In this paper we discuss several related problems concerning existence or non-
existence of smooth Zp or S1 actions on a 4-manifold (all group actions are assumed
to be effective).

Problem 1: Construct smooth 4-manifolds with bounded topology, which support no
smooth S1-actions but admit smooth Zp-actions for arbitrarily large prime p.

This problem was motivated by the Hurwitz-type theorems concerning bound of
automorphisms of smooth projective varieties of general type (cf. [34, 17]). In [6]
the author initiated an investigation on an analogous question concerning bound of
periodic diffeomorphisms of 4-manifolds. Namely:

Suppose a smooth 4-manifold X supports no smooth S1-actions, is there a C > 0
such that there are no smooth Zp-actions on X for any prime p > C?

We shall call such a constant C a Hurwitz-type bound of X for smooth Zp-actions.
An interesting discovery in [6] was that Hurwitz-type bound for smooth actions of
a 4-manifold no longer depends on the topology (e.g. homology) alone, but also on
the smooth structure of the manifold. More concretely, a Hurwitz-type bound was
established in [6] for holomorphic Zp-actions which depends only on the homology:

p ≤ C = c(1 + b1 + b2 + |TorH2|)
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where bi is the i-th Betti number, TorH2 is the torsion subgroup of the second ho-
mology, and c > 0 is a universal constant. However, for smooth, even symplectic,
Zp-actions, the order p is no longer bounded by the homology alone. In fact, we
showed in [6] that for every prime number p ≥ 5, there is a smooth 4-manifold Xp

homeomorphic to the rational elliptic surface CP2#9CP2, such that Xp supports no
smooth S1-actions but admits a smooth Zp-action, which even preserves a symplectic
structure on Xp. Moreover, regarding symplectic Zp-actions, a Hurwitz-type bound
was established in [6] which involves the Betti numbers and the canonical class of the
manifold. Note that the latter, being a Seiberg-Witten basic class, is an invariant of
the smooth structure. It is a natural question as whether such a Hurwitz-type bound
exists for smooth Zp-actions (cf. [5, 6]). The following theorem provides a negative
answer to this question.

Theorem 1.1. There exist smooth 4-manifolds Xn, n ≥ 2, which have the same
integral homology, intersection form, and Seiberg-Witten invariant, such that each Xn

supports no smooth S1-actions but admits a smooth Zn-action. Moreover, the Seiberg-
Witten invariant of Xn is nonzero.

Remarks (1) An analogous question in the locally linear category was considered by
Kwasik in [23] where it was shown that the fake CP2 admits a locally linear Zp-action
for every odd p but supports no locally linear Z2-actions; in particular, it supports
no locally linear S1-actions. Edmonds [9] extended the construction to all simply-
connected 4-manifolds, among which those with even intersection form and nonzero
signature do not admit any locally linear S1-actions by work of Fintushel [10]. So no
Hurwitz-type bound exists for locally linear actions in dimension four.

(2) In higher dimensions, there are examples of manifolds which support no smooth
S1-actions but admits smooth Zp-actions for infinitely many primes p. Indeed, Assadi
and Burghelea showed in [1] that for any exotic n-sphere Σn, the connected sum
with the n-torus, Σn#T n, does not support any smooth S1-actions. Since the group
of homotopy n-spheres is of finite order, it follows easily that, by taking connected
sum equivariantly with respect to some natural Zp-action on T n, one obtains such
examples.

(3) In dimension three, a similar question was asked by Giffen and Thurston [18]
as whether, for a closed 3-manifold M , the order of finite subgroups of Diff M is
bounded so that it contains no infinite torsion subgroups, unless M admits an S1-
action. Kojima [19] answered this question affirmatively, modulo the Geometrization
Conjecture of Thurston which is now resolved [4, 29]. A key point was the work of
Freedman and Yau on homotopically trivial symmetries of Haken manifolds [16].

The 4-manifolds Xn in Theorem 1.1 were obtained by performing Fintushel-Stern
knot surgery [14] on the Kodaira-Thurston manifoldX, which is a smooth T 2-manifold.
The idea is to kill all the smooth S1-actions on X while allowing a finite symmetry
to survive by performing the knot surgery equivariantly with respect to some natural
Zn-action on X. Suppressing the equivariant aspect of this construction, one may
consider more generally the following problem.
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Problem 2: For any given smooth S1-four-manifold X, perform surgeries on X so
that the surgery manifold does not support any smooth S1-actions while retain the
topological or smooth invariants of X as much as possible.

In this regard, we have the following theorem.

Theorem 1.2. Let X be a smooth S1-four-manifold with b+2 > 1 and nonzero Seiberg-
Witten invariant, such that H2(X;Z) has no 2-torsions. Then there exists a Fintushel-
Stern knot surgery manifold of X which retains the integral homology, intersection
form, and Seiberg-Witten invariant, but admits no smooth S1-actions.

Here we call a 4-manifold a Fintushel-Stern knot surgery manifold of X if it is
obtained by a finite series of knot surgeries starting from X.

Remarks (1) By work of Pao [28], Fintushel [11], and independently Yoshida [35]
(modulo the 3-dimensional Poincaré conjecture which is now resolved by work of
Perelman [29]), a simply-connected, smooth S1-four-manifold has standard smooth
structure, i.e., it is diffeomorphic to a connected sum of S4, ±CP2, or S2 × S2. With
this understood, any surgery which changes the smooth structure of such a manifold
will kill all the smooth S1-actions but retain the homeomorphism type of the manifold.
However, such a procedure will change the Seiberg-Witten invariant in general.

(2) Kotschick in [20] constructed examples of pairs of smooth, homeomorphic but
non-diffeomorphic 4-manifolds, where one admits a smooth S1-action and the other
does not support any smooth S1-actions. Kotschick’s examples are homeomorphic to
k(S2×S2)#(k+1)(S1×S3) and all have vanishing Seiberg-Witten invariant. The non-
existence of smooth S1-actions was based on the existence of monopole classes c with
c2 > 0, which is a smooth invariant finer than Seiberg-Witten basic class. (Kotschick
only showed non-existence of fixed-point free actions in [20]; to rule out actions with
fixed-points, one appeals to Theorem 2.1 of Baldridge [3], cf. Kotschick [22].)

(3) Freedman and Meeks [15] derived a certain obstruction for existence of smooth
S1-actions in terms of certain properties of the de Rham cohomology. For instance,
their obstruction implies that for any smooth n-manifold Mn which is not a homotopy
n-sphere, the connected sum Mn#T n does not admit any smooth S1-actions.

The construction in Theorem 1.2 relies on a new obstruction for existence of smooth
S1-actions on a 4-manifold, which is stated below.

Theorem 1.3. Let X be a smooth S1-four-manifold with b+2 > 1 and nonzero Seiberg-
Witten invariant. Then the homotopy class of the principal orbits of any smooth
S1-action on X must have infinite order. In particular, the center of π1(X) is infinite.

Remarks (1) In fact, the statement in Theorem 1.3 concerning the homotopy class
of principal orbits holds true more generally for locally linear actions. Namely: for a
smooth S1-four-manifold X with b+2 > 1 and nonzero Seiberg-Witten invariant, the
homotopy class of the principal orbits of any locally linear S1-action on X must have
infinite order. This generalization is the consequence of two separate results. The first
one, which asserts that every locally linear S1-action on X must be fixed-point free, is
proved in this paper (cf. Theorem 2.6). The second one is Theorem 1.6 in [8] which
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states that if the π1 of an orientable 4-manifold has infinite center and the 4-manifold
is not homeomorphic to the mapping torus of some periodic diffeomorphism of an
elliptic 3-manifold, the homotopy class of the principal orbits of any locally linear,
fixed-point free S1-action must have infinite order.

(2) A special case of Theorem 1.3, where X is symplectic and the S1-action is free,
was due to Kotschick [21]. On the other hand, Theorem 1.3 is a strengthening of a
result of Baldridge (cf. [3], Theorem 1.1), which states that if a 4-manifold with b+2 > 1
admits a smooth S1-action having at least one fixed point, then the Seiberg-Witten
invariant vanishes for all Spinc-structures.

In view of the examples in Theorem 1.1, it remains to see whether or not the answer
to the following question would turn out to be affirmative (we formulate it here as a
problem):

Problem 3 (Question 4.4 in [5], Question 1.5(4) in [6]):

Let X be a simply connected smoothable 4-manifold with even intersection form
and non-zero signature. Prove that there exist a constant C > 0 depending only on
the homeomorphism type of X, such that for any prime number p > C, there are no
Zp-actions on X which are smooth with respect to some smooth structure on X.

The organization of the rest of the paper is as follows. In Section 2, we consider 4-
manifolds with nonzero Seiberg-Witten invariant which admits a smooth, fixed-point
free S1-action, and we show that the homotopy class of the principal orbits of the
S1-action must have infinite order (here we are allowing more generally b+2 ≥ 1, cf.
Theorem 2.1). Theorem 1.3 follows immediately from this result and the main result in
Baldridge [3]. The main technical ingredients involved in the proof in this section are
Baldridge’s work [2] on the Seiberg-Witten invariants of 4-manifolds with a smooth
fixed-point free S1-action, a de-singularization formula relating the Seiberg-Witten
invariant of a 3-orbifold with that of the underlying 3-manifold [7], and the recent
work of Boileau, Leeb and Porti [4] on the geometrization of 3-orbifolds. Section 3
is devoted to a knot surgery construction that kills all the smooth S1-actions on a
given 4-manifold. This naturally leads to a proof for Theorem 1.2, and an equivariant
version of it gives a proof for Theorem 1.1.

This paper supersedes arXiv:1103.5681v3 [math.GT], “Seifert fibered four-manifolds
with nonzero Seiberg-Witten invariant”.

2. New constraints of smooth S1-four-manifolds

Recall that for an oriented 4-manifold M with b+2 > 1, the Seiberg-Witten invariant
of M is a map SWM that assigns to each Spinc-structure L of M an integer SWM (L)
which depends only on the diffeomorphism class of M (cf. [27]). In the case of
b+2 = 1, the definition of SWM (L) requires an additional choice of orientation of the 1-
dimensional space H2,+(M,R), as discussed in Taubes [32]. A convention throughout
this paper is that when we say M has nonzero Seiberg-Witten invariant in the case
of b+2 = 1, it is meant that the map SWM has nonzero image in Z for some choice

http://arxiv.org/abs/1103.5681
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of orientation of H2,+(M,R). Note that under this convention, every symplectic 4-
manifold has nonzero Seiberg-Witten invariant by the work of Taubes [31].

The bulk of this section is devoted to proving the following theorem, which, with
Theorem 1.1 in Baldridge [3], gives Theorem 1.3 immediately.

Theorem 2.1. Let X be a 4-manifold with b+2 ≥ 1 and nonzero Seiberg-Witten in-
variant. Then the homotopy class of the principal orbits of any smooth, fixed-point
free S1-action on X must have infinite order.

Let X be an oriented 4-manifold equipped with a smooth, fixed-point free S1-action.
The orbit map of the S1-action, π : X → Y , defines a Seifert-type S1-fibration of the
4-manifold, giving the orbit space Y a structure of a closed, oriented 3-dimensional
orbifold whose singular set consists of a disjoint union of embedded circles, called
singular circles. (Equivalently, the 4-manifold is the total space of a principal S1-
bundle over the 3-orbifold.)

The first technical ingredient in the proof of Theorem 2.1 is the work of Baldridge
[2], which relates the Seiberg-Witten invariant of the S1-four-manifold with the base
3-orbifold. More concretely, we will need the following lemma.

Lemma 2.2. Suppose X has nonzero Seiberg-Witten invariant. Let π : X → Y be
the orbit map of a smooth, fixed-point free S1-action on X. Then the 3-orbifold Y has
nonzero Seiberg-Witten invariant provided that b1(Y ) > 1.

Proof. Let L be a Spinc-structure such that SWX(L) 6= 0. Consider first the case
where b+2 (X) > 1. In this case, by Theorem C in Baldridge [2], L = π∗L0 for some
Spinc-structure L0 on Y , and moreover

SWX(L) =
∑

L′≡L0 mod χ

SWY (L
′),

where χ stands for the Euler class of π. It follows readily that Y has nonzero Seierg-
Witten invariant in this case.

When b+2 (X) = 1 and b1(Y ) > 1, the above formula continues to hold (cf. [2],
Corollary 25) as long as L = π∗L0. Thus it remains to show that L = π∗L0 for some
Spinc-structure L0 on Y .

In order to see this, we observe first that H2(X;Z)/Tor has rank 2, and any torsion
element of H2(X;Z) is the c1 of the pull-back of an orbifold complex line bundle
on Y . Moreover, there exists an embedded loop γ lying in the complement of the
singular set of Y , such that an element of H2(X;Z) is the c1 of the pull-back of an
orbifold complex line bundle on Y if and only if it is a multiple of the Poincaré dual
of the 2-torus T ≡ π−1(γ) ⊂ X in H2(X;Z)/Tor, see Baldridge [2], Theorem 9. With
this understood, L = π∗L0 for some Spinc-structure L0 on Y if and only if c1(L) is
Poincaré dual to a multiple of T over Q.

We shall prove this using the product formula of Seiberg-Witten invariants in Taubes
[32]. To this end, we let N be the boundary of a regular neighborhood of T in X.
Then N is a 3-torus, essential in the sense of [32], which splits X into two pieces X+,
X−. With this understood, Theorem 2.7 of [32] asserts that SWX(L) can be expressed
as a sum of products of the Seiberg-Witten invariants of X+ and X−. In particular,
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c1(L) is expressed as a sum of x, y, where x, y are in the images of H2(X+, N ;Z) and
H2(X−, N ;Z) in H2(X;Z) respectively. It is easily seen that mod torsion elements
both are generated by the Poincaré dual of T . Hence the claim L = π∗L0.

�

The second technical ingredient is a formula in [7], which relates the Seiberg-Witten
invariant of a 3-orbifold with that of its underlying 3-manifold. More precisely, let Y
be a closed, oriented 3-orbifold with b1(Y ) > 1, whose singular set consists of a disjoint
union of embedded circles. Consider any singular circle γ, with multiplicity α > 1,
and let Y0 be the 3-orbifold obtained from Y by changing the multiplicity of γ to 1.
The following theorem from [7] relates the Seiberg-Witten invariants of Y and Y0.

Theorem 2.3. (De-singularization Formula, [7]) Let SY , SY0
denote the set of Spinc-

structures on Y, Y0 respectively. There exists a canonical map φ : SY → SY0
, which is

surjective and α to 1, such that the Seiberg-Witten invariants of Y and Y0 obey the
following equations

SWY (ξ) = SWY0
(φ(ξ)), ∀ξ ∈ SY .

Since the singular circles in Y are of co-dimension two, the underlying space |Y |
is naturally a 3-manifold, which can be obtained from Y by finitely many successive
applications of the above procedure. In particular, above theorem implies that if the
underlying 3-manifold |Y | has zero Seiberg-Witten invariant, e.g., |Y | contains a non-
separating 2-sphere, then so does the 3-orbifold Y . Combined with Lemma 2.2, the
following corollary follows easily.

Corollary 2.4. Let π : X → Y be a Seifert-type S1-fibration where b1(Y ) > 1. If the
underlying 3-manifold |Y | contains a non-separating 2-sphere, then X has vanishing
Seiberg-Witten invariant.

Recall that a 3-orbifold is called pseudo-good if it contains no bad 2-suborbifold.
Our third technical ingredient is the recent resolution of Thurston’s Geometrization
Conjecture for 3-orbifolds due to Boileau, Leeb and Porti [4]. In particular, when
combined with a result of McCullough and Miller [24], their theorem implies that
every pseudo-good 3-orbifold admits a finite, regular manifold cover. The following
lemma shows that the 3-orbifolds arising in the present context are pseudo-good.

Lemma 2.5. Let X be a 4-manifold with b+2 ≥ 1 which admits a smooth, fixed-point
free S1-action, and let π : X → Y be the corresponding Seifert-type S1-fibration. Then
Y is pseudo-good if either the Euler class of π is torsion, or X has nonzero Seiberg-
Witten invariant.

Proof. We shall show that if Y has a bad 2-suborbifold Σ, then the Euler class of π
must be non-torsion and X has vanishing Seiberg-Witten invariant. By definition, Σ
is an embedded 2-sphere in the underlying 3-manifold |Y |, such that either Σ con-
tains exactly one singular point of Y or Σ contains two singular points of different
multiplicities. For simplicity, we let p1, p2 be the singular points on Σ, with p1, p2
contained in the singular circles γ1, γ2 of multiplicities α1, α2 respectively. We assume
that α1 < α2, with α1 = 1 representing the case where Σ contains only one singular
point p2. Note that since α1 6= α2, γ1, γ2 are distinct.
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We first show that the Euler class of π must be non-torsion. Let e(π) denote the
image of the Euler class of π in H2(|Y |;Q). Then

∫
|Σ|

e(π) = b+ β1/α1 + β2/α2,

where b ∈ Z, 1 ≤ β1 < α1 or α1 = β1 = 1, and 1 ≤ β2 < α2 with gcd (α2, β2) = 1. It
follows from the fact that α1 < α2 and α2, β2 are co-prime that

∫
|Σ| e(π) 6= 0. Hence

the Euler class of π is non-torsion.
Now note that b1(Y ) = b+2 +1 > 1 since the Euler class of π is non-torsion (cf. [2]).

On the other hand, clearly |Σ| is a non-separating 2-sphere in |Y |. By Corollary 2.4,
X has vanishing Seiberg-Witten invariant.

�

Proof of Theorem 2.1

We first introduce some notations. Let π : X → Y be the Seifert-type S1-fibration
associated to the smooth fixed-point free S1-action on X. Let y0 ∈ Y be a regular
point and F be the fiber of π over y0, and fix a point x0 ∈ F . Denote by i : F →֒ X
the inclusion. We shall prove that i∗ : π1(F, x0) → π1(X,x0) is injective.

By Lemma 2.5, Y is pseudo-good. As a corollary of the resolution of Thurston’s
Geometrization Conjecture for 3-orbifolds (cf. [4, 24]), Y is very good, i.e, there is a

3-manifold Ỹ with a finite group action G such that Y = Ỹ /G. Let pr : Ỹ → Y be the

quotient map, and let X̃ be the 4-manifold which is the total space of the pull-back
circle bundle of π : X → Y via pr. Then X̃ has a natural free G-action such that
X = X̃/G. We fix a point ỹ0 ∈ Ỹ in the pre-image of y0, and let F̃ ⊂ X̃ be the

fiber over ỹ0. We fix a x̃0 ∈ F̃ which is sent to x0 under X̃ → X. Then consider the
following commutative diagram

→ π2(Ỹ , ỹ0)
δ̃
→ π1(F̃ , x̃0)

ĩ∗→ π1(X̃, x̃0)
π̃∗→ π1(Ỹ , ỹ0) →

↓ ‖ ↓ ↓

→ πorb
2 (Y, y0)

δ
→ π1(F, x0)

i∗→ π1(X,x0)
π∗→ πorb

1 (Y, y0) → .

Since π1(X̃, x̃0) → π1(X,x0) is injective, it follows that i∗ is injective if δ̃ has zero
image.

With the preceding understood, by the Equivariant Sphere Theorem of Meeks and
Yau (cf. [26], p. 480), there are disjoint, embedded 2-spheres Σ̃i in Ỹ such that the

union of Σ̃i is invariant under the G-action and the classes of Σ̃i generate π2(Ỹ ) as a

π1(Ỹ )-module. Suppose the image of δ̃ is non-zero. Then there is a Σ̃ ∈ {Σ̃i} which

is not in the kernel of δ̃. It follows that the Euler class of π̃ : X̃ → Ỹ is nonzero on Σ̃,
and consequently, Σ̃ is a non-separating 2-sphere in Ỹ . It also follows that the Euler
class of π is non-torsion, and in this case, we have b1(Y ) = b+2 + 1 > 1.

We first consider the case where there are no elements of G which leaves the 2-
sphere Σ̃ invariant. In this case the image of Σ̃ in Y under the quotient Ỹ → Y
is an embedded non-separating 2-sphere which contains no singular points of Y . By
Corollary 2.4, X has vanishing Seiberg-Witten invariant, a contradiction.



8 WEIMIN CHEN

Now suppose that there are nontrivial elements of G which leave Σ̃ invariant. We
denote by G0 the maximal subgroup of G which leaves Σ̃ invariant. We shall first argue
that the action of G0 on Σ̃ is orientation-preserving. Suppose not, and let τ ∈ G0 be
an involution which acts on Σ̃ reversing the orientation. Then since τ preserves the
Euler class of π̃ and reverses the orientation of Σ̃, the Euler class of π̃ evaluates to 0
on Σ̃, which is a contradiction. Hence the action of G0 on Σ̃ is orientation-preserving.

Let Σ be the image of Σ̃ in Y . Then Σ is a non-separating, spherical 2-suborbifold
of Y . Consequently |Y | contains a non-separating 2-sphere, which, by Corollary 2.4,
implies that X has vanishing Seiberg-Witten invariant, a contradiction.

This completes the proof of Theorem 2.1.

We end this section with a theorem concerning locally linear S1-actions on X (when
b+2 > 1). The result, when combined with Theorem 1.6 in [8], implies the generalization
of Theorem 1.3 we mentioned in the Introduction.

Theorem 2.6. Let X be a smooth S1-four-manifold with b+2 > 1 and nonzero Seiberg-
Witten invariant. Then every locally linear S1-action on X is fixed-point free.

Proof. The proof is based on a generalized version of Theorem 2.1 in Baldridge [3],
which states that if a 4-manifold with b+2 > 0 admits a smooth S1-action with at
least one fixed point, then the manifold contains an essential embedded 2-sphere of
non-negative self-intersection. Although Baldridge worked in the smooth category, his
arguments remain valid in the locally linear category. In particular, if the Hurwitz
map π2 → H2 is finite, then every locally linear S1-action is fixed-point free.

With the preceding understood, we claim that there exist embedded 2-spheres
C1, · · · , CN of self-intersection 0 which generate the image of π2(X) → H2(X). As-
sume the claim momentarily. Then since X has b+2 > 1 and nonzero Seiberg-Witten
invariant, a theorem of Fintushel and Stern (cf. [13]) asserts that each Ci must be
torsion in H2(X), from which Theorem 2.6 follows.

To see the existence of C1, · · · , CN , we shall continue with the set-up and the
notations introduced in the proof of Theorem 2.1. With this understood, note that
the restriction of π̃ over each Σ̃i must be trivial from the proof of Theorem 2.1. We
claim that there are sections Σi of π̃ over Σ̃i or a push-off of it, such that no nontrivial
element of G will leave Σi invariant. The image of such a Σi under X̃ → X is an
embedded 2-sphere of self-intersection 0, which will be our Ci. Since π̃∗ : π2(X̃) →

π2(Ỹ ) is isomorphic and π2(X̃) = π2(X), the 2-spheres Ci generate the image of
π2(X) → H2(X).

To construct these Σi’s, note that there are three possibilities: (i) no nontrivial
element of G leaves Σi invariant, (ii) there is a nontrivial g ∈ G (and no other elements)
which acts on Σi preserving the orientation, and (iii) there is an involution τ ∈ G (and
no other elements) which acts on Σi reversing the orientation. The existence of Σi is
trivial in case (i). In case (ii), any section of π̃ will do because g acts as translations

on the fiber of π̃. In case (iii), we take Σi to be a section of π̃ over a push-off of Σ̃i.
This shows the existence of Σi’s, and the proof of Theorem 2.6 is completed.

�
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3. Killing smooth S1-actions and Hurwitz-type bound

We begin by reviewing the knot surgery and the knot surgery formula for Seiberg-
Witten invariants, following Fintushel-Stern [14]. To this end, let M be a smooth
4-manifold with b+2 > 1, which possesses an essential embedded torus T of self-
intersection 0. Given any knot K ⊂ S3, the knot surgery of M along T with knot K
is a smooth 4-manifold MK constructed as follows:

MK ≡ M \Nd(T ) ∪φ (S3 \Nd(K))× S1.

We remark that in the above definition of MK the diffeomorphism φ is required to
send the meridian of T to the longitude of K. As noted in [14], the choice of φ (up
to isotopy) is not unique, so that MK may not be uniquely determined in general.
It follows easily from the Mayer-Vietoris sequence that the integral homology of MK

is naturally identified with the integral homology of M , under which the intersection
pairings on M and MK agree. (In [14], it is assumed that M is simply connected,
T is c-embedded, and π1(M \ T ) is trivial. These assumptions are irrelevant to the
discussions here.)

An important aspect of knot surgery is that the Seiberg-Witten invariant of MK

can be computed from that of M and the Alexander polynomial of K, through the
so-called knot surgery formula. In order to state the formula, we let

SWM =
∑
z

(
∑

c1(L)=z

SWM (L))tz, z ∈ H2(M ;Z),

where tz ≡ exp(z) is a formal variable, regarded as an element of the group ring
ZH2(M ;Z).

Theorem 3.1. (Knot Surgery Formula [14]) With the integral homology of M and
MK naturally identified, one has

SWMK
= SWM ·∆K(t),

where t = exp(2[T ]). Here ∆K(t) is the Alexander polynomial of K, and [T ] stands
for the Poincaré dual of the 2-torus T .

Remarks: (1) The knot surgery formula was originally proved in [14] under the
assumption that T is c-embedded. However, the assumption of c-embeddedness of T
is not essential in the argument and it may be removed (cf. Fintushel [12]).

(2) We note that by Theorem 3.1, SWM 6= 0 implies SWMK
6= 0 for any knot

K, and SWMK
= SWM if the Alexander polynomial of K is trivial. Moreover, if

H2(M ;Z) has no 2-torsions, so does H2(MK ;Z), and in this case, M and MK have
the same Seiberg-Witten invariant provided that the Alexander polynomial of K is
trivial.

With the preceding understood, suppose we are given a fixed-point free, smooth
S1-four-manifold X with b+2 > 1. Let π : X → Y be the corresponding Seifert-type
S1-fibration. Furthermore, we assume that there is an embedded loop l ⊂ X satisfying
the following conditions:
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(i) π(l) is an embedded loop lying in the complement of the singular set of Y , and
l is a section of π over π(l),

(ii) no nontrivial powers of the homotopy class of l are contained in the center of
π1(X),

(iii) the 2-torus T ≡ π−1(π(l)) is non-torsion in H2(X).

Now for any nontrivial knot K ⊂ S3, we consider a knot surgery manifold

XK ≡ X \Nd(T ) ∪φ (S3 \Nd(K))× S1,

where the diffeomorphism φ satisfies two further constraints: (a) φ sends a fiber of π
to the meridian of K, and (b) φ sends a push-off of l (with respect to some framing)
to {pt} × S1.

With this understood, we have the following theorem.

Theorem 3.2. Suppose SWX 6= 0 and K is not a torus knot. Then XK does not
support any smooth S1-actions.

For a proof of Theorem 3.2, we introduce the following notations. Let Y1 ≡ Y \
Nd(π(l)) and X1 ≡ X \Nd(T ), where T is the 2-torus T = π−1(π(l)), such that X1

is the restriction of π to the 3-orbifold Y1. Note that the boundary ∂X1 is a 3-torus
T 3. We fix three embedded loops in ∂X1: m, a meridian of T , h, a fiber of π, and
l′, a push-off of l with respect to the framing used in the definition of XK . Note that
m,h, l′ all together generate π1(∂X1). Furthermore, we assume m, l′ are sections over
π(m), π(l′) respectively. Finally, recall that the underlying manifolds of Y1, Y are
denoted by |Y1|, |Y | respectively.

Lemma 3.3. The map i∗ : π1(∂X1) → π1(X1) induced by the inclusion is injective.

Proof. Suppose to the contrary that i∗ : π1(∂X1) → π1(X1) has a nontrivial kernel.
Then π1(∂Y1) → π1(|Y1|) must also have a nontrivial kernel. To see this, suppose
γ 6= 0 lies in the kernel of i∗. Then π∗(γ) lies in the kernel of π1(∂Y1) → πorb

1 (Y1).
On the other hand, if π∗(γ) = 0, then γ is a multiple of [h], which is zero in π1(X1)
by assumption. This contradicts to the fact that [h] has infinite order in π1(X) (cf.
Theorem 1.3). Hence π1(∂Y1) → πorb

1 (Y1) → π1(|Y1|) has a nontrivial kernel.
Now by the Loop Theorem, ∂Y1 is compressible in |Y1|. This means that there is

an embedded disc D ⊂ |Y1| such that (1) D ∩ ∂Y1 = ∂D, (2) ∂D is a homotopically
nontrivial simple closed loop in ∂Y1. We claim that ∂D must be a copy of the meridian
π(m) of π(l) in Y .

To see this, write [∂D] = s · [π(m)] + t · [π(l′)] in π1(∂Y1). If t 6= 0, then [π(l)] has
finite order in πorb

1 (Y ). This implies that a nontrivial power of [l] lies in the subgroup
generated by [h], which lies in the center of π1(X), a contradiction to (ii). Hence t = 0,
and s = 1 with [∂D] = [π(m)], so that ∂D is isotopic to π(m).

With the preceding understood, the median π(m) bounds an embedded disk D ⊂
|Y1|. It follows that there is a non-separating 2-sphere in |Y | intersecting with π(l)
in exactly one point. By Corollary 2.4, X has vanishing Seiberg-Witten invariant, a
contradiction to SWX 6= 0. Hence Lemma 3.3.

�
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Proof of Theorem 3.2

Since K is a nontrivial knot, π1(∂((S
3 \Nd(K))× S1)) → π1((S

3 \Nd(K))× S1) is
injective. With Lemma 3.3, this implies that π1(XK) is an amalgamated free product

π1(XK) = π1(X1) ∗π1(T 3) π1((S
3 \Nd(K))× S1),

where π1(T
3) = π1(∂X1) = π1(∂((S

3 \Nd(K)) × S1)).
Since K is not a torus knot, the knot group of K has trivial center (cf. [30]). This

implies that the center of π1((S
3 \Nd(K))×S1) is generated by the class of {pt}×S1.

On the other hand, by the construction of XK , {pt} × S1 is identified with l′, whose
class equals the class of l modulo the class of m. By condition (ii), no nontrivial
powers of the homotopy class of l is contained in the center of π1(X). Consequently,
π1(XK) has trivial center. Now SWX 6= 0 implies SWXK

6= 0; in particular, XK has
nonzero Seiberg-Witten invariant. By Theorem 1.3, XK does not support any smooth
S1-actions. This completes the proof of Theorem 3.2.

The remaining of this section is occupied by the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.2

Let X be a smooth S1-four-manifold with b+2 > 1 and nonzero Seiberg-Witten
invariant, such that H2(X;Z) has no 2-torsions. We note that (i) the S1-action is
fixed-point free, (ii) SWX 6= 0. Moreover, by Theorem 1.3, π1(X) has infinite center.
For simplicity, we denote the center of a group G by z(G).

Case (1): rank z(π1(X)) = 1. In this case, we shall apply Theorem 3.2 to X with
a nontrivial knot K whose Alexander polynomial is trivial. (Note that such a K can
not be a torus knot.) It suffices to show the existence of an embedded loop l ⊂ X
satisfying the conditions (i)-(iii).

To this end, let π : X → Y be the corresponding Seifert-type S1-fibration. If
the Euler class of π is non-torsion, then b1(Y ) = b+2 (X) + 1 > 2, and if the Euler
class is torsion, one has b1(Y ) = b+2 (X) > 1, see Baldridge [2], Theorem 9. With this
understood, it follows easily that there is an embedded loop γ lying in the complement
of the singular set of Y , such that the class of γ is not a multiple of the Poincaré dual
of the Euler class of π over Q. Let T = π−1(γ) ⊂ X and let l be any section of π
over γ. Then T is non-torsion (cf. Baldridge [2], Theorem 9) so that (iii) is satisfied.
Moreover, (i) is clearly true. Finally, (ii) follows from the fact that the homotopy class
of l is infinite order and the non-torsion part of the center z(π1(X)) is isomorphic to
Z containing the regular fiber class of π (cf. Theorem 1.3).

Case (2): rank z(π1(X)) > 1. In this case, we shall invoke the following smooth
classification proven in [8] (see Theorem 4.3 therein):

(a) If rank z(π1(X)) > 2, then X is diffeomorphic to the 4-torus T 4.
(b) If rank z(π1(X)) = 2 and π2(X) 6= 0, then X is diffeomorphic to T 2 × S2.
(c) If rank z(π1(X)) = 2 and π2(X) = 0, then X is diffeomorphic to S1 ×N3/G,

where N3 is an irreducible Seifert 3-manifold with infinite fundamental group,
and G is a finite cyclic group acting on S1×N3 preserving the product structure
and orientation on each factor, and the Seifert fibration on N3.
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Note that case (b) is irrelevant here because of the assumption b+2 > 1. Consider
case (c) where X = S1 × N3/G. As it is given, X admits a Seifert-type S1-fibration
π : X → Y whose Euler class is torsion, where Y = N3/G admits a Seifert fibration
pr : Y → B. With this understood, we note that b+2 (X) > 1 implies that b1(B) > 0. It
follows easily that there is an embedded loop γ ⊂ Y in the complement of the singular
set of Y , such that [γ] 6= 0 in H1(|Y |;Q) and γ is not homotopic to a regular fiber of
pr : Y → B. A section of π over γ, taken to be l, satisfies (i)-(iii), so that case (c)
follows by Theorem 3.2.

Finally, we consider case (a) where X = T 4. First, applying Theorem 3.2 with a
nontrivial knot K whose Alexander polynomial is trivial, we obtain a 4-manifold X ′

diffeomorphic to S1 × M where M is a homology T 3 such that z(π1(M)) = 0. In
particular, rank z(π1(X

′)) = 1. Applying Theorem 3.2 to X ′ as in Case (1), we obtain
a desired Fintushel-Stern knot surgery manifold of X. Hence Theorem 1.2.

Proof of Theorem 1.1

Consider the Kodaira-Thurston manifold X = S1 ×N3, where N3 = [0, 1]× T 2/ ∼
with (0, x, y) ∼ (1, x + y, y). The manifold X is naturally a T 2-bundle over T 2, with
x, y being coordinates on the fiber. Note further that the translations along the x-
direction define naturally a free smooth S1-action on X. The integral homology of X
is given as follows:

H1(X) = H3(X) = Z⊕ Z⊕ Z, and H2(X) = Z⊕ Z⊕ Z⊕ Z.

In particular, b+2 = 2 and H2(X;Z) has no 2-torsions. Finally, as a T 2-bundle over
T 2, X has a symplectic structure with c1(KX) = 0 (cf. Thurston [33]). By work of
Taubes [31], X has a unique Seiberg-Witten basic class c1(KX) = 0.

In order to construct the 4-manifolds Xn, n ≥ 2, we shall apply Theorem 3.2 to X in
an equivariant setting with some fixed nontrivial knot K whose Alexander polynomial
is trivial. More precisely, we consider the following embedded loop l in X which clearly
satisfies the conditions (i)-(iii) required in the construction: we pick any T 2-fiber in
X and take in that fiber an embedded loop parametrized by the y-coordinate. Notice
that in the present case the 2-torus T ≡ π−1(π(l)) is simply the T 2-fiber we picked.

Now note that the S1-factor in X defines a natural S1-action, so that for any integer
n ≥ 2 there is an induced free smooth Zn-action on X, which preserves the T 2-bundle
structure. With this understood, we let Xn be a 4-manifold resulted from a repeated
application of the construction in Theorem 3.2 which is equivariant with respect to
the free Zn-action. By the nature of definition, Xn admits a smooth Zn-action. To see
that Xn does not support any smooth S1-actions, we recall the fact that repeated knot
surgery along parallel copies is equivalent to a single knot surgery using the connected
sum of the knot (cf. Example 1.3 in [6]). Finally, it is clear that Xn has the same
integral homology and intersection form and the same (and nonzero) Seiberg-Witten
invariant of the Kodaira-Thurston manifold. Hence Theorem 1.1.
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