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1 Introduction

Recent years have seen the physics of gauge theories emerge from the M5 brane dynamics.

When the M5 branes are compactified on a d-dimensional manifold Md with an appropriate

partial topological twist, the physics in the remaining 6 − d dimensions is expected to be

described by a non-trivial superconformal field theory T [Md]. Mapping Md to T [Md]

becomes progressively harder as the dimension d goes up. On the one hand, the world

of d-manifolds becomes richer and wilder with larger values of d = 2, 3, 4, . . . and, on the

other hand, partial topological twist along Md leaves less and less supersymmetry in the

remaining 6− d dimensions where T [Md] lives.

The program of analyzing T [M4] for general 4-manifolds was initiated in [1]. The

partial topological twist considered in [1] leads to a 2d N = (0, 2) supersymmetric theory.

In some simple cases, theories T [M4] labeled by 4-manifolds can be realized by a system of

free (left-moving) fermions or their close cousins, such as (0, 2) coset models. However, in

general, one needs to consider interacting gauge theories, such as variants of 2d N = (0, 2)

SQED and SQCD. This makes the 4d-2d correspondence very interesting and challenging

at the same time. We hope that pursing this program will benefit both fields and improve

our understanding of 2d N = (0, 2) gauge theories as well as 4-manifolds. For example,

it leads to a simple interpretation of Kirby moves as dualities in supersymmetric gauge
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theories and, in the opposite direction, predicts new dualities between 2d N = (0, 2) gauge

theories that will be a starting point of our analysis here.

Even though 2d N = (0, 2) theories are of the utmost importance in constructing

heterotic string models, surprisingly little is known about non-abelian gauge dynamics of

2d theories with N = (0, 2) supersymmetry. Ironically, there seem to be even more exact

results about N = 0 gauge theories with no supersymmetry that go back to the seminal

work of ’t Hooft [2]. Since in two dimensions the confinement is generic, even in abelian

theories [3], the effective physics is described by singlet states whose spectrum often can be

determined exactly by large-N techniques, bosonisation, or other methods. Also, a lot is

known about models with larger N = (2, 2) supersymmetry, where additional constraints

on dynamics allow to determine the IR fate of such theories. In contrast, very little is known

about (0, 2) gauge dynamics, even with respect to the simplest abelian models like SQED.1

Part of the reason is that 2d N = (0, 2) theories often exhibit dynamical supersymmetry

breaking and determining whether a given theory has SUSY vacua requires full-fledged

analysis of quantum effects.

In this paper, we attempt to reduce this gap by studying non-abelian N = (0, 2) gauge

theories in two dimensions. Such theories exhibit very rich dynamics and, as it turns out,

enjoy interesting triality relations. This triality is similar in spirit to the Seiberg duality [4]

of 4d N = 1 SQCD and, to the best of our knowledge, is the first example of a non-abelian

gauge duality in 2d theories with N = (0, 2) supersymmetry.

The equivariant index (a.k.a. the flavored elliptic genus) plays a key role in our analysis.

Although it has been extensively studied for N = (2, 2) NLσ/coset models, the tools for

computing it in gauge theories have been developed only recently [5–8]. We use it to check

the triality claim and also to learn about the low energy physics. Most importantly, it

serves as an excellent probe of dynamical supersymmetry breaking, which is essential in

the study of 2d N = (0, 2) models. As an aside, note that the S3 × S1 partition function

(or, the “Romelsberger index”) can not be used to probe supersymmetry breaking in four

dimensions. It was pointed out in [9] that R-symmetry is needed in order to preserve

supersymmetry on S3 × S1. However, unless the theory flows to a non-trivial fixed point,

the R-symmetry is broken and the index simply doesn’t make sense. The 2d index is free

of such demons because it is a partition function in flat space-time.

The outline of the rest of the paper is as follows. In section 2, we start by introducing

the basics of (0, 2) gauge theories and analyze dynamical SUSY breaking in a prototype

example of abelian model. Then, we gradually extend our analysis to more interesting gauge

theories that were claimed to be dual to free fermions in [1]. In section 3, we consider the

simplest but general non-abelian (0, 2) SQCD and formulate the triality proposal. The

proposal is verified by matching the flavor symmetry anomalies, central charges, and the

index. We study the low energy behavior as a function of ranks of flavor symmetry groups

and give a general criterion for dynamical supersymmetry breaking. The fundamental

SQCDs of section 3 are woven together to form complicated quivers in section 4. We give

general rules for triality transformations and study the triality webs in a few examples. We

conclude the paper with an outlook in section 5.

1It appears that non-abelian theories, such as 2d N = (0, 2) SQCD, have not been studied at all.
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2 2d N = (0, 2) gauge theories

The N = (0, 2) supersymmetry in two dimensions admits three types of representations

which are useful in constructing gauge theories. The first is the (0, 2) chiral multiplet (a.k.a.

bosonic multiplet) Φ. As the name suggests, it is annihilated by one of the superspace

derivatives, D+Φ = 0, and has the expansion

Φ = φ+
√

2θ+ψ+ − iθ+θ
+
∂+φ . (2.1)

The chirality condition ensures that the component fermion ψ+ is the right-moving one.

The second multiplet is the (0, 2) Fermi multiplet Ψ. It obeys a similar condition, D+Ψ = 0,

that can be deformed to add an interaction with the chiral fields present in the theory,

D+Ψa =
√

2Ea(Φi). The components of the Fermi multiplet are

Ψ = ψ− −
√

2θ+G− iθ+θ
+
∂+ψ− −

√
2θ

+
E . (2.2)

The only on-shell degree of freedom is the left-moving fermion ψ−. In addition to the

E-interaction, one can also add a superpotential term for the chiral and Fermi multiplets:∫
dθ+ ΨaJ

a(Φi)|θ+
=0
. (2.3)

Note that, unlike the superpotential in N = (2, 2) models, this term is fermionic. The

E-interaction can be exchanged for J-interaction at the expense of replacing the Fermi

multiplet Ψ with its conjugate multiplet Ψ, which is also a Fermi multiplet. Supersymmetry

requires the holomorphic Ea and Ja interactions to obey∑
a

Ea(Φi)J
a(Φi) = 0 . (2.4)

This condition is modified when 2d N = (0, 2) theory is realized on the boundary of 3d

N = 2 theory with a non-trivial superpotential [1].

The last and the most important ingredient of the gauge theory is the (0, 2) vector

multipet. It is a real superfield with the expansion

V = v − 2iθ+λ− − 2iθ
+
λ− + 2θ+θ

+
D . (2.5)

The gauge invariant field strength belongs to a Fermi multiplet Λ. The Fayet-Illiopoulos

term is added to the gauge theory as t
4

∫
dθ+Λ|

θ
+

=0
, where t ≡ ir + θ

2π combines the FI

parameter and the θ-angle.

As an example, we write down the Lagrangian of an abelian (0, 2) gauge theory with

chiral multiplets Φi of charge qi and Fermi multiplets Ψa of charge qa:

L = Lgauge + LΦ + LΨ + LFI + LJ (2.6)
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where

Lgauge =
1

8e2

∫
d2θ ΛΛ =

1

e2

(
1

2
F 2

01 + iλ−∂+λ− +
1

2
D2

)
LΦ = − i

2

∫
d2θ Φi∇−Φi

= −|Dµφi|2 + iψ+iD−ψ
i
+ −
√

2iqiφiλ−ψ
i
+ +
√

2iqiφ
iψ+iλ− + qi|φi|2D

LΨ = −1

2

∫
d2θ ΨaΨ

a

= iψ−aD+ψ
a
− + |Ga|2 − |Ea(φ)|2 − ψ−a

∂Ea

∂φi
ψ+i −

∂Ea

∂φi
ψ+iψ

a
−

LFI =
t

4

∫
dθ+ Λ|θ+=0 + c.c. = −rD +

θ

2π
F01

LJ = − 1√
2

∫
dθ+ ΨaJ

a(Φ)|θ+=0 − c.c. = −GaJa(φ)− ψ−aψ+i
∂Ja

∂φi
− c.c.

After eliminating the auxiliary fields the potential for the scalars φi is

V =
e2

2

(∑
i

qi|φi|2 − r
)2

+
∑
a

|Ea(φ)|2 +
∑
a

|Ja(φ)|2 . (2.7)

In order for the gauge theory to make sense at the quantum level, we should make sure

that the gauge anomaly is zero. It is given by

Tr γ3GG =
∑

i: chiral

q2
i −

∑
a: Fermi

q2
a (2.8)

where “G” stands for “Gauge” here and in what follows .

2.1 Warm-up: a (0, 2) deformation of CPN−1 model

Let us analyze quantum aspects of a concrete example in more detail: a (0, 2) deformation of

the CPN−1 sigma-model realized as a gauged linear sigma-model (GLSM). After studying

dynamical supersymmetry breaking we then add various bells and whistles to this model,

eventually constructing a large class of new 2d superconformal theories with N = (0, 2)

supersymmetry as well as new dual pairs.

Specifically, our starting point is a 2d N = (0, 2) gauged linear sigma model with U(1)

gauge group and the following matter fields:

Σ Φi=1,...,N Ψi=1,...,N

U(1)gauge 0 + 1 + 1
(2.9)

where Σ = σ +
√

2θ+λ+ − . . . and Φi are (0, 2) chiral multiplets, while Ψi are Fermi

multiplets. Note, this theory has no gauge anomaly since it contains equal number of (0, 2)

chiral and Fermi multiplets of charge +1. We also include in this (0, 2) model a holomorphic

E-interaction

Ej = iε
√

2ΣΦj . (2.10)
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that modifies the chirality constraint D+Ψj =
√

2Ej for each Fermi multiplet and will play

a crucial role in what follows. In particular, we wish to analyze the role of this interaction,

as a function of the parameter ε, on the dynamical supersymmetry breaking. Note, this

theory interpolates between N = (2, 2) gauged linear sigma-model (when ε = 1) and a

N = (0, 2) model with free chiral multiplet Σ (when ε = 0).

The Lagrangian (2.6) also includes a Fayet-Iliopoulos (FI) term with complex coeffi-

cient t = ir + θ
2π :

LFI =
t

4

∫
θ+Λ|

θ
+

=0
+ c.c. = −rD +

θ

2π
F01 (2.11)

From the experience with the (2, 2) locus, we know that the dependence of the bare Fayet-

Iliopoulos parameter on the UV cut-off ΛUV is

r0 = N log

(
ΛUV
µ

)
(2.12)

Our next goal is to analyze the dynamics of this theory. Following [10] (see also [11–

13]), we consider the large-N approximation which amounts to evaluating one-loop deter-

minants of charged matter fields. Integrating out Φi and Ψi can be done in superspace,

keeping N = (0, 2) supersymmetry manifest [14]. The result is the effective Lagrangian for

the superfields Λ and Σ that, besides the terms already present in (2.6), also contains a

1-loop contribution:

L
J̃

=

∫
dθ+ ΛJ̃(Σ)|

θ
+

=0
+ c.c. (2.13)

which has the form of a field-dependent FI term and plays the role of a “twisted superpo-

tential” in a 2d theory with N = (0, 2) supersymmetry [1]. In the (0, 2) deformation of the

CPN−1 linear sigma-model considered here the Coulomb branch is parametrized by the vev

of Σ that makes Φi and Ψi massive. Specifically, from (2.10) we see that the mass matrix

is a N ×N matrix with all eigenvalues equal to εΣ. Therefore, evaluating the determinant

of this matrix we find

J̃ =
i

8π
log

(εσ)N

qµN
(2.14)

where q = e2πit(µ). Hence, we conclude that for generic values of ε 6= 0 the theory has N

massive supersymmetric vacua at

σN =
qµN

εN
(2.15)

which are deformations of the N vacua in the familiar CPN−1 sigma-model with N = (2, 2)

supersymmetry. In the limit ε → 0 these vacua run off to infinity indicating dynamical

SUSY breaking of the minimal (0, 2) model.

It is instructive to write the interaction (2.13) in components:

L
J̃

= −4Im(J̃)D + 4Re(J̃)F01 − 8i
∂J̃

∂σ
λ−λ+ + 8i

∂J̃

∂σ
λ−λ+ (2.16)

If we also knew the 1-loop correction to the kinetic terms in the Lagrangian (2.6), we could

consistently compute the effective scalar potential for the fields σ and D. Unfortunately,
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such a 1-loop computation does not seem to be available in the literature. However, one

might hope to reproduce qualitative features of the effective scalar potential by using the

tree-level kinetic terms, which yield

Veff(σ,D) =
1

2e2
D2 − rD − N

2π
D log

∣∣∣∣εσµ
∣∣∣∣ (2.17)

Indeed, this scalar potential leads to the same conclusion — namely, that our theory has

massive SUSY vacua for non-zero values of ε and dynamical SUSY breaking for ε = 0 —

but now we can see a little more directly how and why this happens. It would be interesting

to study loop corrections to the kinetic terms. Relegating this problem to future work, we

can compare the structure of (2.17) with the effective scalar potential computed in the

large-N approximation, as in [12, 13]. In this approach, the analogue of the last term

in (2.17) comes from evaluating one-loop determinants of charged matter fields2

N∏
i=1

det((∂µ + iAµ)2 + |εσ|2) (2.18)

in the case of N Dirac fermions and, similarly,

N∏
i=1

1

det((∂µ + iAµ)2 −D + |εσ|2)
(2.19)

in the case of N charged scalars. Note, this ratio of one-loop determinants exhibits the

standard boson-fermion cancelation in the supersymmetric vacuum with D = 0.

Another important feature of these one-loop determinants is that the auxiliary field D

appears only in the denominator (i.e. only in the scalar field contribution). The reason for

this is that in the tree-level Lagrangian (2.6) the field D only affects the mass matrix of

scalar fields, but not the fermions. Moreover, the contribution of D to the mass of a given

scalar field is proportional to its charge. This is a general fact that holds even in models

without Σ field (that we are going to consider shortly).

Therefore, we learn that one simple way to ensure that SUSY is not dymanically

broken in a general (0, 2) model with charged chiral and Fermi multiplets is to consider

equal number of chiral multiplets with positive and negative charge. Even in models

without Σ-field(s) and the corresponding E-terms, this will guarantee that Veff(D) is an

even function of D, i.e. has a critical point at D = 0. (In fact, it is easy to check that, in

such cases, D = 0 is a minimum with Veff = 0.)

Before we proceed to more general theories, let us point out that in the limit ε = 0 the

effective potential Veff(D) only depends on D and not σ (since Σ is free in this limit). In

particular, evaluating the above determinants it is easy to see that Veff(D) has the critical

point at

ir +N

∫
d2k

(2π)2

1

k2 −D
= 0 (2.20)

2From here on, all dimensionful quantities are written in units of the coupling constant e.
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leading to the SUSY breaking expectation value

DN = 4NΛ2N ≡ 4Nµ2Ne4πit (2.21)

On the other hand, modifying the mass matrix by the E-terms Ei = MijΦj changes the

critical point of the effective potential to

det
(
M †M +D · 1N×N

)
= 4NΛ2N (2.22)

which does restore supersymmetry at the appropriately tuned value of M . The general

conclusion of this analysis is that incorporating superpotential terms often helps to avoid

dynamical supersymmetry breaking in this class of 2d N = (0, 2) models. This conclusion

is certainly consistent with the earlier study of (0, 2) models [15, 16] and will be a useful

guide to us in what follows.

Although we have given semiclassical arguments for the supersymmetry breaking in the

limit ε→ 0, perhaps the strongest support for these claims comes from the computation of

the elliptic genus. The elliptic genus is a (refined) Witten index of the theory quantized on

a circle. Therefore a non-zero elliptic genus indicates that the supersymmetry is unbroken

dynamically. We will see that the elliptic genus of the theory with ε 6= 0 is non-zero while

it vanishes for ε = 0. This holds even for the case of finite N . Before getting into this

analysis let us take a slight detour and review the machinery necessary to compute the

elliptic genus.

The elliptic genus. Recently there has been some progress in computing the elliptic

genus of the 2d gauge theory. In [5], the authors discussed elliptic genus of N = (0, 2)

gauge theory, while a prescription for computing N = (2, 2) elliptic genus was given in [6]

motivated by the Gauss law. In [7, 8], the N = (0, 2) as well as N = (2, 2) elliptic genus

was derived from rigorous path integral localization. We will summarize the prescription

for a general N = (0, 2) gauge theories below. A reader interested in the derivation is

encouraged to look at the references cited above.

The elliptic genus is simplest to define in radial quantization:

I(ai; q) = Tr (−1)F qL0
∏
i

afii . (2.23)

For convenience we take the Hilbert space to be in the NS-NS sector. Only the states

satisfying the NS shortening condition L0 = 1
2J0 contribute to the index.3 We have refined

the usual definition of the elliptic genus by adding the fugacities ai that keep track of all

flavor symmetries. A chiral multiplet and a Fermi multiplet whose primary has J0 = R

contribute, respectively,

IΦ = θ
(
q
R
2 a; q

)−1
and IΨ = θ

(
q
R+1

2 a; q
)
. (2.24)

Here a is the fugacity that is associated to a U(1) symmetry that acts on these multiplets.

Here, we introduced θ(a; q) = (a; q)(q/a; q) and (a; q) =
∏∞
i=0(1 − aqi). Only the gauge

3We will use the terms ‘elliptic genus’ and ‘index’ interchangeably.
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invariant degrees of freedom of the vector multiplet, i.e. its field strength multiplet Λ,

contributes to the index. For the U(1) case, IU(1)
Λ = (q; q)2, and for G = U(N):

IU(N)
Λ = (q; q)2N

∏
i 6=j

θ(ai/aj ; q) . (2.25)

Here ai, i = 1, . . . , N are the fugacities associated to the Cartan generators of the U(N)

gauge group. Then, the index of a general 2d N = (0, 2) theory is computed by the

following prescription:

1. Multiply the contribution of all the multiplets while keeping track of the flavor sym-

metries. Thanks to the gauge anomaly cancellation this is an elliptic function of the

gauge fugacities.

2. Evaluate the residues at the poles in the fundamental domain coming from positively

(or negatively) charged chiral multiplets.

We are now ready to compute the elliptic genus of the CPN−1 model and its (0, 2)

deformation. The index of the CPN−1 model is given by

I = (q; q)2

∮
dz

2πiz

1

θ(x; q)

N∏
i=1

θ(qx−1ai/z; q)

θ(z/ai; q)
. (2.26)

In addition to the gauge fugacity z and SU(N) flavor fugacities ai (s.t.
∏
ai = 1), we have

also introduced the fugacity x for the U(1) symmetry acting on the neutral chiral field Σ

and the Fermi fields Ψi. When we shift z → qz, the integrand gets multiplied by xN . It is

an elliptic function of z only when xN = 1. This indicates that quantum mechanically the

U(1)x symmetry is broken to ZN . Evaluating the residues at z = aj , we get

I =
∑
j

∏
i 6=j

θ(xaj/ai)

θ(aj/ai)
. (2.27)

When we set x = 1, we see that the index is N . This allows us to conclude that the

supersymmetry is unbroken for the CPN−1 model and that it in fact has N vacua. When

we get rid of the Σ field and the superpotential, the first term in the integrand disappears.

Also the non-abelian flavor symmetry enhances to SU(N)×SU(N) with each SU(N) acting

on N Fermi and N chiral multiplets separately. We introduce new SU(N) fugacities bi.

Evaluating the residues, we get

I = (q; q)2

∮
dz

2πiz

N∏
i=1

θ(qx−1bi/z; q)

θ(z/ai; q)
=
∑
j

θ(xaj/bj)
∏
i 6=j

θ(xaj/bi)

θ(aj/ai)
. (2.28)

It is quite non-trivial, but this expression does vanish for xN = 1. We have checked this

analytically for N = 2 and in q-expansion for higher N .
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2.2 Superconformal theories from 4-manifolds

In [1, section 3.5], the authors found new 2d N = (0, 2) superconformal field theories that

are expected to be dual to theories of free fermions. These dualities were motivated by

gluing operations on 4-manifolds. In this section we will revisit these theories and analyze

them in detail. Later we will see that these theories can be generalized to a much larger

class which have nontrivial fixed points and exhibit even more interesting dualities.

Abelian. The simplest example of the 2d N = (0, 2) theory encountered in [1] that is

dual to free fermions is the abelian gauge gauge theory with one chiral multiplet Φ of charge

1 and Nf Fermi multiplets Ψi of charge −1. This theory, as it stands, has gauge anomaly

that can be canceled by integrating in Nf − 1 pairs of chiral and Fermi multiplets (Pa,Γa)

where Pa has gauge charge −1 and Γa is neutral:

Φ Ψi=1,...,Nf Pa=1,...,Nf−1 Γa=1,...,Nf−1

U(1)gauge + 1 − 1 − 1 0
(2.29)

These fields are coupled via a J-term superpotential

LJ =

∫
dθ+ ΦPaΓa|θ+

=0
. (2.30)

Classically, the D-term equation in this model has the form

r − |φ2|+
Nf−1∑
a=1

|pa|2 = 0 (2.31)

and quantum mechanically (if we are in the regime Nf ≥ 2) the value of r is renormalized

to the “large volume region,” thus forcing φ to get a vev. When φ gets a vev, the anomaly-

canceling pairs (Pa,Γa) all become massive and can be integrated out in a manifestly

N = (0, 2) supersymmetric way, leading to the “twisted superpotential” (2.13) with

J̃ = − i

8π
(Nf − 1) log(Φ) (2.32)

This is precisely the “charged log interaction” of [17], which, in fact, was introduced pre-

cisely as a result of integrating out massive pairs (Pa,Γa) with unbalanced charge. The

resulting low-energy theory now contains one (0, 2) chiral superfield Φ of charge +1 and

Nf Fermi multiplets Ψi of charge −1 coupled to the gauge multiplet Λ:

Φ Ψi=1,...,Nf

U(1)gauge + 1 − 1
(2.33)

The chiral anomaly in this model is canceled against the “classical anomaly” (i.e. gauge

non-invariance) of the term (2.32). Including the contribution of this term, the effective

scalar potential for the fields D and φ then takes the form:

Veff(D,φ) =
1

2
D2 +D

(
|φ|2 − r +

Nf − 1

2π
log |φ|

)
(2.34)
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This potential has a supersymmetric minimum (with D = 0) at

|φ|2 +
Nf − 1

2π
log |φ| = r (2.35)

for all values of r, including r = 0. Again, Nf ≥ 2 turns out to be a crucial condition for

this, and φ getting a vev justifies integrating out the pairs (Pa,Γa).

The R-symmetry at low energies is typically different from the canonical R-symmetry.

When possible, it can be determined by imposing the cancellation of the mixed anomaly

with the gauge symmetry. In two-dimensional N = (0, 2) theories with E-term and J-term

interactions, the low-energy R-symmetry was studied in [16]. Without sufficiently many

superpotential couplings, however, the R-charge may not be pinned down uniquely. This

phenomenon is similar to the one in four dimensions, where the R-symmetry is determined

by the principle of “a-maximization” [18]. In two dimensions, the corresponding quan-

tity is the central charge that, according to the Zamolodchikov’s c-theorem [19], wants

to decrease (and, in fact, was part of the motivation for the “a-maximization” [18]). Its

extremization in 2d (0, 2) theories was implemented in [20], where it was shown that in a

model with normalizable vacuum state the low-energy R-symmetry extremizes cR. This

condition is equivalent to the condition of vanishing mixed anomaly with all abelian sym-

metries. In particular, this means that the mixed anomaly with the gauge symmetry

automatically vanishes.

The superconformal symmetry relates the right-moving central charge cR to the anomaly

in R-symmetry. The left-moving central charge cL can then be computed using cR and the

gravitational anomaly:

cR = 3Tr γ3RR , cR − cL = Tr γ3 . (2.36)

In the model of interest,

cR
3

= (RΦ − 1)2 −R2
ΨNf + (RP − 1)2(Nf − 1)−R2

Γ(Nf − 1)− 1 . (2.37)

The last term is the contribution from the vector multiplet. The trial central charge needs

to be extremized subject to the superpotential constraint RΦ +RP +RΓ = 1. We get

RΦ = RΨ = 0 , RP =
Nf − 2

Nf − 1
, RΓ =

1

Nf − 1
. (2.38)

The central charges for these values of R-charge are (cL, cR) = (Nf , 0). They are consistent

with our proposal that this theory is dual to a theory of Nf free Fermi multiplets Γ′. Note,

each Fermi multiplet contributes ∆cL = 1 to the left-moving central charge and does not

contribute to the right-moving central charge cR. The duality proposal is summarized in

the table below.

2d N = (0, 2) SQED free fermions

Φ Ψ P Γ Γ′

U(1)gauge +1 −1 −1 0

SU(Nf ) 1 � 1 1 ' �

SU(Nf − 1) 1 1 � � 1
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One can easily calculate the anomalies of the non-abelian symmetry. On the gauge the-

ory side,

Tr γ3JSU(Nf )JSU(Nf ) = −TΨ(�) = −1

2
, (2.39)

Tr γ3JSU(Nf−1)JSU(Nf−1) = TP (�)− TΓ(�) = 0 .

The non-abelian anomalies of Free fermions are precisely the same. Physically, the dual

Fermi multiplets are the gauge invariant mesonic operators

Γ′ = ΦΨ . (2.40)

Our analysis of R-symmetries shows that both Φ and Ψ have canonical R-charges in the

infra-red and do not develop any anomalous dimensions. This is the reason why the

mesonic operators ΦΨ also have the canonical R-charge and can be described by free Fermi

multiplets.

We can present a strong evidence for this duality by computing the elliptic genus

(where, on the gauge theory side, we use the superconformal R-charges determined above).

Using the basic ingredients (2.24) we get

I = (q; q)2

∮
dz

2πiz

1

θ(z)

Nf∏
i=1

θ(q
1
2xi/z)

Nf−1∏
a=1

θ(q
1
2

(1+ 1
Nf−1

)
s−1
a )

θ(q
1
2

(1− 1
Nf−1

)
sa/z)


=

Nf∏
i=1

θ(q
1
2xi) . (2.41)

The contribution of the (P,Γ) pair is shown in the brackets in the first line. They neatly

cancel when we evaluate the residue, giving us the index of Nf free fermions.

Non-abelian. In [1, section 3.5], the authors also found a non-abelian version of the

duality. It involves a U(Nc) gauge theory with Nc chiral multiplets Φα
s in the fundamental

representation and Nf Fermi multiplets Ψi
α in the anti-fundamental representation. Here

α = 1, . . . , Nc is the color label, s = 1, . . . , Nc is the SU(Nc)
′ flavor label4 and i = 1, . . . , Nf

is the SU(Nf ) flavor label.

The chiral and Fermi multiplets contribute 1
2Nc and −1

2Nf to the SU(Nc) gauge

anomaly, respectively. The non-abelian vector multiplet itself contributes −Nc to the gauge

anomaly, resulting in the net anomaly of −1
2(Nf +Nc). As before, this anomaly can be can-

celed by introducing Nf +Nc chiral-Fermi pairs (P aα ,Γ
s
a), where only P a transforms as the

anti-fundamental while Γa is neutral under gauge symmetry. The label a = 1, . . . , Nc +Nf

is the SU(Nf + Nc) flavor symmetry label. In addition to the SU(Nc) part of the gauge

symmetry, we also need to cancel the anomaly for the U(1) part. To that effect we introduce

two extra Fermi multiplets Ω1,2 in the determinant representation.5

4The prime on SU(Nc)
′ just serves to distinguish the flavor symmetry from the SU(Nc) part of the gauge

symmetry.
5If one chooses to work with the SU(Nc) gauge group, then there is no need to add the extra Ω multiplets.

The U(1) symmetry would then be a baryonic flavor symmetry of the theory. In the rest of the paper, we

will consider only the U(Nc) gauge theory.
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The theory has a J-term interaction

LJ =

∫
dθ+ Φα

sP
a
αΓsa|θ+

=0
(2.42)

as in the abelian case. This theory is claimed to be dual to the theory of NcNf + 2

free fermions Γ′is and Ω′1,2. This would also imply that the flavor symmetry in the UV is

enhanced to U(NcNf+2). The gauge and UV flavor charges of all the fields are summarized

in the table below.

2d N = (0, 2) SQCD free fermions

Φ Ψ P Γ Ω Γ′ Ω′

U(Nc) � � � 1 det

SU(Nf ) 1 � 1 1 1 ' � 1

SU(Nc)
′ � 1 1 � 1 � 1

SU(Nf +Nc) 1 1 � � 1 1 1

SU(2) 1 1 1 1 � 1 �

The trial central charge in this case is,

cR
3

= N2
c (RΦ − 1)2 −NcNfR

2
Ψ +Nc(Nc +Nf )(RP − 1)2

−Nc(Nc +Nf )R2
Γ − 2R2

Ω +
cR(G)

3

Here cR(G) = −3N2
c is a fixed contribution from the vector multiplet. It doesn’t play any

role in determining the superconformal R-charges. Extremizing subject to the superpoten-

tial relation RΦ +RP +RΓ = 1, we get

RΦ = RΨ = RΩ = 0, RP =
Nf

Nf +Nc
, RΓ =

Nc

Nf +Nc
. (2.43)

At these values of the R-charge we find cR = 0. This matches the central charge of the dual

theory because free Fermi multiplets do not contribute to the right-moving central charge.

We also get cL = NfNc + 2 which matches with the total number of Fermi multiplets on

the dual side. We can also match the flavor anomalies as we did in the abelian case. On

the gauge theory side,

Tr[γ3JSU(Nf )JSU(Nf )] = TΨ(�)Nc = −Nc

2
(2.44)

Tr[γ3JSU(Nf+Nc)JSU(Nf+Nc)] = [TP (�)Nc − TΓ(�)Nc] = 0 (2.45)

Tr[γ3JSU(Nc)′JSU(Nc)′ ] = [TP (�)Nc − TΓ(�)(Nf +Nc)] = −
Nf

2
. (2.46)

It is very easy to see that the anomaly contribution of the system of NfNc fermions trans-

forming as (�,�) under SU(Nf )× SU(Nc)
′ is exactly same as above. The Ω′ fermions do
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not contribute to these anomalies. Finally, we support our claim by showing the equality

of the index on both sides of the proposed duality:

I = (q; q)2

∮ Nc∏
α=1

dξα
2πiξα

∏
α 6=β

θ

(
ξα
ξβ

)∏
α,i θ

(
q

1
2 ziξ

−1
α

)∏
α,s θ(ξαds)

θ

(
q

1
2w
∏
α

ξα

)
θ

(
q

1
2w−1

∏
α

ξα

)

×


∏
s,a θ

(
q

1− 1
2

Nf
Nc+Nf d−1

s c−1
a

)
∏
α,a θ

(
q

1
2

Nf
Nc+Nf caξ

−1
α

)


= θ(q
1
2w)θ(q

1
2w−1)

∏
i,s

θ(q
1
2 zids) . (2.47)

We see that the integral is precisely the index of NfNc + 2 free Fermi multiplets. Just as

before, the dual fermions Γ′ can be also thought of as the mesonic operators ΦΨ of the

electric theory. Again, because Φ and Ψ have canonical R-charges in the infra-red, the

meson corresponds to a free field.

The gauge theory considered here is dual to the theory of only free mesons. This is

strongly reminiscent of the 4d N = 1 SQCD with Nf = Nc or Nf = Nc + 1. It is then

natural to look for the analogue of the Seiberg duality in SQCD with general values of Nf .

In the next section we will consider such a generalization and will be pleasantly surprised

by the result.

3 The fundamental triality

3.1 Proposal

Consider a U(Nc) gauge theory but now with Nb fundamental chiral multiplets and Nf

anti-fundamental Fermi multiplets. The SU(Nc) anomaly cancellation condition requires

that we add 2Nc+Nf −Nb chiral multiplets P in the anti-fundamental representation. We

also add the same number of Fermi fields Γ that transform in the fundamental of SU(Nb)

flavor symmetry. All in all, the field content is the same as before except that SU(Nc)
′

is generalized to SU(Nb) and SU(Nf + Nc) is generalized to SU(2Nc + Nf − Nb). For

convenience, it is summarized below:

2d N = (0, 2) SQCD

Φ Ψ P Γ Ω

U(Nc) � � � 1 det

SU(Nf ) 1 � 1 1 1

SU(Nb) � 1 1 � 1

SU(2Nc +Nf −Nb) 1 1 � � 1

SU(2) 1 1 1 1 �

We listed here all flavor symmetries of the theory except two U(1) symmetries; they will be

discussed in section 3.2. The field content allows us to write the superpotential J = ΦPΓ.
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Figure 1. The (0, 2) SQCD. We use oriented solid arrows to label chiral fields with their repre-

sentations, while unoriented dotted lines represent Fermi multiplets. The Ω multiplet in the det

representation is shown with a wavy line.

The gauge theory can be neatly represented in terms of a quiver diagram in figure 1. The

superpotential term is associated to the closed triangular loop in the quiver diagram.

Motivated by 4d Seiberg duality, we expect to find a dual theory which is a U(Nb−Nc)

gauge theory. The bilinear fields ΦΨ are expected to be the mesonic fields in the dual theory.

They should transform in the bi-fundamental of the SU(Nb) × SU(Nf ) flavor symmetry.

Moreover, they should couple to the “magnetic” matter multiplets Φ′ and Ψ′ through the

cubic superpotential. But such superpotential is impossible to write down as it is not

fermionic. Also, if we require only Φ′ and Ψ′ to be charged under the dual gauge group,

the gauge anomaly is not cancelled unless they are equal in number. This clearly presents

a problem in matching the flavor symmetries on dual side. As we will see momentarily,

these problems neatly cancel each other and we get an elegant and symmetric proposal for

the duality if we introduce the chiral fields P ′:

Proposed dual (0, 2) SQCD:

Φ′ Ψ′ P ′ Γ′ Ω′

U(Nb −Nc) � � � 1 det

SU(2Nc +Nf −Nb) 1 � 1 1 1

SU(Nf ) � 1 1 � 1

SU(Nb) 1 1 � � 1

SU(2) 1 1 1 1 �

Examining the representations of matter fields it is easy to see that this duality not only

changes the rank of the gauge group as in Seiberg duality of 4d N = 1 theories but also

permutes the three flavor symmetries:

Nf 7→ 2Nc +Nf −Nb

Nb 7→ Nf (3.1)

2Nc +Nf −Nb 7→ Nb

Let us define this transformation as D. It is consistent with the change in the rank of the

gauge group Nc 7→ Nb −Nc.
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Figure 2. The 2d N = (0, 2) triality. In this and the following figures the Ω multiplets

are suppressed.

Moreover, in the original theory, the roles of Φ and P are exchanged under charge

conjugation. Of course the charge conjugation is not a symmetry of the theory but one can

conjugate, dualize and conjugate back to get a yet another dual description of the original

theory. The rank of the gauge group in this description is going to be (2Nc+Nf−Nb)−Nc =

Nc +Nf −Nb. A more algebraic way to obtain this new description is to observe that the

transformation (3.1), unlike most of the “dualities”, has order 3. Hence we call it a triality.

Application ofD andD2 to the U(Nc) gauge theory leads to U(Nb−Nc) and U(Nc+Nf−Nb)

gauge theories, respectively.

In order to make the triality manifest, it is best to take the flavor symmetry groups to

be SU(N1), SU(N2) and SU(N3). The 2d N = (0, 2) triality is summarized in figure 2.

3.2 Checks

We now support our proposal by matching the anomalies, central charges, and elliptic gen-

era of dual theories. The flavored (a.k.a. equivariant) elliptic genus is a powerful quantity.

As we show towards the end of appendix A, it can used to read off all the anomalies of the

theory including central charges. Nevertheless, we will compute the anomalies explicitly

and show that they are the same in all duality frames. Note that it suffices to compute

these quantities in one duality frame, say T1, and check that they are symmetric under the

cyclic permutations of N1, N2 and N3.
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Non-abelian flavor anomalies. Let us start with the simplest check, i.e. matching of

non-abelian flavor anomalies. The SU(N) anomalies of the T1 theory are

Tr γ3JSU(N1)JSU(N1) =
N1 +N2 −N3

2
TP (�)−N2TΓ(�) = −1

4
(−N1 +N2 +N3) (3.2)

Tr γ3JSU(N2)JSU(N2) =
N1 +N2 −N3

2
TΦ(�)−N1TΓ(�) = −1

4
(+N1 −N2 +N3) (3.3)

Tr γ3JSU(N3)JSU(N3) = −N1 +N2 −N3

2
TΨ(�) = −1

4
(+N1 +N2 −N3). (3.4)

Indeed, these expressions are invariant under cyclic permutations of N1, N2 and N3. In

addition to these, we have a SU(2) symmetry acting on the Ω Fermi multiplets. It is clear

that its anomaly is the same in all duality frames.

Central charges. Next, we determine the R-charge using c-extremization and compute

the central charges cR and cL. The trial central charge is

cR
3

=
N1 +N2 −N3

2
((RP − 1)2N1 −R2

ΨN3 + (RΦ − 1)2N2)−R2
ΓN1N2 − 2R2

Ω +
cR(G)

3

The term cR(G) = −3N2
c = −3

4(N1 + N2 − N3)2 is a fixed contribution from the U(Nc)

vector multiplet. This is because FI term is linear in the field strength multiplet and has

a fixed R-charge equal to 1. Extremization of the trial cR gives us

RΦ =
N2 +N3 −N1

N1 +N2 +N3
, RΨ = RΩ = 0 (3.5)

RP =
N1 −N2 +N3

N1 +N2 +N3
, RΓ =

N1 +N2 −N3

N1 +N2 +N3
. (3.6)

With these R-charges, using (2.36), we get

cR =
3

4

(−N1 +N2 +N3)(N1 −N2 +N3)(N1 +N2 −N3)

N1 +N2 +N3
(3.7)

cL = cR −
1

4
(N2

1 +N2
2 +N2

3 − 2N1N2 − 2N2N3 − 2N3N1) + 2. (3.8)

Remarkably, both cR and cL are invariant under the permutations of (N1, N2, N3). This

serves as a strong check of the proposed triality.

Abelian symmetry. The gauge theory we are interested in has two abelian flavor sym-

metries that we call F and F̃ . We propose the following action on the matter fields:

Φ Ψ P Γ Ω

F N3 −N2 0 N2 −N1 N1 −N3
1
2(N1N3 −N2

2 )

F̃ N2 −N1 0 N1 −N3 N3 −N2
1
2(N2N3 −N2

1 )

Their anomalies can be computed in a straightforward way. We get

Tr γ3F 2 =
1

2
N1N2N3

(
N1 +N2 +N3 −

N2
1

N3
− N2

2

N1
− N2

3

N2

)
(3.9)

Tr γ3F̃ 2 =
1

2
N1N2N3

(
N1 +N2 +N3 −

N2
1

N2
− N2

2

N3
− N2

3

N1

)
(3.10)

Tr γ3FF̃ = −1

2
N1N2N3

(
N1 +N2 +N3 −

N1N2

N3
− N2N3

N1
− N3N1

N2

)
(3.11)
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As we can see, the anomaly matrix of the two U(1) symmetries is invariant under the cyclic

permutations of (N1, N2, N3).

Index. In this section we will compute the equivariant index of the theory in description

T1. We use the fugacities {ya : a = 1, . . . N1}, {xs : s = 1, . . . N2}, and {zi : i = 1, . . . N3}
for the flavor symmetry groups SU(N1), SU(N2), and SU(N3), respectively. They satisfy∏
xs =

∏
yi =

∏
za = 1. For the U(Nc) gauge symmetry, we use the fugacity {ζα : α =

1, . . . , Nc}. The fugacity w is used for the SU(2) that acts on the Ω multiplets. To avoid

clutter, we will not introduce any fugacities for the U(1) symmetries F and F̃ . Then, the

index of the SQCD is

I = (q; q)2Nc

∮ Nc∏
α=1

dζα
2πiζα

∏
α 6=β

θ(ζα/ζβ)

×

∏
a,s θ

(
q

1+RΓ
2 xs/ya

)∏
α,i θ

(
q

1
2 zi/ζα

)∏
± θ
(
q

1
2w±

∏
α ζα

)
∏
α,s θ

(
q
RΦ
2 ζα/xs

)∏
α,a θ

(
q
RP
2 ya/ζα

) (3.12)

where the contour integral should be understood as sum over the residues at leading poles,

either coming from the contribution of Φ or from the contribution of P . Let us pick

the former set of poles. The simultaneous poles in all Nc variables ζα are classified by

injective map σ : {ζα} → {xs}. Letting {x̃α} to be the image of this map, the poles are at

ζα = q−
RΦ
2 x̃α. Evaluating the residue,

I =
∑

{x̃α}⊂{xs}

∏
α 6=β

θ(x̃α/x̃β)

×

∏
a,s θ

(
q

1+RΓ
2 xs/ya

)∏
α,i θ

(
q

1+RΦ
2 zi/x̃α

)∏
± θ
(
q

1−NcRΦ
2 w±

∏
α x̃α

)
∏
α,a θ

(
q

1+RΓ
2 x̃α/ya

)∏
xs 6=x̃α θ

(
x̃α/xs

) . (3.13)

This expression can be rewritten in terms of the variables {xα} ≡ {xs} \ {x̃α}. After some

manipulations, we get

I =
∑

{xα}⊂{xs}

∏
α 6=β

θ(xα/xβ)

×

∏
s,i θ
(
q

1−RΦ
2 xs/zi

)∏
α,a θ

(
q

1+RΓ
2 xα/ya

)∏
± θ
(
q

1+NcRΦ
2 w±

∏
α xα

)
∏
α,i θ

(
q
RP+RΓ

2 xα/zi

)∏
xs 6=xα θ

(
xs/xα

) . (3.14)

In writing this expression we used the theta function identity θ(a) = θ(q/a) and the

superpotential constraintRΦ+RP+RΓ = 1. The expression (3.14) is precisely the residue of

I = (q; q)2Ñc

∮ Ñc∏
α=1

dξα
2πiξα

∏
α 6=β

θ(ξα/ξβ)

×

∏
s,i θ
(
q

1+RΦ
2 zi/xs

)∏
α,a θ

(
q

1
2 ξα/ya

)∏
± θ
(
q

1
2w±

∏
α ξα

)
∏
α,i θ

(
q
RP
2 ξα/zi

)∏
α,s θ

(
q
RΓ
2 xs/ξa

) (3.15)
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N1

N2

N3

ν1

ν3

ν2

Figure 3. The space of UV SQCDs. The triangular slice is the projective space that labels the

theories up to a simultaneous rescaling of all Ni. Each edge of this slice has size 2√
3

and the center

of mass coordinates νi are the distances of a given interior point from the three edges.

where Ñc = N2 − Nc = (N2 + N3 − N1)/2. This is exactly the index of the dual theory

T2 where ξα plays the role of the gauge fugacity. This is because RP ′ = RΓ, RΓ′ = RΦ,

RΦ′ = RP , and also NcRΦ = ÑcRΓ.

3.3 Phase diagram

In this section we analyze the low energy physics of the 2d N = (0, 2) SQCD as a function

of Ni up to an overall rescaling Ni → αNi. This parameter space is best described in

terms of the “center of mass” coordinates νi ≡ Ni∑
j Nj

, which have the property νi ≥ 0 and∑
νi = 1. They parametrize a solid equilateral triangle with sides 2√

3
shown in figure 3,

which is the space of all UV SQCDs upto an overall rescaling of Ni.

In the last section the equivariant index provided us with a powerful check of the

triality; in this section we will see that it is very useful in understanding the infra-red physics

as well. First thing to notice is that if N2 < Nc, i.e. N2 +N3 < N1, the integral (3.12) does

not admit any poles. The index is simply zero. This strongly suggests that supersymmetry

is dynamically broken when N2 + N3 < N1. Applying the same argument in all duality

frames, we come up with two more inequalities that signal the dynamical supersymmetry

breaking: N1 +N2 < N3 and N1 +N3 < N2. Indeed, it is precisely when one of these these

inequalities is satisfied, there exists a duality frame in which the rank of the gauge group is

negative. This leads us to conclude that the supersymmetry is dynamically broken unless

the Ni’s satisfy the triangle inequality. Figure 4 represents a typical SQCD. Curiously, the

area of the inscribed circle is equal to π
3 cR. The triangle inequality carves out a smaller

equilateral triangle in the projective space parametrized by ν’s. This smaller triangle has

sides of size 1√
3

and represents the space of all SQCDs that preserve supersymmetry in the

IR. The triality acts on this space by a 2π
3 rotation.

The triangle of νi’s degenerates on the boundary of the supersymmetric parameter

space. For example, when ν1 = ν2 + ν3 the rank of the gauge group is zero in the duality
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N1

N2
N3

Figure 4. The triangle labeling the SQCD. The area of the inscribed circle is equal to π
3 cR.

frame T2, i.e. the SQCD is actually dual to a theory of free fermions. This is also the case

for all the theories corresponding to boundary points. At the corners of the parameter

space, things degenerate even further. As an example, consider the vertex with ν3 = 0

and ν1 = ν2. In descriptions T2 and T3 this actually corresponds to the theory consisting

of only two Fermi multiplets Ω. One can explicitly verify it by showing that the index

of the gauge theory in description T1 is product of two θ functions. Even though the T1

description consists of a non-trivial gauge theory, the index tells us that the low energy

theory consists of only two left-moving fermionic degrees of freedom.

Another special locus is when the νi triangle becomes isosceles. Let us take ν1 = ν2

as an example. In description T3, this theory has equal number of Φs and P s. These fields

are charged oppositely under the U(1) part of the gauge symmetry. This results in the

vanishing of the one-loop beta function for the FI parameter. We suspect that the theory

in fact admits an exactly marginal deformation on such loci. If this is the case, it would

be nice to understand the corresponding exactly marginal deformations in other duality

frames. The mid-point of the parameter space is a very special point as it is invariant

under triality. The conformal manifold at this point could make an interesting study. We

summarize the discussion of this subsection in figure 5.

4 Quivers

In this section we study triality actions on general 2d N = (0, 2) quiver gauge theories. An

example of a general quiver is shown in figure 6. A cubic J-term superpotential is associated

to all closed triangular loops in the quiver diagram. It is important that the representations

of the chiral multiplets are compatible with such a superpotential. Moreover, we require

every chiral multiplet to be part of a superpotential term. The orientation of the fermionic

edge is automatically determined by the orientation of the bososnic edges.

For each gauge node6
i©, let us define Xi ≡ { j© : j© → i©},Yi ≡ { j© : j© ← i©} and

Zi ≡ { j© : j© - - i©}. The cancellation of SU(Ni) anomaly requires

Ni =

( ∑
j©∈Xi

Nj +
∑
j©∈Yi

Nj −
∑
j©∈Zi

Nj

)
/2 . (4.1)

6To emphasize the rank of the gauge node i©, we sometimes use the notation .
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Figure 5. The green triangle ABC is the space of theories preserving supersymmetry, while the

points in red correspond to SUSY breaking theories. The triality acts as a 2π
3 rotation. The triangle

AHC shaded in dark green is the fundamental domain under the action of the triality. The points

on the edges correspond to degeneration of the Ni triangle in figure 4. The small triangle at F

denotes a typical degeneration. The corresponding theories are dual to free fermion theories. The

Ni triangle degenerates even further at the vertices of ABC. See the small triangle at C for an

example. The corresponding theories are empty in the infra-red except for two Fermi multiplets.

The theories on the segments AE, BF and CG are expected to have exactly marginal deformations.

The point H is invariant under the triality. It correspond to the theory with N1 = N2 = N3.

Figure 6. An example of a general quiver.

This condition uniquely determines the ranks of gauge groups in terms of the ranks of flavor

groups. In order to cancel the anomaly for the U(1)i part of the gauge node i©, we need

to introduce Fermi multiplets Ω` in representations detn
`
i of U(Ni). The U(1)i anomaly

cancellation as well as the mixed anomaly cancellation between U(1)i and U(1)j require∑
`

n`in
`
j = 2δij −Aij , (4.2)

where Aij is the super-adjacency matrix of the quiver in which bosonic and fermionic
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edges contribute +1 and −1, respectively. It follows that if the gauge nodes form a tree, it

should be of the ADE type because the vectors ~ni define a root system. It is an interesting

combinatorial exercise to classify all the graphs admitting solutions to (4.1) and (4.2). Note

that, if we choose to gauge only the SU(N) part of the gauge group then we do not need

to worry about the condition (4.2).

4.1 The triality rules

The triality of section 3 now acts on each individual node. The general transformation

rules for a “local” triality at i© are:

• Draw the same type of arrows from k© ∈ Yi ∪ Zi to all j© ∈ Xi that connect k© to

the gauge node.

• Change the connections to the gauge node s.t. all k© ∈ Xi now belong to Y ′i, all

k© ∈ Yi now belong to Z ′i and all k© ∈ Zi now belong to X ′i .

• The rank of new gauge group is N ′i =
∑

j©∈Xi Nj −Ni.

• Cancel fermi-bose pairs.

These rules are illustrated in figure 7. One can easily check that N ′i automatically satisfies

the new (primed) version of the condition (4.1). The charges of Ω fermions transform as

~n′i = ~ni ,

~n′b = −~nb − ~ni , b©→ i©
~n′j = −~nj , all other nodes.

(4.3)

It is easy to check that the vectors ~n′k satisfy the equations (4.2) for the new quiver. In

general, performing the transformation (4.3) thrice doesn’t take us back to the original

solution but rather produces a new solution to the condition (4.2).

Now we show that local non-abelian anomalies are invariant under the local triality.

Let the SU(N) anomaly for j© ∈ Xi be Aj . After triality, the new edges from k© ∈ Yi ∪Zi
add

∑
k©∈Y Nk −

∑
k©∈Z Nk. The contribution of the node i© changes from Ni to N ′i . All

in all,

A′j = Aj +
∑
k©∈Yi

Nk −
∑
k©∈Zi

Nk + (N ′i −Ni) = Aj . (4.4)

The last equality follows from (4.1). Similarly, one can verify the anomaly matching for

j© ∈ Yi and j© ∈ Zi. Matching of the equivariant index under the local triality is carried

out in appendix A.

4.2 Triality networks

The computation of equivariant index demonstrates that the supersymmetry is dynamically

broken if either
∑

j©∈Xi Nj < Ni or
∑

j©∈Yi Nj < Ni for some i. This also means that, in

such cases, the rank of the gauge group formally obtained by applying the triality rules is

negative. As emphasized earlier, the condition (4.1) allows us to express the gauge group
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Figure 7. Action of the triality Di associated to the gauge node i and cancellation of fermi-

bose pairs.

ranks uniquely in terms of the ranks of the flavor groups. The positivity conditions, in all

duality frames, then carve out a polyhedron in the space of flavor group ranks.

For some especially “bad” graphs the positivity conditions do not admit any solutions.

In particular, a graph which has a dual with a gauge node i© such that Xi = {∅} (or

Yi = {∅} or Zi = {∅}) is bad. Consider the example in figure 8. Even though, the graph

on the left appears to be innocent, its dual has a gauge node with no incoming arrows. In

this description the quiver manifestly breaks supersymmetry for any values of the flavor

group ranks. In fact, generic quiver graphs turn out to be bad in this sense. It will be

interesting to come up with a combinatorial criterion for “good” graphs.

An example of a good graph with two nodes is shown in figure 9. The conditions (4.2)

are met with n1 = (1, 1, 0) and n2 = (0, 1, 1). Applying trialities D1 and D2 we generate

24 quivers.7 The triality network is displayed in figure 10. Remarkably, other examples

7This means counting quivers with marked gauge nodes. The network contains quivers which describe
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D1−→

Figure 8. Example of a quiver theory with dynamical supersymmetry breaking.

Figure 9. An example of a theory with two gauge nodes that does not exhibit dynamical super-

symmetry breaking.

of two node quivers also have an isomorphic triality network. The positivity conditions

amount to the bounds

3Ni <
6∑
j=3

Nj , i = 3, . . . , 6 . (4.5)

They define the interior of an infinite cone over a tetrahedron in the 4-dimensional space

of (N3, N4, N5, N6). On a face of the tetrahedron one of the gauge nodes has zero rank in a

particular duality frame. Then, the theory effectively becomes identical to the theory with

one gauge group, as in section 3. And, each face of the tetrahedron plays the role of the

triangular parameter space for the theory with one gauge node.

Figure 11 shows an example of a good graph with three gauge nodes. Its triality

network consists of 330 quivers.

5 Outlook

In this paper we have visited the uncharted landscape of 2d N = (0, 2) gauge theories.

The exploration motivates many questions. Below are some of the urgent ones.

• For certain special values of the ranks of the flavor symmetry groups, the (0, 2) theo-

ries could have exactly marginal deformations. It will be interesting to identify such

points in the parameter space of quiver theories and study their conformal manifolds.

• The type IIA brane construction of 2d N = (0, 2) gauge theories has been discussed

in [21]. It is a natural question to understand the triality from the brane setup.

the same theory but differ by permutations of gauge labels.
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Figure 10. The duality network of 24 dual theories generated by the actions of basic trialities D1

and D2 starting from the theory given by the quiver in figure 9.

Figure 11. An example of a theory with three gauge nodes without dynamical supersymme-

try breaking.

• The answer to the previous question may provide the desired link between 4-manifolds

and 2d N = (0, 2) theories T [M4]. After all, the type IIA construction should be an

S1 compactification of the M5 brane setup. What does triality mean for 4-manifolds?

We expect that it corresponds to the handle-slide moves.

• The previous question, in particular the gluing of 4-manifolds, involves the study

of half-BPS domain walls and boundary conditions in 3d N = 2 theories that was

recently initiated in [5, 22]. We expect the (0, 2) triality to play an important role in

this study as well as in the study of surface operators in 4d N = 1 gauge theories [23]

that also support N = (0, 2) supersymmetry and, via circle reduction, map to half-

BPS boundary conditions in three dimensions, as illustrated in figure 12.
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3d

Figure 12. A half-BPS surface operator in 4d N = 1 gauge theory defines a half-BPS boundary

condition in 3d N = 2 theory. Namely, consider a 4d N = 1 gauge theory in space-time of the form

R2×D coupled to 2d N = (0, 2) theory (with symmetry group G) at the tip of the “cigar” D ∼= R2.

There are two ways to look at this system. One, more obvious, is as a 4d-2d coupled system that

describes a half-BPS surface operator in N = 1 theory. Another is based on a dimensional reduction

on a circle (= the fiber of the “cigar” D). This reduction gives a 3d N = 2 gauge theory on a

half-space, R+ × R2, coupled to a 2d N = (0, 2) theory on the boundary.

• The 4d Seiberg duality solves the Yang-Baxter equation, more accurately, the star-

star equation [24]. As a result, one associates a 1d quantum integrable system to every

coupling independent observable of the gauge theory. We are tempted to speculate

that the 2d N = (0, 2) triality may provide a solution to the “tetrahedron equation”

which is associated to 2d quantum integrable systems [25] (also see e.g. [26] for

recent work).

• We have given examples of quivers that preserve supersymmetry as well as examples

of quivers that break it dynamically. The former seem to be harder to construct.

Therefore, it would be nice to come up with combinatorial criteria for the quivers

with unbroken supersymmetry.
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Figure 13. Action of the triality D0.

A Index for general quivers

Here we show how the triality described in section 4 works at the level of index. Let

us pick a gauge node in a quiver and denote it by 0. We separate nodes connected to

the node 0© into 3 groups: nodes a© ∈ Z such that there is a Fermi multiplet 0©- - - a©
in representation Na ⊗N0 and R-charge Ra, nodes b© ∈ X such that there is a chiral

multiplet b© → 0© in representation N0 ⊗Nb and R-charge Ob, and nodes c© ∈ Y such

that there is a chiral multiplet 0© → c© in representation Nc ⊗N0 and R-charge Qc
(See the left hand side of figure 13 for an example). The anomaly cancellation requires

that 2N0 =
∑

b©∈X Nb +
∑

c©∈Y Nc −
∑

a©∈Z Na. We will denote the fugacities for the

corresponding gauge or flavor groups by zia, x
j
b, y

k
c and fugacities corresponding to the

gauge node 0© by ζα. Then the part of the index for matter charged with respect to U(N0)

and matter represented by lines between nodes a©, b©, c© is given by

I = Ĩ
∫ ∏

α

(q; q)2
∞
dζα

ζα

∏
α 6=β

θ
(
ζα/ζβ

) ∏
a©∈Z,α,i

θ
(
q

1+Ra
2 zia/ζ

α
)

∏
b©∈X ,α,j

θ
(
q
Ob
2 ζα/xjb

) ∏
c©∈Y,α,k

θ
(
q
Qc
2 ykc /ζ

α
)

×
∏
`

θ

(
q

1
2

(∏
α

ζα

)n`0
w`

)
(A.1)

Ĩ =

∏
c©- - - b©

c©∈Y, b©∈X

∏
j,k

θ
(
q

2−Ob−Qc
2 xjb/y

k
c

)
∏
c©→ a©

c©∈Y, a©∈Z

∏
i,k

θ
(
q
Ra−Qc+1

2 zia/y
k
c

) ∏
a©→ b©

a©∈Z, b©∈X

∏
i,k

θ
(
q

1−Ra−Ob
2 xjb/z

i
a

) (A.2)

The integral can be performed using the residue theorem. The choice of poles can be
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specified by the injective map {zα} σ→ {q−
Ob
2 xjb}, Imσ = {q−

Ob
2 x̃rb}.

I = Ĩ
∑

{x̃rb}⊂{x
j
b}

∏
(r,b)6=(r′,b′)

θ
(
q
Ob−Ob′

2 x̃r
′
b′/x̃

r
b

) ∏
r,i,a,b

θ
(
q

1+Ra+Ob
2 zia/x̃

r
b

)
∏

x̃r
b′ 6=x

j
b

θ
(
q
Ob−Ob′

2 x̃rb′/x
j
b

) ∏
r,k,b,c

θ
(
q
Qc+Ob

2 ykc /x̃
r
b

)
×
∏
`

θ

(
q

1
2

(∏
b,r

q−
Ob
2 x̃rb

)n`0
w`

)
(A.3)

After introducing the dual variables {xsb} = {xjb} \ {x̃
r
b} the index reads

I = Ĩ
∑

{xsb}⊂{x
j
b}

∏
(s,b)6=(s′,b′)

θ
(
q
Ob−Ob′

2 xs
′
b′/x

s
b

) ∏
j,i,a,b

θ
(
q

1+Ra+Ob
2 zia/x

j
b

) ∏
s,k,b,c

θ
(
q
Qc+Ob

2 ykc /x
s
b

)
∏

xj
b′ 6=x

s
b

θ
(
q
Ob−Ob′

2 xjb′/x
s
b

) ∏
s,i,a,b

θ
(
q

1+Ra+Ob
2 zia/x

s
b

) ∏
j,k,b,c

θ
(
q
Qc+Ob

2 ykc /x
j
b

)

×
∏
`

θ

q 1
2

∏
b,j

q−
Ob
2 xjb/

∏
b,s

(
q−

Ob
2 xsb

)n`0 w`
 (A.4)

This can be represented as an integral over N ′0 =
∑

b©∈X Nb−N0 variables ξα which localizes

to the poles given by the injective map {ξα} σ′→ {q
∆−Ob

2 xjb}, Imσ′ = {q
∆−Ob

2 xrb}:

I =

∏
j,i,a,b

θ
(
q

1+Ra+Ob
2 zia/x

j
b

)
∏

j,k,b,c

θ
(
q
Qc+Ob

2 ykc /x
j
b

)

× Ĩ
∫ ∏

α

(q; q)2
∞
dξα

ξα

∏
α 6=β

θ
(
ξα/ξβ

) ∏
α,k,c

θ
(
q
Qc+∆

2 ykc /ξ
α
)

∏
α,j,b

θ
(
q

∆−Ob
2 xjb/ξ

α
) ∏
α,i,a

θ
(
q

1−Ra−∆
2 ξα/zia

)

×
∏
`

θ

q 1
2

(∏
α

ξα

)n`0
w−1
`

∏
j,b

xjb

−n`0
 (A.5)

where

∆ =
2
∑

b©∈X NbOb∑
b©∈X Nb +

∑
a©∈Z Na −

∑
c©∈Y Nc

. (A.6)

The integrand contains contributions from the following matter: Fermi multiplets 0©- - - c©,

c© ∈ Y with R-charges Qc+∆−1, chiral multiplets 0©→ b©, b ∈ X with R-charges ∆−Ob
and chiral multiplets a©→ 0©, a© ∈ Z with R-charges 1−Ra−∆. The new factors in front

of the integral represent new bifundamental matter between nodes a© ∈ Z, b© ∈ X and

c© ∈ Y: b©- - - a© and b© → c© for all pairs ( a©, b©) and ( a©, c©). The R-charges of these

fields are consistent with superpotential given by the triangles where 0© is the third vertex.
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These contributions cancel with contributions to Ĩ from the original matter between pairs

of nodes ( a©, b©) ∈ Z × X and ( a©, c©) ∈ Z × Y given by (A.2) (by using the identity

θ(x) = θ(q/x)). Thus we verify that the theories related by the triality described in the

section 4 have equal indices. The result (A.5) is also consistent with the transformation

rules (4.3).

In the rest of this section we will show that the identity between indices actually

implies identity between central charges of the theories and their flavor anomalies. The

gauge theories considered here have the property that the sum of all abelian gauge charges

is even. This condition is related to the condition for the existence of spin structure i.e.

c1(E)− c1(TX) = 0 (mod 2) for a (0, 2) non-linear sigma model defined for a holomorphic

bundle E over X (see e.g. [27]). This implies the existence of a non-anomalous Z2 symmetry

B. The index considered here has been tacitly twisted w.r.t. B.

Using,

θ(xq
1+R

2 )
~→0∼ exp

{
− 1

2~

[
(log x+ πi)2 +

π2

3

]
+

~
24

[
−3R2 + 1

]
− 1

2
R(log x+ πi)

}
(A.7)

one can show that the index has the following asymptotics when ~→ 0:

I ~→0∼ exp

{
1

2~

[
A+

π2

3
(cR − cL)

]
+

~
24
cL

}
(A.8)

where

cL =
∑

Fermi mult. Ψ

(1− 3R2
Ψ) +

∑
chiral mult. Φ

(3(RΦ − 1)2 − 1)− 2
∑

U(N) vector mult.

N2. (A.9)

is the left-moving central charge of the theory, cR−cL = Tr γ3 is the gravitational anomaly

and A is the anomaly polynomial. Namely,

A =
∑
a,b

(Tr γ3JaJb) log ua log ub. (A.10)

where ua is the fugacity associated to the symmetry Ja (symmetry B has fugacity −1).

Let us note that to obtain (A.8) from (A.7) we used the fact that the mixed anomaly of

R-symmetry with any other symmetry vanishes.

Therefore if two theories have equal indices they automatically have equal central

charges and anomaly polynomials. Moreover, if the R-charges Ra, Ob, Qc of the original

theory extremize the central charge, the R-charges of the dual theory extremize it too since

they are related to the original R-charges through a linear transform.
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