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Lie-algebraic symmetries of generalized

Davey-Stewartson equations

A Zuevsky
Max-Planck Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

Abstract. We identify the full Lie-algebraic structure of the generalized Davey-Stewartson (GDS) system
of equations with symmetries of a specific of continual Lie algebras. In particular, we show that they are
related to two copies of the Poisson bracket continual Lie algebra.

1. Generalized Davey-Stewartson equations
A system of nonlinear partial differential equations in 2+1 dimensions as a model of wave
propagation in a bulk medium of an elastic material with couple stresses has recently been
derived in [5], namely

iψt + δψxx + ψyy = χ|ψ|2ψ + γ(wx + φy)ψ

wxx + nφxy +m2wyy = (|ψ|2)x (1.1)

nwxy + λφxx +m1φyy = (|ψ|2)y

with the condition (λ− 1)(m1−m2) = n2. The subscripts in (1.1) denote corresponding partial
derivatives. Here ψ(t, x, y) is a complex function, w(t, x, y) and φ(t, x, y) are real functions,
and δ, n, m1,m2, λ, χ, γ are real constants. The authors of [5] demonstrated that when the
parameters are related by n = 1−λ = m1−m2, then (1.1) can be reduced to the standard Davey-
Stewartson (DS) equations (in general not integrable) by a non-invertible point transformation
of dependent variables. Therefore, they called (1.1) the generalized Davey-Stewartson (GDS)
equations. In [5] some travelling type solutions of (1.1) in terms of elementary and elliptic
functions were obtained. Global existence results were studied in [6]. In another recent work [7],
under some constraints on the physical parameters, the so-called hyperbolic-elliptic-elliptic case
of the system (1.1) (in [7] the system is classified into different types according to the signs of
parameters (δ,m1,m2, λ)) was shown to admit singular solutions that blow up in a finite time.

In [2] authors work with a differential form of the equations (1.1). Differentiating the last
two equations of (1.1) by x and y respectively, performing the substitutions wx → w, φy → φ,
and rewriting the corresponding system in a real form by separating ψ = u + iv into real and
imaginary parts, one obtains a system of four real partial differential equations

ut + δvxx + vyy = χv(u2 + v2) + γv(w + φ)

−vt + δuxx + uyy = χu(u2 + v2) + γu(w + φ)

wxx + nφxx +m2wyy = 2(u2x + uuxx + v2x + vvxx)

nwyy + λφxx +m1φyy = 2(u2y + uuyy + v2y + vvyy)

(1.2)
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In the sequel, following [2], we call (1.2) the GDS (generalized Davey-Stewartson) equations.
In [2] the Lie symmetry algebra of the generalized Davey-Stewartson (GDS) equations

(1.2) was computed. In particular, it was shown that for special choice of parameters it is
a centerless Kac-Moody-Virasoro algebra. It was also shown that under certain conditions
imposed on parameters in the system is infinite-dimensional and isomorphic to that of the
standard integrable Davey-Stewartson equations which is known to have a very specific Kac-
Moody-Virasoro loop algebra structure. The main result of the paper [2] was to show that,
when some conditions on physical parameters δ, n, m1, m2, λ are imposed, the Lie algebra
of the symmetry group of the GDS system has a Kac-Moody-Virasoro (KMV) loop structure
(same as for the usual integrable DS equations [8]). In particular, they show in that this algebra
is isomorphic to that of DS equations:

iψt + δ1ψxx + ψyy = δ2|ψ|2ψ + wψ, ε1wxx + wyy = ε2(|ψ|2)yy (1.3)

with δ1 = ±1, δ2 = ±1. The Lie algebra of the symmetry group of the integrable DS system is
referred to as the DS algebra.

The purpose of this note is some further study of GDS equations from group theoretical
point of view. We show that the system (1.2) possesses a conitnual Lie algebra symmetry. In
particular, the systems of generators of corresponding Lie algebras is a special case of a continual
Lie algebra [18]. Finally, let us also mention that the GDS is related to the generalized Alber’s
equation discissed in [1, 22].

2. Continual Lie algebra symmetries of GDS system
In appendix we recall the definition of a continual Lie algebra. Two basic examples relevant to
the Lie algebra of symmetries describing the GDS equations are the Witt and Poisson bracket
continual Lie algebras [18] are as follows.

2.1. Witt algebra
The Witt algebra [9] is the centerless Virasoro algebra. The commutation relation on the single
generator X(φ), for two φ, ψ ∈ E , are

[X(φ), X(ψ)] = X(φ∂ψ − ψ∂φ) ≡ X
([
φ,∂ ψ

])
, K(φ, ψ) = φ∂ψ − ψ∂φ (2.1)

where ∂ denotes the differentiation with respect to a real parameter with obvious notation after
the last equality in (2.1). The only condition that the mapping K(φ, ψ) satisfies is (A.2) with
k = m = n = 0.

2.2. Poisson bracket algebra
As the second example we consider in this section is a continual Lie algebra defined by the
mappings

K0,0(φ, ψ) = 0, K0,±1(φ, ψ) = ∓i∂φ · ψ, K1,−1(φ, ψ) = −i∂(φ · ψ) (2.2)

and Kn,m(φ, ψ) = i(n ∂ψ · φ −m ∂φ · ψ), n, m ∈ Z. In [16] it was proved that this continual
Lie algebra is isomorphic to the Poisson bracket algebra under an appropriate substitution of
variables.
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2.3. Generators of the GDS continual Lie algebra
In [2] the commutation relations of the symmetry algebra of the system of equations of (1.2)
were obtain. They have the following form:

[T (f1), T (f2)] = T (f1f
′
2 − f ′1f2) (2.3a)

[T (f), X(g)] = X(fg′ − 1

2
f ′g) (2.3b)

[T (f), Y (h)] = Y (fh′ − 1

2
f ′h) (2.3c)

[T (f),W (m)] = W (fm′) (2.3d)

[X(g1), X(g2)] = − 1

2δ
W (g1g

′
2 − g′1g2) (2.3e)

[Y (h1), Y (h2)] = −1

2
W (h1h

′
2 − h′1h2) (2.3f)

[X(g), Y (h)] = [X(g),W (m)] = [Y (h),W (m)] = [W (m1),W (m2)] = 0 (2.3g)

Using the generators T (f), X(g), Y (h), W (m), let us take

X0 = T (f), X1(g) = X(g), X−1 = Y (h), X−2 = W (m), X2 =
1

δ
W (m) (2.4)

Then it is easy to see that (2.4) form a a continual Lie algebra [16] with a non-abelian Cartan
subalgebra. Then the corresponding kernels in the commutation relations (A.1) have the form

K0,0(f1, f2) = f1f
′
2 − f ′1f2 (2.5a)

K0,1(f, g) = fg′ − 1

2
f ′g (2.5b)

K0,−1(f, h) = fh′ − 1

2
f ′h (2.5c)

K0,2(f,m) = fm′ (2.5d)

K0,−2(f,m) =
1

δ
fm′ (2.5e)

K1,1(g1, g2) = − 1

2δ
(g1g

′
2 − g′1g2) (2.5f)

K−1,−1(h1, h2) = −1

2
W (h1h

′
2 − h′1h2) (2.5g)

K1,−1(g, h) = K1,±2(g, h) = K−1,±2(g, h) = K2,±2(g, h) = 0 (2.5h)

By substitution one checks that the mappings (2.5e) indeed satisfy to the consequences (A.2) of
Jacobi identity. The Cartan part of this algebra is isomorphic to the Witt algebra (2.1).

A partial differential operator representation in variables (x, y, t) for the Lie algebra are given
by (2.5e) was obtained in [2]:

X0(f) = f(t)∂t +
1

2
f ′(t) (x∂x + y∂y − u∂u − v∂v − 2w∂w − 2φ∂φ)

− (x2 + δy2)

8δ

[
f ′′(t)(v∂u − u∂v) +

f ′′′(t)

2γ
(∂w + ∂φ)

]
(2.6a)

X(g) = g(t)∂x −
x

2δ

[
g′(t)(v∂u − u∂v) +

g′′(t)

2γ
(∂w + ∂φ)

]
(2.6b)

Y (h) = h(t)∂y −
y

2

[
h′(t)(v∂u − u∂v) +

h′′(t)

2γ
(∂w + ∂φ)

]
(2.6c)
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W (m) = m(t)(v∂u − u∂v) +
m′(t)

2γ
(∂w + ∂φ) (2.6d)

The functions g(t), h(t), and m(t) are arbitrary functions of class C∞(I), I ⊆ R.
In [2] the standard infinitesimal procedure [14] to find the symmetry algebra L and hence the

symmetry group G of (1.2) was applied. The article [2] is mainly focused on the case when f(t) is
allowed to be arbitrary. The symmetry algebra realized by (2.6a) is then infinite-dimensional and
has the structure of a Kac-Moody-Virasoro algebra [2]. This is called in [2] the GDS symmetry
algebra and the corresponding system.

On the other hand, it is easy to see that the algebra defined by the mappings (2.5e) represents
m = 2 generalized local part of two copies of the Poisson bracket continual Lie algebra (see
appendix for the definitions). Let us identify

x1(f) = iX1(f), x−1(f) = iX−1(f), x2(g) =
1

2δ
W (g), x−2(g) = −W (g) (2.7)

where xi, |i| ≤ 2, denote generators of the Poisson bracket algebra (2.2). Then we put

T (f) = X0(f) = x0(f) +
1

2
x̃0(f) (2.8)

where the generator x̃0 belongs to the second copy of the Poisson bracket continual Lie algebra
defined by the Poisson bracket continual algebra mappings with inverted grading indices, i.e.,
K̃i,j = Kj,i. Then in commutation relations (A.1) one has, for example,

[X0(f), X1(g)] =

[
x0(f) +

1

2
x̃0(f), x1(g)

]
= x1

(
K0,1(f, g) +

1

2
K1,0(f, g)

)
(2.9a)

= x1

(
K0,1(f, g)− 1

2
K0,1(g, f)

)
= x1

(
fg′ − 1

2
gf ′
)

(2.9b)

and similarly for generators x−1 = Y , x2 = − 1
2δW and x−2 = W , i.e., one can check that the

relations (A.2) are also fulfilled.
Thus we can see that the full algebra describing the GDS system of equations is given by two

copies of the Poisson bracket continual Lie algebra with ”dual” mappings.

3. Conclusions
In this paper we have derived the continual Lie symmetries of the generalized Davey-Stewartson
equations. Provided with the continual Lie algebraic formulation of the generalized DS system,
we are able, in principle, to formulate the general algebraic procedure of solving such a system
according to [12]. This will be a topic of a separate paper.

Appendix A. Continual Lie algebras
Let E be a vector space. A continual Lie algebra [11, 15, 16, 17] is generated by the generalized
local part Gm0 = ⊕|n|≤m0

Gn, Gn = {Xn(φ), φ ∈ E} , n ∈ Z, satisfying the defining relations for
all φ, ψ ∈ E , and |n|, |m|, |n+m| ≤ m0,

[Xn(φ), Xm(ψ)] = Xn+m(Kn,m(φ, ψ)) (A.1)

where Kn,m : E × E → E , n,m ∈ Z, are bilinear mappings. In analogy with classical case of
discrete root space Lie algebra, we call E the root space. Ordinary Jacobi identity applied to
elements Xi(φ) imply the following conditions on Kn,m:

Kk,m+n(φ,Km,n(ψ, χ)) +Km,n+k(ψ,Kn,k(χ, φ)) +Kn,k+m(χ,Kk,m(φ, ψ)) = 0 (A.2)
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Kn,m(φ, ψ) = −Km,n(ψ, φ) (A.3)

for all φ, ψ, χ ∈ E , and |l| ≤ m0, where l denotes an index (or a sum of indeces) in (A.2). Then
an infinite dimensional algebra G(E ;K) = G′(E ;K)/J is called a continual contragredient Lie
algebra where G′(E ;K) is a Lie algebra freely generated by the minimal (in accordance with m0)
generalized local part Gm0 , and J is the largest homogeneous ideal with trivial intersection with
G0 (consideration of the quotient is equivalent to imposing the Serre relations in an ordinary Lie
algebra case) [16, 17]. When |m0| ≤ 1, the commutation relations (A.1) have the form

[X0(φ), X0(ψ)] = X0(K0,0(φ, ψ)), [X0(φ), X±1(ψ)] = X±1(K0,±1(φ, ψ)) (A.4)

[X1(φ), X−1(ψ)] = X0(K1,−1(φ, ψ)) (A.5)

for all φ, and ψ ∈ E . Then conditions (A.2-A.3) reduce to

K0,0(φ, ψ) = −K0,0(ψ, φ) (A.6a)

K±1(K0,0(φ, ψ), χ) = K±1(φ,K±1(ψ, χ))−K±1(ψ,K±(φ, χ)) (A.6b)

K0,0(ψ,K0(φ, χ)) = K1,−1(K1(ψ, φ), χ) +K1,−1(φ,K−1(ψ, χ)) (A.6c)

K0,0(φ,K0,0(ψ, χ)) +K0,0(ψ,K0,0(χ, φ)) +K0,0(χ,K0,0(φ, ψ)) = 0 (A.6d)
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