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Abstract

In this paper, we estimate the eigenvalues of the twisted Dirac operator

on Kähler submanifolds of the complex projective space CP
m and we

discuss the sharpness of this estimate for the embedding CP d → CP
m.
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1 Introduction

In his Ph.D. thesis [5], N. Ginoux gave an upper bound for the eigenvalues
of the twisted Dirac operator for a Kähler spin submanifold M2d of a Kähler
spin manifold M̃2m carrying Kählerian Killing spinors (see Equation (3)).
More precisely, he showed that there are at least µ eigenvalues λ1, λ2, · · · , λµ
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of the square of the twisted Dirac operator satisfying

λ 6





(d+ 1)2 if d is odd,

d(d+ 2) if d is even.
(1)

Here µ denotes the dimension of the space of Kählerian Killing spinors
on M̃2m. Recall that the normal bundle is endowed with the induced spin
structure coming from both manifolds M and M̃ . The idea consists in
computing the so-called Rayleigh-quotient applied to the Kählerian Killing
spinor restricted to the submanifold M . The upper bound is then deduced
by using the min-max principle. This technique was also used by C. Bär in
[1] for submanifolds in Rn+1, Sn+1 and Hn+1.

The complex projective space CPm is a spin manifold if and only m
is odd. In this case, the sharpness of the upper bound (1) was studied in [6]
for the canonical embedding CP d → CPm, where d is also odd. In fact, it is
shown that for d = 1, the upper estimate is optimal for m = 3, 5, 7 while it
is not for m ≥ 9.

Kähler manifolds are not necessary spin but every Kähler manifold
has a canonical Spinc structure (see Section 2) and any other Spinc structure
can be expressed in terms of the canonical one. Moreover, O. Hijazi, S.
Montiel and F. Urbano [8] constructed on Kähler-Einstein manifolds with
positive scalar curvature, Spinc structures carrying Kählerian Killing spinors.
Thus one can consider the result of N. Ginoux for Spinc manifolds.

Section 2 is devoted to recall some basic facts on Spinc structures on
Kähler manifolds. In Section 3, we extend the estimate (1) to the eigenvalues
of the twisted Dirac operator for a Kähler submanifold of the complex
projective space (see Theorem 3.1). Finally, we discuss the sharpness for the
embedding CP d → CPm with different values of m and d.

2 Kähler Submanifolds of Kähler manifolds

Let (M2m, g, J) be a Kähler manifold of complex dimension m. Recall that
the complexified tangent bundle splits into the orthogonal sum TCM =
T1,0M ⊕ T0,1M where T1,0M (resp. T0,1M) denotes the eigenbundle of TCM
corresponding to the eigenvalue i (resp. −i) of the extension of J . Using this
decomposition, we define Λ0,rM := Λr(T ∗

0,1M) (resp. Λr,0M) as being the
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bundle of complex r-forms of type (0, r) (resp. of type (r, 0)). Recall also
that every Kähler manifold has a canonical Spinc structure whose complex
spinorial bundle is given by ΣM = Λ0,∗M = ⊕m

r=0Λ
0,rM, where the auxiliary

bundle of this Spinc structure is given by K−1
M . Here KM is the canonical

bundle of M defined by KM = Λm,0M [4, 11]. On the other hand, the spinor
bundle of any other Spinc structure can be written as [4, 8]:

ΣM = Λ0,∗M ⊗ L,

where L2 = KM ⊗L and L is the auxiliary bundle associated with this Spinc

structure. Moreover, the action of the Kähler form Ω of M splits the spinor
bundle into [4, 10, 9]:

ΣM = ⊕m
r=0ΣrM,

where ΣrM denotes the eigensubbundle corresponding with the eigenvalue

i(2r − m) of Ω with complex rank
(m

k

)
. For any vector field X ∈ Γ(TM)

and ψ ∈ Γ(ΣrM), we have the following property p±(X) · ψ ∈ Γ(Σr±1M),
where p±(X) = 1

2
(X ∓ iJX).

Let (M2d, g, J) be an immersed Kähler submanifold in a Kähler manifold

(M̃2m, g, J) carrying the induced complex structure J (i.e. J(TM) = TM)

and denote respectively by Ω
M̃
, Ω and ΩN the Kähler form of M̃, M and

of the normal bundle NM −→ M of the immersion. Since the manifolds
M and M̃2n are Kähler, they carry Spinc structures with corresponding
auxiliary line bundles LM and L

M̃
. This induces a Spinc structure on the

bundle NM such that the restricted complex spinor bundle ΣM̃|M of M̃ can
be identified with ΣM ⊗ ΣN , where ΣM and ΣN are the spinor bundles of
M and NM respectively ([1], [7]). Moreover, the auxiliary line bundle LN

of this Spinc structure on NM is given by LN := (LM)−1 ⊗ (L
M̃
)|M . Given

connection 1-forms on LM and L
M̃
, they induce a connection ∇ := ∇ΣM⊗ΣN

on ΣM ⊗ ΣN . Thus one can state a Gauss-type formula for the spinorial
Levi-Civita connections ∇̃ and ∇ on ΣM̃ and ΣM ⊗ ΣN respectively [13].

That is, for all X ∈ TM and ϕ ∈ Γ(ΣM̃|M ), we have

∇̃Xϕ = ∇Xϕ +
1

2

2d∑

j=1

ej · II(X, ej) · ϕ, (2)

where (ej)1≤j≤2d is any local orthonormal basis of TM and II is the second
fundamental form of the immersion. As a consequence of the Gauss formula,
the square of the auxiliary Dirac-type operator D̂ :=

∑2d
j=1 ej · ∇̃ej is related
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to the square of the twisted Dirac operator DΣN
M :=

∑2d
j=1 ej · ∇ej by [5,

Lemme 4.1]:

D̂2ϕ = (DΣN
M )2ϕ− d2|H|2ϕ− d

2d∑

j=1

ej · ∇
N
ej
H · ϕ,

where H := 1
2d
tr(II) is the mean curvature vector field of the immersion. In

our case, the mean curvature vanishes which means that the operators D̂2

and (DΣN
M )2 coincide.

In the sequel, take the manifold M̃ as the complex projective space
CPm endowed with its Fubini-Study metric of constant holomorphic sec-
tional curvature 4. In [8], the authors proved that for every q ∈ Z, such that
q +m+ 1 ∈ 2Z, there exists a Spinc structure on CPm whose auxiliary line
bundle is given by Lq

m. Here Lm denotes the tautological bundle of CPm.
In particular for q = −m − 1 (resp. q = m + 1), the Spinc structure is the
canonical one (resp. anti-canonical) [12] and for q = 0 it corresponds to
the unique spin structure if m is odd. Let us denote by ΣqCPm the spinor
bundle of the corresponding Spinc structure with Lq as auxiliary line bundle.
For any integer r in {0, · · · , m+ 1} such that q = 2r − (m+ 1), the bundle
Σq

CPm carries a Kählerian Killing spinor field ψ = ψr−1 + ψr satisfying, for
all X ∈ Γ(TCPm) [8]

∇̃Xψr = −p+(X) · ψr−1,

∇̃Xψr−1 = −p−(X) · ψr, (3)

The space of Kählerian Killing spinors is of rank

(
m+ 1
r

)
. We point out

that for r = 0 (resp. r = m+1) the Kählerian Killing spinor is a parallel spinor
which is carried by the canonical structure (resp. anti-canonical). Moreover,
for r = m+1

2
, i.e. m is odd, the Kählerian Killing spinor is the usual one lying

in Σ0
m−1

2

CPm ⊕ Σ0
m+1

2

CPm defined in [9, 10].

3 Main result

In this section, we will establish the estimates for the eigenvalues of the
twisted Dirac operator of complex submanifolds of the complex projective
space. We will test the sharpness of Inequality (4) for the canonical embed-
ding CP d → CPm. For more details, we refer to [6].
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Theorem 3.1 Let (M2d, g, J) be a closed Kähler submanifold of the complex

projective space CPm. For r ∈ {0, · · · , m + 1} and q = 2r − (m + 1), there

are at least

(
m+ 1
r

)
-eigenvalues λ of (DΣN

M )2 satisfying

λ 6





−(q2 − (d+ 1)2) + 2|q|(m− d)− 1 if m− d is odd

−(q2 − (d+ 1)2) + 2|q|(m− d) if m− d is even.
(4)

Proof. The proof relies on computing the Rayleigh-quotient

∫
M
Re〈(DΣN

M )2ψ, ψ〉vg∫
M
|ψ|2vg

applied to any non-zero Kählerian Killing spinor ψ = ψr−1 + ψr on CPm. A
straightforward computation of the auxiliary Dirac operator leads to

D̂ψr−1 = (q + d+ 1)ψr + iΩN · ψr.

D̂ψr = −(q − d− 1)ψr−1 − iΩN · ψr−1.

Summing up the above two equations, we deduce after using the fact that
the auxiliary Dirac operator commutes with the normal Kähler form [6], that

D̂2ψ = −(q2 − (d+ 1)2)ψ − 2iqΩN · ψ + ΩN · ΩN · ψ.

Taking the Hermitian inner product with ψ and using the fact that the
seond term can be bounded from above by 2|q|(m− d), we get our estimates
after using |ΩN · ψ| ≥ |ψ| if m− d is odd and 0 otherwise. �

In the following, we will treat the sharpness through the embedding
CP d → CPm. Recall first that the complex projective space CP d can
be seen as the symmetric space SUd+1/S(Ud × U1) where S(Ud × U1) :=

{

(
B 0
0 det(B)−1

)
|B ∈ Ud}. The tangent bundle of CP d can be described

as a homogeneous bundle which is associated with the S(Ud × U1)-principal
bundle SUd+1 → CP d via the isotropy representation

α : S(Ud ×U1) −→ Ud(
B 0
0 det(B)−1

)
7−→ det(B)B.
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For the canonical embedding CP d → CPm, the normal bundle T⊥CP d is
isomorphic to L∗

d ⊗ Cm−d where Ld is the tautological bundle of CP d. The
bundle Ld is isomorphic to the homogeneous bundle which is associated with
the S(Ud ×U1)-principal bundle SUd+1 via the representation

ρ : S(Ud × U1) −→ U1(
B 0
0 det(B)−1

)
7−→ (det(B))−1.

Thus the normal bundle is associated with the S(Ud × U1)-principal bundle
SUd+1 → CP d via the representation

ρ : S(Ud × U1) −→ Um−d(
B 0
0 det(B)−1

)
7−→ det(B)Im−d.

Now, we endow CP d with a Spinc structure whose auxiliary line bundle is
given by Lq′

d for q′ ∈ Z. In this case, its spinor bundle is given by

Σq′
CP d = Λ0,∗

CP d ⊗L
q′+d+1

2

d .

The existence of Spinc structures on both CP d and CPm induces also a Spinc

structure on the normal bundle of the embedding with auxiliary line bundle
is given by Lq

m|CP d⊗Lq′

d which is isomorphic to Lq−q′

d . Therefore the Lie-group
homomorphism

ρ : S(Ud × U1) −→ Um−d ×U1(
B 0
0 det(B)−1

)
7−→ (det(B)Im−d, det(B)−(q−q′))

can be lifted through the non-trivial two-fold covering map Spinc
2(m−d) −→

SO2(m−d) ×U1 to the homomorphism

ρ̃ : S(Ud × U1) −→ Spinc
2(m−d)(

B 0
0 det(B)−1

)
7−→ (det(B))−

q−q′+m−d

2 j(det(B)Im−d),

where for any positive integer k, we recall that j : Uk −→ Spinc
2k is given on

elements of diagonal form of Uk as

j(diag(eiλ1 , · · · , eiλk)) = e
i
2
(
∑k

j=1
λj)R̃e1,Je1(

λ1
2
) · · · R̃ek,Jek(

λk
2
).
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Here J is the canonical complex structure on Ck and R̃v,w(λ) = cos(λ) +
sin(λ)v ·w ∈ Spin2k is defined for any orthonormal system {v, w} ∈ R2k. We
point out that the integer q− q′ +m− d is even. Following the similar proof
as in [6, Corollary 4.4], the complex spinor bundle of T⊥CP d splits into the
orthogonal sum

Σ(T⊥
CP d) ∼=

m−d⊕

s=0

(
m− d
s

)
L

q−q′+m−d

2
−s

d ,

where for each s ∈ {0, . . . , m − d}, the factor

(
m− d
s

)
stands the multi-

plicity which the line bundle L
q−q′+m−d

2
−s

d appears in the splitting. This gives
the following decomposition

ΣCP d ⊗ Σ⊥
CP d ≃

m−d

⊕
s=0

(
m− d
s

)
ΣCP d ⊗L

q−q′+m−d

2
−s

d

≃
m−d

⊕
s=0

(
m− d
s

)
Λ0,∗

CP d ⊗ L
d+1+q′

2

d ⊗ L
q−q′+m−d

2
−s

d

≃
m−d

⊕
s=0

(
m− d
s

)
Λ0,∗

CP d ⊗ L
m+1+q

2
−s

d .

We point out here that the above decomposition does not depend on the
Spinc structure chosen on CP d, since no power in q′ appears. In [3], the
authors proved that (see also [6, 2]):

Proposition 3.2 Let CP d be the complex projective space of constant holo-

morphic sectionnal curvature 4 endowed with a Spinc structure whose spinor

bundle is given by Λ0,∗CP d ⊗ Lv, for some v ∈ Z, i.e., whose auxiliary line

bundle is given by L
2v−(d+1)
d . Then, the spectrum of the square of the Dirac

operator is given by the eigenvalue 0 if v ≤ 0 or v ≥ d+ 1 and by

λ2 = 4(l + v)(l − k + d),

where l ∈ N, l + v ≥ k + 1 and 0 6 k 6 d − 1. Moreover, the multiplicity of

λ2 is given by

2(l + d)!(l + v − k − 1 + d)!(2l + v − k + d)

l!k!d!(l + v − k − 1)!(d− k − 1)!(l + v)(l + d− k)

and the multiplicity of 0 by
(|v|+d)!
d!|v|!

if v 6 0 and by
(v−1)!

d!(v−d−1)!
if v ≥ d+ 1.
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In order to find the spectrum of the square of the twisted Dirac operator
corresponding with the embedding CP d → CPm, one should replace v
in Proposition 3.2 by m+1+q

2
− s and in this case, the eigenvalue of the

square of the twisted Dirac operator is given by 0 if m+1+q

2
− s 6 0 or if

m+1+q

2
− s ≥ d + 1 and by 4(l + m+1+q

2
− s)(l − k + d) for 0 6 s 6 m − d,

0 6 k 6 d− 1 and l + m+q+1
2

− s ≥ k + 1.

Let us consider particular values for d,m and q in order to check the
optimality. For d = 1, m = 2 and q = 1, by Theorem 3.1, there are at least 3
eigenvalues of the square of the twisted Dirac operator satisfying the estimate
λ 6 4. The multiplicity of zero is 1 and the multiplicity of the eigenvalue 4
is 4 which means that the estimate is optimal. For d = 1, m = 3 and q = 2,
by Theorem 3.1, there are at least 4 eigenvalues of the square of the twisted
Dirac operator satisfying the estimate λ 6 8. The multiplicity of zero is 3.
The multiplicity of the eigenvalue 4 is 4 and the multiplicity of the eigenvalue
8 is 6 which means that the estimate is not optimal. For d = 2, m = 3 and
q = 2, there are at least 4 eigenvalues of the square of the twisted Dirac
operator satisfying the estimate λ 6 8. The multiplicity of zero is 1 and the
multiplicity of the eigenvalue 8 is 6 which means that the estimate is optimal.
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