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Boundary value problems for noncompact boundaries of Spinc

manifolds and spectral estimates

Nadine Grosse and Roger Nakad

Abstract

We study boundary value problems for the Dirac operator on Riemannian Spinc manifolds of
bounded geometry and with noncompact boundary. This generalizes a part of the theory of
boundary value problems by Bär and Ballmann for complete manifolds with closed boundary.
As an application, we derive the lower bound of Hijazi–Montiel–Zhang, involving the mean
curvature of the boundary, for the spectrum of the Dirac operator on the noncompact boundary
of a Spinc manifold, and the limiting case is studied.

1. Introduction

In the last years, the spectrum of the Dirac operator on hypersurfaces of Spin manifolds
has been intensively studied. Indeed, many extrinsic upper bounds have been obtained (see
[1, 2, 4, 6, 7, 10] and references therein) and more recently in [16–20, 30], extrinsic lower
bounds for the hypersurface Dirac operator are established. From these spectral estimates
and their limiting cases, many topological and geometric informations on the hypersurface are
derived.

In [16], Hijazi, Montiel and Zhang investigated the spectral properties of the Dirac operator
on a compact manifold with boundary for the Atiyah–Patodi–Singer type boundary condition
(or shortly APS-boundary condition) corresponding to the spectral resolution of the classical
Dirac operator of the boundary hypersurface. They proved that, on the compact boundary
Σ = ∂M of a compact Riemannian Spin manifold (Mn+1, g) of nonnegative scalar curvature
scalM , the first nonnegative eigenvalue of the Dirac operator on the boundary satisfies

λ1 � n

2
inf
Σ
H, (1)

where the mean curvature of the boundary H is calculated with respect to the inner normal
and assumed to be nonnegative. Equality holds in (1) if and only if H is constant and every
eigenspinor associated with the eigenvalue λ1 is the restriction to Σ of a parallel spinor field
on M (and hence M is Ricci-flat). As application of the limiting case, they gave an elementary
Spin proof of the famous Alexandrov theorem: The only closed embedded hypersurface in R

n+1

of constant mean curvature is the sphere of dimension n.
Furthermore, Inequality (1) does not only give an extrinsic lower bound on the first

nonnegative eigenvalue, but can also be seen as an obstruction to positive scalar curvature
of the interior given only in terms of a neighbourhood of the boundary. More precisely, let a
neighbourhood of the boundary Σ be equipped with a metric of nonnegative scalar curvature
and such that the boundary has nonnegative mean curvature. If the lowest positive eigenvalue
of the Dirac operator on the boundary is smaller than (n/2) infΣH, then the metric cannot be
extended to all of M such that the scalar curvature remains nonnegative.
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In this paper, we extend the lower bound (1) to noncompact boundaries of Riemannian
Spinc manifolds under suitable geometric assumptions, see Theorem 1.2. When shifting from
the compact case to the noncompact case, many obstacles occur. Moreover, when shifting from
the classical Spin geometry to Spinc geometry, the situation is more general since the spectrum
of the Dirac operator will not only depend on the geometry of the manifold but also on the
connection of the auxiliary line bundle associated with the fixed Spinc structure.

When we consider a Riemannian Spin or Spinc manifold with noncompact boundary, the
main technical difference to the compact case is that we cannot restrict all our computations to
smooth spinors. For compact manifolds, this is possible by using the spectral decomposition of
L2 by an eigenbasis. For complete manifolds, eigenspinors do not have to exist or even if they do,
in general, they do not form an orthonormal basis of L2 since continuous spectrum can occur.
Additionally, the proof of Inequality (1) in the closed case uses the existence of a solution of
a boundary value problem defined under the APS-boundary condition. While for noncompact
boundaries the idea of APS-boundary conditions can be carried over to noncompact boundaries
by using the spectral theorem, it is not clear to us whether they actually define an actual
boundary condition, see Example 4.16.

To circumvent all these problems, a large part of the paper is devoted to give a generalization
of the theory of boundary value problems for noncompact boundaries, see Section 4. We
stick to the part of the theory that gives existence of solutions of such boundary value
problem, cf. Remark 4.15. For complete manifolds with closed boundary, the theory of
boundary value problems is given by Bär and Ballmann [9]. They did not only restrict to
the classical Dirac operator but they generalized the traditional theory of elliptic boundary
value problems to Dirac-type operators. Additionally, they proved a decomposition theorem
for the essential spectrum, a general version of Gromov and Lawson’s relative index theorem
and a generalization of the cobordism theorem.

In Section 4, we will classify boundary conditions for a Riemannian Spinc manifold (Mn+1, g)
with noncompact boundary Σ := ∂M and of bounded geometry, see Definition 2.2. Indeed,
we prove in Section 4 that the trace map or the restriction map R : ϕ �→ ϕ|Σ, where ϕ is a
compactly supported smooth spinor on M can be extended to a bounded operator

R : domDmax −→ H−1/2(Σ,SM |Σ).

Here, domDmax is the maximal domain of the Dirac operator on M , SM |Σ is the restriction
of the Spinc bundle SM to Σ and for H−1/2(Σ,SM |Σ), see Definition 3.5. The map R is not
surjective. But in Theorem 3.13, we show that there is an extension map Ẽ , a right inverse to
the restriction map R : Γ∞

c (M,SM ) → Γ∞
c (M,SM ), such that ẼR is a bounded linear operator

from domDmax to itself. The definition of Ẽ uses the extension map for closed boundaries
introduced by Bär and Ballmann [9] as local building blocks. This will allow one to equip
R(dom Dmax) with a norm ‖.‖Ř that turns it into a Hilbert space. With these ingredients, we
can then classify the closed extensions of the Dirac operator Dcc acting on smooth compactly
supported spinors on M : For every closed extension of the Dirac operator acting on smooth
compactly supported spinors on M the set B := R(domD) ⊂ H−1/2(Σ,SM |Σ) is closed in
(R(domDmax), ‖.‖Ř). Conversely, every closed linear subset B ⊂ (R(domDmax), ‖.‖Ř) gives
the domain domDB of a closed extension. Such subsets B are called a boundary conditions.

Then, we generalize the existence result for boundary value problems to our noncompact
setting. For this, we need the notion of B-coercivity at infinity, see Definition 4.17. This notion
generalizes the notion of coercivity at infinity for closed boundaries as used in [9], where this
assumption is also needed when characterizing the Fredholmness of the Dirac operator. The
B-coercivity at infinity condition will, in general, depend on the boundary condition B and
under some additional assumptions, it coincides with the coercivity at infinity condition
used in [9].
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Theorem 1.1. Let M be a Riemannian Spinc manifold with boundary N . Let (M,N) and
the auxiliary line bundle L over M be of bounded geometry, cp. Definitions 2.2 and 2.3. Let
B ⊂ R(domDmax) be a boundary condition, and let the Dirac operator

DB : domDB ⊂ L2(M,SM ) −→ L2(M,SM )

be B-coercive at infinity. Let PB be a projection from R(domDmax) to B. Then, for all ψ ∈
L2(M,SM ) and ρ̃ ∈ domDmax, where ψ −Dρ̃ ∈ (ker(DB)∗)⊥ the boundary value problem{

Dϕ = ψ on M,

(Id−PB)Rϕ = (Id−PB)Rρ̃ on Σ

has a unique solution ϕ ∈ domDmax, up to elements of the kernel kerDB .

Note that projection just means a linear operator that restricted to B acts as identity
operator.

Theorem 1.1 will be one of the main ingredients to generalize Inequality (1) to our
noncompact setting. As boundary condition B we will not take the APS-boundary condition as
in the closed case but another one: B±, cf. Section 5. For closed boundaries, the B± boundary
condition was introduced in [18] to prove a conformal version of (1). Using Theorem 1.1 for the
boundary condition B± and the Spinc Reilly inequality on possibly open boundary domains,
we obtain the following theorem.

Theorem 1.2. Let (Mn+1, g) be a complete Riemannian Spinc manifold with boundary Σ
and L be the auxiliary line bundle associated to the Spinc-structure. Assume that (M,Σ) and
L are of bounded geometry. Moreover, we assume that Σ has nonnegative mean curvature H
with respect to its inner unit normal field of Σ, the Dirac operator D is (B+)- or (B−)-coercive
at infinity and that scalM + 2iΩ· is a nonnegative operator where iΩ denotes the curvature 2-
form of L. Then, the infimum λ1 of the nonnegative part of the spectrum of the Dirac operator
on Σ satisfies

λ1 � n

2
inf
Σ
H.

If λ1 � 0 is an eigenvalue, then equality holds if and only if H is constant and any eigenspinor
corresponding to λ1 is the restriction of a parallel Spinc spinor ϕ on M .

The paper is structured as follows: In Section 2, we give all the preliminaries as, for example,
the Spinc Dirac operator and the assumption on the bounded geometry. In Section 3, we
review the trace and extension theorem for Sobolev spaces on manifolds of bounded geometry
and appropriate noncompact boundary, the spectral decomposition of the Dirac operator on
the boundary and analyse an extension map for the maximal domain of the Dirac operator.
The theory of boundary values will be generalized to our noncompact setting in Section 4. The
special boundary condition B± needed to proof the desired inequality is examined in Section 5.
In Section 6, we study the coercivity condition for the Dirac operator. Then, we review the
spinorial Reilly inequality in order to ready to proof the inequality in Section 8.

2. Notations and preliminaries

In this section, we briefly review some basic facts about Spinc geometry. Then, we give the
necessary preliminaries on Sobolev spaces on manifolds with boundary, the Trace Theorem and
its implications, some basics of spectral theory, and we recall the closed range theorem.
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The Spinc Dirac operator. Let (Mn+1, g) be an (n+ 1)-dimensional Riemannian Spinc

manifold with boundary. On such a manifold, we have a Hermitian complex vector bundle
SM endowed with a natural scalar product 〈., .〉 and with a connection ∇ that parallelizes
the metric. Moreover, the bundle SM , called the Spinc bundle, is endowed with a Clifford
multiplication denoted by ‘·’, · : TM → EndC(SM ), such that at every point x ∈M , ‘·’ defines
an irreducible representation of the corresponding Clifford algebra. Hence, the complex rank of
SM is 2[(n+1)/2]. Given a Spinc structure on (Mn+1, g), one can prove that the determinant line
bundle det SM has a root of index 2[(n+1)/2]−1, see [13, Section 2.5]. We denote by L this root
line bundle over M and call it the auxiliary line bundle associated with the Spinc structure.

Locally, a Spin structure always exists. We denote by S
′
M the (possibly globally non-existent)

spinor bundle. Moreover, the square root of the auxiliary line bundle L always exists locally.
But, SM = S

′
M ⊗ L1/2, see [13, Appendix D; 23]. This essentially means that, while the spinor

bundle and L1/2 may not exist globally, their tensor product (the Spinc bundle) is defined
globally. Thus, the connection ∇ on SM is the twisted connection of the one on the spinor
bundle (coming from the Levi-Civita connection) and a fixed connection on L.

We denote by Γ∞
c (M,SM ) the set of all compactly supported smooth spinors on M . This

allows boundary values if ∂M �= ∅. The set of smooth spinors that are compactly supported in
the interior ofM is denoted by Γ∞

cc (M,SM ). For abbreviation, we set L2 = L2(M) = L2(M,SM )
and L2(Σ) = L2(Σ,SM |Σ) and analogously for other function spaces. Moreover, (., .) shall
always denote the L2-scalar product on M and (., .)Σ the one on Σ.

With these ingredients, we may define the Dirac operator D acting on the space of smooth
sections of SM , denoted by Γ∞(M,SM ), by the composition of the metric connection and the
Clifford multiplication. In local coordinates, this reads as

D =
n+1∑
j=1

ej · ∇ej
,

where {ej}j=1,...,n+1 is an orthonormal basis of TM . It is a first-order elliptic operator satisfying
for all smooth spinors ϕ,ψ on M at least one of them being compactly supported

(Dψ,ϕ) − (ψ,Dϕ) = −
∫
∂M

〈ν · ψ|∂M , ϕ|∂M 〉 ds, (2)

where (., .) is the L2-scalar product given by (ϕ,ψ) =
∫

M
〈ϕ,ψ〉 dv, ∂M is the boundary of M ,

|∂M denotes the restriction to the boundary, ν the inner unit normal vector of the embedding
∂M ↪→M , and dv (respectively, ds) is the Riemannian volume form of M (respectively, of
∂M). Hence, if ∂M = ∅, then the Dirac operator is formally self-adjoint with respect to the
L2-scalar product.

An important tool when examining the Dirac operator on Spinc manifolds is the Schrödinger–
Lichnerowicz formula:

D2 = ∇∗∇ +
1
4
scalM IdΓ(SM ) +

i

2
Ω·, (3)

where ∇∗ is the adjoint of ∇ with respect to the L2-scalar product, iΩ is the curvature of the
auxiliary line bundle L associated with a fixed connection (Ω is a real 2-form on M) and Ω· is
the extension of the Clifford multiplication to differential forms.

Example 2.1. (i) A Spin structure can be seen as a Spinc structure with trivial auxiliary
line bundle L and trivial connection (and so iΩ = 0).

(ii) Every almost complex manifold (M2m=n+1, g, J) of complex dimension m has a
canonical Spinc structure. In fact, the complexified cotangent bundle T ∗M ⊗ C = Λ1,0M ⊕
Λ0,1M decomposes into the ±i-eigenbundles of the complex linear extension of the complex
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structure J . Thus, the spinor bundle of the canonical Spinc structure is given by

SM = Λ0,∗M =
m⊕

r=0

Λ0,rM,

where Λ0,rM = Λr(Λ0,1M) is the bundle of r-forms of type (0, 1). The auxiliary line bundle
of this canonical Spinc structure is given by L = (KM )−1 = Λm(Λ0,1M), where KM is the
canonical bundle of M (see [13, 15, 21, 23]). Let α be the Kähler form defined by the complex
structure J , that is, α(X,Y ) = g(X,JY ) for all vector fields X,Y ∈ Γ(TM). The auxiliary
line bundle L = (KM )−1 has a canonical holomorphic connection induced from the Levi-Civita
connection whose curvature form is given by iΩ = iρ, where ρ is the Ricci 2-form given by
ρ(X,Y ) = Ric(X,JY ). Here, Ric denotes the Ricci tensor of M . For any other Spinc structure
on M2m, the spinorial bundle can be written as [13, 15]

SM = Λ0,∗M ⊗ L,
where L2 = KM ⊗ L and L is the auxiliary bundle associated with this Spinc structure. In this
case, the 2-form α can be considered as an endomorphism of SM via Clifford multiplication
and we have the well-known orthogonal splitting SM =

⊕m
r=0 Sr

M , where Sr
M denotes the

eigensubbundle corresponding to the eigenvalue i(m− 2r) of α, with complex rank
(
m
k

)
. The

bundle S
r
M corresponds to Λ0,rM ⊗ L. For the canonical Spinc structure, the subbundle S

0
M is

trivial. Hence and when M is a Kähler manifold, this Spinc structure admits parallel spinors
(constant functions) lying in S

0
M (see [21]). Of course, we can define another Spinc structure for

which the spinor bundle is given by Λ∗,0M =
⊕m

r=0 Λr(T ∗
1,0M) and the auxiliary line bundle

by KM . This Spinc structure is called the anti-canonical Spinc structure.

Any Spinc structure on (Mn+1, g) induces a Spinc structure on its boundary Σ = ∂M and
we have {

SM |Σ � SΣ if n is even,
S

+
M |Σ � SΣ if n is odd.

We recall that if n is odd, the spinor bundle SM splits into

SM = S
+
M ⊕ S

−
M ,

by the action of the complex volume element. Moreover, Clifford multiplication with a vector
field X tangent to Σ is given by

X • ϕ = (X · ν · ψ)|Σ,
where ψ ∈ Γ∞(M,SM ) (or ψ ∈ Γ∞(S+

M ) if n is odd), ϕ is the restriction of ψ to Σ, ‘•’ is
the Clifford multiplication on M . When n is odd we also obtain S

−
M � SΣ. In this case, the

Clifford multiplication by a vector field X tangent to Σ is given by X • ϕ = −(X · ν · ψ)|Σ
and hence we have SM |Σ � SΣ ⊕ SΣ. Moreover, the corresponding auxiliary line bundle LΣ on
Σ is the restriction to Σ of the auxiliary line bundle L and iΩΣ = iΩ|Σ. We denote by ∇Σ

the spinorial Levi-Civita connection on SΣ. For all smooth vector fields X ∈ Γ∞(TΣ) and for
every smooth spinor field ψ ∈ Γ∞(M,SM ), we consider ϕ = ψ|Σ and we have the following
Spinc Gauss formula [15, 22, 23]:

(∇Xψ)|Σ = ∇Σ
Xϕ+ 1

2II(X) • ϕ,
where II denotes the Weingarten map with respect to ν. Moreover, let D and DΣ be the Dirac
operators on M and Σ. After denoting any smooth spinor and its restriction to Σ by the same
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symbol, we have on Σ (see [15, 22, 23]) that

D̃Σϕ =
n

2
Hϕ− ν ·Dϕ−∇νϕ, (4)

D̃Σ(ν · ϕ) = −ν · D̃Σϕ, (5)

where H = (1/n) tr(II) denotes the mean curvature and D̃Σ = DΣ if n is even and D̃Σ = DΣ ⊕
(−DΣ) if n is odd. Note that σ(D̃Σ) = {±λ |λ ∈ σ(DΣ)}, where σ(A) denotes the spectrum of
an operator A.
Bounded geometry. In this paragraph, we recall the definition of manifolds of bounded
geometry.

Definition 2.2 [25, Definition 2.2]. Let (Mn+1, g) be a complete Riemannian manifold
with boundary Σ. We say that (M,Σ) is of bounded geometry if the following is fulfilled.

(i) The curvature tensor of M and all its covariant derivatives are bounded.
(ii) The injectivity radius of Σ is positive.
(iii) There is a collar around Σ, that is: there is r∂ > 0 such that the geodesic collar

F : UΣ = [0, r∂) × Σ −→M, (t, x) �−→ expx(tν)

is a diffeomorphism onto its image where ν is the inner unit normal field on Σ. We equip UΣ

with the induced metric and will identify UΣ with its image.
(iv) There exists ε > 0 such that the injectivity radius of each point x ∈M \ UΣ is greater

or equal than ε.
(v) The mean curvature of Σ and all its covariant derivatives are bounded.

Definition 2.3 (cp. [26, A.1.1] together with [12, Theorem B]). Let E be a hermitian
vector bundle over M, where (M,Σ) is of bounded geometry. Then, E is said to be of bounded
geometry if its curvature and all its covariant derivatives are bounded.

Remark 2.4. (1) Note that the above definition contains the usual definition of manifold
of bounded geometry without boundary. Moreover, if (M, g) is of bounded geometry, then
(Σ, g|Σ) is also of bounded geometry [25, Corollary 2.24].

(2) For the spinor bundle S
′
M associated with a Spin structure, the bounded geometry

follows automatically from the bounded geometry of M (see [3, Section 3.1.3]). For a Spinc

manifold the situation is more general since the Spinc bundle SM does not only depend on the
geometry of the underlying manifold, but also on the geometry of the auxiliary line bundle L.
But, SM = S

′
M ⊗ L1/2, where S

′
M is the locally defined spinor bundle, L1/2 is locally defined

too and SM is globally defined. Thus, the assumption that L is of bounded geometry assures
that SM is also of bounded geometry.

Assumption for the rest of the paper: (M,Σ) and L are of bounded geometry.

The Sobolev space H1 on manifolds with boundary. We define the H1 = H1(M,SM )-norm on
Γ∞

c (M,SM ) by

‖ϕ‖2
H1(M,SM ) = ‖ϕ‖2

L2(M,SM ) + ‖∇ϕ‖2
L2(M,SM ).

Finally, we define H1 = H1(M,SM ) as the closure of Γ∞
c (M,SM ) with respect to the H1-norm

defined above.
Using the Lichnerowicz formula (3), the Gauß theorem (∇∗∇ϕ,ϕ) = ‖∇ϕ‖2

L2 +∫
Σ
〈∇νϕ,ϕ〉 ds, (2) and (4), we obtain another description of the H1-norm: For all ϕ ∈
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Γ∞
c (M,SM ), we have

‖ϕ‖2
H1

= ‖ϕ‖2
L2 + ‖Dϕ‖2

L2 −
∫
M

scalM

4
|ϕ|2 dv −

∫
M

i

2
〈Ω · ϕ,ϕ〉 dv +

∫
Σ

〈ϕ|Σ,DW (ϕ|Σ)〉 ds,
(6)

where DW = D̃Σ − (n/2)H is the so-called Dirac–Witten operator. Note that due to the local
expression of D and the Cauchy–Schwarz inequality, we always have

‖Dϕ‖2
L2 �

∫
M

(
n+1∑
i=1

|∇ei
ϕ|
)2

dv � (n+ 1)‖∇ϕ‖2
L2 , (7)

for all ϕ ∈ H1(M,SM ).
Spectral theory. Most of the following can be found in [8]. In this paragraph, we shortly
review the spectral theory of the Dirac operator D : H1(N,SN ) ⊂ L2(N,SN ) → L2(N,SN ) on
a complete Riemannian Spinc manifold N without boundary. Note that we assume that N is
of bounded geometry, and hence the graph norm of D, ‖.‖D, and the H1-norm are equivalent.
Then, D is self-adjoint and the spectrum is real. A real number λ is an eigenvalue of D if
there exists a non-zero spinor ϕ ∈ H1 with Dϕ = λϕ. Then, ϕ is called an eigenspinor to
the eigenvalue λ. Standard local elliptic regularity theory gives that an eigenspinor is always
smooth. The set of all eigenvalues is denoted by σp(DΣ), the point spectrum. If N is closed,
then the Dirac operator has a pure point spectrum. But on open manifolds, the spectrum might
have a continuous part. In general, the spectrum, denoted by σ(D), is composed of the point,
the continuous and the residual spectrum. In case of a self-adjoint operator, as we have, there
is no residual spectrum. Often another decomposition of the spectrum is used, the one into
discrete spectrum σd(D) and essential spectrum σess(D). A real number λ lies in the essential
spectrum of D if there exists a sequence of smooth compactly supported spinors ϕi which
‖ϕi‖L2 = 1, ϕi converge weakly to zero and

‖(D − λ)ϕi‖L2 −→ 0.

The essential spectrum contains amongst other elements all eigenvalues of infinite multiplicity.
In contrast, the discrete spectrum σd(D) := σp(D) � σess(D) consists of all eigenvalues of finite
multiplicity.
Closed Range Theorem. Next, we want to recall briefly (a part of) the Closed Range Theorem
for later use.

Theorem 2.5 [29, p.205]. Let T : X → Y be a closed linear operator between Banach
spaces X,Y . Then, the range ran(T ) of T is closed in Y if and only if ran(T ) = ker(T ∗)⊥,
where T ∗ is the adjoint operator of T and ker(T ∗) is the kernel of T ∗.

A linear operator T : X → Y between Banach spaces is called Fredholm if its kernel is finite-
dimensional and its image has finite codimension.

3. Trace theorems and extensions

We consider the restriction operator

R : Γ∞
c (M,SM ) −→ Γ∞

c (Σ,SM |Σ),
ϕ �−→ ϕ|Σ.

If it is clear from the context that Rϕ is considered instead of ϕ, then we will sometimes
abbreviate by using ϕ only. The first part of this section will be devoted to see how the
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restriction operator R extends to a bounded linear operator between the Sobolev spaces
H1(M,SM ) andH1/2(Σ,SM |Σ). This theorem is known as Trace Theorem and is a very classical
result for R

n
+ and compact manifolds with boundary. After reviewing the Euclidean result and

basic definitions, we will shortly review how this result extends to manifolds (M,Σ) of bounded
geometry. In particular, the restriction operator will have a bounded linear right inverse, that
is called extension operator E .

For more details on the definition of bounded geometry on manifolds with boundary, see [25].
For the equivalence of all those different definitions of Sobolev-norms involved here and the
corresponding theorems for submanifolds (not necessarily hypersurfaces), see [14].

For our purpose, Sobolev spaces will not be sufficient later on. The maximal domain of the
Dirac operator is bigger than H1(SM ). The rest of this section is devoted to define an extension
operator Ẽ such that ẼR : Γ∞

c (M,SM ) → Γ∞
c (M,SM ) extends to a bounded operator with

respect to the graph norm of D. For the definition of Ẽ we will use the special extension map
introduced by Bär and Ballmann [9] for closed boundaries.

3.1. Trace and extension for Sobolev spaces

Trace Theorem for functions on R
n+1
+ = {(x0, x1, . . . , xn) ∈ R

n+1 |x0 � 0}.
We identify the boundary of R

n+1
+ with R

n. First, we repeat the definition of the Sobolev
spaces Hs(Rn,Cr):

Definition 3.1 [27, Definition 3.1]. Let s ∈ R. The Hs := H2
s -norm of a compactly

supported function f : R
n �→ C

r is defined as

‖f‖2
Hs(Rn,Cr) :=

∫
Rn

∣∣∣f̂(ξ)
∣∣∣2 (1 + |ξ|)sdξ,

where f̂(x) := (2π)−n/2
∫

Rn e
−ix·ξf(ξ) dξ denotes the Fourier transform of f . The space

Hs(Rn,Cr) is then defined as the completion of Γ∞
c (Rn,Cr), the space of smooth compactly

supported functions on R
n with values in C

r, with respect to the Hs-norm.

The spaces Hs(Rn+1
+ ,Cr) are defined analogously.

Theorem 3.2 [24, Theorems 7.34 and 7.36; 27, Theorem I.3.4; 28, p.138, Remark 1]. Let
s > 1

2 . The restriction map for complex-valued smooth functions R : Γ∞
c (Rn+1

+ ) → Γ∞
c (Rn),

f → f |Rn extends to a bounded linear operator from Hs(Rn+1
+ ) to H(s−1/2)(Rn). Moreover,

there is an extension operator E : H(s−1/2)(Rn) → Hs(Rn+1
+ ) that is a bounded linear operator

and a right inverse to R.

The generalization of this theorem to vector-valued Sobolev spaces follows immedi-
ately by the following: Let f = (f1, . . . , fr) : R

n → C
r. Then, the norms ‖f‖Hs(Rn,Cr) and∑r

i=1 ‖fi‖Hs(Rn,C) are equivalent.
Trace theorem on manifolds of bounded geometry.

From now on, let M be a Riemannian manifold possibly with boundary and of bounded
geometry, as in Definition 2.2. Moreover, let E be a hermitian vector bundle overM . We assume
that E is also of bounded geometry, see Definition 2.3. To obtain a trace theorem for sections
in E we need coordinates of the manifold that are adapted to the structure of the boundary.
Those will be Fermi coordinates and there will be a adapted synchronous trivialization of E.
This will allow that we can use the trace theorem on Rn on the individual charts to obtain the
trace theorem on (M,Σ).
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In the following, we restrict to trace theorems for Sobolev spaces over L2, for more general
domains as Sobolev spaces over Lp or Triebel–Lizorkin spaces see [14].

Before we define Sobolev spaces for sections of E, we introduce Fermi coordinates adapted
to the boundary and a corresponding synchronous trivialization of the vector bundle.

Definition 3.3 [14, Definition 4.3 and Lemma 4.4; 25, Definition 2.3]. Let (Mn,Σ) be of
bounded geometry, see Definition 2.2 and the notions defined therein.

Let r = min{ 1
2rΣ,

1
4rM , 1

2r∂}, where rΣ is the injectivity radius of Σ and rM the one of M .
Let pΣ

α ∈ Σ and pβ ∈M be points such that

(i) the metric balls BΣ
r (pΣ

α) in Σ (that is, with respect to the metric g|Σ) give a uniformly
locally finite cover of Σ;

(ii) the metric balls Br(pβ) in M cover M \ Ur(Σ), where Ur(Σ) := F ([0, r) × Σ) and those
balls are uniformly locally finite on all of M .

Let (Uγ)γ be a locally finite covering of M where each Uγ is of the form Br(pβ) or UΣ
pΣ

α
=

F ([0, 2r) ×BΣ
2r(p

Σ
α)). By construction, the covering (Uγ)γ is locally finite. Coordinates on Uγ

are chosen to be geodesic normal coordinates around pβ in case Uγ = Br(pβ). Otherwise,
coordinates are given by Fermi coordinates

κα : UΣ
pΣ

α
:= [0, 2r) ×B2r(0) ⊂ R

n −→ UΣ
pΣ

α
, (t, x) �−→ expexpΣ

pΣ
α

(x)(tν),

where ν is the inner normal field of Σ and expΣ is the exponential map on Σ with respect to
the induced metric. We call such coordinates (Uγ , κγ)γ Fermi coordinates for (M,Σ). If Uγ =
Br(pγ), then E|Uγ

is trivialized via parallel transport along radial geodesic and we identify E|Uγ

with the trivial C
r-bundle over Uγ . Otherwise, E|Uγ

is trivialized via parallel transport along
radial geodesic of the boundary and along the normal direction. The obtained trivialization is
denoted by (ξγ)γ .

In case of manifolds without boundary, the Definition of ξγ in 3.3 is the usual definition
of synchronous trivialization as found in [3, Section 3.1.3]. Note that by construction the
restriction of a synchronous trivialization of E over a manifold M to its boundary Σ gives a
synchronous trivialization of E|Σ.

Lemma 3.4 [14, Lemma 4.8]. There is a partition of unity hγ subordinated to the Fermi
coordinates introduced above fulfilling: For all k ∈ N there is ck > 0 such that for all γ and all
multi-indices a = (a1, . . . , an) with |a| � k

|Da(hγ ◦ κγ)| � ck.

Here, Da = ∂a1/(∂x1)a1 · · · ∂an/(∂xn)an , where xi are the coordinates.

Now, we have all the ingredients to define Sobolev spaces on E via local pullback to vector-
valued functions over Rn.

Definition 3.5 [14, Definition 5.9]. Let s ∈ R. Let (Uγ)γ be a covering of M together
with a synchronous trivialization ξγ of E as defined above. Moreover, let the covering be
locally finite, and let hγ be a partition of unity subordinated to Uγ as in Lemma 3.4. Then,

‖ϕ‖2
Hs(M,E) :=

∑
α

‖ξα∗(hαϕ)‖2
Hs(Rn

+,Cr).
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Note that up to equivalence the Hs-norm does not depend on the choices of (Uγ , hγ , ξγ), cp.
[14, Theorem 4.9, 5.11 and Lemma 5.13].

Remark 3.6. (i) For s ∈ N, the definition of Hs(M,E) from above is equivalent to the
usual definition given by

‖ϕ‖Hs(M,E) :=
s∑

i=0

‖∇E · · · ∇E︸ ︷︷ ︸
i times

ϕ‖L2(M,E),

cp. [14, Theorem 5.7; 25].

(ii) For s � t, we have ‖ϕ‖Hs(M,E) � ‖ϕ‖Ht(M,E). That is seen for M = R
n
+ immediately

using (1 + |ξ|)s � (1 + |ξ|)t. For general M , one just lifts this result by using a partition of
unity and a synchronous trivialization.

(iii) Let DΣ : Γ∞
c (Σ,SΣ) → Γ∞

c (Σ,SΣ) be the Dirac operator on Σ. For any s ∈ R, there is
a unique closed extension of DΣ from Hs(Σ,SΣ) → Hs−1(Σ,SΣ).

Theorem 3.7. Let Mn be a Riemannian manifold with boundary Σ. Assume that (M,Σ)
is of bounded geometry and that E is a hermitian vector bundle over M that is also of bounded
geometry. Then, for all s ∈ R with s > 1

2 , the operator R : Γ∞
c (M,E) → Γ∞

c (Σ, E|Σ) with ϕ �→
ϕ|Σ extends to a bounded linear operator from Hs(M,E) to Hs−1/2(Σ, E|Σ). Moreover, there
is a bounded right inverse E : Hs−1/2(Σ, EΣ) → Hs(M,E) of the trace map R : Hs(M,E) →
Hs−1/2(Σ, E|Σ). In particular, E(Γ∞

c (Σ, E|Σ)) ⊂ Γ∞
c (M,EM ).

Proof. This theorem is a special case of [14, Theorem 5.14]. We shortly sketch the basic idea:
We choose a covering Uγ together with a synchronous trivialization ξγ of E and a subordinated
partition of unity hγ as in Definition 3.3 and Lemma 3.4. The restrictions Uγ ∩ Σ then cover
Σ. Let ϕ ∈ Hs(M,E). Then, for all α, we have ξα∗(hαϕ) ∈ Hs(Rn

+,C
r). Thus, there exists a

C > 0 with ‖R(ξγ∗(hγϕ))‖Hs−1/2(Rn−1,Cr) � C‖ξγ∗(hγϕ)‖Hs(Rn
+,Cr).

With R(ξα∗(hαϕ)) = ξα∗(hαRϕ) we get after summing up that ‖Rϕ‖Hs−1/2(Σ,E|Σ) �
C‖ϕ‖Hs(M,E) since ξα is still a synchronous trivialization for E|Σ.

The rest is proved analogously as the Trace Theorem using the original Euclidean version of
the extension map E : Hs−1/2(Rn−1) → Hs(Rn). The last inclusion follows immediately from
E(Γ∞

c (Rn−1)) ⊂ Γ∞
c (Rn).

The last theorem gives immediately the following corollary.

Corollary 3.8. The map ER : Γ∞
c (M,E) → Γ∞

c (M,E) extends to a bounded linear map
ER : Hs(M,E) → Hs(M,E) for all s > 1

2 .

Lemma 3.9. The L2-product (ϕ,ψ) =
∫
Σ
〈ϕ,ψ〉 dv for ϕ,ψ ∈ Γ∞

c (Σ, E|Σ) extends to a
perfect pairing Hs(Σ, E|Σ) ×H−s(Σ, E|Σ) → C for all s ∈ R.

Proof. This is also proved in the same way as above, by lifting the corresponding result
from the Euclidean case [27, Section I.3].

The Trace Theorem now allows one to extend the allowed domain for the spinors in the
Equalities (6) and (2).
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Lemma 3.10. For all ϕ,ψ ∈ H1(M,SM ), Equalities (6) and (2) hold.

Proof. The proof is a more or less straightforward usage of the Trace Theorem 3.7 and
the corresponding equalities on Γ∞

c (M,SM ). Indeed, let ϕi be a sequence in Γ∞
c (M,SM ) with

ϕi → ϕ in H1(M,SM ). The Trace Theorem 3.7 gives Rϕi → Rϕ in H1/2(Σ,SM |Σ) and, hence,
D̃ΣRϕi → D̃ΣRϕ in H−1/2(Σ,SM |Σ), cf. Remark 3.6(iii). Clearly, ‖ϕi − ϕ‖H1 → 0 and with
(7), this implies ‖ϕi − ϕ‖D → 0. Moreover, the bounded geometry of (M,Σ) implies

∫
M

scalM |ϕi|2 dv −→
∫
M

scalM |ϕ|2 dv,
∫
Σ

H|ϕi|2 ds −→
∫
Σ

H|ϕ|2 ds,

and∣∣∣∣
∫
M

〈Ω · ϕi, ϕi〉 dv −
∫
M

〈Ω · ϕ,ϕ〉 dv
∣∣∣∣ � (‖ϕi − ϕ‖L2‖ϕ‖L2 + ‖ϕi‖L2‖ϕi − ϕ‖L2) sup

M
|Ω| −→ 0.

Note that due to the bounded geometry of L, supM |Ω| is finite. It remains to consider the term∫
Σ
〈Rϕ, D̃ΣRϕ〉 ds. First, we note that due to the pairing in Lemma 3.9, the Trace Theorem 3.7,

and D̃Σ : H1/2(Σ,SM |Σ) → H−1/2(Σ,SM |Σ), this expression is finite for all ϕ ∈ H1(M,SM ).
Abbreviating Rϕ by ϕ, we have

|(D̃Σϕi, ϕi)Σ − (D̃Σϕ,ϕ)Σ| � |(D̃Σϕi, ϕ− ϕi)Σ| + |(D̃Σϕ− D̃Σϕi, ϕ)Σ|
� ‖D̃Σϕi‖H−1/2‖ϕ− ϕi‖H1/2 + ‖D̃Σϕ− D̃Σϕi‖H−1/2‖ϕ‖H1/2 ,

which gives the convergence of the last term. This proves Equality (6) for all ϕ ∈ H1(M,SM ).
Now, let ϕi, ψj be sequences in Γ∞

c (M,SM ) with ϕi → ϕ and ψj → ψ in H1(M,SM ). Then,

|(Dψj , ϕi) − (Dψ,ϕ)| � |(Dψj , ϕi) − (Dψj , ϕ)| + |(Dψj , ϕ) − (Dψ,ϕ)|
� ‖Dψj‖L2‖ϕi − ϕ‖L2 + ‖D(ψj − ψ)‖L2‖ϕ‖L2 .

Using (7) and that ϕi and ψj are uniformly bounded in H1, we get for a certain constant C > 0
that

|(Dψj , ϕi) − (Dψ,ϕ)| � C‖ϕi − ϕ‖L2 + C‖ψj − ψ‖H1 −→ 0.

Analogously, one obtains (ψj ,Dϕi) → (ψ,Dϕ). Moreover, using again the Trace Theorem 3.7,
we obtain ∣∣∣∣

∫
Σ

〈ν ·Rψj , Rϕi〉 − 〈ν ·Rψj , Rϕ〉 ds
∣∣∣∣ � ‖Rψj‖L2(Σ)‖R(ϕi − ϕ)‖L2(Σ)

� C‖ψj‖H1‖ϕi − ϕ‖H1 −→ 0.

In the same way, | ∫
Σ
〈ν ·Rψj , Rϕ〉 − 〈ν ·Rψ,Rϕ〉 ds| → 0. Hence,∣∣∣∣

∫
Σ

〈ν ·Rψj , Rϕi〉 − 〈ν ·Rψ,Rϕ〉 ds
∣∣∣∣ −→ 0.

This proves Equality (2) for all ϕ,ψ ∈ H1(M,SM ).

3.2. Extension and the graph norm

Spectral decomposition of the boundary. Let (M,Σ) be of bounded geometry. Then, (Σ, g|Σ)
is complete and, thus, the Dirac operator DΣ on SΣ, and thus also D̃Σ on SM |Σ, is self-adjoint.
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Let {EI}I⊂R be the family of projector-valued measures belonging to the self-adjoint operator

D̃Σ : H1(Σ,SM |Σ) ⊂ L2(Σ,SM |Σ) −→ L2(Σ,SM |Σ).

We define for a connected (not necessarily bounded) interval I ∈ R the spectral projection

πI : L2(Σ,SM |Σ) −→ L2(Σ,SM |Σ), ϕ �−→ EIϕ

and the spaces

ΓAPS
I = {ϕ ∈ L2(Σ,SM |Σ) |ϕ = πIϕ}.

Next, we will show that for every s ∈ R the spectral projections extend to bounded linear
maps from Hs(Σ,SM |Σ) to itself: First, we note that the spectral projections commute with
D̃Σ. Moreover, since (Σ, g|Σ) has bounded geometry, the norm ‖ϕ‖2

L2 + ‖Dkϕ‖2
L2 and the Hk-

norm are equivalent on Γ∞
c (Σ,SM |Σ) for k ∈ N0, cp. [3, Lemma 3.1.6]. Hence, πI restricts

to a bounded linear map from Hk(Σ,SM |Σ) to itself for k ∈ N0. Let now k be a negative
integer, ϕ ∈ Γ∞

c (Σ,SM |Σ) and ψ ∈ H−k(Σ,SM |Σ). Using that πI is symmetric with respect to
L2-product on (Σ,SM |Σ) and Lemma 3.9, we obtain

|(πIϕ,ψ)Σ| = |(ϕ, πIψ)Σ| � C‖ϕ‖H−k(Σ)‖πIψ‖Hk(Σ) � C ′‖ϕ‖H−k(Σ)‖ψ‖Hk(Σ).

Thus, πI extends to a bounded linear map from Hk(Σ,SM |Σ) to itself for all nonnegative
integers k. Then, by Riesz–Thorin Interpolation Theorem we obtain that πI : Hs(Σ,SM |Σ) →
Hs(Σ,SM |Σ) for all s ∈ R.

We abbreviate π> = π(0,∞) and π� = π(−∞,0]. As in [9, Section 5], we define, for ϕ ∈
Γ∞

c (Σ,SM |Σ),

‖ϕ‖2
Ȟ

= ‖π�ϕ‖2
H1/2(Σ) + ‖π>ϕ‖2

H−1/2(Σ) and ‖ϕ‖2
Ĥ

= ‖π�ϕ‖2
H−1/2(Σ) + ‖π>ϕ‖2

H1/2(Σ)

and the spaces

Ȟ := Γ∞
c (Σ,SM |Σ)

‖.‖Ȟ and Ĥ := Γ∞
c (Σ,SM |Σ)

‖.‖Ĥ . (8)

Local description of the graph norm on (M,Σ). Let (M, g) be a manifold with boundary Σ.
Let (Uγ , κγ , ξγ , hγ)γ be Fermi coordinates on (M, g) together with a synchronous trivialization
ξγ and a partition of unity hγ .

Lemma 3.11. On Γ∞
c (M,SM ) the norms ‖.‖D and (

∑
γ ‖hγ .‖2

D)1/2 are equivalent.

Proof. All the constants ci involved here are positive. Let ϕ ∈ Γ∞
c (M,SM ). Since the cover

Uγ is uniformly locally finite the norms ‖.‖L2 and (
∑

γ ‖hγ .‖2
L2)1/2 are equivalent. Thus,

‖Dϕ‖2
L2 � c1

∑
γ

‖hγDϕ‖2
L2 = c1

∑
γ

‖D(hγϕ) −∇hγ · ϕ‖2
L2

� c2
∑

γ

(‖D(hγϕ)‖2
L2 + ‖∇hγ · ϕ‖2

L2) � c3
∑

γ

(‖D(hγϕ)‖2
L2 + ‖ϕ|Uγ

‖2
L2)

� c3
∑

γ

‖D(hγϕ)‖2
L2 + c4‖ϕ‖2

L2 ,

where the end of the second line follows by Lemma 3.4, and the last inequality follows since
the cover Uγ is uniformly locally finite. Hence, ‖ϕ‖2

D � c5
∑

γ ‖hγϕ‖2
D.
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Conversely, we obtain analogously∑
γ

‖D(hγϕ)‖2
L2 =

∑
γ

‖hγDϕ+ ∇hγ · ϕ‖2
L2 � c6‖ϕ‖2

D.

Lemma 3.12. Let (Σ, g|Σ) be a manifold of bounded geometry. Then, there is an ε > 0
smaller than the injectivity radius of Σ and a constant c > 0 such that for all x ∈ Σ and
ϕ ∈ Γ∞

c (Bε(x) ⊂ N,SN ), we have ‖DNϕ‖L2 > c‖ϕ‖L2 .

Proof. Let expΣ
x : Bε(0) ⊂ R

n → Bε(x) ⊂ Σ be the exponential map. Set g̃ := (expΣ
x )∗

g|Bε(x). We will compare the Dirac operator Dg̃ with DE , [5, Proposition 3.2]:

Dg̃ϕ = DEϕ+
∑
ij

(bji − δj
i )∂i · ∇∂j

ϕ+
1
4

∑
ijk

Γ̃k
ijei · ej · ek · ϕ,

where ϕ is a smooth spinor over Bε(0), ∂i and ei form an orthonormal basis with respect to
the Euclidean metric and g̃, respectively. Moreover, ei = bji∂j , ∇ is the Levi-Civita connection
with respect to the Euclidean metric, and Γ̃k

ij are the Christoffel symbols with respect to the
metric g̃. By [5, (11)–(13) and below], |bji − δj

i | � Cr2 and |Γ̃k
ij | � Cr, where r is the Euclidean

distance to the origin and C can be chosen to depend only on the global curvature bounds of g.
Moreover, note that there is a positive constant C also depending only on the global curvature
bounds of g such that C−1 � f � C where dvolg̃ = fdvolgE

. Thus, for ε small enough we can
estimate for all smooth spinors ϕ compactly supported in Bε(0) that

‖Dg̃ϕ‖2
L2(g̃)

‖ϕ‖2
L2(g̃)

� C1

‖DEϕ‖2
L2(gE)

‖ϕ‖2
L2(gE)

− C2ε
2
‖∇ϕ‖2

L2(gE)

‖ϕ‖2
L2(gE)

− C3ε

� C4

‖DEϕ‖2
L2(gE)

‖ϕ‖2
L2(gE)

− C5ε,

where the last step uses the equivalence of the graph norm and the H1-norm. Let A be such
that ‖DEψ‖2

L2(gE) � A‖ψ‖2
L2(gE) for smooth spinors compactly supported in Bε(0). Then, one

can always choose ε small enough that C4A− C5ε � 2−1C4A =: c Thus, the same is true for
Dg on Bε(x) ⊂ Σ.

Let (M̂, N̂ = ∂M̂) be manifold of bounded geometry with closed boundary. Let EBB be an
extension map as defined in [9, (43)]. Let D and DN̂ be the Dirac operators on M̂ and N̂ ,
respectively. By [9, Lemma 6.1, 6.2, (41) and below], we have, for all ϕ ∈ Γ∞

c (M̂,SM̂ |N̂ ),

‖EBBRϕ‖D � C‖ϕ‖D. (9)

Note that C can be chosen to depend only on curvature bounds of (M̂, N̂) including mean
curvature, the injectivity radii of M̂ and N̂ , respectively, and the spectral gap of DN̂ .

We now come back to our pair (M,N): Let ε, c > 0 be constants such that Lemma 3.12 is
fulfilled. Let (Uγ , κγ , ξγ , hγ) be Fermi coordinates together with a subordinated partition of
unity such that there are xγ ∈ Σ with Uγ ∩ Σ ⊂ Bε(xγ). Let Ûγ be a manifold with closed
boundary Û ′

γ := ∂Ûγ such that Ũγ := Uγ ∪ (
⋃

α;Uα∩Uγ 	=∅
Uα) can be isometrically embedded

in Ûγ , Ũγ ∩ Σ ⊂ Û ′
γ , such that the spectral gap of the Dirac operator on Û ′

γ is at least [−c, c]
and such that the curvature, mean curvature of the boundary and the injectivity radii are still
uniformly bounded in γ.
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Define the map Ẽ : Γ∞
c (Σ,SM |Σ) → Γ∞

c (M,SM ) by

Ẽψ =
∑

γ,α; U ′
γ 	=∅,Uγ∩Uα 	=∅

hαEBB(hγ |Σψ),

where hγ |Σϕ is understood to be a spinor on Uγ ∩N ⊂ Û ′
γ and then EBB(hγ |Σψ) is a spinor

on Ûγ . The only reason why
∑

α hα appears in the definition is to assure that each summand
can be seen to live on M and that RẼ = Id. Note that just using hγ in front of EBB would be
enough to first requirement but not the second.

Proposition 3.13. Using the notations from above, there is a positive constant C such
that, for all ϕ ∈ Γ∞

c (M,SM ),
‖ẼRϕ‖D � C‖ϕ‖D.

Proof. We abbreviate h′γ := hγ |Σ. Using (in this order) the definition of Ẽ , Lemma 3.11 the
uniform local finiteness of the cover Uγ , (9), and again Lemma 3.11 we estimate

‖ẼRϕ‖2
D � C1

∥∥∥∥∥∥
∑

γ,U ′
γ 	=∅

EBBR(hγϕ)

∥∥∥∥∥∥
2

D

� C2

∑
γ,U ′

γ 	=∅

‖EBBR(hγϕ)‖2
D

� C3

∑
γ,U ′

γ 	=∅

‖hγϕ‖2
D � C‖ϕ‖2

D.

4. Boundary value problems

The general theory of boundary value problems for elliptic differential operators of order 1 on
complete manifolds with closed boundary can be found in [9]. The aim of this section is to
generalize a part of this theory to noncompact boundaries on manifolds of bounded geometry.
We restrict to the part that gives existence of solutions of boundary value problems as in
Theorem 1.2. The property needed to assure a solution to such a problem is the closedness of
the range. For that, we introduce a type of coercivity condition which, in general, can depend
on the boundary values (that is not the case for closed boundaries). Moreover, we restrict to
the classical Spinc Dirac operator.

In the first part, we first give some generalities on domains of the Dirac operator and
introduce a coercivity condition that implies closed range of the Dirac operator. Then, we
extend the trace map R to the whole maximal domain of the Dirac operator and give some
examples and properties of boundary conditions. In particular, we will introduce two boundary
conditions B± which will be used to prove Theorem 1.2 in Section 8. At the end, we give an
existence result for boundary value problems in our context.
General domains and closed range. Let D be the Dirac operator acting on Γ∞

cc (M,S) on a
manifold M with boundary Σ. If we want to emphasize that D acts on the domain Γ∞

cc (M,S),
then we shortly write Dcc. We denote the graph norm of D by

‖ϕ‖2
D = ‖ϕ‖2

L2 + ‖Dϕ‖2
L2 .

By Dmax := (Dcc)∗ we denote the maximal extension of D. Here, A∗ denotes the adjoint
operator of A in the sense of functional analysis. Note that H1(M,SM ) ⊂ domDmax and

domDmax = {ϕ ∈ L2(M,SM ) | ∃ϕ̃ ∈ L2(M,SM )∀ψ ∈ Γ∞
cc (M,SM ) : (ϕ̃, ψ) = (ϕ,Dψ)},

and together with ‖.‖D, the space domDmax is a Hilbert space. Moreover, we denote byDmin :=
(Dcc)∗∗ = D̄

‖.‖D
cc the minimal extension of D. Here, Ā‖.‖D denotes the closure of the set A with
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respect to the graph norm. Any closed linear subset of domDmax between domDmin and
domDmax gives the domain of a closed extension of D : Γ∞

cc (M,SM ) → Γ∞
cc (M,SM ). Before

examining those domains, let us extend the trace map to domDmax:
Extension of the trace map. The Trace Theorem 3.7 extends the trace map

R : Γ∞
c (M,SM ) → Γ∞

c (Σ,SM |Σ),
ϕ �→ ϕ|Σ

to a bounded map R : H1(M,SM ) → H1/2(Σ,SM |Σ). Here, we will extend R further to
domDmax. This will generalize the corresponding result [9, Theorem 6.7(ii)] for closed
boundaries to noncompact boundaries. Moreover, we give some auxiliary lemmata which are
found in [9] for closed boundaries. Some of the proofs and the order of obtaining them will be
a little bit different since we do not use (and cannot use, cf. Example 4.16(iv)) the projection
to the negative spectrum. Note that in this part we could use an arbitrary extension map
as given by Theorem 3.7 and are not restricted to the explicit one defined via the eigenvalue
decomposition of D̃Σ on closed boundaries used in [9].

Lemma 4.1. The space Γ∞
c (M,SM ) is dense in domDmax with respect to the graph norm.

Proof. For a closed boundary, this is done in [9, Theorem 6.7(i)]. We use a different proof
here. Let ϕ ∈ domDmax. Let Ki be a compact exhaustion of M that comes together with
smooth cut-off functions ηi : M → [0, 1] such that ηi = 1 on Ki, ηi = 0 on M \Ki+1 and
max |dηi| � 2/i. Then, ϕi = ηiϕ are compactly supported sections in domDmax fulfilling

‖ϕi − ϕ‖2
D = ‖ϕi − ϕ‖2

L2 + ‖Dϕi −Dϕ‖2
L2

� ‖(1 − ηi)ϕ‖2
L2 +

(
‖(1 − ηi)Dϕ‖L2 +

2
i
‖ϕ‖L2

)2

→ 0.

Each ϕi has now compact support in Ki+1. Thus, there is a sequence ϕij ∈ Γ∞
c (Ki+1,SM )

with ϕij → ϕi in the graph norm on Ki+1. Choose j = j(i) � i such that ‖ϕij − ϕi‖D → 0 as
i→ ∞. Then, ‖ϕij − ϕ‖D � ‖ϕij − ϕi‖D + ‖ϕi − ϕ‖D → 0, too. Then

‖ηjϕij − ϕij‖2
D � ‖(1 − ηj)ϕij‖2

L2 + (‖(1 − ηj)Dϕij‖L2 + ‖dηj · ϕij‖L2)2

� (‖ϕij − ϕi‖L2 + ‖(1 − ηj)ηiϕ‖L2)2 +
(
‖D(ϕij − ϕi)‖L2

+ ‖(1 − ηj)(ηiDϕ+ dηi · ϕ)‖L2 +
2
j
‖ϕij − ϕi‖L2 +

2
j
‖ϕ‖L2

)2

−→ 0

for i→ ∞. Thus, we have a sequence ϕ̂i := ηj(i)ϕij(i) ∈ Γ∞
c (M,SM ) such that ϕ̂i → ϕ in the

graph norm as i→ ∞.

Note that the proof of Lemma 4.1 only uses the completeness of M and not the bounded
geometry.

Theorem 4.2. The trace map R : Γ∞
c (M,SM ) → Γ∞

c (Σ,SM |Σ) can be extended to a
bounded operator

R : domDmax −→ H−1/2(Σ,SM |Σ).
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Proof. Let ϕ ∈ Γ∞
c (M,SM ) and ψ ∈ H1/2(Σ,SM |Σ). Then, by Theorem 3.7, the spinor

Eψ ∈ H1(M,SM ). Thus, we can use Lemma 3.10, (7) and Theorem 3.7 to obtain

|(ϕ|Σ, ν · ψ)Σ| = |(Dϕ, E(ν · ψ)) − (ϕ,DE(ν · ψ))|
� ‖Dϕ‖L2‖E(ν · ψ)‖L2 + ‖ϕ‖L2‖DE(ν · ψ)‖L2

� 2‖ϕ‖D‖E(ν · ψ)‖D � C‖ϕ‖D‖E(ν · ψ)‖H1 � C ′‖ϕ‖D‖ν · ψ‖H1/2(Σ).

Together with Lemma 3.9, this implies

‖ϕ|Σ‖H−1/2(Σ) � C ′‖ϕ‖D.

Since Γ∞
c (M,SM ) is dense in domDmax with respect to the graph norm, cf. Lemma 4.1, the

claim follows.

Remark 4.3. Note that R is not surjective here. For closed boundaries the image was
specified in [9, Theorems 1.7 and 6.7(ii)]. For noncompact boundaries the image will be further
considered in Lemma 4.8 and below.

Lemma 4.4. Equality (2) holds for all ϕ ∈ domDmax and ψ ∈ H1(M,SM ).

Proof. The proof is done as the one of Lemma 3.10 starting with ψj , ϕi ∈ Γ∞
c (M,SM ),

where ψj → ψ in H1 and ϕi → ϕ in the graph norm of D and using the (extended) Trace
Theorem 4.2. The only difference is seen in the estimate of the boundary integrals which now
read, for example,∣∣∣∣
∫
Σ

〈ν ·Rψj , Rϕi −Rϕ〉 ds
∣∣∣∣ � ‖Rψj‖H1/2(Σ)‖R(ϕi − ϕ)‖H−1/2(Σ) � C‖ψj‖H1‖ϕi − ϕ‖D −→ 0,

where the last inequality uses both versions of the Trace Theorems 3.7 and 4.2.

The next lemma gives a full description of domDmin.

Lemma 4.5. The H1-norm and the graph norm ‖.‖D are equivalent on

{ϕ ∈ domDmax |Rϕ = 0}.
In particular,

domDmin = Γ∞
cc (M,SM )

‖.‖D = Γ∞
cc (M,SM )

‖.‖H1 = {ϕ ∈ domDmax |Rϕ = 0}
= {ϕ ∈ H1(M,SM ) |Rϕ = 0}.

Proof. First, we show the equivalence on {ψ ∈ Γ∞
c (M,SM ) |Rψ = 0}: Let ϕ be in this set.

Then, by (6) we have

‖ϕ‖2
H1

= ‖ϕ‖2
L2 + ‖Dϕ‖2

L2 −
∫
M

scalM

4
|ϕ|2 dv −

∫
M

i

2
〈Ω · ϕ,ϕ〉 dv � C‖ϕ‖2

D,

where we used thatM and L are of bounded geometry and, hence, |scalM | and |Ω| are uniformly
bounded on all of M . The reverse inequality was seen in (7).

From the definition of domDmin and the equivalence of the norms from above, we already
have domDmin = Γ∞

cc

‖.‖D = Γ∞
cc

‖.‖H1 . From the Trace Theorem 4.2, we obtain

Γ∞
cc

‖.‖D ⊂ {ϕ ∈ domDmax |Rϕ = 0}.
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Next, we show that D : {ϕ ∈ domDmax |Rϕ = 0} → L2(M,SM ) already equals Dmin. First, we
note that by the Trace Theorem 4.2, D is a closed extension of Dcc. Hence, it suffices to show
that D∗ = Dmax. By definition, we have

domD∗ = {ϑ ∈ L2(M,SM ) | ∃χ ∈ L2(M,SM )∀ψ ∈ domDmax, Rψ = 0 : (ϑ,Dψ) = (χ, ψ)}.
Let ϑ ∈ domDmax. By Lemma 4.1, there exists a sequence ϑi ∈ Γ∞

c (M,SM ) with ϑi → ϑ in the
graph norm. Hence, for all ψ ∈ domDmax with Rψ = 0, we have (ϑ,Dψ) = limi→∞(ϑi,Dψ).
Then, by Lemma 4.4 and Rψ = 0, we obtain

(ϑ,Dψ) = lim
i→∞

(Dϑi, ψ) = (Dϑ,ψ),

which implies that ϑ ∈ domD∗. Thus, D∗ = Dmax and D = Dmin. Together with

domDmin = Γ∞
cc

‖.‖H1 ⊂ {ϕ ∈ H1(M,SM ) |Rϕ = 0} ⊂ {ϕ ∈ domDmax |Rϕ = 0} = domDmin,

the rest of the lemma follows.

Now, we can describe H1 in terms of its image under the trace map.

Lemma 4.6. We have H1(M,SM ) = {ϕ ∈ domDmax |Rϕ ∈ H1/2(Σ,SM |Σ)}.

Proof. The inclusion ‘⊂’ is clear from the Trace Theorem 3.7. It remains to prove ‘⊃’:
Let ϕ ∈ domDmax with Rϕ ∈ H1/2(Σ,SM |Σ). Then, Theorem 3.7 implies that ψ := ERϕ ∈
H1(M,SM ). Thus, ϕ− ψ ∈ domDmax and R(ϕ− ψ) = 0. But due to Lemma 4.5, ϕ− ψ ∈
H1(M,SM ) and, hence, ϕ ∈ H1(M,SM ).

In Proposition 3.13, we have shown that there is a linear map Ẽ such that ẼR : Γ∞
c (M,SM ) →

Γ∞
c (M,SM ) fulfills for all ϕ ∈ Γ∞

c (M,SM )

‖ẼRϕ‖2
D � C‖ϕ‖2

D. (10)

Thus, ẼR extends uniquely to a bounded linear map

ẼR : domDmax −→ domDmax. (11)

Note that Ẽ |H1/2 is an extension map in the sense of Theorem 3.7 as can be seen in the fol-
lowing: Let ψ ∈ H1/2(Σ,SM |Σ). By Lemma 4.6, there is a ϕ ∈ H1(M,SM ) with Rϕ = ψ. Thus,
by Lemma 4.5 Ẽψ − ϕ ∈ domDmin ⊂ H1(M,SM ). In particular, Ẽ |H1/2 : H1/2(Σ,SM |Σ) →
H1(M,SM ).

From now, we choose any extension map E fulfilling (10). Obviously, all those maps lead to
equivalent norms ‖ER.‖D.

Conjecture 4.7. Every extension map in the sense of Theorem 3.7 fulfills (10) with an
appropriate constant C.

On R(domDmax), we set
‖ψ‖Ř := ‖ERϕ‖D,

where Rϕ = ψ. By Theorem 3.13 and (11), this is well defined.

Lemma 4.8. The space Ř := (R(domDmax), ‖.‖Ř) is a Hilbert space with Ř =
Γ∞

c (Σ,SM |Σ)
‖.‖Ř

.
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Proof. From the definition of ‖.‖Ř, the linearity of the maps E and R, and the
fact that (domDmax, ‖.‖D) is a Hilbert space, we get immediately that ‖.‖Ř is a norm
on R(domDmax). Moreover, ‖.‖Ř comes from a scalar product (ϕ,ψ)Ř := (Eϕ, Eψ)D : =
(Eϕ, Eψ) + (DEϕ,DEψ). To show that Ř is a Hilbert space it remains to show completeness:
For that, we consider a Cauchy sequence ψi in Ř. Then, there is a sequence ϕi ∈ domDmax

with Rϕi = ψi. With the definition of the Ř-norm, we get that ERϕi is a Cauchy sequence
in (domDmax, ‖.‖D) and, hence, there is a ϕ ∈ domDmax with ERϕi → ϕ with respect to the
graph norm. By Theorem 3.13, we obtain

‖ER(ϕi − ϕ)‖D = ‖ER(ERϕi − ϕ)‖D � C‖ERϕi − ϕ‖D −→ 0.

Thus, ERϕ = ϕ and ‖ψi −Rϕ‖Ř = ‖E(Rϕi −Rϕ)‖D → 0. Hence, ψi → ψ in the Ř-norm.
Clearly, Γ∞

c (Σ,SM |Σ)
‖.‖Ř ⊂ R(domDmax). Let now ψ ∈ R(domDmax). Then, there is a ϕ ∈

domDmax with Rϕ = ψ. By Lemma 4.1, there is a sequence ϕi ∈ Γ∞
c (M,SM ) with ‖ϕi −

ϕ‖D → 0 as i→ ∞. Thus, by Theorem 3.13 the sequence ψi := Rϕi ∈ Γ∞
c (Σ,SM |Σ) converges

to ψ in the Ř-norm.

Remark 4.9. (i) The proof of Proposition 3.13 and [9, Lemma 6.1] implies

‖ẼRϕ‖2
D � C ′ ∑

γ,Û ′
γ 	=∅

‖R(hγϕ)‖2
Ȟ(Û ′

γ)
=: C ′‖Rϕ‖2

Ȟγ
.

On the other hand, by [9, Lemma 6.2, (41) and below] ‖R(hγϕ)‖2
Ȟ(Û ′

γ)
� C‖hγϕ‖2

D, where C

again only depends on the curvature bounds of (M,Σ) and the spectral gap c on Û ′
γ . Thus,

together with Lemma 3.11 the norms ‖.‖Ř and ‖.‖Ȟγ
are equivalent.

(ii) Using (i) and [9, Lemma 6.3], we see

‖Ẽ(ν ·Rϕ)‖2
D � C ′ ∑

γ,U ′
γ 	=∅

‖ν ·R(hγϕ)‖2
Ȟ(Û ′

γ)
= C ′ ∑

γ,U ′
γ 	=∅

‖R(hγϕ)‖2
Ĥ(Û ′

γ)
=: ‖Rϕ‖2

Ĥγ
.

Together with [9, Lemma 6.1], we obtain for all ϕ ∈ Γ∞
c (M,SM )

‖Ẽ(ν ·Rϕ)‖2
D � C‖ϕ‖2

D

and, thus, ‖ψ‖R̂ := ‖E(ν ·Rϕ)‖D also gives rise to a norm on R(domDmax). Moreover, the
analogous statement of Lemma 4.8 holds for R̂ := (R(domDmax), ‖.‖R̂), and we have ‖ψ‖Ř =
‖ν · ψ‖R̂. In particular, we get as in (i) that the norms ‖Ẽ(ν · .)‖D and ‖.‖Ĥγ

are equivalent.

Remark 4.10. Note that by Theorems 4.2 and 4.6

H1/2(Σ,SM |Σ) ⊂ (R(domDmax), ‖.‖Ř (resp. R̂)) ⊂ H−1/2(Σ,SM |Σ).

Moreover, the perfect pairing of Ĥγ and Ȟγ , induced by the pairing of H1/2 and H−1/2,
gives immediately the following lemma.

Lemma 4.11. The L2-product on Γ∞
c (Σ,SM |Σ) extends uniquely to a perfect pairing Ř×

R̂→ C.

So for now, we have seen that the Ř-norm is equivalent to the norm ‖.‖Ȟγ
, cp. Remark 4.9(i)

where the second norm comes with an appropriate trivialization of the manifold near the
boundary, see before Proposition 3.13. But we also think that as in the closed case there
should be a ‘more intrinsic’ equivalent norm:
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Conjecture 4.12. The Ř-norm on R(domDmax) is equivalent to the Ȟ-norm as defined
in (8). Moreover, Ȟ = R(domDmax) as vector spaces.

Boundary conditions. In this part, we show that each closed extension of Dcc can be realized
by a closed linear subset of Ř, and we give some examples.

Lemma 4.13. Let D be a closed extension of Dcc with B := R(domD) ⊂ H−1/2(Σ,SM |Σ).
Then, its domain domD equals domDB : = {ϕ ∈ domDmax |Rϕ ∈ B}, and B is a closed linear
subset of Ř. Conversely, for every closed linear subset B ⊂ Ř the operator DB : domDB →
L2(M,SM ) is a closed extension of Dcc.

Owing to this lemma, a closed subspace B of Ř is called boundary condition.

Proof. LetD be a closed extension ofDcc with domain domD and B := R(domD). Clearly,
domD ⊂ domDB . We have to show that also the converse is true: Let ϕ ∈ domDB . Then, there
exists ψ ∈ domD with Rϕ = Rψ. By Lemma 4.5, ϕ− ψ ∈ domDmin ⊂ domD and, hence,
ϕ ∈ domD. This implies that domD = domDB . Moreover, from (11) and the definition of the
Ř-norm the maps R : domDmax → Ř and E : Ř→ domDmax are continuous. Hence, if domD
is closed in domDmax, then the set B = E−1(domD) is closed in R(domDmax). Conversely, if
B is closed in Ř, then domD = R−1(B) is closed in domDmax.

Lemma 4.14. Let B be a boundary condition such that B ⊂ H1/2(Σ,SM |Σ). Then, the
H1-norm and the graph norm ‖.‖D are equivalent on domDB .

Proof. Since B is a boundary condition, domDB is closed in (domDmax, ‖.‖D). Moreover,
by B ⊂ H1/2(Σ,SM |Σ), Lemma 4.6 and (7), domDB is closed in (H1(M,SM ), ‖.‖H1). Thus,
(domDB , ‖.‖D) and (domDB , ‖.‖H1) are both Hilbert spaces. By (7), the identity map
Id: (domDB , ‖.‖H1) → (domDB , ‖.‖D) is a bijective bounded linear map. From the bounded
inverse theorem, we know that also the inverse is bounded. Hence, the H1- and the graph norm
are equivalent on domDB .

Remark 4.15. The definition of domDB in [9, Section 7] uses HD
1 : = Γ∞

c (M,SM )
‖.‖

HD
1

instead of H1 where the HD
1 -norm is given by

‖ϕ‖2
HD

1
= ‖χϕ‖2

H1
+ ‖ϕ‖2

L2 + ‖Dϕ‖2
L2 .

Here, χ denotes an appropriate cut-off function such that χϕ only lives on a small collar
of the boundary. Since we work with the classical Dirac operator on Spinc manifolds and
assume (M,Σ) and L being of bounded geometry, the H1- and the HD

1 -norm coincide. Bär
and Ballmann consider a more general situation where it suffices that M is only complete but
not necessarily of bounded geometry. Then, the HD

1 -norm is needed. We could also switch to
this more general setup when dropping the condition (i) and (iii) in Definition 2.2 while still
assuming that (Σ, g|Σ) is of bounded geometry and that the curvature tensor and its derivatives
are bounded on UΣ. For that situation, we would also obtain Theorem 1.2. But in order to
simplify notation we stick to the bounded geometry of (M,Σ).

Example 4.16. (i) Minimal and maximal extension. B = 0 gives the minimal extension
DB=0 = Dmin, cf. Lemma 4.5. The maximal extension is obtained with B = R(domDmax).



BOUNDARY VALUE PROBLEMS 965

(ii) DB=H1/2 : H1(M,SM ) → L2(M,SM ) is an extension of Dcc but not closed (if the
boundary is non-empty): Since Γ∞

c (M,SM ) ⊂ H1 and Γ∞
c (M,SM ) dense in domDmax, the

closure of DB=H1/2 is Dmax.
(iii) [18, Section 6] Let P± : L2(Σ,SM |Σ) → L2(Σ,SM |Σ), ϕ �→ 1

2 (ϕ± iν · ϕ) and

D± : domD± := {ϕ ∈ domDmax |P±Rϕ = 0} → L2(M,SM ).

In Section 5, we will show that D± is a closed extension and that D± = DB± , where

B± = {ϕ ∈ H1/2(Σ,SM |Σ) |P±ϕ = 0}.
Each ϕ decomposes uniquely into ϕ = P+ϕ+ P−ϕ, and if ϕ ∈ H1/2(Σ,SM |Σ), then P±ϕ ∈
H1/2(Σ,SM |Σ), too. This assures that the boundary condition B± is honestly larger than the
trivial boundary condition B = {0}. More properties of this boundary condition can be found
in Section 5.

(iv) APS-boundary conditions. An obvious way to generalize the APS-boundary conditions
for a closed boundary to our situation is given by the following: Let (M,Σ) be of bounded
geometry. We use the notations introduced in Section 3.7.
We set BAPS

�a = R(domDmax) ∩ ΓAPS
[a,∞) and BAPS

<a = R(domDmax) ∩ ΓAPS
(−∞,a], respectively. In

the same ways, let BAPS
�a and BAPS

>a be defined. If a neighbourhood of a is in the spectrum of
DΣ, BAPS

<a and BAPS
>a will not be closed. We conjecture that for (M,Σ) of bounded geometry

the sets BAPS
�a and BAPS

�a define boundary conditions. But actually we do not know.

Boundary value problems. In this part, we want to prove Theorem 1.1. For that, we need to
define first the notion coercivity at infinity:

Definition 4.17. A closed linear operator D : domD ⊂ L2(M,SM ) → L2(M,SM ) is said
to be (domD)-coercive at infinity if there is a c > 0 such that

∀ϕ ∈ domD ∩ (kerD)⊥ : ‖Dϕ‖L2 � c‖ϕ‖L2 ,

where ⊥ denotes the orthogonal complement in L2.

Note that in case that D is the Dirac operator on a complete manifold without boundary,
coercivity at infinity follows immediately if 0 is not the essential spectrum. Conversely, if the
Dirac operator is coercive at infinity, then either 0 is not in the essential spectrum or the kernel
is infinite-dimensional. For manifolds with boundary, D is, in general, no longer self-adjoint.
Thus, the spectrum is, in general, complex and this translation to the essential spectrum is not
possible.

In Section 6, we will compare this coercivity condition with the originally one used in [9,
Defintion 8.2] for closed boundaries. But first, we will see how this condition forces the range
of the operator to be closed which is crucial in order to apply the Closed Range Theorem 2.5
and show existence of preimages for linear operator as we will need in Theorem 1.1.

Lemma 4.18. If the closed linear operator D : domD ⊂ L2(M,SM ) → L2(M,SM ) is
(domD)-coercive at infinity, then the range is closed.

Proof. Let ϕi be a sequence in domD with Dϕi → ψ in L2. We have to show that
ψ is in the image of D. Without loss of generality, we can assume that ϕi ⊥ kerD.
Then, (domD)-coercivity at infinity gives that ϕi is bounded in L2 and, thus, also in the
graph norm of D. Thus, ϕi → ϕ weakly in ‖.‖D. Let η ∈ domD∗. Then, (Dϕ, η) = limi→∞
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(Dϕi, η) = limi→∞(ϕi,D
∗η) = (ϕ,D∗η). Thus, ϕ ∈ domD and closedness of domD then

implies that Dϕ = ψ.

We are now ready to prove the following theorem.

Theorem (Theorem 1.1). Let B be a boundary condition, and let the Dirac operator

DB : domDB ⊂ L2(M,SM ) −→ L2(M,SM )

be B-coercive at infinity. Let PB : R(domDmax) → B be a projection. Then, for all ψ ∈
L2(M,SM ) and ρ̃ ∈ domDmax where ψ −Dρ̃ ∈ (ker (DB)∗)⊥, the boundary value problem{

Dϕ = ψ on M,

(Id−PB)Rϕ = (Id−PB)Rρ̃ on Σ

has a solution ϕ ∈ domDmax that is unique up to elements of the kernel ker DB .

Projection only means here that PB is linear and PB|B = Id.

Proof. Since D is B-coercive at infinity, its range is closed by Lemma 4.18. Thus, due to
the Closed Range Theorem 2.5, the spinor ψ −Dρ̃ ∈ ranDB . Hence, there exists ϕ̂ ∈ domDB

with Dϕ̂ = ψ −Dρ̃. Setting ϕ = ϕ̂+ ρ̃, we obtain ϕ ∈ domDmax, Dϕ = ψ and (Id−PB)Rϕ =
(Id−PB)Rϕ̂+ (Id−PB)Rρ̃ = (Id−PB)Rρ̃.

Corollary 4.19. Let B be a boundary condition such that B ⊂ H1/2(Σ,SM |Σ). We
assume that the Dirac operator D : domDB ⊂ L2(M,SM ) → L2(M,SM ) is B-coercive at
infinity. Let PB : H1/2(Σ,SM |Σ) → B be a projection. Moreover, assume that ψ ∈ L2(M,SM )
and ρ ∈ H1/2(Σ,SM |Σ) satisfy

(ψ, χ) + (ν · ρ,Rχ)Σ = 0 (12)

for all χ ∈ ker (DB)∗. Then, the boundary value problem{
Dϕ = ψ on M,

(Id−PB)Rϕ = (Id−PB)ρ on Σ

has a solution ϕ ∈ H1(M,SM ) that is unique up to elements of the kernel ker DB .

Proof. By Lemma 4.6, B ⊂ H1/2(Σ,SM |Σ) implies domDB ⊂ H1(M,SM ). We set ρ̃ = Eρ.
By the Trace Theorem 3.7, ρ̃ ∈ H1(M,SM ). Moreover, by Lemma 4.4 the integrability condition
(12) implies that ψ −Dρ̃ ∈ (ker (DB)∗)⊥. Hence, together with the Closed Range Theorem
there is ϕ̂ ∈ domDB ⊂ H1(M,SM ) with Dϕ̂ = ψ −Dρ̃. Thus, as in the proof of Theorem 1.1
ϕ = ϕ̂+ ρ̃ gives a solution which is now in H1(M,SM ).

Remark 4.20. To give a full generalization of the theory given in [9] it would be interesting
to examine the following questions.

(i) Consider general boundary conditions, in particular we would like to identify the image
of the extended trace map in Theorem 4.2.

(ii) Give a generalization of the definition for elliptic boundary conditions for noncompact
boundaries (of bounded geometry) and study them.

(iii) Consider, more generally, complete Dirac-type operators as in [9].
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5. On the boundary condition B±

In this section, we briefly recall and give some basic facts on P±. Some of them can be found
in [18, Section 6]. Moreover, we prove the claims of Example 4.16(iii).

Lemma 5.1. Let P± : L2(Σ,SM |Σ) → L2(Σ,SM |Σ) be the map ϕ �→ 1
2 (ϕ± iν · ϕ) and

consider B± := {ϕ ∈ H1/2(Σ,SM |Σ) |P±ϕ = 0}. Then, the following hold:

(i) P± are self-adjoint projections, orthogonal to each other and νP± = P±ν = ∓iP±;
(ii) for all s ∈ R, P±(ϕ) = 1

2 (ϕ± iν · ϕ) gives an operator from Hs(Σ,SM |Σ) to itself such
that for all ϕ ∈ Hs(Σ,SM |Σ) and ψ ∈ H−s(Σ,SM |Σ) we have (P+ϕ,P−ψ)Σ = 0 and
(P±ϕ,ψ)Σ = (ϕ,P±ψ)Σ;

(iii) D̃ΣP± = P∓D̃Σ;
(iv) D± (see Example 4.16(iii) for the definition) is a closed extension of Dcc;
(v) D± = DB± ;
(vi) (DB±)∗ = DB∓ ;
(vii) let each connected component of M have a non-empty boundary. Then, kerDB± = {0}.

Proof. Assertions (i) and (ii) follow directly by simple calculations, and (iii) follows directly
from (5). For (iv), we have by definition of D± (see Example 4.16(iii)) that D± = DB̃± , where
B̃± = {ϕ ∈ R(domDmax) |P±ϕ = 0}.

To show the closedness of D± we want to apply Lemma 4.13. For that, we have to show that
B̃± is closed in Ř: Let ϕi ∈ B̃± with ϕi → ϕ in Ř. Then, we get, together with Remark 4.9(ii),
that

‖P±ϕ‖Ř = ‖P±(ϕ− ϕi)‖Ř = ‖EP±(ϕ− ϕi)‖D � 1
2 (‖E(ϕ− ϕi)‖D + ‖Eν · (ϕ− ϕi)‖D)

� C‖E(ϕ− ϕi)‖D = ‖ϕ− ϕi‖Ř −→ 0.

Hence, P±ϕ = 0 and ϕ ∈ B̃±.
For (v), we have clearly that domDB± ⊂ domD±. It remains to show that any ϕ ∈ domD±

is already in H1(M,SM ). By Lemma 4.1, there is a sequence ϕi ∈ Γ∞
c (M,SM ) with ϕi → ϕ in

the graph norm. Consider EP±Rϕi. By the linearity of E , (11) and Remark 4.9(ii), we obtain

‖EP±Rϕi‖D = ‖EP±R(ϕi − ϕ)‖D

� 1
2 (‖ER(ϕi − ϕ)‖D + ‖E(ν ·R(ϕi − ϕ)‖D)) � C‖ϕi − ϕ‖D −→ 0.

Hence, ψi := ϕi − EP±Rϕi → ϕ in the graph norm. Since ψi ∈ domDB± , this implies that
domDB± is dense in domD±. Moreover, note that with (iii) and (i) we have

∫
Σ

〈Rψi, D̃
ΣRψi〉 ds =

∫
Σ

〈P∓Rψi, D̃
ΣP∓Rψi〉 ds =

∫
Σ

〈P∓Rψi, P±D̃ΣRψi〉 ds = 0.

Hence, together with the Lichnerowicz formula in Lemma 3.10, the bounded geometry, (i)
and Lemma 3.10, we obtain

‖ψi − ψj‖2
H1

=‖ψi − ψj‖2
D − 1

4

∫
M

〈(scalM + 2iΩ·)(ψi − ψj), (ψi − ψj)〉 dv

− n

2

∫
Σ

H|R(ψi − ψj)|2 ds

�C‖ψi − ψj‖2
D ∓ i

n

2

∫
Σ

〈ν ·R(ψi − ψj),HR(ψi − ψj)〉
�C‖ψi − ψj‖2

D.
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Thus, ψi is even a Cauchy sequence in H1 which implies that ϕ is already in H1(M,SM ). Note
that this implies in particular that B± = B̃±. For (vi), the domain of the adjoint is defined by

dom (D+)∗ = {ϑ ∈ L2(M,SM ) | ∃χ ∈ L2(M,SM )∀ψ ∈ domD+ : (χ, ψ) = (η,Dψ)}.
Since, Γ∞

cc (M,SM ) ⊂ domD+, we get dom (D+)∗ ⊂ domDmax. Thus,

dom (D+)∗ = {ϑ ∈ domDmax | ∀ψ ∈ domD+ : (Dϑ,ψ) = (ϑ,Dψ)}.
Due to Lemma 4.4, the definition of domD+ and (v), we obtain

dom (D+)∗ =
{
ϑ ∈ domDmax

∣∣∣∣∀ψ ∈ H1(M,SM ) :
∫
Σ

〈ν ·Rϑ,P−Rψ〉 ds = 0
}
.

By (i) and (ii), we have

−
∫
Σ

〈Rϑ, ν · P−Rψ〉 ds = i

∫
Σ

〈Rϑ,P−Rψ〉 ds = i

∫
Σ

〈P−Rϑ,Rψ〉 ds

and P−Rϑ ∈ H−1/2(Σ,SM |Σ). Hence, together with Lemmas 3.9 and 4.6,

dom (D+)∗ =
{
ϑ ∈ domDmax

∣∣∣∣∀ψ̂ ∈ H1/2(Σ,SM |Σ) :
∫
Σ

〈P−Rϑ, ψ̂〉 ds = 0
}

= {ϑ ∈ domDmax |P−Rϑ = 0} = dom D−.

The assertion (vii) is proved as in the closed case [18, Proof of Corollary 6]: Let ϕ ∈ kerD±,
that is, ϕ ∈ domDmax, Dϕ = 0 on M , and P±Rϕ = 0 on Σ. Using this, (2), Lemma 4.4 and
(i), we compute

0 =
∫
M

〈ϕ, iDϕ〉 dv −
∫
M

〈Dϕ, iϕ〉 dv =
∫
Σ

〈ν ·Rϕ, iRϕ〉 ds

=
∫
Σ

〈ν · P∓Rϕ, iP∓Rϕ〉 ds = ±
∫
Σ

|Rϕ|2 ds.

Hence, Rϕ = 0 and ϕ ∈ domDmin, cf. Lemma 4.5. But due to the strong unique continuation
property of the Dirac operator [11, Section 1.2], Dminϕ = 0 implies ϕ = 0.

6. Examples and the coercivity condition

In Definition 4.17, we defined when an operator DB is (domDB)-coercive at infinity. When
working with B, we will also use the short version, B-coercive at infinity. In this passage, we
will compare this notion with the one of coercivity at infinity given in [9, Definition 8.2] as
cited below and give some examples.

Definition 6.1 [9, Definition 8.2]. D : domDmax ⊂ L2(M,SM ) → L2(M,SM ) is coercive
at infinity if there is a compact subset K ⊂M and a constant c > 0 such that

‖Dϕ‖L2 � c‖ϕ‖L2 ,

for all ϕ ∈ Γ∞
c (M \K,SM ).

By [9, Lemma 8.4], D is coercive at infinity for a closed boundary Σ if and only if there is
a compact subset K ⊂M and a constant c > 0 such that for all ϕ ∈ Γ∞

cc (M \K,SM ) we have
‖Dϕ‖L2 � c‖ϕ‖L2 . For noncompact boundaries, just the ‘only if’-direction survives since in
contrast to closed boundaries there is no compact K such that Γ∞

c (M \K,SM ) ⊂ Γ∞
cc (M,SM ).

Before we compare those different coercivity conditions we give some examples:
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Example 6.2. (i) By the unique continuation property, the kernel of Dmin is trivial. Thus,
together with Lemma 4.5, we have that D is (B = 0)-coercive at infinity if and only if there is
a constant c > 0 such that for all ϕ ∈ Γ∞

cc (M,SM )

‖Dϕ‖L2 � c‖ϕ‖L2 .

For closed boundaries, this implies coercivity at infinity by [9, Lemma 8.4] which was cited
above. We will see that for closed boundaries also the converse is true, cf. Corollary 6.7.

(ii) By Lemma 5.1, kerDB± = {0}. Thus, D is B±-coercive at infinity if and only if there
is a constant c > 0 such that

‖Dψ‖L2 � c‖ψ‖L2

for all ψ ∈ H1(M,SM ) with P±Rψ = 0. In particular, this implies (B = 0)-coercivity at infinity.
More generally, if B1 ⊂ B2 and kerDB1 = kerDB2 , then B2-coercivity at infinity implies B1-
coercivity at infinity.

Lemma 6.3. Let D be coercive at infinity, and let B be a boundary condition. Assume that
domDB ∩ (kerDB)⊥ ⊂ H1(M,SM ) and that the H1-norm and the graph norm are equivalent
on domDB ∩ (kerDB)⊥. Then, D is B-coercive at infinity.

Proof. SinceD is coercive at infinity, there is a compact subsetK ⊂M and a constant c > 0
such that ‖Dϕ‖L2 � c‖ϕ‖L2 for all ϕ ∈ Γ∞

c (M \K,SM ). Assume that D is not B-coercive at
infinity. Then, there is a sequence ϕi ∈ domDB ∩ (kerDB)⊥ with ‖ϕi‖L2 = 1 and ‖Dϕi‖L2 →
0. By equivalence of the norms, ϕi is also bounded inH1. This implies ϕi → ϕ weakly inH1 and,
thus, locally strongly in L2. Moreover, Dϕ = 0. Together with ϕi ⊥ kerDB , this implies ϕ = 0.
Thus, for each compact subset K ′ ⊂M we have

∫
K′ |ϕi|2 dv → 0 as i→ ∞. Let η : M → [0, 1]

be a cut-off function and K ′ be a compact subset such that K ⊂ K ′ ⊂M and η = 0 on K,
η = 1 on M \K ′ and |dη| � a for a constant a > 0 big enough. Then, supp (ηϕi) ⊂M \K,
‖D(ηϕi)‖L2 � a‖ϕi‖L2(K′) + ‖Dϕi‖L2 → 0 and

1 � ‖ηϕi‖L2 � ‖ϕi‖L2 − ‖(1 − η)ϕi‖L2 � 1 − ‖ϕi‖L2(K′) −→ 1.

By Lemma 4.1, we can choose a sequence (ϕij)j ⊂ Γ∞
c (M,SM ) with ϕij → ϕi in the graph

norm as j → ∞. Then, ηϕij → ηϕi in the graph norm and supp (ηϕij) ∈M \K. Thus, we can
find j = j(i) such that ‖D(ηϕij(i))‖L2 → 0 and ‖ηϕij(i)‖L2 → 1 as i→ ∞. But this contradicts
the assumption that D is coercive at infinity.

From the last lemma and Lemma 4.14, we obtain immediately the following corollary.

Corollary 6.4. If D is coercive at infinity and B ⊂ H1/2(Σ,SM |Σ), then D is B-coercive
at infinity.

Next, we give some (very restrictive) conditions that are sufficient to prove that B-coercivity
at infinity implies coercivity at infinity. Those additional assumptions are needed to make sure
that the ϕi appearing in Definition 6.1 are in domDB .

Lemma 6.5. Let B be a boundary condition with B ⊂ H1/2(Σ,SM |Σ). Assume that
there exists a compact subset K ′ ⊂M with Γ∞

c (M \K ′,SM ) ⊂ domDB . If D : domDB ⊂
L2(Σ,SM |Σ) → L2(Σ,SM |Σ) has a finite-dimensional kernel and D is B-coercive at infinity,
then D is coercive at infinity.
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Proof. Assume that D is not coercive at infinity. Then, for all compact subsets K ⊂M
there exists a sequence ϕi ∈ Γ∞

c (M \K,S) with ‖ϕi‖L2 = 1 and ‖Dϕi‖L2 → 0. We choose
K such that K ′ ⊂ K. Then, all those ϕi ∈ domDB . Thus, ϕi → ϕ ∈ domDB weakly in the
graph norm of D, ϕ ∈ ker DB and ϕ = 0 on K. We decompose ϕi = ϕk

i + ϕ⊥
i , where ϕk

i ∈
ker DB and ϕ⊥

i ∈ (kerDB)⊥. Then ‖Dϕ⊥
i ‖L2 → 0. Moreover, we assume that the kernel is

finite-dimensional, that is, ϕk
i =

∑l
j=1 aijψj , where the ψj ’s form an orthonormal basis of

kerDB . Thus, ‖ϕk
i ‖2

L2 =
∑l

j=1 |aij |2. Assume now that ‖ϕ⊥
i ‖L2 → 0. Then ϕ⊥

i → 0 in the graph
norm. But ‖ϕi‖L2 = 1. This implies that there is at least one j ∈ {1, . . . , l} with |aij | is bounded
away from zero for almost all i, that is, ϕ cannot be zero everywhere. Since ϕ is zero on K,
this is a contradiction to the unique continuation principle. Thus, the assumption was wrong
and there exists c > 0 with ‖ϕ⊥

i ‖L2 > c and D is not B-coercive at infinity.

Note that the assumption on the existence of K ′ is very restrictive. If the boundary is closed,
then it is automatically satisfied and we get the corollary below. If the boundary is noncompact,
for a general domD, for example, for the minimal domain of D, then it is not true. But there
are also examples for manifolds with noncompact boundary and closed extension of Dcc where
the assumptions of the last lemma are satisfied:

Example 6.6. Let (Σ, h) be a complete Riemannian Spin manifold. Let M∞ = Σ × R and
M = Σ × [0,∞) be equipped with product metric h+ dt2. Both manifolds are of bounded
geometry. Since M∞ is complete with no boundary, the Dirac operator on M∞ is essentially
self-adjoint. Assume that the Dirac operator on M∞ is invertible.

Let K ′ ⊂M∞ be a compact subset that intersects Σ × {0} in a subset of non-zero measure.
Define L to be the linear span of Γ∞

c (M \K ′,SM ) ∪ Γ∞
cc (M,SM ) and domDB : = L̄‖.‖D . Then,

B = Γ∞
c (Σ \K ′,SM |Σ)

‖.‖Ř . Note that by construction domDB is the domain of a closed
extension of Dcc. But it is honestly smaller than domDmax since all ϕ ∈ B have to vanish on
Σ ∩K ′. In particular, by the strong unique continuation property of D (see [11, Section 1.2])
DB : domDB → L2(M,SM ) has trivial kernel.

It remains to show that DB is B-coercive at infinity, that is, there is c > 0 such that for all
ϕ ∈ L we have ‖Dϕ‖L2 � c‖ϕ‖L2 . We will show this by contradiction, that is, we assume that
there is a sequence ϕi ∈ L with ‖ϕi‖L2 = 1 and ‖Dϕi‖L2 → 0. We will construct a sequence of
spinors on M∞. Let ϕ̃i be obtained from ϕi by reflection along Σ. Clearly, ϕ̃i ∈ L2(M∞,SM∞).
Moreover, note that ϕ̃i is everywhere continuous. Let ν be the inward normal vector field of
M . For ψ ∈ Γ∞

c (M∞,SM∞), we can estimate using (2)

|(ϕ̃i,Dψ)L2(M∞)| =

∣∣∣∣∣
∫
Σ×(0,∞)

〈ϕ̃i,Dψ〉 +
∫
Σ×(−∞,0)

〈ϕ̃i,Dψ〉
∣∣∣∣∣

=

∣∣∣∣∣
∫
Σ×(0,∞)

〈Dϕ̃i, ψ〉 +
∫
Σ

〈ν · ϕ̃i|Σ, ψ|Σ〉 +
∫
Σ×(−∞,0)

〈Dϕ̃i, ψ〉

+
∫
Σ

〈−ν · ϕ̃i|Σ, ψ|Σ〉
∣∣∣∣

� 2‖Dϕi‖L2(M)‖ψ‖L2(M∞) −→ 0.

In particular, this means that ϕ̃i ∈ H1(M∞,SM∞) and that ‖Dϕ̃i‖L2(M∞) → 0 while
‖ϕ̃i‖L2(M∞) = 2. This gives a contradiction to the invertibility of the Dirac operator on M∞.

Corollary 6.7. Let the boundary Σ be closed. If B is an elliptic boundary condition
as defined in [9, Definition 7.5], then B-coercivity at infinity implies coercivity at infinity. In
particular, D is (B = 0)-coercive at infinity if and only if it is coercive at infinity.
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Proof. If the boundary is closed and B is elliptic, then DB has a finite kernel [9, Theorem
8.5]. The rest of the assumption in Lemma 6.5 is trivially fulfilled which gives the first claim.
The rest follows with Corollary 6.4.

For closed boundaries and spin manifolds, assuming uniformly positive scalar curvature at
infinity is a sufficient condition to have that D is coercive at infinity, see [9, Example 8.3]. For
noncompact boundaries, we obtain the following lemma.

Lemma 6.8. (i) If 1
2 scalM + iΩ· is a positive operator, then the Dirac operator D is (B =

0)-coercive at infinity.

(ii) If 1
2 scalM + iΩ· is a positive operator and H � 0, then the Dirac operator D is B±-

coercive at infinity.

Proof. Let c > 0 such that 1
2 scalM + iΩ· � 2c. The Lichnerowicz formula (6) and

Lemma 3.10 give

‖Dϕ‖2
L2 = ‖∇ϕ‖2

L2 +
∫
M

scalM

4
|ϕ|2 dv +

∫
M

i

2
< Ω · ϕ,ϕ > dv −

∫
Σ

〈Rϕ, D̃Σ(Rϕ)〉 ds

+
n

2

∫
Σ

H|Rϕ|2 ds � c‖ϕ‖2
L2 −

∫
Σ

〈Rϕ, D̃Σ(Rϕ)〉 ds+
n

2

∫
Σ

H|Rϕ|2 ds,

for all ϕ ∈ H1(M,SM ). Then, (i) follows directly with Lemma 4.5. For (ii), let now H � 0 and
Rϕ ∈ B±. Then, together with Lemma 5.1, it implies

‖Dϕ‖2
L2 � c‖ϕ‖2

L2 −
∫
Σ

〈Rϕ, D̃Σ(Rϕ)〉 ds = c‖ϕ‖2
L2 −

∫
Σ

〈P∓Rϕ, D̃Σ(P∓Rϕ)〉

= c‖ϕ‖2
L2 −

∫
Σ

〈P∓Rϕ,P±D̃Σ(Rϕ)〉 = c‖ϕ‖2
L2 .

7. Spinc Reilly inequality on possibly open boundary domains

In this section, we shortly review the spinorial Reilly inequality. This inequality together with
those boundary value problems discussed in Section 4 will be the main ingredient in the proof
of Theorem 1.2.

Theorem 7.1 (Spinc Reilly inequality). For all ψ ∈ H1(M,SM ), we have∫
Σ

(
〈D̃Σψ,ψ〉 − n

2
H|ψ|2

)
ds �

∫
M

(
1
4
scalM |ψ|2 +

1
2
〈iΩ · ψ,ψ〉 − n

n+ 1
|Dψ|2

)
dv, (13)

where dv (respectively, ds) is the Riemannian volume form of M (respectively, Σ). Moreover,
equality occurs if and only if the spinor field ψ is a twistor–spinor, that is, if and only if
Pψ = 0, where P is the twistor operator acting on SM and is locally given by PXψ = ∇Xψ +
(1/(n+ 1))X ·Dψ for all X ∈ Γ(TM).

Proof. The inequality is proved for ψ ∈ Γ∞
c (M,SM ) analogously as in the compact Spin

case [16, (17)]. For the convenience of the reader, we will shortly recall it here. Then, for
all ψ ∈ H1(M,SM ), the claim follows using the Trace Theorem 3.7 in the same way as in
Lemma 3.10: We define 1-forms α and β on M by α(X) = 〈X ·Dψ,ψ〉 and β(X) = 〈∇Xψ,ψ〉
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for all X ∈ Γ∞(TM). Then, α and β satisfy

δα = 〈D2ψ,ψ〉 − |Dψ|2, δβ = −〈∇∗∇ψ,ψ〉 + |∇ψ|2.
Applying the divergence theorem with (3) and (4), we obtain∫

Σ

(
〈D̃Σψ,ψ〉 − n

2
H|ψ|2

)
ds =

∫
M

(
|∇ψ|2 − |Dψ|2 +

1
4
scalM |ψ|2 +

i

2
〈Ω · ψ,ψ〉

)
dv. (14)

On the other hand, for any spinor field ψ, we have

|∇ψ|2 = |Pψ|2 +
1

n+ 1
|Dψ|2. (15)

Combining the identities (15), and (14) and |Pψ|2 � 0, the result follows. Equality holds if and
only if |Pψ|2 = 0, that is, the spinor ψ is a twistor–spinor.

8. A lower bound for the first nonnegative eigenvalue of the Dirac operator on the boundary

In this section, we prove Theorem 1.2. For that we will not follow the original proof given
in [16] due to our problems concerning the APS-boundary conditions as remarked at the end
of Example 4.16(iv). But we will use B± as given in Example 4.16(iii).

Proof of Theorem 1.2. Since Σ is of bounded geometry, D̃Σ : H1(Σ,SM |Σ) → L2(Σ,SM |Σ)
is self-adjoint and, hence, λ1 is an eigenvalue or in the essential spectrum of D̃Σ. In both
cases, there is a sequence ϕi ∈ H1(Σ,SM |Σ) with ‖ϕi‖L2(Σ) = 1 and ‖(D̃Σ − λ1)ϕi‖L2(Σ) → 0.
Then, ϕi → ϕ weakly in L2(Σ,SM |Σ). (In case that ϕ �= 0, then ϕ is an eigenspinor of D̃Σ

to the eigenvalue λ1 otherwise λ1 is in the essential spectrum of D̃Σ). We assumed that D is
B−-coercive at infinity (everything which follows is also true when assuming B+-coercivity at
infinity when switching the signs). Then, by Lemma 4.18, the range of DB− is closed. Moreover,
from Lemma 5.1 we have ker (DB−)∗ = ker DB+ = {0}. Thus, due to Corollary 4.19 for each i
there exists a unique Ψi ∈ H1(M,SM ) with DΨi = 0 and P+RΨi = P+ϕi. Using Theorem 7.1
and scalM + 2iΩ· � 0, we obtain

0 �
∫
Σ

(
〈D̃ΣRΨi, RΨi〉 − n

2
H|RΨi|2

)
ds.

Moreover,

(D̃Σ(P+RΨi + P−RΨi), P+RΨi + P−RΨi)Σ
= (D̃ΣP+RΨi, P−RΨi)Σ + (D̃ΣP−RΨi, P+RΨi)Σ
= (D̃ΣP+RΨi, P−RΨi)Σ + (P−RΨi, D̃

ΣRP+Ψi)Σ,

where we used Lemma 5.1 and that D̃Σ is self-adjoint on H1(Σ,SM |Σ). Hence, summarizing
we get that

n

2

∫
Σ

H|RΨi|2 ds � 2�
∫
Σ

〈D̃ΣP+RΨi, P−RΨi〉 ds = 2�
∫
Σ

〈P−D̃ϕi, P−RΨi〉 ds

� 2�
∫
Σ

〈P−(D̃Σ − λ1)ϕi, P−RΨi〉 ds+ 2λ1�
∫
Σ

〈P−ϕi, P−RΨi〉 ds.

Using 2� ∫
Σ
〈P−ϕi, P−RΨi〉ds � ‖P−ϕi‖2

L2(Σ) + ‖P−RΨi‖2
L2(Σ) and λ1 � 0, we obtain

n

2
inf
Σ
H‖RΨi‖2

L2(Σ) � 2‖(D̃Σ − λ1)ϕi‖L2‖RΨi‖L2 + λ1(‖P−ϕi‖2
L2(Σ) + ‖P−RΨi‖2

L2(Σ)).
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Moreover, (D̃ΣP±ϕi, P∓ϕi) = (P∓(D̃Σ − λ1)ϕi, P∓ϕi) + λ1‖P∓ϕi‖2
L2 . Since D̃Σ is self-adjoint,

�(D̃ΣP+ϕi, P−ϕi) = �(D̃ΣP−ϕi, P+ϕi). Thus, together with

|(P∓(D̃Σ − λ1)ϕi, P∓ϕi)| � ‖(D̃Σ − λ1)ϕi‖L2‖ϕi‖L2 −→ 0

as i→ ∞, this implies that limi→∞ ‖P−ϕi‖L2 = limi→∞ ‖P+ϕi‖L2 = 1
2 for λ1 �= 0. Hence, for

certain εi with εi → 0 as i→ ∞
n

2
inf
Σ
H‖RΨi‖2

L2(Σ) � 2‖(D̃Σ − λ1)ϕi‖L2‖RΨi‖L2 + λ1(‖P+ϕi‖2
L2(Σ) + εi + ‖P−RΨi‖2

L2(Σ))

� 2‖(D̃Σ − λ1)ϕi‖L2‖RΨi‖L2 + λ1(‖P+RΨi‖2
L2(Σ) + εi + ‖P−RΨi‖2

L2(Σ))

� 2‖(D̃Σ − λ1)ϕi‖L2‖RΨi‖L2 + λ1(‖RΨi‖2
L2(Σ) + εi).

Hence,
n

2
inf
Σ
H � 2‖(D̃Σ − λ1)ϕi‖L2‖RΨi‖−1

L2 + λ1(1 + εi‖RΨi‖−2
L2 ).

With ‖RΨi‖L2 � ‖P+RΨi‖L2 = ‖P+ϕi‖L2 → 1
2 , we finally get for i→ ∞

n

2
inf
Σ
H � λ1.

Next, we collect all conditions that have to be fulfilled to obtain the equality n
2 infΣH = λ1:

(1) from the spinorial Reilly Inequality (13),
∫

M
|PΨi|2 dv → 0 which implies together with

DΨi = 0 that
∫

M
|∇Ψi|2 dv → 0;

(2)
∫

M
scalM |Ψi|2 + 2i〈Ω · Ψi,Ψi〉 dv → 0;

(3) ‖ϕi −RΨi‖L2(Σ) → 0;
(4)

∫
Σ
(H − infΣH)|RΨi|2 ds→ 0.

In case that λ1 is an eigenvalue of D̃Σ with eigenspinor ϕ, one can choose ϕi = ϕ for all i.
Then, Ψi =: Ψ for all i and those equality conditions reduce to ϕ = RΨ, Ψ is a parallel spinor
on M , H is constant and

∫
M

scalM |Ψ|2 + 2i〈Ω · Ψ,Ψ〉 dv = 0.
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