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METABELIAN SL(n,C) REPRESENTATIONS OF

KNOT GROUPS, III: DEFORMATIONS

HANS U. BODEN AND STEFAN FRIEDL

Abstract. Given a knot K with complement NK and an irreducible metabel-
ian SL(n,C) representation α : π1(NK) → SL(n,C), we establish the inequal-
ity dimH1(NK ; sl(n,C)ad α) ≥ n − 1. In the case of equality, we prove that
α must have finite image and is conjugate to an SU(n) representation. In
this case we show α determines a smooth point ξα in the SL(n,C) character
variety, and we use a deformation argument to establish the existence of a
smooth (n− 1)–dimensional family of characters of irreducible SL(n,C) repre-
sentations near ξα, and a corresponding sub–family of characters of irreducible
SU(n) representations of real dimension n− 1. Both families can be chosen so
that ξα is the only metabelian character.

Combining this with our previous existence results, we deduce the existence
of large families of irreducible SU(n) and SL(n,C) non-metabelian represen-
tation for knots K in homology 3-spheres Σ with nontrivial Alexander polyno-
mial. We then relate the condition on twisted cohomology to a more accessible

condition on untwisted cohomology of a certain metabelian branched cover Σ̂ϕ

of Σ branched along K.

1. Introduction

Suppose K is an oriented knot in an integral homology 3-sphere Σ with exte-
rior NK = Σ3rτ(K). In [BF08], we show how to construct irreducible metabelian
SL(n,C) representations of the knot group π1(NK) for any knot K with nontriv-
ial Alexander polynomial. This provides a constructive proof for the existence of
irreducible metabelian representations in SL(n,C), and in this paper we prove a
stronger existence result (see Theorem 8) and consider the problem of existence of
irreducible non-metabelian SL(n,C) representations of π1(NK).

In rank n = 2, a result of Thurston implies that any irreducible metabelian
representation α : π1(NK) → SL(2,C) can be deformed within the larger space
of all (conjugacy classes of) representations, and in fact Theorem 3.2.1 of [CS83]
shows the existence of a family of conjugacy classes of irreducible representations
near α of dimension ≥ 1. In this paper, we study the character varieties of knot
groups in higher rank, with a focus on existence of irreducible metabelian SL(n,C)
representations and their deformations. For instance, given an irreducible metabel-
ian representation α : π1(NK) → SL(n,C) satisfying a cohomological condition,
we establish the existence of an (n− 1)-dimensional family of conjugacy classes of
irreducible non-metabelian SL(n,C) representations near α.
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2 HANS U. BODEN AND STEFAN FRIEDL

In order to more precisely state our results, we introduce notation that will be
used throughout the paper.

Given a finitely generated group π, let Rn(π) = Hom(π, SL(n,C)) be the repre-
sentation variety, which is an affine algebraic set with a natural action of SL(n,C)
by conjugation. The set-theoretic quotient is in general not well-behaved, (e.g.
it is typically not Hausdorff), so instead we consider the natural quotient in the
category of algebraic sets, which is by definition the character variety Xn(π) (see
[LM85] for details on the construction of character varieties). Given a representa-
tion α : π → SL(n,C), its character is the map ξα : π → C defined by γ 7→ tr α(γ),
and setting t(α) = ξα defines the quotient map t : Rn(π) → Xn(π).

For a topological space M , let Rn(M) = Rn(π1(M)) and Xn(M) = Xn(π1(M)).
Given α : π1(M) → SL(n,C), let ad α be its composition with the adjoint represen-
tation on the Lie algebra sl(n,C), thus ad α determines a π1(M) action on sl(n,C).
We let H∗(M ; sl(n,C)ad α) denote the cohomology groups of M with coefficients in
sl(n,C) twisted by this action.

Given an irreducible metabelian representation α : π1(NK) → SL(n,C), we
show that dimH1(NK ; sl(n,C)ad α) ≥ n − 1 (Proposition 15) and deduce that
dimXj ≥ n− 1 for any algebraic component Xj ⊂ Xn(NK) containing ξα (Corol-
lary 17). We then show that if α : π1(NK) → SL(n,C) is an irreducible metabel-
ian representation such that dimH1(NK ; sl(n,C)ad α) = n − 1, then α has fi-
nite image and is conjugate to a unitary representation. The following result
gives a local description of the character variety near ξα under the assumption
dimH1(NK ; sl(n,C)ad α) = n− 1.

Theorem 1. If α : π1(NK) → SL(n,C) is an irreducible metabelian representation
with dimH1(NK ; sl(n,C)ad α) = n − 1, then α has finite image and is therefore
conjugate to a unitary representation. Further, we have:

(i) The character ξα is a smooth point in Xn(NK), and there exists a smooth
complex (n − 1)–dimensional family of characters of irreducible SL(n,C)
representations near ξα ∈ Xn(NK).

(ii) As a point in XSU(n)(NK), the character ξα is again a smooth point and
there exists a smooth real (n− 1)–dimensional family of characters of irre-
ducible SU(n) representations near ξα ∈ XSU(n)(NK).

Both deformation families can be chosen so that ξα is the only metabelian character
within them.

Deformations of dihedral SL(2,C) representations were studied by Heusener and
Klassen in [HK97], and metabelian representations in SL(n,C) are their analogues
in higher rank. Theorem 1 is established by applying deformation arguments
developed for SL(2,C) and PSL(2,C) by Heusener, Porti, and Suárez Peiró in
[HPS01, HP05]. These techniques were extended to SL(n,C) in [AHJ10], where
they were applied to deform reducible metabelian SL(3,C) representations of knot
groups. In this paper, we apply the same technique to the problem of deforming ir-
reducible metabelian characters. In Subsection 4.3, we state the deformation results
that are needed to establish Theorem 1, and in Appendix A, we provide detailed ar-
guments for these results, following the treatment given in [HPS01, HP05, AHJ10].

Theorem 1 applies in many cases. For instance, in rank 2, given an irreducible
representation α : π1(NK) → SL(2,C) such that {α(µ), α(λ)} 6⊂ {±I}, Thurston
proved that any algebraic component of X2(NK) containing ξα has dimension
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d ≥ 1 (see Theorem 3.2.1 of [CS83]). We will see that every irreducible metabelian
SL(2,C) representation α satisfies this condition, and thus ξα ∈ X2(NK) can be
deformed to an irreducible non-metabelian representation. If one assumes, in addi-
tion, that NK does not contain any closed incompressible surfaces, then it follows
from [CS83] that any algebraic component X2(NK) has dimension d = 1. Knots
K whose complements NK satisfy this condition are called small, and we see that
Theorem 1 applies to irreducible metabelian representations α : π1(NK) → SL(2,C)
when K is a small knot in an integral homology 3-sphere. In Subsection 4.6, we
show by example that Theorem 1 can also be applied in higher rank.

Note that Theorem 1 does not apply to knots K whose Alexander polyno-
mial ∆K(t) has a root which is an n-th root of unity. Indeed, if Ln is the n-
fold cyclic branched cover of Σ branched along K, then we have b1(Ln) > 0,
and any irreducible metabelian representation α : π1(NK) → SL(n,C) will have
dimH1(NK ; sl(n,C)ad α) > n − 1 (see Proposition 19). The simplest example oc-
curs in rank n = 6 for the trefoil knot K = 31, though other examples can be
constructed using Theorem 3.10 of [BF08].

Thus, it is useful to have an alternative criterion for applying Theorem 1, and
our next result provides such a criterion in terms of the untwisted cohomology of a
certain metabelian branched cover of Σ branched along K.

Theorem 2. Suppose that n is such that b1(Ln) = 0 (equivalently, suppose the
Alexander polynomial ∆K(t) has no root which is an n-th root of unity). Suppose
further that α : π1(NK) → SL(n,C) is an irreducible metabelian representation and
ϕ : π1(NK) → Z/n ⋉H is a group homomorphism with H finite and abelian such

that α factors through ϕ. Denote by Ñϕ → NK the covering map corresponding to
ϕ. Then the following hold:

(i) b1(Ñϕ) ≥ |H | and if b1(Ñϕ) = |H |, then dimH1(NK ; sl(n,C)ad α) = n− 1.

(ii) The cover Ñϕ → NK extends to a cover Σ̂ϕ → Σ branched over K.

(iii) If b1(Σ̂ϕ) = 0, then dimH1(NK ; sl(n,C)ad α) = n− 1.

Remark 3. Theorem 2 is a generalization of a result proved for dihedral groups by
Boileau and Boyer, see [BB07, Lemma A.2].

Acknowledgments. The authors are grateful to Steve Boyer, Jérôme Dubois,
Michael Heusener, and Adam Sikora for many helpful discussions. The first author
is happy to acknowledge the Max Planck Institute for Mathematics for its support.

2. Metabelian representations of knot groups

In this section we review the construction of metabelian representations for knot
groups from [BF08]. We then use a result of Silver and Williams [SW02] to show
existence of irreducible metabelian SL(n,C) representations for all but finitely many
ranks n for any knot K whose Alexander polynomial ∆K(t) has a root that is not
a root of unity.

2.1. Construction of irreducible metabelian SL(n,C) representations. Given
a group π and a finite dimensional vector space V over C, a representation ̺ : π →
Aut(V ) is called reducible if there exists a proper invariant subspace U ⊂ V , oth-
erwise ̺ is called irreducible. We say ̺ is metabelian if its restriction ̺|π(2) is
trivial, where π(2) denotes the second commutator subgroup of π. Equivalently,



4 HANS U. BODEN AND STEFAN FRIEDL

a metabelian representation is one that factors through the metabelian quotient
π/π(2).

Given a knotK ⊂ Σ3 in an integral homology 3-sphere, letNK = Σrτ(K) be the

complement and ÑK be the infinite cyclic cover of NK . Thus π1(ÑK) = π1(NK)(1)

and

H1(NK ;Z[t±1]) = H1(ÑK) ∼= π1(NK)(1)/π1(NK)(2),

where we use π(n) to denote the n–th term of the derived series of a group π, so
π(1) = [π, π] and π(2) = [π(1), π(1)], and so on. The Z[t±1]–module structure is
given on the right hand side by tn · g := µ−ngµn, where µ is a meridian of K.

Set π := π1(NK) and H = H1(NK ;Z[t±1]) and consider the short exact sequence

1 → π(1)/π(2) → π/π(2) → π/π(1) → 1.

Since π/π(1) = H1(NK) ∼= Z, this sequence splits and we get isomorphisms

π/π(2) ∼= π/π(1) ⋉ π(1)/π(2) ∼= Z ⋉ π(1)/π(2) ∼= Z ⋉H

g 7→ (µε(g), µ−ε(g)g) 7→ (ε(g), µ−ε(g)g),

where the semidirect products are taken with respect to the Z actions defined by
letting n ∈ Z act by conjugation by µn on π(1)/π(2) and by multiplication by tn on
H1(NK ;Z[t±1]). This demonstrates the following lemma.

Lemma 4. For any knot K, the set of metabelian representations of π1(NK) can
be canonically identified with the set of representations of Z⋉H.

When it is convenient, we will blur the distinction between metabelian represen-
tations of π1(NK) and representations of Z ⋉H .

Lemma 4 applies to give a useful classification of the irreducible SL(n,C) of
π1(NK), and before explaining that, we point out two important and well–known
facts that are used frequently:

(i) H = H1(NK ;Z[t±1]) is finitely generated as a Z[t±1]–module and multipli-
cation by t− 1 is an isomorphism.

(ii) There is an isomorphismH/(tn−1) ∼= H1(Ln), where Ln denotes the n–fold
cyclic branched cover of Σ3 branched along K.

Suppose χ : H → C
∗ is a character factoring through H/(tn − 1) and z ∈ U(1)

satisfies zn = (−1)n+1. Given (j, h) ∈ Z ⋉H, we set

α(n,χ,z)(j, h) =




0 . . . z
z 0 . . . 0
...

. . .
. . .

...
0 . . . z 0




j


χ(h) 0 . . . 0
0 χ(th) . . . 0
...

. . .
...

0 0 . . . χ(tn−1h)


 .

It follows that α(n,χ,z) defines an SL(n,C) representation that factors over Z ⋉

H/(tn − 1) and whose isomorphism type is independent of the choice of z (see
[BF08, Section 3]). We write α(n,χ) for α(n,χ,z).

Recall that a character χ : H → C∗ has order n if it factors through H/(tn − 1)
but not through H/(tℓ−1) for any ℓ < n. Any character χ : H → C∗ which factors
through H/(tn − 1) must have order k for some divisor k of n.

Given a character χ : H → C∗, let tiχ be the character defined by (tiχ)(h) =
χ(tih). The next theorem gives a summary of the results [BF08, Lemma 2.2] and
[BF08, Theorem 3.3].
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Theorem 5. Suppose χ : H → C∗ is a character that factors through H/(tn − 1).

(i) α(n,χ) : Z ⋉H → SL(n,C) is irreducible if and only if the character χ has
order n.

(ii) Given two characters χ, χ′ : H → C∗ of order n, the representations α(n,χ)

and α(n,χ′) are conjugate if and only if χ = tkχ′ for some k.
(iii) For any irreducible representation α : Z ⋉ H → SL(n,C) there exists a

character χ : H → C∗ of order n such that α is conjugate to α(n,χ).

Remark 6. Note that

α(n,χ)(µ) =




0 . . . 0 z
z 0 . . . 0

. . .
. . .

...
0 z 0




is conjugate to the diagonal matrix



z 0
ωz

. . .

0 ωn−1z


 ,

where z satisfies zn = (−1)n+1 and ω = e2πi/n. In particular, this shows under
α(n,χ), the meridian is sent to a matrix with n distinct eigenvalues.

2.2. Existence of irreducible metabelian SL(n,C) representations. In this
section, we apply results of [SW02] to prove a strong existence result for irreducible
metabelian SL(n,C) representations of knot groups.

Suppose K is a knot whose Alexander polynomial ∆K(t) has a zero which is not
a root of unity. Then Kronecker’s theorem implies that the Mahler measure m of
∆K(t) satisfies m > 1. Recall that the Mahler measure of a polynomial f(t) ∈ C[t]
is defined by the formula

m(f) = exp

∫ 2π

0

ln(|f(eiθ|)dθ.

The next proposition was proved by Silver and Williams in [SW02], and it is an ex-
tension of earlier results of Gordon [Gor72, p. 365], González-Acuña–Short [GAS91]
and Riley [Ri90].

Proposition 7 (Theorem 2.1, [SW02]). Let K be a knot and let m be the Mahler
measure of ∆K(t). Then

lim
n→∞

lnTorH1(Ln)

n
= lnm.

We now explain how to apply Proposition 7 to deduce a strengthened existence
result for irreducible metabelian SL(n,C) representations for such knots K (cf.
Theorems 3.10 and 3.12 of [BF08]).

Theorem 8. Suppose K is a knot such that ∆K(t) has a zero which is not a root
of unity. Then the number of distinct conjugacy classes of irreducible metabel-
ian SL(n,C) representations of the knot group increases exponentially as n → ∞.
Consequently, for all but finitely many ranks n, there exist irreducible metabelian
representations α : π1(NK) → SL(n,C).
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Proof. Let K be a knot. Given n ∈ N, let rn ∈ N ∪ {∞} denote the number of
distinct conjugacy classes of irreducible metabelian SL(n,C) representations of the
knot group.

Claim. Let n ∈ N and write n = p1p2 · · · pk for primes p1, . . . , pk. Then

rn ≥
1

n

(
|TorH1(Ln)| −

k∑

i=1

|TorH1(Ln/pi
)|

)
.

We write H = H1(NK ;Z[t, t−1]). Note that given any k|n we have the following
commutative diagram

H/(tn − 1)
∼=
−→ H1(Ln)

↓ ↓

H/(tk − 1)
∼=
−→ H1(Lk).

We pick once and for all a decomposition H1(Ln) = Fn ⊕ Tn where Fn is a free
abelian group and Tn is torsion. It follows from Theorem 5 (i) and (ii) that

rn ≥ 1
n#{ρ : H1(Ln) → Tn → S1 | ρ does not factor through some H1(Lk)}

= 1
n#{ρ : Tn → S1 | ρ does not factor through Tn → H1(Ln) → H1(Lk)}.

Note that the number of characters of a finite group A equals |A|. Also note that
any map Tn → H1(Lk) necessarily factors through TorH1(Lk). The claim is now
an immediate consequence of these observations.

Claim. Suppose M > 1 and n = p1p2 · · · pk for primes p1, . . . , pk. Then

k∑

i=1

Mn/pi ≤
lnn

ln 2
Mn/2.

Since each prime factor pi ≥ 2, it follows that p1 · · · pk = n ≥ 2k. Thus

k∑

i=1

Mn/pi ≤
k∑

i=1

Mn/2 = kMn/2 ≤
lnn

ln 2
Mn/2,

and this completes the proof of the claim.
We can now finally turn to the proof of the theorem. Suppose that ∆K(t) has

a zero which is not a root of unity. Let m be the Mahler measure of ∆K(t) and
notice that Kronecker’s theorem implies m > 1.

Suppose 0 < ε < 1/3. By Proposition 7, there exists an N such that n ≥ N
implies (

m1−ε
)n

≤ |TorH1(Ln)| ≤
(
m1+ε

)n
.

We write

D :=
N∑

i=1

|TorH1(Li)|.

Now let n ≥ N . We factor n = p1p2 · · · pk where p1, . . . , pk are primes. If we
combine the above with the first claim we see that

rn ≥ 1
n

(
|TorH1(Ln)| −

∑k
i=1 |TorH1(Ln/pi

)|
)

≥ 1
n

(
m(1−ε)n −

∑k
i=1 m

(1+ε)n/pi −D
)
.
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Applying the second claim with M = m1+ε, it follows that

rn ≥
1

n

(
m(1−ε)n −

lnn

ln 2
m(1+ε)n/2 −D

)
.

This shows that rn grows exponentially for sufficiently large n. �

3. Twisted homology and cohomology

In this section, we introduce the twisted homology and cohomology groups and
give some computations that are used throughout the paper.

3.1. The adjoint representation. In this subsection, we show how, given a
metabelian representation, its adjoint representation decomposes as a direct sum
of simple representations.

Lemma 9. Let K be a knot, n ∈ N, and χ : H1(Ln) → C∗ a character. Set
α = α(n,χ) and let θ1 : π1(NK) → GL(1,C) denote the trivial representation.
Let αn : π1(NK) → Aut(C[Z/n]) be the regular representation corresponding to
the canonical projection map π1(NK) → Z → Z/n, and let ad α : π1(NK) →
Aut(sl(n,C)) denote the adjoint representation. Then we have the following iso-
morphism of representations:

ad α⊕ θ1 ∼= αn ⊕

n−1⊕

i=1

β(n,χi),

where χi is the character defined by χi(v) := χ(v)−1χ(tiv). Further, if χ is a
character of order n, then χ1, . . . , χn−1 are also characters of order n.

Proof. Write π = π1(NK) as before and let β : π → Aut(gl(n,C)) denote the
adjoint representation of α on gl(n,C), so β(g)(A) = α(g)Aα(g)−1 for g ∈ π and
A ∈ gl(n,C). Note that gl(n,C) = sl(n,C) ⊕ C · I. It follows immediately that
β = ad α⊕ θ1 splits off a trivial factor. It therefore suffices to show that

β ∼= αn ⊕

n−1⊕

i=1

β(n,χi).

For i = 0, . . . , n − 1, let Vi be the set of all matrices (ajk) such that ajk =
0 unless j − k ≡ i mod n. It is not difficult to see that the action of π on
gl(n,C) restricts to actions on V0, V1, . . . , Vn−1. We equip Vi with the ordered basis
{ei+1,1, ei+2,2, . . . , ei+n,n}, where the indices are taken modulo n. The restriction
of β to Vi can then be calculated with respect to this basis and α(n,χ,z)(j, h) =

zjβ(n,χ)(i, h) and the zi disappears upon conjugation.
Note that χ0 is the trivial character, and therefore β(n,χ0) = αn. �

As a side note we record a corollary on twisted Alexander polynomials. Recall
that given a knot K and a complex representation γ we can consider the corre-
sponding twisted Alexander polynomial ∆γ

K ∈ C(t). We refer to [Wa94, FV10] for
details. We obtain the following corollary.

Corollary 10. Let K be an oriented knot , n ∈ N and χ : H1(Ln) → C∗ be a
character. Suppose α = α(n,χ). Then

∆ad α
K

.
=

n−1∏

j=1

∆K(e2πij/nt) ·

n−1∏

j=1

∆
β(n,χi)
K .
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This corollary generalizes a recent theorem of Yamaguchi [Ya11] which says that
in the case n = 2 the polynomial ∆K(−t) divides ∆ad α

K .

3.2. Twisted homology and cohomology. In this subsection, we recall the
twisted homology and cohomology groups and summarize their basic properties.

Let (X,Y ) be a pair of topological spaces, V a finite dimensional complex vec-

tor space and α : π1(X) → Aut(V ) a representation. Denote by p : X̃ → X the

universal covering and set Ỹ := p−1(Y ). Using the representation, we can regard

V as a left Z[π]–module, where π = π1(X). The chain complex C∗(X̃, Ỹ ) is also
a left Z[π]–module via deck transformations and we form the twisted cohomology
groups

H∗(X,Y ;Vα) = H∗(HomZ[π](C∗(X̃, Ỹ ), V )).

Using the natural involution g 7→ g−1 on the group ring Z[π], we can view C∗(X̃, Ỹ )
as a right Z[π]–module, and we can form the twisted homology groups

H∗(X,Y ;Vα) = H∗(C∗(X̃, Ỹ )⊗Z[π] V ).

The groups H0 and H0 can be computed immediately from the fundamental
group (cf. [HS97, Section VI]):

(1)
H0(X ;Vα) = {v ∈ V | α(g)v = v for all g ∈ π},
H0(X ;Vα) = V/ ∼, where α(g)v ∼ v for all v ∈ V, g ∈ π.

If M is an n–manifold, then Poincaré duality implies

Hi(M ;Vα) ∼= Hn−i(M,∂M ;Vα) and Hi(M,∂M ;Vα) ∼= Hn−i(M ;Vα).

The next two lemmas are both well–known and therefore stated without proof.
For more details, see [FK06, Lemma 2.3].

Lemma 11. Suppose that V is equipped with a bilinear non–singular form, and
that α is orthogonal with respect to this form. Then

Hi(X,Y ;Vα) ∼= Hi(X,Y ;Vα)

for any i. The same conclusion holds in the case V has a non–singular hermitian
form and α is unitary with respect to this form.

Consider the map defined for A,B ∈ sl(n,C) by the assignment

(A,B) 7→ − tr(AB).

This map defines a non–singular, symmetric, bilinear form on sl(n,C) called the
Killing form. The next lemma says that the hypotheses of Lemma 11 are satisfied
for the adjoint representation.

Lemma 12. For any α : π → SL(n,C), its adjoint representation ad α : π →
Aut(sl(n,C)) is orthogonal with respect to the Killing form.
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3.3. Calculations. This subsection presents some calculations of twisted homol-
ogy and cohomology groups that will be used in proving the main results.

Lemma 13. Let K be a knot, χ : H1(Ln) → C∗ a character and z ∈ U(1). Let
V = Cn and α = α(n,χ,z) : π1(NK) → Aut(V ), and set α̂ to be the restriction of α
to π1(∂NK). If zn = 1, then the following hold:

dimH0(∂NK ;Vα̂) = dimH0(∂NK ;Vα̂) = 1,
dimH1(∂NK ;Vα̂) = dimH1(∂NK ;Vα̂) = 2,
dimH2(∂NK ;Vα̂) = dimH2(∂NK ;Vα̂) = 1.

Proof. We let µ and λ be the meridian and longitude of K. Note that α(λ) is trivial
and that α(µ) is diagonal with eigenvalues z, ze2πi/n, . . . , ze2πi(n−1)/n, which are
distinct. Note that α(µ) has precisely one eigenvalue which equals one. A direct
calculation using Equation (1) shows that H0(∂NK , Vα̂) = C and H0(∂NK , Vα̂) =
C, and duality gives that H2(∂NK ;Vα̂) = C and H2(∂NK ;Vα̂) = C. Since the
Euler characteristic of the torus ∂NK is zero we see that dimH1(∂NK ;Vα̂) =
dimH1(∂NK ;Vα̂) = 2. �

Lemma 14. Let K be a knot. For i = 1, . . . , ℓ, let χi : H1(Ln) → C∗ be a non–
trivial character and zi ∈ U(1) with zni = 1. Let V = Cnℓ and consider the

representation α =
⊕ℓ

i=1 α(n,χi,zi) : π1(NK) → Aut(V ). Then the following hold:

(i) dimH0(NK ;Vα) = 0,
(ii) if α is orthogonal or unitary with respect to a non–singular form on V , then

dimH1(NK ;Vα) ≥ ℓ.

Proof. The first statement is an immediate consequence of Equation (1) and the
assumption that χi are non-trivial. By Lemma 13 we have dimH1(∂NK ;Vα) = 2ℓ.
Now consider the following short exact sequence

H1(NK ;Vα) −→ H1(∂NK ;Vα) −→ H2(NK , ∂NK ;Vα).

It follows that either dimH1(NK ;Vα) ≥ ℓ or dimH2(NK , ∂NK ;Vα) ≥ ℓ. But by
Poincaré duality and by Lemma 11 the latter also equals dimH1(NK ;Vα). �

4. Main Results

In this section we establish the results discussed in the introduction. In §4.1, we
present cohomology arguments showing dimH1(NK ; sl(n,C)ad α) ≥ n − 1 for any
irreducible metabelian representation α : π1(NK) → SL(n,C). In §4.2, we prove
that any algebraic component Xj of Xn(NK) has dimension dimXj ≥ n − 1, in
case Xj contains the character of a regular representation α : π1(NK) → SL(n,C).
This is a generalization to SL(n,C) of a theorem due to Thurston for SL(2,C) (see
[CS83, Theorem 3.2.1]).

At this point, we make the assumption that dimH1(NK ; sl(n,C)ad α) = n − 1.
Using this condition, we show in §4.3 that every irreducible metabelian character
ξα is a simple point of the character variety Xn(NK). In §4.4, we prove that every
irreducible metabelian representation α : π1(NK) → SL(n,C) has finite image and
is conjugate to a unitary representation, and we develop SU(n) versions of the
earlier results. In §4.5, we give the proofs of Theorems 1 and 2, and in §4.6, we
present examples illustrating how to apply these techniques.
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4.1. Cohomology arguments. Assume now that α : π1(NK) → SL(n,C) is a
representation and let α̂ : π1(∂NK) → SL(n,C) denote its restriction to the bound-
ary torus. Throughout much of what follows, we will assume that α is a regular
representation, meaning that α is irreducible and that the image of α̂ contains a
matrix with n distinct eigenvalues. The subset of regular representations is clearly
Zariski open in Rn(NK), and every irreducible metabelian representation of π1(NK)
is regular (see Remark 6).

Choose g ∈ π1(∂NK) so that α(g) has n distinct eigenvalues. Then this matrix
is diagonalizable, and any other matrix that commutes with it must lie in the same
maximal torus. Since π1(∂NK) ∼= Z ⊕ Z is abelian, we see that the stabilizer
subgroup of α̂ under conjugation is again this maximal torus. From this, Poincaré
duality and Euler characteristic considerations, we conclude that

dimH0(∂NK ; sl(n,C)ad α̂) = n− 1,
dimH1(∂NK ; sl(n,C)ad α̂) = 2(n− 1), and
dimH2(∂NK ; sl(n,C)ad α̂) = n− 1.

We now consider the long exact sequence in twisted cohomology associated with
the pair (NK , ∂NK). The inclusions

(∂NK ,∅)
i
→֒ (NK ,∅)

j
→֒ (NK , ∂NK)

induce the following long exact sequence (coefficients in sl(n,C) twisted by ad α or
ad α̂ understood).

(2)

0 −→ H0(NK) −→ H0(∂NK) −→ H1(NK , ∂NK)
j1

−→ H1(NK)
i1
−→ H1(∂NK) −→ H2(NK , ∂NK)

j2

−→ H2(NK)
i2
−→ H2(∂NK) −→ H3(NK , ∂NK) −→ 0.

Exactness of the middle row implies that

dimH1(NK) + dimH2(NK , ∂NK) ≥ dimH1(∂NK) = 2n− 2,

and by Poincaré duality and Lemmas 11 and 12, we have that dimH1(NK) =
dimH2(NK , ∂NK). This implies dimH1(NK) ≥ n− 1.

The next proposition shows that the image
(
i1 : H1(NK)−→H1(∂NK)

)
has di-

mension n − 1, and this should be viewed as an instance of the following general
principle. Suppose N is a 3-manifold with boundary ∂N = Σ a compact Riemann
surface of genus g. Goldman proved that the smooth part of the character variety
Xn(Σ) carries a natural symplectic structure [Gol84], and a folklore result implies
that the image of the restriction Xn(N) → Xn(Σ) is Lagrangian. This idea has
been made precise by A. Sikora, who studied this in the general setting of repre-
sentations into reductive Lie groups in [Si09], under the assumption that ∂X is a
connected surface of genus g ≥ 2. We state and prove analogous results for SL(n,C)
representations of knot complements NK , which is the main case of interest here.

Proposition 15. If K is a knot and α : π1(NK) → SL(n,C) is a regular represen-
tation, then the image

image
(
i1 : H1(NK ; sl(n,C)ad α)−→H1(∂NK ; sl(n,C)ad α̂)

)
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has dimension n − 1 and is Lagrangian with respect to the symplectic structure Ω
defined below. It follows that

dimH1(NK ; sl(n,C)ad α) ≥ n− 1.

Proof. The fact that image(i1) has dimension n− 1 follows easily from a diagram
chase of the long exact sequence (2), using the fact that α̂(π1(∂NK)) contains an
element with n distinct eigenvalues, hence dimH0(∂NK ; sl(n,C)ad α̂) = n − 1 =
dimH2(∂NK ; sl(n,C)ad α̂) and dimH1(∂NK ; sl(n,C)ad α̂) = 2n− 2.

The symplectic structure Ω on H1(∂NK ; sl(n,C)) is defined by composing the
cup product with the symmetric bilinear pairing obtained by first multiplying the
matrices and then taking the trace:

sl(n,C)× sl(n,C) → gl(n,C) → C

(A,B) 7→ A · B 7→ tr(A ·B).

We have already seen that the image(i1) has dimension n − 1, so we just need
to show that it is isotropic with respect to Ω.

Suppose x, y ∈ H1(NK ; sl(n,C)ad α) and consider the long exact sequence (2)
with untwisted coefficients in C. Let ⌣ denote the combined cup and matrix
product, so x ⌣ y ∈ H2(NK ; gl(n,C)ad α). Using the commutative diagram

H1(NK ; sl(n,C)ad α)×H1(NK ; sl(n,C)ad α)
⌣

−−−−→ H2(NK ; gl(n,C)ad α)yi1×i1
yi2

H1(∂NK ; sl(n,C)ad α̂)×H1(∂NK ; sl(n,C)ad α̂)
⌣

−−−−→ H2(∂NK ; gl(n,C)ad α̂),

we see that Ω(i1(x), i1(y)) = tr(i1(x) ⌣ i1(y)) = tr i2(x ⌣ y). This shows
Ω(i1(x), i1(y)) lies in the image of

(3) H2(NK ;C)−→H2(∂NK ;C),

which by exactness of the third row of the long exact sequence (2), now taken
with untwisted C coefficients, equals the kernel of the surjection H2(∂NK ;C) →
H3(NK , ∂NK ;C). However, it is not difficult to compute H3(NK , ∂NK ;C) = C =
H2(∂NK ;C), and this implies that the map in Equation (3) is the zero map. �

4.2. Dimension arguments. In this subsection, we give a lower bound on the
dimension of algebraic components of the character variety Xn(NK) containing a
regular representation.

Proposition 16. If α : π1(NK) → SL(n,C) is a regular representation, then any
algebraic component Xj ⊂ Xn(NK) containing ξα has dimXj ≥ n− 1.

Proof. If ξα is a smooth point of Xj , then by Proposition 15 we have dimXj =
dimH1(NK ; sl(n,C)ad α) ≥ n−1. Otherwise, we can choose β : π1(NK) → SL(n,C)
a regular representation close to α ) so that ξβ ∈ Xj is smooth. Applying Proposi-
tion 15 to β, it follows that dimXj = dimH1(NK ; sl(n,C)ad β) ≥ n− 1. �

Since every irreducible metabelian representation is regular, we obtain the fol-
lowing as a direct consequence.

Corollary 17. If α : π1(NK) → SL(n,C) is an irreducible metabelian represen-
tation, then any algebraic component Xj of Xn(NK) containing ξα has dimXj ≥
n− 1.
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4.3. Simple points in Xn(NK). This subsection presents a smoothness result
for irreducible characters which is proved using the powerful deformation argument
from [HPS01]. A more detailed explanation of this beautiful argument is presented
in Appendix A, following [HPS01, HP05, AHJ10], and the original idea can be
traced back to a deep theorem of Artin [Ar68].

Recall that a point ξ ∈ X in an affine algebraic variety is called a simple
point if it is contained in a unique algebraic component of X and is a smooth
point of that component. The next result, which essentially follows from Theorem
3.2 in [AHJ10], implies that every irreducible metabelian character ξα such that
dimH1(NK ; sl(n,C)ad α) = n− 1 is a simple point of Xn(NK).

Proposition 18. If α : π1(NK) → SL(n,C) is a regular representation such that
dimH1(NK ; sl(n,C)ad α) = n−1, then ξα is a simple point in the character variety
Xn(NK).

Proposition 18 applies to any irreducible metabelian SL(n,C) representation.
We give a full account of this proposition in the Appendix, and here we briefly

explain the basic idea. By irreducibility of α and Luna’s étale slice theorem [Lu73],
it follows that ξα is a simple point of Xn(NK) if and only if α is a simple point of
Rn(NK). The same is true for α̂, and the hypotheses ensure that α̂ is a simple point
of Rn(∂NK). The main idea is to construct formal deformations for all (Zariski)
tangent vectors and to show their integrability by using the fact that all obstructions
project faithfully under projection to ∂NK , where they are known to vanish by the
fact that α̂ is a simple point of Rn(∂NK).

4.4. SU(n) results. This subsection contains the SU(n) analogues of the earlier
results on irreducible metabelian representations. We will prove that any irre-
ducible metabelian representation α : π1(NK) → SL(n,C) satisfying the condition
dimH1(NK ; sl(n,C)ad α) = n − 1 has finite image and is therefore conjugate to a
unitary representation.

We begin with a few general observations. If π is a finitely generated group and
α : π → SU(n) is a representation, then we obtain an SL(n,C) representation by
composing α with the inclusion SU(n) ⊂ SL(n,C). Irreducibility of α is preserved
under this correspondence, and the map RSU(n)(π) → Rn(π) descends to a well-
defined injective map XSU(n)(π) −→ Xn(π) between the two character varieties.
Here and in the following, we set RSU(n)(π) = Hom(π, SU(n)) and use XSU(n)(π)
to denote the character variety of SU(n) representations of π.

On the level of Lie algebras, the complex Lie algebra sl(n,C) is obtained by
tensoring the real Lie algebra su(n) with C, i.e. we have

sl(n,C) ∼= su(n)⊗ C.

Thus, for α : π → SU(n), we see that for any i ≥ 0 we have

(4) Hi(π; sl(n,C)ad α) ∼= Hi(π; su(n)ad α)⊗ C.

In the following proposition, we use Ln to denote the n–fold branched cover of
Σ3 branched along K.

Proposition 19. Suppose α : π1(NK) → SL(n,C) is an irreducible metabelian
representation. If dimH1(NK ; sl(n,C)ad α) = n − 1, then H1(Ln) is finite. In
particular, α has finite image and is conjugate to a unitary representation.
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Proof. It follows from Theorem 5 that we can assume that α = α(n,χ) for some
character χ : H1(Ln) → C∗. Let θ1 : π1(NK) → GL(1,C) be the trivial representa-
tion and αn : π1(NK) → Aut(C[Z/n]) be the regular representation corresponding
to the canonical projection map π1(NK) → Z → Z/n. By Lemma 9 we have the
following isomorphism of representations:

ad α⊕ θ1 ∼= αn ⊕

n−1⊕

i=1

β(n,χi),

where χ1, . . . , χn−1 are characters. Clearly θ1 and αn are orthogonal representa-
tions. Furthermore by Lemma 12 the representation ad α : π1(NK) → Aut(sl(n,C))
is an isometry with respect to the Killing form. If we equip sl(n,C) with the stan-
dard basis and we thus view ad α as a representation to gl(n2−1,C), then it follows
from the definition of the Killing form, that ad α is an orthogonal representation. It
now follows that β :=

⊕n−1
i=1 β(n,χi) : π1(NK) → GL(n(n−1),C) is also orthogonal.

By Lemma 14 we now have

dimH1(NK ; sl(n,C)ad α) = dimH1(NK ;C[Z/n])− 1 + dimH1(NK ;C
n(n−1)
β )

= b1(Ln) + 1− 1 + dimH1(NK ;C
n(n−1)
β )

≥ b1(Ln) + n− 1.

The condition dimH1(NK ; sl(n,C)ad α) = n− 1 now shows that b1(Ln) = 0. Thus
H1(Ln) = H1(NK ;Z[t±1])/(tn− 1) is finite, and this implies α has finite image and
is conjugate to a unitary representation. �

Proposition 19 implies that metabelian representations α : π1(NK) → SL(n,C)
are often conjugate to unitary representations, and for that reason we develop
SU(n) versions of the previous results. As the proofs are similar to those already
given, we leave the details to the industrious reader.

We begin with the SU(n) version of Proposition 15. Just as in the SL(n,C) case,
we say a representation α : π1(NK) → SU(n) is regular if it is irreducible and if the
image of the restriction α̂ : π1(∂NK) → SU(n) contains a matrix with n distinct
eigenvalues.

Note that the definition of the symplectic form Ω on H1(∂NK ; sl(n,C)ad α̂) in
the proof of Proposition 15 carries over easily to the SU(n) setting, and we use
ΩSU(n) to denote the resulting symplectic form on H1(∂NK ; su(n)ad α̂).

Proposition 20. If K is a knot and α : π1(NK) → SU(n) is a regular represen-
tation, then the image

image
(
i1 : H1(NK ; su(n)ad α)−→H1(∂NK ; su(n)ad α̂)

)

has real dimension n − 1 and is Lagrangian with respect to the natural symplectic
structure ΩSU(n). It follows that

dimR H1(NK ; su(n)ad α) ≥ n− 1.

Next, we present the SU(n) version of Proposition 16. Recall that XSU(n)(NK)
is a real algebraic variety.

Proposition 21. If α : π1(NK) → SU(n) is a regular representation, then any
algebraic component Xj ⊂ XSU(n)(NK) containing ξα satisfies dimR Xj ≥ n− 1.

Since all irreducible metabelian SU(n) representations are regular, Proposition
21 applies to give the following as a direct consequence.
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Corollary 22. If α : π1(NK) → SU(n) is an irreducible metabelian representation,
then any algebraic component Xj of XSU(n)(NK) containing ξα has dimR Xj ≥
n− 1.

The final result is an SU(n) version of Proposition 18.

Proposition 23. If α : π1(NK) → SU(n) is a regular representation such that
dimR H1(NK ; su(n)ad α) = n− 1, then ξα is a simple point in the character variety
XSU(n)(NK).

4.5. Proofs of Theorems 1 and 2. In this subsection, we prove the two main
results from the Introduction.

Proof of Theorem 1. Suppose α is an irreducible metabelian representation with
dimH1(NK ; sl(n,C)ad α) = n − 1. Applying Proposition 19, we see that α has
finite image and hence is conjugate to a unitary representation. Since α(µ) has
n distinct eigenvalues, Proposition 18 applies and gives rise to a smooth complex
(n− 1)–dimensional family of SL(n,C) characters near ξα ∈ Xn(NK).

Conjugating, if necessary, we can arrange that α is unitary. In that case, Equa-
tion (4) implies that

H1(NK ; sl(n,C)ad α) = H1(NK ; su(n)ad α)⊗ C,

and it follows that dimR H1(NK ; su(n)ad α) = n − 1. Thus Proposition 23 applies
and gives rise to a smooth real (n− 1)–dimensional family of irreducible characters
near ξα ∈ XSU(n)(NK).

Note that Proposition 19 shows that b1(Ln) = 0, and thus every irreducible
metabelian representation β : π1(NK) → SL(n,C) factors through a finite group.
In particular, this shows that up to conjugation there are only finitely many ir-
reducible metabelian SL(n,C) representations, and their characters give rise to a
finite collection of points in the character variety X∗

n(NK). It follows that we can
take either of the two deformation families of conjugacy classes of irreducible repre-
sentations so that ξα is the unique metabelian representation within the family. �

Proof of Theorem 2. Let α : π1(NK) → SL(n,C) an irreducible metabelian repre-
sentation, and ϕ : π1(NK) → Z/n⋉H a homomorphism such that α factors through
ϕ and with H finite. Set k = |H |.

We first consider the cover p : Ñϕ → NK corresponding to ϕ. Note that there
exist precisely k = |H | characters H → U(1). We denote this set by {σ1, . . . , σk},
where we assume that σ1 is the trivial character. It is not difficult to see that the
representation σ1⊕· · ·⊕σk : H → Aut(Ck) is isomorphic to the regular representa-
tion H → Aut(C[H ]). We denote the representation π1(NK) → Aut(C[Z/n⋉H ])
by ϕ as well. Then it is straightforward to verify that

ϕ ∼=

k⊕

i=1

β(n,σi).

In particular, setting V = Ckn and U = Cn, we have

b1(Ñϕ) = b1(N ;Vϕ) =

k∑

i=1

b1(N ;Uβ(n,σi)
).

Note that each β(n,σi) is a unitary representation. It now follows immediately from

Lemma 14 that b1(Ñϕ) ≥ k. Furthermore, if b1(Ñϕ) = k then it follows that
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b1(N ;Uβ(n,σi)
) = 1 for each i = 1, . . . , k. Statement (i) now follows immediately

from Lemma 9.
We now turn to the proof of (ii). We write T = ∂NK . Note that the image of

the restriction ϕ̂ : π1(T ) → Z/n⋉H has order n. In particular the preimage of T

under the covering p : Ñϕ → NK has k = |H | components, and we denote them by
T1, . . . , Tk. Note that in each Ti there exist simple closed curves µi and λi such that
p|µi

restricts to an n–fold cover of the meridian µ ⊂ T and such that p|λi
restricts

to a homeomorphism with the longitude λ of T . Note that µi, λi form a basis for
H1(Ti).

We now denote by Σ̂ϕ the result of gluing k solid tori S1, . . . , Sk to the boundary

of Ñϕ such that each µi bounds a disk in Si. The projection map p : Ñϕ → NK

then extends in a canonical way to a covering map Σ̂ϕ → Σ, branched over K, and
that proves (ii).

We finally turn to the proof of (iii). Consider the following Mayer–Vietoris
sequence:

k⊕

i=1

H1(Ti) →

k⊕

i=1

H1(Si) ⊕ H1(Ñϕ) → H1(Σ̂ϕ) → 0.

It follows immediately that

b1(Σ̂ϕ) ≥ k + b1(Ñϕ)− 2k = b1(Ñϕ)− k.

In particular if b1(Σ̂ϕ) = 0, then b1(Ñϕ) ≤ k. Applying (i) shows we have equality
here and that (iii) holds. �

4.6. Examples. In this subsection, we show how to construct deformations of
metabelian representations α : π1(NK) → SL(n,C) in specific situations.

We begin with some general comments about the rank two case. As mentioned
in the introduction, by results of Culler and Shalen [CS83], if K is a small knot,
then any irreducible metabelian representation α : π1(NK) → SL(2,C) lies on an
algebraic component of X2(NK) of dimension one. Since all torus knots and all
two-bridge knots are small, this tells us that Theorem 1 applies to many knots in
rank two. Interestingly, not all such knots admit irreducible metabelian SL(2,C)
representations. For example, in the notation of Rolfsen’s table [Ro76], this occurs
for the knots 10124 and 10153. Note that 10124 is the (3, 5)–torus knot and is
a fibered knot of genus 3, whereas 10153 is not a torus knot but it is fibered of
genus 4. A simple calculation using [BF08, Theorem 3.7] shows that both knots
admit irreducible metabelian representations in SL(3,C) and SL(5,C), indeed up
to conjugation 10124 admits 8 such representations in rank 3 and 16 in rank 5,
whereas 10153 admits 16 such representations in rank 3 and 24 in rank 5. In both
cases, we see that H1(L3) and H1(L5) are finite, and so the irreducible metabelian
characters are isolated points in the character variety of the metabelian quotient
π1(NK)/π1(NK)(2).Proposition 15 applies to show they can be deformed to nearby
non-metabelian irreducible representations.

We now investigate situations to which Theorem 1 applies, and for that purpose
we will consider a fibered knot K of genus one in an integer homology 3-sphere Σ.
Note that by the proof of Proposition 5.14 of [BZ85], it follows that the complement
Σrτ(K) is homeomorphic to that of the trefoil or the figure eight knot. The trefoil
knot has irreducible metabelian representations only in rank 2, 3, and 6. The figure
eight knot, on the other hand, has irreducible metabelian SL(n,C) representations
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n # n # n #
1 1 8 270 15 124,024
2 2 9 640 16 304,290
3 5 10 1500 17 750,120
4 10 11 3600 18 1,854,400
5 24 12 8610 19 4,600,200
6 50 13 20880 20 11,440,548
7 120 14 50700 21 28,527,320

Table 1. The number of conjugacy classes of irreducible metabel-
ian SU(n) representations for the figure eight knot for 1 ≤ n ≤ 21

for all but finitely many ranks, which follows directly from Theorem 8. Indeed,
the number of conjugacy classes of irreducible metabelian representations for both
knots α : π1(NK) → SU(n) can be determined in terms of the orders |H1(Lk)| taken
over all divisors k of n, and direct computation shows that the trefoil has a unique
irreducible metabelian representation in ranks 2 and 3, whereas the figure eight
has increasingly many as the rank n → ∞. Applying Theorem 3.7 of [BF08], we
compute the number of distinct conjugacy classes of irreducible metabelian SU(n)
representations for the figure eight knot, and the results for 1 ≤ n ≤ 21 are listed
in Table 1.

The next result shows that any algebraic component of Xn(NK) containing such
a representation has dimension n − 1. Thus Theorem 1 applies and gives a nice
local description of the character variety near these metabelian characters.

Proposition 24. Suppose K is a fibered knot of genus one in a homology 3-sphere Σ
whose n–fold branched cover has H1(Ln) finite and α : π1(NK) → SL(n,C) is an ir-
reducible metabelian representation. Then any algebraic component Xj of Xn(NK)
containing ξα has dimXj = n− 1.

Remark 25. As mentioned above, if K is a genus one fibered knot in an integral
homology 3-sphere Σ, thenthe complement Σrτ(K) is homeomorphic to that of
the trefoil or figure eight knot (see Proposition 5.14 of [BZ85]).

Proof. By Proposition 15, we have that dimXj ≥ n − 1, so it is enough to show
dimXj ≤ n− 1. If Rj is the algebraic component of Rn(NK) lying above Xj , then
we will show that dimRj ≤ n2 + n− 2. This is sufficient because we know that Rj

contains the irreducible representation α, and so the generic fiber of the quotient
map t : Rj → Xj has dimension n2 − 1.

Consider the subset of Rj defined by

R̂j = {̺ ∈ Rj | ̺ is irreducible and ̺(µ) has n distinct eigenvalues}.

This is obviously a Zariski open subset, and since α ∈ R̂j , it is nonempty. In

particular, we see that dim R̂j = dimRj .
Given A ∈ SL(n,C), we use ΦA(t) = det(tI − A) to denote its characteristic

polynomial. In general, given γ ∈ π, the association ̺ 7→ Φ̺(γ)(t) gives an algebraic

map Φ·(γ) : Rn(π) −→ Cn−1, where Φ̺(γ)(t) = tn + a1t
n−1 + · · · + an−1t + (−1)n

gives the point (a1, . . . , an−1) ∈ C
n−1.
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Taking γ = λ, the longitude of K, we define

Zj = {̺ ∈ R̂j | Φ̺(λ)(t) = (t− 1)n}.

Clearly Zj is a Zariski closed subset of R̂j . Since Zj is obtained by applying n− 1
algebraic equations, we see that dimZj ≥ dimRj − (n − 1) (see [Sh95, p. 75,
Corollary 2]). Furthermore, since α ∈ Zj , we see that Zj is nonempty.

For any fibered knot, the commutator subgroup of π1(NK) is the finitely gener-
ated free group given by the fundamental group of the fiber. In the case of a fibered
knot of genus one, this group is a free group of rank two, and we obtain the short
exact sequence

(5) 1 → F2 −→ π1(NK) −→ Z → 1.

Taking S to be the fiber surface, then F2 = π1(S) = 〈a, b〉 and we can write the
longitude as λ = aba−1b−1. Thus, a given representation ̺ : π1(NK) → SL(n,C)
is metabelian if and only if its restriction to F2 is abelian, namely if ̺(a) and ̺(b)
commute. Since λ = [a, b], we see that ̺ is metabelian if and only if ̺(λ) = I. This

shows that every irreducible metabelian representation in R̂j is contained in Zj,
and we will now show the reverse inclusion.

Suppose ̺ ∈ Zj . Then since Zj ⊂ R̂j , ̺ is irreducible and ̺(µ) has n distinct
eigenvalues. Thus ̺(µ) is contained in a unique maximal torus, which we can
arrange by conjugation to be the standard maximal torus of diagonal matrices in
SL(n,C). Since ̺(λ) commutes with ̺(µ), it follows that ̺(λ) is also a diagonal
matrix. The condition that Φ̺(λ)(t) = (t− 1)n implies ̺(λ) = I, and the sequence
(5) shows that ̺ is necessarily metabelian.

We now make use of the assumption that H1(Ln) is finite. This implies that, up
to conjugation, there are only finitely many irreducible metabelian representations.
Thus the quotient of Zj by conjugation is a finite collection of points, and since
every ̺ ∈ Zj is also irreducible, we conclude that dimZj = n2 − 1. Using that

dimRj = dim R̂j ≤ dimZj + (n− 1) = n2 + n− 2,

we conclude that dimXj ≤ n− 1. �

Proposition 24 applies to irreducible metabelian representations of the figure
eight knot in all ranks (see Table 1), but it only applies to the trefoil in ranks
2 and 3. The only other rank where the trefoil admits irreducible metabelian
representations is rank 6, and in that case H1(L6) is not finite.

We investigate the general situation of torus knots, and we note that as a conse-
quence of Proposition 3.10 (iii) of [BF08], a (p, q) torus knot K has no irreducible
metabelian SL(n,C) representations if n is relatively prime to p and q. Torus knot
groups have the following well-known presentation:

(6) π1(NK) = 〈x, y | xp = yq〉,

where the meridian and longitude µ and λ are represented by µ = xsyr and λ =
xp(µ)−pq , for r, s ∈ Z with rp + sq = 1. We choose n to be a divisor of q and
work with SU(n) representations for convenience. Then any irreducible metabelian
representation ̺ : π1(NK) → SU(n) will satisfy ̺(µ)n = I and ̺(λ) = I, and this
implies that ̺(x) and ̺(y) are p-th and q-th roots of unity, respectively.

Since ̺(x) and ̺(y) are diagonalizable, we can arrange that ̺(x) is conjugate to
A = diag(a1, . . . , an) and ̺(y) is conjugate to B = diag(b1, . . . , bn), where a1, . . . , an
are p-th roots of unity and b1, . . . , bn are q-th roots of unity. Let CA and CB denote
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the conjugacy classes in SU(n) of A and B, respectively. The eigenspaces of A and
B determine partitions (α1, . . . , αk) and (β1, . . . , βℓ) of n, respectively, and we have

dimCA = n2 − (α2
1 + · · ·+ α2

k) and dimCB = n2 − (β2
1 + · · ·+ β2

ℓ ).

For instance, if A has n distinct eigenvalues, then dimCA = n2 − n. In general,
dimCA and dimCB are even numbers between 0 and n2 − n.

The component Rj of RSU(n)(NK)) containing ̺ is just the direct product CA×
CB, and it follows that dimRj = dimCA + dimCB. If A and B can be chosen
so that dimCA + dimCB = n2 + n − 2, then we will be able to apply Theorem
1. This will occur if say A has n distinct eigenvalues and B has one eigenvalue
of multiplicity 1 and a second eigenvalue of multiplicity n − 1. Assuming that Rj

contains an irreducible representation, then just as in the proof of Proposition 24,
it follows that if Xj ⊂ XSU(n)(NK) is the quotient of Rj under conjugation, then
dimXj = n− 1.

For specific examples, consider the torus knots K = T (2, q), where q is a multi-
ple of 3. Then direct calculation shows that any irreducible metabelian represen-
tation ̺ : π1(NK) → SU(3) has dimH1(NK ; su(3)ad ̺) = 2 (see Proposition 3.1
of [BHK05], for example). Hence Theorem 1 applies to establish the existence of
2–dimensional deformation families in XSU(3)(NK) and X3(NK).

Appendix A. Deformation arguments

In this appendix, we present the deformation arguments that prove Proposition
18. This material is included for the reader’s convenience. The original arguments
were given for SL(2,C) and PSL(2,C) in [HPS01] and [HP05], and they were gen-
eralized to SL(n,C) in [AHJ10]. In what follows, we present detailed arguments
for SL(n,C), focusing on the implications for the character variety Xn(NK), where
NK = Σrτ(K) is the complement of a knot in an integral homology 3-sphere.

Proof of Proposition 18. The first step is to show that ξα̂ is a simple point in
Xn(∂NK). We do this by comparing the dimension of the cocycles

Z1(π1(∂NK); sl(n,C)ad α)

with the local dimension of Rn(∂NK) at α, which is defined to be the maximal
dimension of the irreducible components of Rn(∂NK) containing α.

First, some notation. Given a finitely generated group π and a representation
α : π → SL(n,C), let H∗(π; sl(n,C)ad α) denote the cohomology of the group with
coefficients in the π–module by sl(n,C)ad α.

In [We64], Weil observed that there is a natural inclusion of the Zariski tangent
space T Zar

α (Rn(π)) →֒ Z1(π; sl(n,C)ad α) into the space of cocycles, and we will
combine this observation with computations of the twisted cohomology of π1(∂NK)
and π1(NK).

Because ∂NK is a K(Z⊕ Z, 1), we have isomorphisms

H∗(∂NK ; sl(n,C)ad α) −→ H∗(π1(∂NK); sl(n,C)ad α),

and the inclusion NK →֒ K(π1(NK), 1) induces maps

Hi(π1(NK); sl(n,C)ad α) −→ Hi(NK ; sl(n,C)ad α)

that are isomorphisms when i = 0 and 1 and injective when i = 2 (see [HP05,
Lemma 3.1]).
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Consider the 2-torus ∂NK with its standard CW–structure consisting of one 0–
cell, two 1–cells and one 2–cell. It is straightforward to verify that the spaces of
twisted 1-coboundaries and 1-cocycles satisfy

dimB1(∂NK ; sl(n,C)ad α̂) = n2 − 1− (n− 1) = n2 − n, and

dimZ1(∂NK ; sl(n,C)ad α̂) = 2(n− 1) + n2 − n = n2 + n− 2.

Since α̂ sits on an (n2 + n− 2)–dimensional component, its local dimension is

dimα̂ Rn(∂NK) = n2 + n− 2.

For arbitrary σ ∈ Rn(∂NK), we have

dimσ Rn(∂NK) ≤ dimT Zar
σ (Rn(∂NK)) ≤ dimZ1(∂NK ; sl(n,C)ad σ).

In our case, we have equality throughout, and it follows that α̂ lies on a unique
irreducible component of Rn(∂NK) and is a smooth point of that component (see
[Sh95, §2, Theorem 6]). This shows α̂ is a simple point of Rn(∂NK).

The next step is to show that ξα is a simple point of Xn(NK). Consider the long
exact sequence (2) in cohomology associated with the pair (NK , ∂NK). Irreducibil-
ity of α implies that H0(NK ; sl(n,C)ad α) = 0, and Lemmas 11, 12 and Poincaré
duality give H3(NK , ∂NK ; sl(n,C)ad α) = 0. Since H1(NK ; sl(n,C)ad α) = Cn−1

by hypothesis, we see H2(NK , ∂NK ; sl(n,C)ad α) = Cn−1 by Poincaré duality.
Since H1(∂NK ; sl(n,C)ad α̂) = C2(n−1), it follows that the middle row of (2)

0 −→ H1(NK) −→ H1(∂NK) −→ H2(NK , ∂NK) −→ 0,

is short exact (with coefficients in sl(n,C) twisted by ad α or ad α̂ understood).
Thus j1 = 0 and j2 = 0, and further i1 is injective and i2 is an isomorphism.

We now explain the powerful technique for deforming representations. It involves
the following three steps:

(i) constructing formal deformations,
(ii) proving integrability by showing an infinite sequence of obstructions vanish,
(iii) proving convergence by applying a deep result of Artin [Ar68].

A formal deformation of α is a homomorphism α∞ : π → SL(n,C[[t]]) given by

α∞(g) = exp

(
∞∑

i=1

tiai(g)

)
α(g),

such that p0(α∞) = α, where p0 : SL(n,C[[t]]) → SL(n,C) is the homomorphism
given by setting t = 0 and where ai : π → sl(n,C)ad α, i = 1, . . . , are 1-cochains with
twisted coefficients. By [HPS01, Lemma 3.3], it follows that α∞ is a homomorphism
if and only if a1 ∈ Z1(π; sl(n,C)ad α) is a cocycle, and we call an element a ∈
Z1(π; sl(n,C)ad α) formally integrable if there is a formal deformation with leading
term a1 = a.

Let a1, . . . , ak ∈ C1(π; sl(n,C)ad α) be cochains such that

αk(g) = exp

(
k∑

i=1

tiai(g)

)
α(g)

is a homomorphism into SL(n,C[[t]]) modulo tk+1. Here, αk is called a formal
deformation of order k, and in this case by [HPS01, Proposition 3.1] there exists

an obstruction class ωk+1 := ω
(a1,...,ak)
k+1 ∈ H2(π; sl(n,C)ad α) with the following

properties:
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(1) There is a cochain ak+1 : π → sl(n,C) such that:

αk+1(g) = exp

(
k+1∑

i=1

tiai(g)

)
α(g)

is a homomorphism modulo tk+2 if and only if ωk+1 = 0.
(2) The obstruction ωk+1 is natural, i.e. if ϕ : π′ → π is a homomorphism then

ϕ∗ωk := αk ◦ ϕ is also a homomorphism modulo tk+1 and ϕ∗(ω
(a1,...,ak)
k+1 ) =

ω
(ϕ∗a1,...,ϕ

∗ak)
k+1 .

Lemma 26. Let α : π1(NK) → SL(n,C) be an irreducible representation such that
dimH1(NK ; sl(n,C)ad α) = n − 1. If the image of the restriction α̂ : π1(∂NK) →
SL(n,C) contains an element with n distinct eigenvalues, then every cocycle a ∈
Z1(π1(NK); sl(n,C)ad α) is integrable.

Proof. Consider first the commutative diagram:

H2(π1(NK); sl(n,C)ad α)
i∗

−−−−→ H2(π1(∂NK); sl(n,C)ad α̂)y
y∼=

H2(NK ; sl(n,C)ad α)
∼=

−−−−→ H2(∂NK ; sl(n,C)ad α̂).

Here, the horizontal isomorphism on the bottom follows by consideration of the
long exact sequence (2), and the vertical isomorphism on the right follows since
∂NK is a K(Z⊕ Z, 1). Further, by [HP05, Lemma 3.3], we know the vertical map
on the left is an injection, and this shows i∗ is an injection.

We now explain how to prove that every element a ∈ Z1(π1(NK); sl(n,C)ad α) is
integrable. Suppose (by induction) that a1, . . . , ak ∈ C1(π; sl(n,C)ad α) are given
so that

αk(g) = exp

(
k∑

i=1

tiai(g)

)
α(g)

is a homomorphismmodulo tk+1. Then the restriction α̂k : π1(∂NK) → SL(n,C[[t]])
is also a formal deformation of order k. On the other hand, α̂k is a smooth point
of Rn(∂NK), hence by [HPS01, Lemma 3.7], α̂k extends to a formal deformation
of order k + 1. Therefore

0 = ω
(i∗a1,...,i

∗ak)
k+1 = i∗ω

(a1,...,ak)
k+1 .

As i∗ is injective, the obstruction vanishes, and this completes the proof of the
lemma. �

We are now ready to conclude the proof of Proposition 18. Lemma 26 shows that
all cocycles in Z1(π1(NK); sl(n,C)ad α) are integrable. Applying Artin’s theorem
[Ar68], we obtain from a formal deformation of α a convergent deformation (see
[HPS01, Lemma 3.6]). Thus α is a smooth point of Rn(NK) with local dimension
dimα Rn(NK) = n − 1. It follows that α is a simple point of Rn(NK) and this
together with irreducibility of α imply that ξα is a simple point of Xn(NK). �
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