PARITY SHEAVES, MOMENT GRAPHS AND THE
p-SMOOTH LOCUS OF SCHUBERT VARIETIES

PETER FIEBIG AND GEORDIE WILLIAMSON

ABSTRACT. We show that, with coefficients in a field or complete
local principal ideal domain k, the Braden-MacPherson algorithm
computes the stalks of parity sheaves with coefficients in k. As
a consequence we deduce that the Braden-MacPherson algorithm
may be used to calculate the characters of tilting modules for alge-
braic groups and show that the p-smooth locus of a (Kac-Moody)
Schubert variety coincides with the rationally smooth locus, if the
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underlying Bruhat graph satisfies a GKM-condition.
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1. INTRODUCTION

In Lie theory, one of the most successful methods to calculate rep-
resentation theoretic data (such as character formulae, decomposition
numbers or Jordan—Hélder multiplicities) is to find a geometric or topo-
logical interpretation of the problem. In many examples one obtains
representation theoretic information from the stalks of intersection co-
homology complexes on an associated algebraic variety (for example
the flag variety, the nilpotent cone, or the group itself).

In the most successful applications of this approach (the Kazhdan-
Lusztig conjecture, canonical bases, character sheaves ...) the rep-
resentation theoretic objects under consideration are assumed to be
defined over a field of characteristic 0. In this case the decomposition
theorem often allows one to recursively calculate the stalks of inter-
section cohomology complexes, hence solving (or at least providing a
combinatorial algorithm to solve) the representation theoretic problem.

However, recently a number of authors have pointed out that geom-
etry also has something to say about modular representation theory
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(see [JMWO09b] for a survey). In this article we are motivated by the
following two examples of this phenomenon:

e For a ring k, the geometric Satake equivalence (cf. [MV07])
provides an equivalence of tensor categories between equivari-
ant perverse k-sheaves on the affine Grassmannian and rational
representations of the Langlands dual group scheme over k.

e In [Fie07b] and [Fie07a] a certain category of sheaves of k-vector
spaces on an affine flag variety was related to representations of
the k-Lie algebra associated to the Langlands dual root system.
Here k is assume to be a field whose characteristic is required
to be at least the associated Coxeter number. The relation is
then used to give a new proof of Lusztig’s conjecture on the
simple rational characters for reductive groups in almost all
characteristics.

In [JMWO09a] (motivated by ideas of Soergel [Soe00] together with a
desire to better understand such relationships) a new class of sheaves,
the “parity sheaves”, was introduced. These are certain constructible
sheaves on a stratified algebraic variety, which satisfy a parity vanish-
ing condition with respect to stalks and costalks. It was shown that,
under some additional assumptions, the indecomposable parity sheaves
are parametrized in the same way as the intersection cohomology com-
plexes. If the coefficients are of characteristic 0 the decomposition
theorem often implies that the indecomposable parity sheaves are iso-
morphic to intersection cohomology complexes (up to a shift).

In positive characteristics this needs no longer be true. However,
with coefficients of positive characteristic parity sheaves are often easier
to work with than intersection cohomology complexes. Moreover, for
some representation theoretic applications they may even form their
natural replacement. For example,

e the category considered in [Fie07b, Fie07a] turns out to be the
category of parity sheaves,

e under the geometric Satake equivalence (and under some mild
and explicit assumptions on the characteristic of k) the parity
sheaves correspond to tilting modules for the Langlands dual
group (cf. [JMWO0Ob]).

In the above results, fundamental representation theoretic data is en-
coded in the stalks of the indecomposable parity sheaves. It is therefore
an important problem to find an algorithm for their calculation.

For an appropriately stratified complex algebraic variety X with
torus action Braden and MacPherson [BMO01] describe an algorithm for
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calculating the stalks of intersection cohomology complexes with coeffi-
cients in a field of characteristic 0 (using localisation techniques in equi-
variant cohomology developed by Goresky, Kottwitz and MacPherson
[GKMO98]). The torus action has, by assumption, only finitely many
fixed points and one-dimensional orbits. The structure of the one-
skeleton of the torus action can be encoded in the “moment graph” of
the variety:

e the vertices and edges are given by the torus fixed points and
one-dimensional orbits respectively, with a one-dimensional or-
bit incident to those fixed points in its closure,

e cach edge is labelled by a character of the torus determining an
isomorphism of the orbit with C* (this is defined only up to a
sign).

Braden and MacPherson then describe an algorithm (using only com-
mutative algebra) to produce a “sheaf” on the moment graph, and
show that its stalks agree with those of the equivariant intersection co-
homology complex. Thus the (a priori extremely difficult) computation
of the stalks of the intersection cohomology complex may (in principle)
be carried out in an elementary way.

Now, the Braden-MacPherson algorithm makes sense with coeffi-
cients in an arbitrary field k, or even in a local ring. However, simple
examples show that it does not compute the stalks of intersection co-
homology complexes when the coefficients are not of characteristic 0.
The central result of this paper is the following:

Theorem 1.1. Suppose that the pair (X, k) satisfies the GKM-condition
(cf. Section 4.7). Then the Braden-MacPherson algorithm computes
the stalks of indecomposable parity sheaves.

In the theorem, k£ denotes a complete local principal ideal domain.
If k£ is a field, then the GKM-condition may be stated simply: one
requires that, for all pairs of one-dimensional orbits having a common
torus fixed point in their closure, the corresponding characters do not
become linearly dependent modulo k. This condition can easily be read
off the associated moment graph.

In the course of the proof of the above result we provide a version of
localisation theorem of [GKM98| with coefficients in a ring, i.e. we show
that the hypercohomologies of certain equivariant sheaves on X are
given by the global sections of associated moment graph sheaves (see
Theorem 4.4). For complete local rings we then show that the Braden—
MacPherson algorithm yields the objects associated to parity sheaves
(see Theorem 6.10). In contrast to the proof of Braden-MacPherson,
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our arguments are more elementary, as we do not need the theory
of mixed Hodge modules. As in characteristic 0 the decomposition
theorem implies that the parity sheaves are intersection cohomology
complexes up to a shift, we obtain a new proof of their result.

Applying the above theorem to the affine Grassmannian and using
the Satake equivalence, we obtain:

Theorem 1.2. Suppose that p > h + 1, where h denotes the Coxeter
number of our datum. On the moment graph of the affine Grassman-
nian and with coefficients in the ring of p-adic integers, the Braden—
MacPherson algorithm calculates the characters of tilting modules of
the Langlands dual group over F,.

The moment graph of the affine Grassmannian is GKM for a field k
if and only if £ is of characteristic 0. We avoid this complication by
using the p-adic integers in the above theorem.

We apply the multiplicity one result of [FielO] to obtain a descrip-
tion of the p-smooth locus of Schubert varieties. Recall that an n-
dimensional algebraic variety X is p-smooth if for all x € X one has
an isomorphism of graded vector spaces

H* (X, X\ {z},Fy) = H*(C",C"\ {0}, IF)).

The p-smooth locus of X is the largest open p-smooth subvariety. One
similarly defines rationally smooth, and the rationally smooth locus
by replacing F, by Q above. If X is rationally (resp. p-) smooth it
satisfies Poincaré duality with rational (resp. IF,-) coefficients. Here is
our result:

Theorem 1.3. Let G be the moment graph of a (Kac-Moody) Schubert
variety X and suppose that (G,F,) is a GKM-pair. Then the p-smooth
locus of X coincides with its rationally smooth locus.

In the finite dimensional case, the GKM-condition is always satisfied
if p # 2 and if, in addition, p # 3 in G3. This answers a (stronger
version of) a question of Soergel (cf. [Soe00]). In fact, we prove the
above theorem for a larger class of varieties with an appropriate torus
action for fields k that satisfy the GKM-condition.

The smooth and rationally smooth locus of Schubert varieties has
been the subject of much investigation by a number of authors. See for
example [Car94], [Kum96|, [Dye93], [Dye05] and [Ara9d8]. It a result
known as Peterson’s theorem that the smooth and rationally smooth
locus agree in simply-laced type, which immediately implies the above
theorem. However, there are examples in non-simply-laced types of
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small rank where the 2-smooth and 3-smooth locus do not agree with
the rationally smooth locus.

Lastly let us remark that results of this paper (in particular Section
8.5) are used in an essential way in the paper [JW], which shows that
that Kumar’s criterion for the rational smoothness of Schubert varieties
can be extended to provide a criterion for p-smoothness. In particular,
the main result of [JW] provides a means to determine the p-smooth
locus when the underlying moment graph is not GKM, complementing
Theorem 1.3. On may also use Theorem 1.3 together with the results
of [JW] to obtain a novel proof of Peterson’s theorem.

1.1. Acknowledgements. We would like to thank Daniel Juteau and
Olaf Schniirer for useful conversations and Michel Brion for useful cor-
respondence. P.F. gratefully acknowledges the support of the Landess-
tiftung Baden—Wiirttemberg as well as the DFG-Schwerpunkt 1388
‘Representation Theory”. Both authors gratefully acknowledge the
support of the Newton Institute in Cambridge, where parts of this
paper were written.

2. EQUIVARIANT SHEAVES

In this section we recall the construction of the bounded equivariant
derived category DZ(X, k) that is associated to a topological group
G, a ring of coefficients k and a G-space X. To a suitable continuous
G-equivariant map f: X — Y one associates the push-forward functors

f*vf!: Dg(X7 k) — Dg(yv k)
and the pull-back functors
f5f DAY, k) — DY(X, k)

satisfying a Grothendieck formalism. We then recall the equivariant
cohomology He,(F) of X with coefficients in F € D%(X, k) and, finally,
the Mayer—Vietoris sequence associated to an open G-stable covering
X=UUV.

We will be mainly concerned with the following situation: G will
either be a complex algebraic torus, i.e. G = (C*)" for some r > 0,
endowed with its metric topology, or its compact subtorus (S*)". The
space X will be a complex algebraic variety with an algebraic G-action,
and endowed with its metric topology. The main reference for the
following is [BL94].
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2.1. The equivariant derived category of a G-space. We fix a
topological group GG. A G-space is a topological space endowed with a
continuous G-action. There always exists a contractible G-space with
a topologically free G-action. We fix one of those and call it FG. For
any G-space X we can now define the quotient Xg := X x5 EG of
X x EG by the diagonal G-action. Then we have two maps

X x EG
/ \
X Xe.
The map ¢ on the right is the canonical quotient map and p is the
projection onto the first factor.

Now we fix a ring of coefficients k. For any topological space Y
we denote by D(Y, k) the derived category of sheaves of k-modules
on Y. By DYY,k) we denote the full subcategory of objects with
bounded cohomology. For a continuous map f: Y — Y’ we then have
the push-forward functor f.: D(Y,k) — D(Y’ k) and the pull-back
functor f*: D(Y', k) — D(Y, k) (see [Spa88]).

Definition 2.1. The equivariant derived category of sheaves on X
with coefficients in k is the full subcategory Da(X, k) of D(Xg, k) that
contains all sheaves F for which there is a sheaf Fx € D(X, k) such
that ¢*F = p* Fx.

We denote by D%(X,k) C Dg(X, k) the full subcategory of ob-
jects with bounded cohomology, i.e. of objects that are contained in
DY(Xg, k).

It turns out that the categories Dg(X, k) and D%(X, k) are indepen-
dent of the choice of EG. Since p is a trivial fibration with contractible
fibre EG, the functor p*: D(X, k) — D(X x EG, k) is a full embedding.
We deduce that for F € Dg(X, k) the sheaf Fx € D(X, k) appearing
in the definition above is unique up to unique isomorphism, so the map
F — Fx even extends to a functor For: Dg(X, k) — D(X, k).

2.2. The equivariant functor formalism. In order to ensure that
all the functors that we introduce in the following exist we assume that
X is a complex algebraic variety endowed with its metric topology, and
that G is a Lie group acting continuously on X.

If f: X — Y is a continuous G-equivariant map then we get an
induced map fg = f Xgid: Xg — Yz and corresponding functors
f&, fass [& and far between the categories D°(Xq, k) and D°(Yg, k).
(Some care is needed in the definition of f5 and fe because X and Y
are not locally compact in general. In [BL94| this problem is overcome



8 PETER FIEBIG AND GEORDIE WILLIAMSON

by considering X as a direct limit of locally compact spaces. It is
also possible to prove the existence and basic properties of f in a
relative setting, see [SHS69].) It turns out that all four functors induce
functors between the subcategories D% (X, k) and D%(Y, k). By abuse
of notation we denote these functors by the symbols f*, f., f and f..

For a G-stable subvariety i: Y<X and a sheaf F € D%(X, k) we
define

./_"y =1"F.
So Fy is an object in D%(Y, k).

2.3. Equivariant cohomology. The equivariant cohomology Hg.(X, k)
of X with coefficients in k is the (ordinary) cohomology of the space
Xg, ie.

He(X, k) == H*(Xe, k).

In particular, the equivariant cohomology of a point is the cohomology
of the classifying space

BG :=pts = EG xg pt = EG/G

of G.

Now let F € D%(X,k). The equivariant cohomology He(F) of X
with coefficients in F is defined as follows. We denote by 7: X — pt the
map to a point. Then we have the object 7, F € D%(pt, k) C D*(BG, k)
and we define

HE.(F) := H*(m.F),

where on the right we have the ordinary cohomology of BG with co-
efficients in the sheaf m,F. This is naturally a graded module over
Hl(pt, k) = H*(BG, k), so equivariant cohomology is a functor

He,: DL(X, k) — He(pt, k)-mod”.

Here and in the following we denote by A-mod” the category of Z-
graded modules over a Z-graded ring A. For a graded A-module M =
D,.c, M, and | € Z we denote by M[l] the graded module obtained by
a shift such that M[l],, = M., for all n € Z.

Let i: Y=+ X be alocally closed G-stable subvariety and F € D%(X, k).
The adjunction morphism id — i,7* yields a morphism F — i,i*F =
1. Fy. After applying equivariant cohomology this yields a homomor-
phism

HE(F) — Hy (i Fy) = He(Fy)

of HX.(pt, k)-modules. We call such a homomorphism a restriction ho-
momorphism.
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2.4. The Mayer—Vietoris sequence. We will often make use of the
equivariant Mayer—Vietoris sequence. Note that the equivariant state-
ment is a straightforward consequence of the non-equivariant one (see,
for example, [KS94, 2.6.28]).

Proposition 2.2. Let X = U UV where U,V C X are open and G-
stable. Then, given any F € DY%(X, k), we have a long eract sequence
of equivariant cohomology

o= BN (Funy) = BL(F) =HL(Fy) @ HL(Fy) —
— HL(Foav) — HEH(F) — ...

2.5. The case of a torus. Let us suppose now that G = T is a
complex torus, i.e. a topological group isomorphic to (C*)" for some
r > 0, endowed with the metric topology.

For n > 0 we consider the space (C™ \ {0})" together with the T-
action given by

(tl,...,tr)'(l'l,...,l'r) :(tl'I1a~~~atr'Ir)-

The embeddings C" \ {0} — C"*'\ {0} that map (zy,...,2,) to
(21, ..., 2n,0) define a direct system

= (CMA{0D) = (CI\{0}) — ...

of T-spaces. The direct limit (C> \ {0})" := lim(C" \ {0})" is a con-
tractible space together with a topologically free T-action, hence can
be chosen as a model for ET.

We denote by X*(T") the character lattice Hom(7',C*) of T". Let

Sy = S(X*(T) @4 k)

be the symmetric algebra over the free k-module X*(T') ®z k, graded
in such a way that X*(7") ®z k C Sk is the homogeneous component of
degree 2. Then the Borel homomorphism (cf. [Bri98], [Jan09]) gives a
canonical identification

Sy = H*(BT, k) = Hy(pt, k).

2.6. An attractive proposition. Now let X be a complex T-variety.
Recall that a T-fixed point x € X is called attractive if all weights of T'
on the tangent space to X at z lie in an open half space of X*(T")®zR. If
this is the case then one can find a one parameter subgroup o : C* — T’
and an open neighbourhood U of x such that

(1) ll_)ﬁéa(z)y:xforallyEU.
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If, in addition, X is connected and affine, then x is the unique T-fixed
point of X and (1) holds for all y € X. In particular, the smallest
T-stable open neighbourhood of = € X is X itself.

Suppose for the remainder of this section that X is connected and
affine, and that x € X is an attractive fixed point. We denote by
i: {x} — X the inclusion and by 7: X — {x} the projection. If we
apply the functor 7, to the natural transformation id — 7,7* we get a
natural transformation m, — m,7,7*. Since 7 o7 is the identity, we get
a natural morphism

Te — 4°

of functors from D5.(X, k) to D5.({x}, k).
The goal of the rest of this section is to prove the following (for similar
statements in the non-equivariant or “weakly equivariant” setting see

[Spr84] and [Bra03)):

Proposition 2.3. Suppose that X s connected and affine and that
r € X is an attractive fized point. Then the morphism of functors
T, — 15 18 an isomorphism.

We begin with some lemmata. Suppose we have a pair of Cartesian
squares

%

F—X—=F
q q lq
F—sx-ZTsp

such that ¢ is smooth and surjective, and 7oi = id (and hence Toi = id).
The adjunctions (7*, 7,) and (7%, 7,) give morphisms of functors

=i and W, — 1"
Lemma 2.4. Let F € D*(X k). Then m,.F — i*F is an isomorphism
if and only iof T.q* F — *¢*F is an isomorphism.

Proof. Because q is surjective, m,F — ¢*F is an isomorphism if and
only if ¢*m, F — ¢*i*F is an isomorphism. Now ¢*i*F = ;*q*]-" and
¢m.F = T.q*F by smooth base change. Via these canonical isomor-
phisms we obtain a map

Tq F — Z*q*f.

This is the same map (up to isomorphism) as that coming from the
morphism 7, — ¢* (cf. [BL94, Theorem 1.8].) O



PARITY SHEAVES AND MOMENT GRAPHS 11

Now suppose a torus 7' contracts a variety X onto a fixed locus
F c X. Consider the diagram

X~ XxBET -2 X x; ET.

o0k T

F~LFxET -2~ Fx; ET

Both p and ¢ are smooth, and so applying the above lemma twice we see
that, given F € D5 (X, k), we have that m,F — i*F is an isomorphism
in DY.(F, k) if and only if 7, For(F) — i*For(F) is.

Given a G-space X, let us call F € D*(X, k) naively equivariant if
we have an isomorphism m*F — p*F where m and p denote the action
and projection maps

Gx X—=X.
p

Note that, if G acts freely on X then pullback along X — X/G allows
us to view any F € D*(X/G, k) as a naively equivariant sheaf on X.
Note also that if F is naively equivariant for a group G, then it is also
naively equivariant for any subgroup H C G.

Lemma 2.5. Suppose that F € DYL(X,k). Then For(F) is naively
equivariant for G.

Proof. Consider the quotient map ¢ : X x EG — X xXg FEG. Then
q* F is naively equivariant for G. Then smooth base change applied to
the projection p : X x EG — X yields that For(F) = p.q*F is naively
equivariant for G. O

We can now prove the attractive proposition:

Proof of Proposition 2.3. The above arguments reduce the proof of the
above to showing that, if 7 € D°(X, k) is naively equivariant for the
action of a one dimensional torus which contracts X onto x € X, then
T F — ¢*F is an isomorphism. But this is shown in [Spr82] (see also
[Bra03] for another account of this argument). O

3. THE LOCALISATION HOMOMORPHISM

Throughout this section we assume that £ is a unique factorisation
domain and that X is a normal complex algebraic variety (endowed
with its metric topology), acted upon algebraically by a complex torus
T = (C*)". In addition, we assume the following:
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(A1) The torus acts on X with only finitely many zero- and one-
dimensional orbits and the closure of each one-dimensional orbit
is smooth.

(A2) X admits a covering by open affine connected T-stable subvari-
eties, each of which contains an attractive (hence unique) fixed
point.

Note that, by a result of Sumihiro (see [Sum74, KKLV89]), X has a
covering by open affine T-stable subvarieties, hence (A2) is automati-
cally satisfied if X is proper and each T-fixed point is attractive.

Let X7 C X be the subspace of T-fixed points and F € D5 (X, k).
The restriction homomorphism associated to the inclusion X7 <X,

H (F) = Hp(Fxr),

is called the localisation homomorphism.

As X7 is a finite set we have Hy.(Fxr) = @, yr H(F,). Following
the results of [CS74] and [GKM98] we will show that for certain choices
of X, k and F the localisation map is injective and give an explicit de-
scription of its image. This is conveniently phrased in terms of moment
graphs (cf. [BMO1]), as it turns out that this image is determined by
the restriction of F to the one-dimensional 7T-orbits in X.

3.1. One-dimensional orbits. Suppose that £ C X is a one-dimen-
sional T-orbit. Then E = T'/Stabr(x) for any z € E. Now Stabp(z)
is the kernel of a character ap € X*(T') which is well-defined up to a
sign. From now on we fix a choice of ag for each one-dimensional orbit
E in X. Nothing that follows depends on this choice.

As before we denote by Sy the Z-graded symmetric algebra of the free
k-module X*(T')®zk and identify it with the T-equivariant cohomology
of a point with coefficients in k. Given a € X*(T') we often abuse
notation and denote by « as well the image of a ® 1 € X*(T') ®z k in
Sk

Now ap acts as zero on HY(E, k) (see, for example, [Jan03, Section
1.9]). As HY(Fg) is a H}.(E, k)-module, we conclude:

Lemma 3.1. For any one-dimensional T-orbit E in X and any F €
D5.(X, k) we have agH4(Fg) = 0.

3.2. The localisation theorem — part I. For any closed connected
subgroup I' of T we let X! be the subset of I'-fixed points in X. Let
us fix a closed subspace Z C X which is a discrete union

Z=XxUy...uxte
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of the fixed points in X of finitely many connected subtori I'y,...,I", C
T. We set

pZ._ {QE € X*(T) ‘E is a one—dlmensmnal}

T-orbit in X \ Z
and define

In addition to (Al) and (A2) we assume from now on:

(A3) for each one-dimensional orbit E in X the image of ap € X*(T))
is non-zero in Sj.

(Of course this condition is vacuous if the characteristic of k is 0.)

We now come to the first part of the localisation theorem. In the
characteristic 0 case it is due to Goresky, Kottwitz and MacPherson
(cf. [GKMIS]).

Theorem 3.2. Assume that the assumptions (A1), (A2) and (A83) hold
and let F € D5(X, k). Suppose that Hy(F) is a graded free Sy-module.
Then the restriction homomorphism

H(F) = Hr(Fz)

is injective and becomes an isomorphism after inverting s* € Sy, i.e. af-
ter applying the functor - ®g, Sk[1/s%].

The proof of the theorem will take up the rest of this section. We
follow Brion’s account [Bri98, Section 2| of the characteristic 0 case
quite closely, but at points some additional care is needed.

Let K = (S')" ¢ T = (C*)" be the maximal compact subtorus of
T. We can regard X as a K-space via restriction of the action. This
yields a functor

resk : D5.(X, k) — D%(X, k).

As T/ K is contractible, for any equivariant sheaf G € D5 (X, k) restric-
tion gives an isomorphism

H3(G) = H (resgG).

In particular, we have a canonical isomorphism Hp (pt, k) = S;. In
the following we write H% (G) for H (reskG). Hence, for the proof of
Theorem 3.2, it is enough to consider the restriction homomorphism

Hi (F) — Hi (Fz)

and to show that it is injective and becomes an isomorphism after
inverting sZ.



14 PETER FIEBIG AND GEORDIE WILLIAMSON

Before we prove this we need a couple of preliminary results. We
state them for the K-equivariant cohomology, however all lemmata
except Lemma 3.5 are true with 7" in place of K.

First we assume that X = V is a finite dimensional T-module. Let
P C X*(T) be the characters occurring in V and s = [[ cpx € Sk
their product. Here is the first step towards the localization theorem.

Lemma 3.3. If F € D4 (V \ {0}, k) then H% (F) is annihilated by a
power of s.

Proof. Fix an isomorphism
(2) Vg@m@cxz@”'@cxm

where x1, X2, ..., Xm € P. (Here, given y € X*(7T'), C, denotes the one-
dimensional T-module with character y.) We will use this isomorphism
to write elements of V' as (z;)1<j<m. For any 1 < i < m consider the
subset
Ui = {(z;) € V [z # 0}.

Projection gives us an equivariant map U; — C;,. By Lemma 3.1, the
equivariant cohomology H$(G) of each G € DY (U;, k) is annihilated
by Xi-

However, V' \ {0} is covered by the sets U; for 1 < i < m and the
Mayer—Vietoris sequence allows us to conclude that Hj (F) is annihi-
lated by a power of s. O

Now let Z C X be as before. From the above we deduce the second
step:

Lemma 3.4. If F € D% (X \ Z, k) then H(F) is annihilated by a
power of s%.

Proof. First we assume that X is affine and connected and contains
an attractive fixed point. In this case Z is necessarily of the form X'
for a closed subtorus I' C 7. We recall an argument due to Brion (cf.
[Ara98, Proposition 3.2.1-1], or the proof of Theorem 17 in [Bri9g))
which constructs a finite T-equivariant map

m: X =V,

where V' is a T-module with weights corresponding bijectively to the
one-dimensional orbits of 7" in X. Brion’s construction is as follows:
For each one-dimensional orbit £ C X, E is smooth and hence
isomorphic, as a T-space, to C,,. For each such orbit we may find a
regular function 7z : X — C,, such that the restriction of g to E
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is an equivariant isomorphism of affine spaces. Taking the direct sum
over all such 7p yields a map

X5V i=PC,,.
E

We claim that 7 is finite. Because x € X is attractive, we can find
a rank one subtorus of 7" inducing a positive grading on the regu-
lar functions on X. By the graded Nakayama lemma 7 is finite if
and only if 771(0) is finite. If 771(0) is not finite, then it contains
a one-dimensional T-orbit (again by the attractiveness of z), but this
contradicts the construction.

Now let V' C V be the subspace of I'-fixed points. Because each
fibre of 7 is finite and 7 is equivariant it follows that 7= (V") = XT.
Choose a decomposition

V=VaoV’

of T-modules and let V' — V'’ denote the projection. We get an induced
map

o X\ XU = V' {0}
and the result follows from Lemma 3.3 because

Hi (F) = Hi (7. F).

Hence we proved the lemma in the case of affine X.
By our assumption (A2), the general case follows from the Mayer—
Vietoris sequence. 0

Lemma 3.5. For any equivariant sheaf F € D%(X,k) we have an
1somorphism

Hi (F7) 2 lim Hy (Fo),

where the direct limit takes place over all K-stable open neighbourhoods
U of Z.

Proof. By assumption X has a covering by open subvarieties, all iso-
morphic to closed subvarieties of affine spaces with linear T-actions.
Thus we may choose a basis of open neighbourhoods {U; };c; of Z which
are K-stable. (This is where we need the compactness of K.)

Now we may write EK as a countable direct limit of (finite dimen-
sional) manifolds with free K-action (for example, by taking EK = ET
as in Section 2.5). Hence Xx can be written as a countable union of
compact subsets. Because X is regular, we conclude that X is para-
compact (cf. [MS74, Section 5.8] and [Dug66, Theorem 6.5]). It is
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straightforward to see that {(U;)k }ier give a basis of open neighbour-
hoods of Zg. It then follows from [KS94, Remark 2.6.9] that we have
an isomorphism

Hi(F7) = H'(F,.) 2 limH* (Fp,,.) = lim By (Fy)
as claimed. ]

Now we are ready to prove Theorem 3.2.

Proof. Let F € D5(X,k) and assume that H.(F) is free as an Sj-
module. We have to show that the restriction map

Hi (F) — Hi (Fz)

is injective, and becomes an isomorphism after inverting sZ.
Let U be an open K-stable neighbourhood of Z C X. We have
inclusions . '
U X <& X\U
and hence a distinguished triangle:

WilF > F g Fd

Applying Lemma 3.4 (and remembering that i, = 4,) we deduce that
M3, (iyi'F) is annihilated by a power of s?. As H%(F) is free, the
restriction map HS (F) — HY%(Fy) is injective. It also follows that it
becomes an isomorphism after inverting sZ.

To finish the proof, note that, by Lemma 3.5,

Hi(F7) 2 lim By (Fp).

Because H}, (F) — H$ (Fy) is injective for all U it follows that HY (F) —
H3 (Fz) is injective. Lastly, this map becomes an isomorphism after in-
verting s# because the direct limit commutes with tensor products. [

4. THE IMAGE OF THE LOCALISATION HOMOMORPHISM

We are now going to describe the image of the localisation homomor-
phism under a certain further restriction on the ring k£ which is called
the GKM-condition. For this it is convenient to use the language of
sheaves on moment graphs. We start by recalling the main definitions
and constructions in the theory of moment graphs. In particular, we
define the Z-graded category G-mod” of k-sheaves on a moment graph
G and associate to any such sheaf .Z its space of global sections I'(.%).

To a T-space X with finitely many zero- and one-dimensional orbits
we associate a moment graph Gx and define a functor

W: D5(X, k) = Gx-mod”
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between Z-graded categories. We then show that under some assump-
tions on F € D5 (X, k), the equivariant cohomology of X with coeffi-
cients in F coincides with the space of global sections of W(F), i.e.

Hy (F) = D(W(F)).

4.1. Sheaves on moment graphs. Let Y = Z" be a lattice of finite
rank.

Definition 4.1. An (unordered) moment graph G over Y is given by
the following data:

o A graph (V,E) with set of vertices V and set of edges .
o A map a: £ —Y \{0}.

We assume that two vertices of a moment graph are connected by at
most one edge.

Let G = (V,&,a) be a moment graph. We write E: z—1y for an
edge F that connects the vertices x and y. If we also want to denote
the label o = «(E) of E, then we write E: x —— y. As before we
denote by S, = S(Y ®z k) the symmetric algebra of Y over k, which
we consider as a graded algebra with Y ®y k sitting in degree 2.

Definition 4.2. A k-sheaf .# on a moment graph G is given by the
following data:

e a graded Sy-module A7 for any vertexr x € V,

e a graded Sy-module #F with o(E).#* =0 for any E € &,

e a homomorphism p,g: M* — M of graded Sy-modules for
any vertex x lying on the edge E.

For a k-sheaf .# on G and | € Z we denote by .Z|l] the shifted
k-sheaf with stalks .Z[l]* = (#*)[l], #[)¥ = (#F)]l] and shifted
p-homomorphisms. A morphism f: .# — A between k-sheaves .#
and .4/ on G is given by a collection of homomorphisms of graded
Sp-modules f%: . #* — AT and fE: . #F — NP for all vertices x
and edges E that are compatible with the maps p, i.e. such that the
diagram

p;{’El lp;,VE
fE
M — NE
commutes for all vertices x that lie on the edge E. We denote by

Q—mod% the category whose objects are k-sheaves on G and whose
morphisms are the morphisms between k-sheaves. It is Z-graded by

the functor #Z — #11].
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4.2. Sections of sheaves and the structure algebra. The structure
algebra over k of a moment graph G is

Zk = {(Zx) - HSk

Coordinatewise addition and multiplication makes Z;. into an Sy-algebra.
It is Z-graded if we consider the product in the definition in the graded
sense.

Let .# by a k-sheaf on G. For any subset Z of V we define the space
of sections of .4 over I by

2y =2, mod a(FE)
for all edges E: x—y [~

Pa,5(Me) = py p(my)
DZ, ) = < (m,) € H,///:” for all edges E: x—y
zeT with z,y € Z

Coordinatewise multiplication makes I'(Z, .#) into a Zi-module (as
a(E)pyp(m;) = 0 for any edge E with vertex z). Again it is a
graded module when the product is taken in the category of graded
Si-modules.

We call the space I'(#) := I'(V, .#') the space of global sections. If
T C J are two subsets of V, then the canonical projection @, , #* —
D, A" induces a restriction map I'(J, #) — I'(Z, #).

4.3. The costalks of a sheaf. Let .# be a k-sheaf on G and let z be a
vertex. Then we define the costalk .#, of .# at x to be the Si-module

My ={m € M" | p, p(m) =0 for all edges F that contain z}.

We can identify ., in an obvious way with the kernel of the restriction

homomorphism I'(V, #) — I'(V \ {«}, ).

4.4. The moment graph associated to a T-variety. To a complex
T-variety X satisfying (A1) we associate the following moment graph
Gx = (V, &, a) over the lattice X*(T):
o Weset V:= XT,
e The vertices = and y, = # y, are connected by an edge if there
is a one-dimensional orbit £ such that F = F U {z,y}. We

denote this edge by E as well.
e We let a(F) = ag € X*(T) be the chosen character.

Note that only those one-dimensional orbits F in X give rise to an
edge that pick up two distinct fixed points in their closure.
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4.5. The functor W. Suppose that £/ C X is a one-dimensional T-
orbit, and suppose that x € E is a fixed point in its closure. Let F be
an object in D.(X, k). Then the restriction homomorphism

HH (Feugey) — HR (F2)

is an isomorphism by the attractive Proposition 2.3. Hence we can
define a homomorphism p, p from H$(F,) to H$(Fg) by composing
the inverse of the above homomorphism with the restriction homomor-

pa,i: HY(Fo) H (Feugay) = Hy(Fr).

Now we can define the functor W. To an equivariant sheaf F €
D(X, k) on X we associate the following k-sheaf W(F) on Gy:
e For a vertex x € V we set W(F)* := H}.(F.).
e For a one-dimensional orbit E we set W(F)¥ := H}.(Fg) (note
that agHY(Fg) = 0 by Lemma 3.1).
e In case that x € E we let p, g: W(F)* — W(F)F be the map
constructed above.

This construction clearly extends to a functor W: D%(X, k) — Gx-mody.

4.6. The case X = P! Suppose that T acts linearly on P' via a
non-trivial character o.. In this case the moment graph is

02 .

For F € D4(P' k) the sheaf W(F) consists of the stalks H$(F),
HS(Fx) and the space HY (Fcx ) together with the maps

Po,cx Poo,cX

HY(Fo) — HY(Fex) = HY(Fx)-
A consequence of the Mayer—Vietoris sequence is the following lemma.

Lemma 4.3. Let F € DL(PL k). Then the image of the restriction
homomorphism HY(F) — HS(Fo) & HY (Foo) s { (20, 200) | po.cx (20) =
Poo,cx (200) -

4.7. The localisation theorem — part II. Now we assume that X
satisfies the assumptions (A1), (A2) and (A3). Let F € DL(X, k). If
HY(F) is a free Sg-module, then Theorem 3.2 shows that we can view
HY(F) as a submodule of @, . vr HH(Fy) = B, xr W(F)*. The space
of global sections I'(W(F)) is a submodule of this direct sum as well.
In this section we want to prove that these two submodules coincide.
We need some more notation. For aw € X*(7T') let us define X* to be
the subvariety of all T-fixed points in X and all one-dimensional orbits
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E C X such that ka N kag # 0. Then X° = X7 for all rings &, but in
general X* depends on the ring k. We define

po.— {aE e X*(T) ‘ Eis a one—dlmensmnal}

T-orbit in X \ X*

and

We need some additional assumptions on our data:
(Ada) For any a € X*(T') the space X“ is a disjoint union of points
and Ps.

(A4b) If E is a one-dimensional T-orbit and n € Z is such that o is
divisible by n in X*(7T'), then n is invertible in k.

Note that (A4a) and (A4b) imply that the greatest common divisor
of s* for all @« € X*(T') is 1. For the proof of the next theorem we
will only need this fact, but we need the stronger statements (A4a)
and (A4b) later. Note also that (A4a) guarantees that we can apply
Theorem 3.2 with Z = X and s7 = s°.

Let Gx be the moment graph associated to X. For o € X*(T") we
denote by G% the moment graph obtained from Gx by deleting all edges
E with kag Nka = 0. Then (A4a) is equivalent to:

(Ada)" The moment graph G is a (discrete) union of moment graphs
with only one or two vertices.

Now we can state the second part of the localisation theorem.

Theorem 4.4. Suppose that (A1), (A2), (A3), (A4a) and (A4b) hold.
Let F € Db(X, k) and suppose that HY.(F) and Hy(Fxr) are free Si-
modules. Then

H7 (F) = D(W(F))
as submodules of @, yr H3(Fy) = @ ,cxr W(F)".

For the proof of the above statement we use similar arguments as
the ones given in [CS74], [GKMO98] or [Bri98]. Again we follow [Bri9g]
closely.

Proof. As a first step let F € D5.(X, k) be any sheaf and o € X*(T).
Let I'*(W(F)) be the sections of the sheaf W(F) on the moment graph
G% (so we only consider the edges E with kag Nka # 0). By (A3),

LW(F)= (] I*W(EF).

aeX*(T)
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By (A4a), X is a discrete union of points and P!’s. Hence, if we
denote by r, : H}(Fxa) — HY(Fxr) the restriction map, then Lemma
4.3 yields I'*(W(F)) = ro(H%(Fxo)). Hence:

TW(F) = [ ra(Hi(Fxe)).

aeX*(T)

So we have to show that HY(F) = (e x+ (1) Ta(HT(Fxa)).

Clearly HY.(F) is contained in the intersection (¢ y«(r) ra(H}(Fxa)).
Hence it remains to show that if f € H}.(Fxr) is in ro(H}(Fxe)) for
all @« € X*(T), then f is contained in HY(F).

By Theorem 3.2 the injection i : H$(F) — HY(Fxr) becomes
an isomorphism after inverting s’. By assumption, H$(F) is a free
Sip-module. We choose a basis ey, ..., e, for H}(F) and denote by

e, ey, € Hom(H7(F), Sk) the dual basis. Because i becomes an iso-
morphism after inverting s°, we can find e}, . .., e, € Homg, (H$(Fxr), Sp[1/5°])

such that e} = 6~; o for 1 < j < m. Note that f is in H}(F) if and
only if eék(f) is contained in Sy for 1 < j < m.
By Theorem 3.2, the map

H7 (F) = Hy(Fxe)

becomes an isomorphism after inverting s*. As f is contained in
H%(Fxa), we conclude e¥(f) € Sp[1/s%] for any 1 < j < m. Hence,

afye () Sd1/s)

aeX*(T)

But (,cx-(r) Sk[1/5%] = S as the greatest common divisor of all s* is
1. Hence 63*( f) € Sk, which is what we wanted to show. O

5. EQUIVARIANT PARITY SHEAVES

In the following sections we consider equivariant parity sheaves on a
stratified variety, which were introduced in [JMWO09a]. It turns out that
the equivariant cohomology of such a sheaf is free over the symmetric
algebra, so by the results in the previous sections it can be calculated by
moment graph techniques. We determine the corresponding sheaves on
the moment graph explicitely: we show that these are the sheaves that
are constructed by the Braden-MacPherson algorithm (cf. [BMO1]).

For all of the above, we need an additional datum: a stratification
of the variety.
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5.1. Stratified varieties. We assume from now that the T-variety X
is endowed with a stratification

X=||Xx\
AeA
by T-stable subvarieties X. We write D} (X, k) for the full subcat-
egory of DL(X, k) consisting of objects which are constructible with
respect to this stratification. In addition to the assumptions (A1) and
(A2) we assume:

(S1) For each A € A there is a T-equivariant isomorphism X, & C%,
where C% carries a linear T-action.

(S2) The category DY (X, k) is preserved by under Grothendieck-
Verdier duality. (This is satisfied, for example, if the stratifica-
tion is Whitney.)

By (A1) and (A2) each stratum X, contains a unique fixed point.

We denote this fixed point by x).

The topology of X gives us a partial order on the set A: We set A <
if and only if X, C Yu- We use the following notation for an arbitrary
partially ordered set A: For A € A weset {> A} ={v e A|v >}
and we define {< A}, {> A}, etc. in an analogous fashion.

Definition 5.1. Let K be a subset of A.
o We say that K is open, if for all v € K, A € A with A > v we
have A € K, i.e. if K =, {= 7}
o We say that KC is closed if A\K is open, i.e. if K =) {< 7}
e We say that K is locally closed if it is the intersection of an
open and a closed subset of A.

For a subset K of A the set KF 1= (J {> 7} is the smallest open
subset containing K, and K~ := |, {< 7} is the smallest closed
subset containing K. K is locally closed if K =K~ NKT.

For any subset K of A we define

Xe=||Xx,cx
yeK

If IC is open (closed, locally closed), then X is an open (closed, lo-
cally closed, resp.) subvariety in X. In particular, for any A\ € A the
subvariety X<y := X<y} is closed. For F € Dj (X, k) we define
]:IC =F Xy -

5.2. Equivariant parity sheaves. For A € A we denote by 7): X, —
X the inclusion. We now give the definition of an equivariant parity
sheaf on X:
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Definition 5.2. Let ? either denote the symbol * or the symbol !, and
let P € D5(X, k).

o P is 7-even (resp. ?-odd) if for all X € A the sheaf i\P is
a direct sum of constant sheaves appearing only in even (resp.
odd) degrees.

e P iseven (resp. odd) if it is both x-even and !-even (both x-odd
and !-odd, resp.).

e P is parity if it may be written as a sum P = Py ® P, with Py
even and Py odd.

Note that, by assumption (S1), for all A € A, all T-equivariant local
systems on X, are trivial and we have

Hence, we have the following classification of indecomposable parity
sheaves (see [JMW09a, Theorem 2.9]):

Theorem 5.3. Suppose that k is a complete local ring. For all A € A
there exists, up to isomorphism, at most one indecomposable parity
sheaf P(\) extending the equivariant constant sheaf ky, . Moreover, any
indecomposable parity sheaf is isomorphic to P(N)[i] for some A € A
and some integer i.

Note that in this paper (in contrast to [JMWO09a]) we normalise
indecomposable parity sheaves in such a way that the restriction of
P(A) to X, is the constant sheaf in degree 0. Also, in [JMWO09a]
parity sheaves a considered with respect to an arbitrary “pariversity”
T: A — Z/27Z. In this paper we only consider parity sheaves with
respect to the constant pariversity, which corresponds to the above
definition.

Proposition 5.4. Let A\ € A and assume that P(\) ezists. We have
D(P(N)) = P(N)[2d,] where dy denotes the complex dimension of X,.

Proof. This is a simple consequence of the above theorem, together with
the fact that D preserves parity and the fact that Dky, = ky, [2d)]. O

5.3. Short exact sequences involving parity sheaves. Let Q be
a parity sheaf on X and let J C A be an open subset with closed
complement Z = A\ J. Denote by j: X7 — X and i: X7z — X the
corresponding inclusions. Consider the distinguished triangle

(3) Wi'l0 = 0 — ol
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Lemma 5.5. (1) The above triangle gives rise to a short exact se-
quence

0 — H3.(i'Q) — H}(Q) — HM(Qy) — 0.

(2) Let P be another parity sheaf on X. Then the above triangle
gives rise to a short exact sequence

0 — Hom*(i*P, i!Q) — Hom*(P, Q) — Hom*(Ps, Q7) — 0.

Proof. We may assume without loss of generality that Q is even. Then
the distinguished triangle in (3) is a distinguished triangle of l-even
sheaves. If P (resp. Q') is x-even (resp. !-even) then an induction (see
[JMWO09a, Corollary 2.8]) shows that Hom(P, Q'[n]) = 0 for odd n.
Then (2) follows and part (1) is the case P = ky. O

5.4. Further properties of equivariant parity sheaves. The fol-

lowing properties of the equivariant cohomology of parity sheaves will

be useful when we come to relate parity sheaves and Braden-MacPherson
sheaves in the next section.

Proposition 5.6. Suppose that P is an equivariant parity sheaf on X.
Then the following holds:

(1) For any open subset J of A the equivariant cohomology HY(P7)
s a free Sp-module.

(2) For any open subset J of A the restriction homomorphism
HS.(P) — HY(Py) is surjective.

(3) Assume that (A4b) holds and suppose that E C X is a one-
dimensional T-orbit. Then the restriction map

pre: Hy(Pe,) — Hy(Pe)
is surjective with kernel apHY(Py, ).

Proof. Note that (2) has already been shown in the previous lemma.
For (1), first note that if we choose an open subset J C A then P is
a parity sheaf on X 7. Hence it is enough to show that H$.(P) is a free

Si-module. Choose € A minimal, let Z = {z} and J = A\ {z}. We
have an exact sequence

0 — H.(i'P) — HY(P) — HW(P,) — 0.

As P is a parity sheaf, i'P is a direct sum of constant sheaves and
so H$.(i'P) is a free Sy-module. Using induction we can assume that
HS(P7) is a free Si-module. Hence HY(P) is free.

Let us prove (3). Since E'U {x,} is contained in X}, the restriction
of P to EU{x,} is isomorphic to a sum of shifted constant sheaves.
Hence it is enough to show that if T acts on C via the character a # 0
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such that n is invertible in k if « is divisible by n in X*(7'), then the
map

poce s H3({0}, k) — H3(C*, k)
identifies with the canonical quotient map Sy — Sk/aSk. With char-
acteristic 0 coefficients this is proved in [Jan09, Section 1.10]. The
divisibility assumption guarantees that the argument given there also
works with coefficients in k. O

5.5. Obtaining parity sheaves via resolutions. Up until now we
have only discussed various properties of parity sheaves, without dis-
cussing their existence. We now show that the existence of certain
proper morphisms to the varieties X, guarantees the existence of par-
ity sheaves. N
Assume that, for all A € A, there exists a T-variety X, and a proper
surjective morphism
VIBW 5(:;\ — 7)\
such that:
(R1) each X, is smooth and admits a T-equivariant closed embedding
X, — P(V) for some T-module V,
(R2) the fixed point set )f(v,\T is finite,
(R3) makg, is constructible with respect to the stratification A (that
is, mukg € Dy A (X, k).

Note that we do not assume that the morphisms 7, are birational.

Theorem 5.7. Assume that k is a complete local principal ideal do-
main. With the above assumptions we have:

(1) Forall X € A there exists an indecomposable parity sheaf P()\) €
D5.(X, k) with support equal to X and such that P(\)x, = kx, .-
(2) For all p < X the restriction homomorphism

Hy (P(A)) = Hy(P(V)a,)

18 surjective.
(3) The cohomology HY.(P (X)) is self-dual of degree 2dim X . That
18,

Homy, (H3(P(A)), Si) = H(P(A))[2 dim X,

Before proving the theorem we state and prove two propositions. For
this we need some more notation. Given a T-variety Z we write wy
for the T-equivariant dualising sheaf in D%(Z, k). Note that, up to
reindexing, H$(wz) is the T-equivariant Borel-Moore homology of Z.

Let us fix 4 < A and set F:=, '(z,). We have:
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Proposition 5.8. (1) Hy(wr) and Hy(wg,) are free Sy-modules
concentrated in even degrees.
(2) The canonical map Hy(wr) — HY(wx;) is a split injection of
Si-modules.
Proof. As z,, is attractive, there exists a one parameter subgroup v: C* —
T which contracts an open neighbourhood of z,, in X onto z,, as z € C*
~CX  ~T
goes to 0. Moreover, we can choose v such that X, =X, .
Now consider the Bialynicki-Birula’s minus decomposition of X

~T
with respect to . That is, for each x € X, set
Yo ={ye Xy limy(2) -y ==},

Then a theorem of Bialynicki-Birula ([BB81]) asserts that each Y, is a

locally closed T-stable subvariety of X isomorphic to an affine space.
Our choice of v implies that

F=m'(z,) = |_| Ya.
zeFT

Moreover, by assumption we can find a T-equivariant embedding
X, = P(V)

and we may decompose V = @ V; where V; denotes the i weight
space of the C*-action on V' given by ~. If we set V., = @jgi V; then
it is straightforward to check that the filtration

D CcP(Vy) CP(Vaiyy) C - CP(V)

induces filtrations of X, and F' by closed subvarieties such that each
successive difference is a disjoint union of Bialynicki-Birula cells. A sim-
ple induction (see, for example, [Ful97| for the non-equivariant case)
shows that both Hi(wg,) and Hj(wr) are free Si-modules with ba-
sis given by the equivariant fundamental classes of closures of the

Bialynicki-Birula cells. The two statements of the lemma then fol-
low. U

Proposition 5.9. With notation as above we have:
(1) Tk, is parity and its support is equal to X\
(2) For all p < X the restriction homomorphism

H&‘ (WA*E)’(‘; ) — H’.I‘((WA*E)’(‘; )m# )

18 surjective.
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Proof. The support claim follows from the surjectivity of my. We now
explain why m*ﬁg is parity. As ) is proper and X is smooth, m*kg
is self-dual up to a shift and so it is enough to show that my.k % is l-

even. As my.k 5, 18 constructible with respect to the A-stratification, it

is enough to show that, for all u, i;#w,\* k%, is a direct sum of constant
sheaves concentrated in even degrees, where 7,, denotes the inclusion
{z,} — X. A devissage argument shows that this is the case if and
only if H'T(i!wuw,\*ﬁg) is a free Si-module.

By proper base change i;um*ﬁg is isomorphic (up to a shift) to
Twwr. Hence it is enough to show that H$(wp) is a free Sg-module
concentrated in even degrees. This is the case by Proposition 5.8(1)
above.

For the second statement of the proposition note that the restriction
homomorphism Hy(myv.kg ) — HY((mawkg;)z,) is dual (again, up to
a shift) to the canonical map Hf(wr) — Hy(wg;) which is a split
injection by Proposition 5.8(2). O

Proof of Theorem 5.7. By Proposition 5.9, m*ﬁg € Db(X, k) is par-
ity. If we let Q denote an indecomposable summand of m*ﬁg con-
taining X, in its support then Q is also parity and, by Theorem 5.3,
we have Qx, = ky [i] for some integer i. It follows that we can take
P(A) == Q[—il.

Another consequence of Theorem 5.3 is that any indecomposable
parity sheaf P(\) occurs as a direct summand of my.k g, [i] € D5.(X, k)
for some i. Hence, to show Part (2) of the theorem it is enough to
check that the map

Hy (makg,) = Hr(Takg, )a,)

is surjective. This is the case by Proposition 5.9.
By Proposition 5.4 we have DP(\) = P(A)[2 dim X,]. We also know
that HY(P())) is a free Sp-module by Proposition 5.8 (recall that wg, =

k bt because )?; is smooth). Hence
Hom$, (H$(P(X)), Sk) = HY(P(A))[2 dim X,].
as X, is proper. 0O

5.6. Parity sheaves and the functor W. In this section we begin
discussing the relationship between parity sheaves and the localisation
functor W. In particular, we show that W is fully faithful on morphisms
of all degrees between parity sheaves.

For the rest of this section we assume (Al)-(A4a/b) and (S1), (S2).
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Proposition 5.10. Let P(\) be a parity sheaf. Then the localisation
homomorphism H.(P(X)) — HYL(P(N) xr) identifies HS. (P (X)) with the
global sections of W(P(N)).

Proof. In order to apply Theorem 4.4 we only need to check that
HY(P(A)) and HY.(P(A)xr) are free Sg-modules. This is the case for
HS.(P(A)) by Proposition 5.6. For HY.(P(A)xr) note that because P(\)
is parity, the restriction of P(\) to any T-fixed point is a direct sum of
equivariant constant sheaves. U

Theorem 5.11. The functor W is fully faithful when restricted to par-
ity sheaves, i.e. if P and P’ are parity sheaves on X, then

Hom;DbT(Xvk) (P,P) — Homé_mod% (W(P), W(P")
18 an isomorphism.

Proof. Without loss of generality we can assume that both P and P’
are even. Let A € A be a minimal element and set J = A\ {\}.
Denote by j: X7 = X\ X\ — X the corresponding open inclusion and
by 7: X, — X the complementary closed inclusion. Then we have a
distinguished triangle

WP = P = g 4
which gives rise, by Lemma 5.5, to a short exact sequence
0 — Hom*(i*P,i'P") — Hom®(P,P’) — Hom*(Ps, P;) — 0
of graded spaces. The map Hom*(P,P’) — Hom*(Pz, P’;) is induced

by the restriction to an open subspace, hence we can fit the above short
exact sequence into a commutative diagram

0 = Hom(i*P, i'P') —— Hom(P, P') Hom(Py, Py) —— 0

| | |

0 K Hom(W(P), W(P’)) - Hom®*(W(Ps), W(P’)) - 0.
As Py and P/ are parity sheaves on X; we can, by induction on
the number of strata, assume that the vertical map on the right is
an isomorphism. Hence we can finish the proof by showing that the
vertical map on the left is an isomorphism as well.

Now K is the space of all morphisms f: W(P) — W(P’) with f#* =0
and f¥ = 0 for vertices p and edges E of J. By Proposition 5.6, (3),
it identifies with the set of homomorphisms from the stalk W(7P)?* into
the costalk W(P’),. By definition we have W(P)* = H}.(i*P). Now
let us look at the short exact sequence

0 — H}(i'P') — HW(P') — HW(P) — 0
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given by Lemma 5.5. By Proposition 5.10, HY.(P’) and HY(P/) can
be identified with the sections of W(P’) over A and J, respectively.
Hence we may identify

HS.(i'P) = W(P),.

As i*P and i"P’ are free sheaves on X, we deduce from the above that
the homomorphism Hom(i*P,i'P’) — K in the commutative diagram
above is an isomorphism as well. O

6. BRADEN-MACPHERSON SHEAVES ON A MOMENT GRAPH

We return now to the theory of sheaves on a moment graph. We first
motivate the definition of the Braden-MacPherson sheaves by consid-
ering the problem of extending local sections. Then we prove one of
our main results, namely that the functor W sends parity sheaves to
Braden-MacPherson sheaves.

6.1. Extending local sections. Let G = (V, £, @) be a moment graph.
Suppose that each edge is given a direction. Then, for x,y € V, we set
r < y if and only if there is a directed path from z to y. We assume
that this determines a partial order on V, i.e. we assume that there
are no non-trivial closed directed paths. We call this datum a directed
moment graph.

Recall that we call a subset J of V open if it contains with any
element all elements that are larger in the partial order, i.e. all elements
that can be reached by a directed path. For a sheaf .# and an open
subset J of V we call an element in I'(J, .#) a local section.

Now we want to find some conditions on .# that ensure that each
local section can be extended to a global section, i.e. which ensure
that the restriction I'(.#) — I'(J, . #') from global to local sections is
surjective for any open set 7. For this we need the following definitions.

For a vertex = of G we define

Vs = {y € V| there is an edge E: z — y}.

So Vs, is the subset of vertices y that are bigger than x in the partial
order and that are connected to x by an edge. We denote by

Cso ={E€E|E:x— vy}

the set of the corresponding edges. Then there is an obvious correspon-
dence &, = Vs, (as we assume that two vertices are connected by at
most one edge). For a sheaf .# and a vertex x we define the map

up: T({> a}, ) — @ a”

Ees,
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as the composition

r({>az}, ) c@.u" 5 G .ar 5 P .«

y>x yGV&z Eeg&z

where p is the projection along the decomposition and p = @yevh Py, E-
We let
M =, (T({>a}, ) C @B 4”
Ee&s,

be the image of this map. Moreover, we define the map

dy = (po,p) e, : M* — @ ME.

Ee&s,

The connection of the above definitions with the problem of extending
local sections is the following. Suppose that m’ € I'({> =}, #) is a
section and that m, € .#*. Then the concatenated element (m,, m’) €
@D,>, A is a section over {> z} if and only if u,(m') = d,.(m,).

Lemma 6.1. For a sheaf .# on the moment graph G the following are
equivalent:

(1) For any open subsets J' C J of V the restriction map (T, #) —
(T, A ) is surjective.

(2) For any vertex x € V, the restriction map U'({> z}, #) —
U({> x}, A) is surjective.

(3) For any x € V, the map dy: M* — D pee,. ME contains M °
i 1ts vmage.

Proof. Clearly property (2) is a special case of property (1). Let us
prove the converse, so let us assume that (2) holds. It is enough to
prove property (1) in the special case that J = J’' U {x} for a single
element x, since we get the general case from this by induction. So let
m = (my) be a section in I'(J\{z}, #). Since {> z} C J\{x} we can
restrict m and get a section m’ in I'({> x}, .#). By assumption there
is an element m, € .#” such that (m,,m’) is a section over {> z}. As
x is not connected to any vertex in J \ {> x} it follows that (m,,m)
is a section over [J. Hence (2) implies (1).

Let us show that (2) is equivalent to (3). Now (2) means that for
any section m over {> z} we can find m, € .Z* such that (m,,m) is
a section over {> x}. But (m,,m) is a section over {> z} if and only
if d,(m,) = u,(m). Hence, a section m over {> x} can be extended to
the vertex x if and only of u,(m) is contained in the image of d,. [

For later use we prove the following statement.
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Lemma 6.2. Let x be a vertex of G and A a sheaf on G. Then the
following are equivalent:

(1) The map U'({> x}, #) — A7 is surjective.

(2) The image of the map dy: M* — @pee, A" is contained in

MO
Proof. Suppose that (1) holds and let s € .. Then there is a section
m of 4 over {> x} with m, = s. If we denote the restriction of m
to {> x} by m’, then this means that d,(s) = u,(m'). So d.(s) is
contained in the image of u,, which is .#%*.
Conversely, suppose that (2) holds and let s € .#Z*. Then there

is a section m’ of .# over {> z} such that d,(s) = u,(m’). Hence
(s,m') is a section over {> x}, hence s is contained in the image of

T{>at, M) — A" O

6.2. Braden—MacPherson sheaves. The most important class of
sheaves on a moment graph is the following.

Definition 6.3. A sheaf % on the moment graph G is called a Braden—
MacPherson sheaf if it satisfies the following properties:

(1) For any x € V, the stalk #* is a graded free Sk-module of finite
rank and only finitely many B are non-zero.

(2) For a directed edge E: x — y the map p,p: B — BE is
surjective with kernel o(E)%Y,

(3) For any open subset J of V the map I'(#B) — I'(T,B) is sur-
jective.

(4) The map T'(B) — B is surjective for any x € V.

Here is a classification theorem.

Theorem 6.4. Assume that k is a local ring and suppose that the
moment graph is such that for any vertex w the set {< w} is finite.
Then the following holds.

(1) For any vertex w there is an up to isomorphism unique Braden—
MacPherson sheaf B(w) on G with the following properties:
o We have B(w)™ = Sy, and B(w)* = 0 unless r < w.
o B(w) is indecomposable in G-mod%.
(2) Let A be a Braden—MacPherson sheaf. Then there are wy, ..., w, €
VY and ly,...,l, € Z such that

B = B(w)h]® - & B(wn)[ln].
The multiset (wy,11),. .. ,(wp,l,) is uniquely determined by 2.

Remark 1. We need the locality assumption on k in order to ensure
that projective covers exist in the category of graded Si-modules.
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Proof. We first prove the existence part of statement (1). For w € V
we define a sheaf %(w) by the following inductive construction:

(1) We start with setting Z(w)¥ = Sy and Z(w)* =0 if z £ w.
(2) If we have already defined Z(w)Y, then we set, for each edge
E:x—vy,

B(w)E = B(w)/a(E)B(w)?

and we let p, g: Z(w)? — B(w)F be the canonical map.

(3) Suppose that we have already defined #(w)Y for all y in an
open subset J and suppose that x € V is such that J U {z}
is open as well. By step (2) we have also defined the spaces
B(w)E for each edge E: x — y originating at x, as well as the
maps p, p: Bw)! — B(w)?. We now define B(w)” and the
maps p, g for those edges EJ. We can already calculate the sec-
tions of Z(w) over {> 1}, as well as the Sp-modules ZB(w)** C
Dree,, B(w)?. Now we define d,: B(w)* — B(w)* as a
projective cover in the category of graded Si-modules. The
components of d, (with respect to the inclusion Z(w)%* C
DB ree,, B(w)") give us the maps p, o

Let us check that #(w) is indeed a Braden—-MacPherson sheaf. Since
PB(w)* is projective for all x € V it is a graded free Sip-module and
the finiteness assumptions hold as well, so #(w) fulfills property (1).
Property (2) is assured by step (2) in the inductive construction of
P(w). Property (3) is, by Lemma 6.1, equivalent to the fact that for
all z € V the map d,: B(w)" = Ppeg, B(w)” contains B(w)’ in
its image. This is clear by step (3). In addition, step (3) also yields
that the image of d, is contained in Z(w)**. By Lemma 6.2 this is
equivalent to the surjectivity of I'({> x}, B(w)) — A(w)*. We have
already seen that the restriction map I'(A(w)) — I'({> =}, B(w)) is
surjective. Hence also I'(#(w)) — HB(w)* is surjective, hence Z(w)
also satisfies property (4) of a Braden-MacPherson sheaf.

Now we prove statement (2) of the above theorem using the above
explicitly defined objects Z(w). Note that this also gives the unique-
ness part of statement (1), which we have not yet proven. So let % be
an arbitrary Braden—-MacPherson sheaf. We prove by induction on the
set of open subsets J of V that there are (wy,ly),...,(wy,[,) such that

BT = B(w) L] @ ® B(wn) (1)

(Here and in the following we denote by .#Z the obvious restriction of
a sheaf .7 to the subgraph corresponding to the vertices in a subset Z
of V.)
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So suppose that J is open, that x € J is minimal and we have a
decomposition as above for J' = 7 \ {z}. We get, in particular,

P({>z}, #) = T({> 2}, B(w)[L]) - -- © T({> x}, B(wn)[ln])

and
B =2 B(w,)" 1] @ - - D B(w,) " [L).

Now d, : B* — 9% is surjective, by property (3) of a Braden—MacPherson
sheaf and Lemma 6.1, and @ B(w;)*[l;] — @ B(w;)°*[l;] is a projec-
tive cover by construction. Hence we have a decomposition #* =
P B(w;)*[l;] @ R for some graded free Sp-module R which lies in the
kernel of d,. Each isomorphism R 2 Si[my] @ - -- @ Sk[m,] then yields
an isomorphism

#7 = B(w)7 L] @ @ B(w,) [l.] ® B(2) [ma] & - - & B(2)7 [m,],

which is our claim for 7. The above construction also yields the unique-
ness of the multiset (wy,l),. .. ,(wn, ). O

6.3. Directed moment graphs from stratified varieties. Suppose
that X is a complex T-variety satisfying (Al). In Section 4.4 we con-
structed an (undirected) moment graph Gy from this datum. Suppose
now that, in addition, we are given a stratification X = | |, ., X, sat-
isfying (S1) and (S2). Recall that for each A € A we denote by x, the
unique fixed point in X,. Hence we now have identifications between
the set of fixed points in X, the set A of strata and the set of vertices
of Q X-

From this we obtain a direction of each edge as follows. Suppose that
the one-dimensional orbit E contains z) and x, in its closure. Then
either X, C X, or X, C X,. We direct the corresponding edge of
Gx towards p in the first case, and towards A in the second case. We
denote by < the partial order on the vertices of Gx generated by the
relation A < p if there is an edge F : A — p. The following proposition
shows that this is the same order as the one induced by the closure
relations on the strata:

Proposition 6.5. We have A\ < p if and only if X, C X,,.
Proof. Clearly, if X < p then X, C X,,. For the converse we show:

(4) If X, C X, then there exists an edge
E : X — v such that X, C X,

Let us assume that (4) holds. Then, if X, C X, we can find a chain
A= vy — - = vy — pand so A < p.
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It remains to show (4). Let U be an affine T-stable neighbourhood of
Ty in Z and let Ny C U be a T-invariant normal slice to the stratum
X, at z,. Because x) € N, is attractive, we can find a cocharacter
v : C* — T such that lim, ,ov(2) - * = z, for all z € N,. It follows
that Y := (N, \ {z,})/C* is a projective variety. By Borel’s fixed
point theorem, T has a fixed point on Y and hence a one-dimensional
orbit on N,. This one-dimensional orbit is contained in some X, hence
connects x) with x,. By construction we have X, C Z O

6.4. The k-smooth locus of a moment graph. In this subsection
we assume that k is a field and that the (directed) moment graph G
contains a largest vertex w. This moment graph carries the indecom-
posable Braden-MacPherson sheaf £ := #(w) over k.

Definition 6.6. The k-smooth locus Q.(G) of G is the set of all vertices
y of G such that %Y is a free Sk-module of (ungraded) rank 1.

In [Fiel0] the k-smooth locus is determined for a large class of pairs
(G, k). In order to formulate the result, let B :=I'(#) be the space of
global sections of 8. We consider this as a graded Z;-module.

Definition 6.7. We say that B is self-dual of degree | € 7Z if there is
an isomorphism

Homg, (B, Sy) = BJl]
of graded Z-modules.

The following is an analogue of the assumption (A4a) for moment
graphs.

Definition 6.8. We say that the pair (G, k) is a GKM-pair if ag is
non-zero in'Y ®z k for any edge E and if for any distinct edges E and
E'" containing a common vertex we have kag N kag = 0.

Note that this can be considered, for given G, as a requirement on
the characteristic of k. The main result of [Fiel0] is the following:

Theorem 6.9 ([Fiel0, Theorem 5.1}). Suppose that (G, k) is a GKM-
pair and that B is self-dual of degree 2l. Then we have

Q(9) = {9: eV

for all y > x the number
of edges containing y is ||

We are going to apply this statement later in order to study the
k-smooth locus of T-varieties.
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6.5. The combinatorics of parity sheaves. Let X be a complex T-
variety, k a complete local principal ideal domain. Assume that these
data satisfy the assumptions (Al)-(A4a/b), (S1), (S2) and (R1)—-(R3).
We now come to the principal result of this paper.

Theorem 6.10. Suppose that P € D5(X, k) is a parity sheaf. Then
W(P) is a Braden—MacPherson sheaf. More precisely, W(P(\)) =
B(N).

Proof. We have to show that W(P) satisfies the four properties listed
in Definition 6.3. If we translate this definition into our situation we
see that we have to check the following:

(1) For each z € XT the cohomology H%.(P,) is a graded free mod-
ule over Sj.

(2) For each one-dimensional orbit E that is contained in the stra-
tum associated to the fixed point x, the map

H (P:) — Hz(Pe)

is surjective with kernel a( E)H$(P,).
(3) For each open union X7 C X of strata the restriction homo-
morphism
HY (P) = HY(Ps)
is surjective.
(4) For each z € XT the homomorphism H$(P) — H$(P,) is sur-
jective.

Part (1) follows directly from the definition of a parity sheaf, the parts
(2) and (3) are stated in Proposition 5.6. Part (4) follows from Theorem
5.7 and the fact P is the direct sum of shifted copies of P(A)’s. The last
statement follows, as P()) is indecomposable if and only if W(Z(\))
is, by Theorem 5.11. O

7. THE CASE OF SCHUBERT VARIETIES

We now discuss a special and important case of the general theory
developed in the previous section, namely the case of Schubert varieties
in (Kac-Moody) flag varieties. For a detailed construction of these
varieties in the Kac-Moody setting the reader is referred to [Kumo02].

We fix some notation. Let A be a generalised Cartan matrix of size [
and let g = g(A) = n_ @ h S n, denote the corresponding Kac-Moody
Lie algebra with Weyl group W, Bruhat order <, length function ¢ and
simple reflections S = {s;};=1_ ;. To A one may also associate a Kac-
Moody group G with Borel subgroup B and connected algebraic torus
T C B. Given any subset I C {1,...,[} one has a standard parabolic
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subgroup P; containing B and standard parabolic subgroup W; C W.
The set G/P; may be given the structure of an ind-7-variety and is
called a Kac-Moody flag variety.

For each w € W one may consider the Schubert cell X! := BwPr/P; C
G/ Py and its closure, the Schubert variety,

Each Schubert cell is isomorphic to a (finite dimensional) affine space
and each Schubert variety is a (finite dimensional) projective algebraic
variety. The partition of G/P; into Schubert cells gives a stratification
of G/P]

The following proposition shows that the results of this article may
be applied to any closed union of finitely many B-orbits in G/P;:

Proposition 7.1. Let X C G/ Py be a closed subset which is the union
of finitely many Schubert cells. Then X together with its stratification
into Schubert cells satisfies our assumptions (A1), (A2), (S1), (S2),
(R1), (R2) and (RS3).

Proof. The assumptions (A1), (A2), (S1) are standard properties of
Kac-Moody Schubert varieties (see [Kum02, Chapter 7]) and (S2) fol-
lows because we have an equivalence DY \ (X, k) = D% (X, k). Given
a Schubert variety X/ C X, let 7 : X — X[ denote a Bott-Samelson
resolution (see [Kum02, 7.1.3]). Then X is a smooth T-variety with
finitely many T-fixed points which admits a T-equivariant closed lin-
ear embedding into a projective space. Lastly, the variety X is even a

B-variety, and the map 7 is B-equivariant. So properties (R1), (R2)
and (R3) hold as well. O

We now describe the moment graph of G/P;. The identification of
with the Lie algebra of T" allows us to identify the lattice of characters
X*(T) with a lattice in h*. Moreover, under this identification, all

the roots of g(A) lie in X*(7T"). Let R C X*(T) denote the subset of
real roots, and R™ the subset of real positive roots. Then we have a
bijection
Rt 5 {reflections in W}
a Sg.
The following proposition follows from [Kum02, Chapter 7]:

Proposition 7.2. We have:
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o The T-fized points are in bijection with the set W/Wy:
W/Wr; 5 (G P)T
wW[ — wP[.

e There is a one-dimensional T-orbit with xW; and yW; in its
closure if and only if soxWy = yW; for some reflection s, € W
in which case T acts on this orbit with character +or.

We complete this section by discussing what the arithmetic assump-
tions (A3), (Ada) and (A4b) mean in the case of Kac-Moody flag va-
rieties. First note that the lattice ZR C X*(T') spanned by the real
roots determines a surjection of algebraic tori

s: T —T

so that X*(7T") = ZR. The action of T" on G/P; is trivial on the
kernel of s and we obtain an action of 77 on G/P;. (In the case of
a finite dimensional Schubert variety this corresponds to the fact that
one may always choose the adjoint form of a reductive group in order
to construct the flag variety.) Because real roots are never divisible in
ZR = X*(T") it follows that (A4b) (and hence (A3)) is always satisfied
for Kac-Moody Schubert varieties viewed as T’-varieties.

The condition (A3) is more subtle. If we fix a field £ then condition
(A3) is satisfied if and only if no two distinct roots in R become lin-
early dependent modulo k. One may check that in the finite cases we
have to exclude characteristic 2 in non-simply laced types and charac-
teristic 3 in type Go.

_In the affine case the situation is radically different. Suppose that
G is the affine Kac-Moody group associated to a semi-simple group G.
Recall thAat there exists a an element 6 € h* such that the set of real
roots of GG is equal to {a+nd} where a € h* is a root of G, and n € Z.
It follows that condition (A3) is satisfied for G/P and any parabolic
subgroup P #* G if and only if k is of characteristic 0.

__ However, if one restricts oneself to a fixed a Schubert variety X C
G/P the GKM-condition for X may yield interesting restrictions on
the characteristic of k (see [Fie07a]).

8. p-SMOOTHNESS

In this section we recall the definition and basic properties of the
p-smooth locus of a complex algebraic variety X. Our main goal is
Theorem 8.8 for which we need Proposition 8.6, where we show that an
(a priori weaker) condition on the stalks of the intersection cohomology
complex is enough to conclude p-smoothness.
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Throughout this section all varieties will be irreducible and k& denotes
a ring (assumed to be a field from Sections 8.2 to 8.4). Dimension will
always refer to the complex dimension. Given a point y in a variety Y
we denote by 7, : {y} — Y its inclusion.

8.1. Smoothness and p-smoothness. If = is a smooth point of a
variety X of dimension n a simple calculation (using the long exact
sequence of cohomology, excision and the cohomology of a 2n — 1-
sphere) yields

k, ifd=2dimX,

0, otherwise.

Hd(X,X\{{L’},k‘) = {

The isomorphism
motivates the following.

Definition 8.1. A wvariety X is k-smooth if, for all v € X, one has
an isomorphism

Hitky) = {

The k-smooth locus of X is the largest open k-smooth subvariety of
X. We define p-smooth (respectively the p-smooth locus) to mean F,-
smooth (respectively the [F,-smooth locus).

kb, ifd=2dim X,

0, otherwise.

Proposition 8.2. We have inclusions

Q-smooth p-smooth Z-smooth smooth
locus locus locus locus

Proof. The fact that the Z-smooth locus contains the smooth locus fol-
lows from the above discussion. For all rings k£ one has an isomorphism

L
(6) Z;EX = Z;ZX ®Z k

As the category of Z-modules is hereditary, every object in D*({z},Z)
is isomorphic to its cohomology. It then follows from (6) that, for a
field k, the condition of k-smoothness is satisfied at x if and only if:
(1) H(i'Zy) is torsion except for d = 2n, where the free part is of
rank 1,
(2) all torsion in H*(i\Zy) is prime to the characteristic of k.

The claimed inclusions now follow easily. U

Remark 2. The above proof shows that, if £ is a field, then the k-smooth
locus only depends on the characteristic of k.
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8.2. k-smoothness and the intersection cohomology complex.
Until Section 8.4 we assume that k is a field. Let us denote by (D=°(X, k), D=°(X, k))
the standard ¢-structure on D(X, k) with heart Sh(X, k), the abelian
category of sheaves of k-vector spaces on X. We denote the corre-
sponding truncation and cohomology functors by 7<q, 7w and H.
Let us a fix a Whitney stratification X = | |,., X\ and denote for
all A € A by 7,: X, — X the inclusion. Recall that the intersection
cohomology complex of X, IC(X, k) € D(X, k), is uniquely determined
by the properties:
(1) i3IC(X, k) = ky, for the open stratum X, C X;
and, for all strata X, of strictly positive codimension,
(2) HU3IC(X, k) = 0 for d > codimy X,
(3) HIGAIC(X, k)) =0 for d < codimy Xj.
Note that under this normalisation IC(X, k) is not Verdier self-dual.
Rather DIC(X, k) = IC(X, k)[2dim X]. Conditions (2) and (3) are
equivalent to the conditions
(2%) HE(i*IC(X, k) = 0 for d > codimy Xy,
(3%) HI(LIC(X, k)) = 0 for d < dim X + dim X,
for all z € X, and strata X, of strictly positive codimension. (This
follows from the fact if ¥y € Y is a smooth point, then one has an
isomorphism iyky, = ifky [-2dimY].)
Proposition 8.3. A variety X is k-smooth if and only if IC(X, k) =
ky.

Proof. If X is k-smooth then the constant sheaf ky satisfies (1), (2%)
and (3%) above and hence k, = IC(X,k). On the other hand, if
ky =IC(X, k) then Dky = ky[2dim X] and for all x € X we have
inky = 0, (Dky)[-2 dim X] = D(i}ky[2 dim X])
and hence
HYi k) = H(i ks [2dim X]) = 4 &> T 4= 2dimX,
0, otherwise,

and so z is k-smooth. O

8.3. k-smoothness and stalks. Given a morphism f : X — Y of
complex algebraic varieties we write °f, for the non-derived direct im-
age functor. The functor °f, is left t-exact with respect to the standard
t-structure. Given F € Sh(X, k) we have °f,F = 7, f.F canonically.

Lemma 8.4. Given F € D=°(X k) and a morphism f : X — Y we
have a natural isomorphism T<q foF = ° fir<oF.
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Proof. Applying f to the distinguished triangle
T<oF = F = TsoF —
yields a distinguished triangle
feT<oF = foF = fuTsoF — .

Now f, is left t-exact for the t-structure (D=°(X, k), D=°(X,k)) and
so T<of«T=0F = 0. Hence if we apply 7<( to the above distinguished
triangle we obtain the required isomorphism

Of*’TSof = Tgof*Tgof:) Tgof*F. ]

~Y

Lemma 8.5. We have an isomorphism 7<(IC(X, k) = Y. k,;, where

Jj U = X denotes the inclusion of a smooth, open, dense subvariety
of X.

Proof. Choose a stratification of X which has U as the only stratum
of dimension n, and write X; for the union of all strata of codimension
<i (so that Xy = U and X,, = X). We have a chain of inclusions

Jo J1 Jo Jn—2 Jn—1
Xo=Xi=>Xg= "= X, 1 = X,.

The Deligne construction (see [BBD82, Proposition 2.1.11]) gives an
isomorphism

IC(X, k) = (T<n-10 Jn-1+) © (T<n-1 0 Jn-1x) © . .. (T<0 © Joukipy)
Repeatedly applying the above lemma yields
TSOIC(Xa k) = Ojn—l* ©0---0 Ojl* © OjO*EU = Oj*EUa

]

as claimed.

Proposition 8.6. A variety X is k-smooth if and only if IC(X, k), =
k for all x € X.

Proof. If X is k-smooth then IC(X, k) = ky by Proposition 8.3 and so
IC(X, k), =k for all z € X. It remains to show the converse. Choose
an open, dense, smooth subvariety U of X and let j : U — X denote
its inclusion. The adjunction morphism

kx — Oj*j*EX

is an injection on stalks, as may easily be checked from the definition of
04.. (It is an isomorphism if and only if X is unibranched, however we
will not need this fact.) It follows from our assumptions that IC(X, k)
lies in D=Y(X, k) and so we have an isomorphism

TSOIC(X, k’) :> IC(X, k‘)
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By the above lemma we also have an isomorphism %j, k;; = 7<o(IC(X, k).
It follows that all stalks of °j.k;; are one-dimensional and that we have
an isomorphism

ky = %k, S IC(X, k).

Our claim now follows from Proposition 8.3. U

8.4. On the p-smooth locus of T-varieties. Now let X = | |,_, X
be an irreducible, complex, stratified T-variety, and let k be a field.
Assume that these data satisfy the assumptions (Al)-(A4a/b), (S1),
(S2) and (R1)—(R3) and let Q4(G) denote the k-smooth locus of the
moment graph G of X. The following proposition shows that the k-
smooth locus of X and of its moment graph agree.

Proposition 8.7. All points of a stratum X, belong to the k-smooth
locus of X if and only if A € Qk(G).

Proof. Let U denote the p-smooth locus of X. It is a union of strata by
our assumption (S2). Because we have assumed that X is irreducible
there exists a unique open dense stratum X, C X. Let P be the corre-
sponding indecomposable parity sheaf normalised so that its restriction
to Xy is ky, .

In the following it will be useful to work with non-equivariant sheaves.
Note that the non-equivariant analogue of Theorem 5.3 is valid (see
[JMWO09a, Theorem 2.12]) and P := For(P) is the indecomposable
non-equivariant parity sheaf with support X.

Let U’ denote the largest open union of strata X, for which ka =
kx,. We claim U = U".

Indeed, if U’ denotes this set then Py satisfies the properties (1) and
(2) of the IC-complexes and hence also satisfies (3) because D(Py)
Py[2dim X]. Hence Py = IC(U, k) and so U’ C U by Propositions 8.3
and 8.6. On the other hand, IC(U, k) = k;; is certainly indecomposable
and x-even. It is even !-even because DIC(U, k) = IC(U, k)[2 dim X].
Hence Py = ki by the classification of parity sheaves, together with
the fact that the restriction of an indecomposable parity sheaf to an
open union of strata is either zero or indecomposable (see [JMW09a,
Proposition 2.11]).

Now, by Theorem 6.10, W(P) = Z()) and hence Px, = ky, if and
only if B(A\)* = Si. The proposition then follows by definition of the
k-smooth locus of the moment graph of X. O

Combining this result with Theorem 6.9 yields:
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Theorem 8.8. A T-fized point x, € X,, belongs to the p-smooth locus
of X if and only if for all X\ > u the number of one-dimensional T -
orbits having x in their closure is equal to the complex dimension of
X. Moreover, X,, belongs to the k-smooth locus if and only if its T'-fized
point x, does.

8.5. A freeness result. In this subsection k denotes a complete local
ring and p denotes the characteristic of the residue field of k. Let
X =[] ea X be an irreducible, complex, stratified T-variety. Assume
that these data satisfy the assumptions (A1l)—-(Ada/b), (S1), (S2). We
further assume that there exists an indecomposable parity sheaf P
corresponding to the unique open stratum X, C X. (For example, X
could be open in a stratified variety satisfying (R1), (R2) and (R3).)
For any A € A let

Xon=||X, and Xon=|]]X,
Y>A Y=
For any A\ € A we can find a T-stable affine neighbourhood U of x)

and a T-invariant affine normal slice N C U to the stratum X,. The
aim of this section is to show the following result:

Proposition 8.9. HY(Pw\(z,}) is torsion free over k.

Of course this result has no content if k is a field. However it seems to
be quite useful if k is, for example, the p-adic integers. Before turning
to the proof of this result we state a corollary, which is of central
importance to [JW]:

Corollary 8.10. If X., is p-smooth then H3.(N \ {z\},k) is a free
k-module.

Proof. If X<, is p-smooth then the constant sheaf with coefficients in
k is self-dual and hence parity. Hence the restriction of P to X, is
isomorphic to the constant sheaf (cf. [JMWO09a, Proposition 2.11]).
The result then follows from Proposition 8.9. 0

Proof of Proposition 8.9. Consider the Cartesian diagram:
N——U
{oa} — X

Without loss of generality we may assume that X is a closed stratum in
X. In this case we have seen in the course of the proof of Theorem 5.11
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that we have an isomorphism H$(i'P) = W(P),. Moreover, because
N — U is a normally non-singular inclusion we have

HY (i Py) = HY(i'P) =2 W(P),.

One the other hand, by the attractive proposition, we have H}.(Py) =
HY.(Psy) = W(P)*.
Now consider the open-closed decomposition:

{2} <5 N & N\ {2}
This leads to a distinguished triangle

WP = Py — g U

Taking hypercohomology and using the above observations we conclude
that we have an exact sequence

0 — W(P)x = W(P)* — Hy(Pa\fayy) — 0

where the first map is the inclusion. It follows that we have an embed-
ding
HY (Pavan)) = €D W(P)e

E: A=y

Now each W(P)g is isomorphic to a direct sum of shifts of S/(ag).
By assumption (A4b) no character ap is p-divisible in X (7") and hence
each S/(ap) is torsion free over k. It follows that HY (P (z,}) is torsion
free over k. U

9. REPRESENTATIONS OF REDUCTIVE ALGEBRAIC GROUPS

Let G be a simple reductive algebraic group over F, and let Rep G
denote the category of rational representations of G. It is a fundamental
problem in representation theory to determine the characters of the
simple and tilting modules in Rep G. For simple modules there exists
a conjecture, due to Lusztig, in the case that the characteristic p is
larger than the Coxeter number h associated to GG. For tilting modules
there is no general conjecture. Schur-Weyl duality can be used to show
that knowledge of the characters of tilting modules for G = GL,(F,)
implies dimension formula for the simple modules for .S,, for m < n in
characteristic p.

We want to explain how the above results allow one to reinterpret
these two basic problems using the geometry of certain Schubert vari-
eties in the (complex) affine Grassmannian associated with the Lang-
lands dual group. To this end let T' C B C G denote a maximal torus
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and Borel subgroup of G respectively. Let X*(7') denote the charac-
ter lattice and X+ (7T') denote the subset of dominant weights. Then
XT(T) parametrises both the simple and tilting modules in Rep G.

9.1. Tilting modules. Let G{ denote the complex Langlands dual

group of G, G{((t)) its loop group, T = T x C* the extended torus
and gr' := GE((t))/GE[[t] the corresponding affine Grassmannian.
Then X (T') also parametrises the GY[[t]]-orbits on Gr¥ and Gr" sat-

isfies our assumptions when viewed with the action of T{Y (indeed, the
closures of G{[[t]]-orbits are examples of Kac-Moody Schubert vari-
eties). Recall that the geometric Satake equivalence [MV07] establishes
a tensor equivalence between the abelian category of rational represen-
tations of G and the tensor category of G{[[t]]-equivariant perverse
sheaves on Gr”.

Recall the following two results which are Theorem 5.1 and Corollary
5.8 of [JMWO09b]:

(1) If p > h+ 1, then parity sheaves correspond under the geomet-
ric Satake isomorphism to tilting modules. More precisely, the
indecomposable parity sheaf P(\) corresponds to the indecom-
posable tilting module T'(\).

(2) The rank of H}.(P(X),) is equal to the dimension of the p-weight
space of the tilting module 7'(\).

With the above results in mind, it seems natural to expect that the
Braden-MacPherson algorithm can be used to calculate the characters
of tilting modules. There is a problem, however: the moment graph of
the affine Grassmannian satisfies the GKM-condition if and only if k
is of characteristic 0.

To get around this problem we take k£ to be the ring Z, of p-adic
numbers. For this the GKM-condition is satisfied. Moreover it is shown
[JMWO09a, Proposition 2.41] that the graded ranks of the stalks of
parity sheaves depend only on the characterstic of the residue field.
The following theorem then follows from the above discussion and our
main theorem:

Theorem 9.1. Suppose that p > h + 1 (see [JMWO09b] for better
bounds). When conducted with coefficients in the ring k = Z, of p-adic
numbers, the Braden-MacPhersons algorithm computes the characters
of tilting modules. More precisely, for any character p € X*(T), the
dimension of the p-weight space of T'(\) is equal to the rank of ZB(\)*.

9.2. Simple rational characters. We now turn to the application
of the above results to Lusztig’s conjecture. Let IV C G{((t)) be the
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Iwahori subgroup containing BY and let F1" := G{((¢))/I" denote the

affine flag variety with its 7Y-action.

In [Fie07b] a certain subcategory Z C D%(}"lv,k) of special equi-
variant sheaves was considered and a functor ®: Z — R was defined,
where R is a category of projective objects in a category C naturally
associated to the Lie algebra of GG. For the application to Lusztig’s
conjecture one needs to consider only objects in Z that are supported
on a certain Schubert variety X,., C F1".

An intermediate step in the construction of ® was a functor from Z
to the category of Braden—-MacPherson sheaves on the moment graph
associated to F1'. It turns out that Z is the category of parity sheaves
on F1" (with respect to the stratification by Schubert cells). Indeed,
the category Z is generated from the skyscraper sheaf on the point
stratum on F1¥ by repeatedly applying the functors m*m,, for simple
reflections s, where m,: F1¥ — F1! is the projection onto the partial
affine flag variety associated to s. Now parity sheaves are preserved
by these functors (cf. [JMWO09a, Proposition 4.9]). From the results
in [Fie07b] we can hence deduce that the ranks of the stalks of parity
sheaves determine baby Verma multiplicities for projective objects in C.
These multiplicities in turn determine the characters of simple rational
representations of G. Using the results of this paper we can rephrase
the above as follows. Given A € A let IC(Xy,Z) denote the intersection
cohomology complex of X, with integral coefficients (cf. [Jut09]).

Theorem 9.2. Suppose that the stalks and costalks of the intersection
cohomology compler IC(Xy,Z) are p-torsion-free for all strata X, C
Xres- Then the characters of the simple modules for G are given by
Lusztig’s conjecture.

_ L
Proof. 1t is known (cf. [Lus83]) that IC(X,,Z) ® Q is isomorphic to

_ L
the parity sheaf Pg(A) with coefficients in Q. Hence IC(X,,Z) ® F,
is isomorphic to the parity sheaf Pg, () with coefficients in F), if and
only if the conditions of the theorem are met. The theorem then follows

from [FieO7a, Fie07b] together with our main theorem. O
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