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INDUCED REPRESENTATIONS OF INFINITE-DIMENSIONAL

GROUPS

A. V. KOSYAK

Abstract. The induced representation IndGHS of a locally compact group G is the
unitary representation of the group G associated with unitary representation S : H →
U(V ) of a subgroup H of the group G. Our aim is to develop the concept of in-

duced representations for infinite-dimensional groups. The induced representations for
infinite-dimensional groups in not unique, as in the case of a locally compact groups.
It depends on two completions H̃ and G̃ of the subgroup H and the group G, on an
extension S̃ : H̃ → U(V ) of the representation S : H → U(V ) and on a choice of

the G-quasi-invariant measure µ on an appropriate completion X̃ = H̃\G̃ of the space
H\G. As the illustration we consider the “nilpotent” group BZ

0
of infinite in both

directions upper triangular matrices and the induced representation corresponding to
the so-called generic orbits.
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1. Introduction

The induced representations were introduced and studied for a finite groups by F.G.
Frobenius. Our aim is to develop the concept of induced representations for infinite-
dimensional groups.

The content of the article is as follows. Section 2 is devoted to the notion of induced
representations elaborated for a locally compact groups by G.W.Mackey [14, 15] and to
the Kirillov orbit methods [4] for the nilpotent Lie groups B(n,R).

In Section 3 we extend the notion of the induced representations for infinite-dimensi-
onal groups. We start the orbit method for infinite-dimensional “nilpotent” group BZ

0 ,
construct the induced representations corresponding to the generic orbits and study its
irreducibility.

In Section 4 we remind the Gauss decomposition of n× n matrices (Subsection 4.1),
and Gauss decomposition of infinite order matrices (Subsection 4.2).

More precisely, we give the well-known definition of the induced representations for a
locally compact groups in Subsection 2.1. In Subsection 2.2 we remind the Kirillov orbit
method for finite-dimensional nilpotent group Gn = B(n,R). The induced representa-
tions, corresponding to a generic orbits of the group Gn are discussed in Subsection 2.3.
In the Subsection 2.4 we give a new proof of the irreducibility of the induced representa-
tions corresponding to a generic orbits in order to extend the proof of the irreducibility
for infinite-dimensional “nilpotent” group BZ

0 .
In Subsection 3.1 we remind the definition of the regular and quasiregular represen-

tations of infinite-dimensional groups. As in the case of a locally compact group these
representations are the particular cases of the induced representations. This gives us
the hint how to define the induced representations for infinite-dimensional groups. The
definition is done in Subsection 3.2. The questions concerning the development of the
orbit method for infinite-dimensional “nilpotent” group BN

0 and BZ
0 are discussed in

Subsection 3.3.
The completions of the initial groups G are necessary to the definition of the induced

representations for the initial infinite-dimensional group. The completions of the induc-
tive limit G = lim

−→n
Gn of matrix groups Gn are studied in Subsection 3.4 and 3.5. We

show that the Hilbert-Lie groups appear naturally in the representation theory of the
infinite-dimensional matrix group. We define a family of the Hilbert-Lie group GL2(a)
(resp. B2(a)), a Hilbert completions of the group GL0(2∞,R) = lim−→n

GL(2n − 1,R)

(resp. BZ
0 = lim

−→n
B(2n − 1,R)). We show that any continuous representation of the

group GL0(2∞,R) (resp. BZ
0 ) is in fact continuous in some stronger topology, namely

in a topology of a suitable Hilbert -Lie group GL2(a) (resp. B2(a)) depending on the
representation.

In Subsection 3.7 we construct the induced representations of the group BZ
0 corre-

sponding to a generic orbits. The irreducibility of these representations is studied in
Subsection 3.8. The very first steps to describe some part of the dual for the group BN

0

and BZ
0 are mentioned in Subsection 3.9

2. Induced representations, finite-dimensional case

2.1. Induced representations. The induced representation IndG
HS is the unitary rep-

resentation of a group G associated with a unitary representation S : H → U(V ) of
a closed subgroup H of the group G. For details, see [7], Section 2.1. Suppose that
X = H \ G is a right G−space and that s : X → G is a Borel section of the projection
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p : G → X = H\G : g 7→ Hg. For Lie group, such a mapping s can be chosen to be
smooth almost everywhere. Then every element g ∈ G can be uniquely written in the
form

(2.1) g = hs(x), h ∈ H, x ∈ X,

and thus G (as a set) can be identified with H × X . Under this identification, the
Haar measure on G goes into a measure equivalent to the product of a quasi-invariant
measure on X and a Haar measure on H . More precisely, if a quasi-invariant measure
µs on X is appropriately chosen, then the following equalities are valid

(2.2) dr(g) =
∆G(h)

∆H(h)
dµs(x)dr(h),

(2.3)
dµs(xg)

dµs(x)
=

∆H(h(x, g))

∆G(h(x, g))
,

where ∆G is a modular function on the group G and h(x, g) ∈ H is defined by the
relation

(2.4) s(x)g = h(x, g)s(xg).

Recall that a modular function on a group G is a homomorphism G ∋ t 7→ ∆G(t) ∈ R+

defined by the equality hLt = ∆G(t)h, where h is the right Haar measure on G, L is the
left action of the group G on itself and hLt(C) = h(tC).

Remark 2.1. If the group G is unimodular, i.e ∆G ≡ 1, and it is possible to select a
subgroup K that is complementary to H in the sense that almost every element of G can
be uniquely written in the form

(2.5) g = hk, h ∈ H, k ∈ K,

then it is natural to identify X = H\G with K and to choose s as the embedding of K
in G

(2.6) s : K 7→ G.

In such a case, the formula (2.2) assume the form

(2.7) dg = ∆H(h)
−1dr(h)dr(k).

If both G and H are unimodular (or, more generally, if ∆G(h) and ∆H(h) coincide for
h ∈ H), then there exist a G-invariant measure on X=H\G. If it is possible to extend
∆H to a multiplicative function on the group G, then there exist a quasi-invariant

measure on X which is multiplied by the factor ∆H(g)
∆G(g)

under translation by g.

Now we can define IndG
HS (see [7], section 2.3.). Let S : H → U(V ) be a unitary

representation of a subgroup H of the group G in a Hilbert space V and let µ be a
measure on X satisfying condition (2.3). Let H denote the space of all vector-valued
functions f on X with values in V such that

‖f‖2 :=

∫

X

‖f(x)‖2V dµ(x) <∞.

Let us consider the representation T given by the formula

(2.8) [T (g)f ](x) = A(x, g)f(xg) = S(h)

(
dµs(xg)

dµs(x)

)1/2

f(xg),
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where

(2.9) A(x, g) =

[
∆H(h)

∆G(h)

]1/2
S(h),

and where the element h = h(x, g) is defined by formula (2.4).

Definition 2.2. The representation T is called the unitary induced representation and
is denoted by IndG

HS.

Remark 2.3. The right (or the left) regular representation ρ, λ : G 7→ U(L2(G, h))
of a locally compact group G is a particular case of the induced representation IndG

HS
with H = {e} and S = Id. The guasiregular representation is a particular case of the
induced representation with some closed subgroup H ⊂ G and S = Id.

2.2. Orbit method for finite-dimensional nilpotent group B(n,R). See Kir-
illov [6] and [7], Chapter 7, §2, p.129-130, for details. ”Fix the group Gn = B(n,R)
of all upper triangular real matrices of order n with ones on the main diagonal. (The
Kirillov notation for the group B(n,R) is N+(n,R)).

The basic result of the method of orbits, applied to nilpotent Lie groups, is the
description of a one-to-one correspondence between two sets:

a) the set Ĝ of all equivalence classes of irreducible unitary representations of a con-
nected and simply connected nilpotent Lie group G,

b) the set O(G) of all orbits of the group G in the space g∗ dual to the Lie algebra g

with respect to the coadjoint representation.
To construct this correspondence, we introduce the following definition. A subalgebra

h ⊂ g is subordinate to a functional f ∈ g∗ if

〈f, [x, y]〉 = 0 for all x, y ∈ h,

i.e. if h is an isotropic subspace with respect to the bilinear form defined by Bf(x, y) =
〈f, [x, y]〉 on g.

Lemma 2.4 (Lemma 7.7, [7]). The following conditions are equivalent:
(a) a subalgebra h is subordinate to the functional f ,
(b) the image of h in the tangent space TfΩ to the orbit Ω in the point f is an isotropic

subspace,
(c) the map

x 7→ 〈f, x〉

is a one-dimensional real representation of the Lie algebra h.

If the conditions of Lemma 2.4 are satisfied, we define the one-dimensional unitary
representation Uf,H of the group H = exp h by the formula

Uf,H(exp x) = exp 2πi〈f, x〉.

Theorem 2.5 (Theorem 7.2, [7]). (a) Every irreducible unitary representation T of a
connected and simply connected nilpotent Lie group G has the form

T = IndG
HUf,H ,

where H ⊂ G is a connected subgroup and f ∈ g∗;
(b) the representation Tf,H = IndG

HUf,H is irreducible if and only if the Lie algebra h

of the group H is a subalgebra of g subordinate to the functional f with maximal possible
dimension;
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(c) irreducible representations Tf1,H1 and Tf2,H2 are equivalent if and only if the func-
tionals f1 and f2 belong to the same orbit of g∗.”

Example 2.6. Let us consider the Heisenberg group G3 = B(3,R), its Lie algebra g

and the dual space g∗. Fix the notations

G = B(3,R) =
{(

1 x12 x13
0 1 x23
0 0 1

)}
,

g = n+(3,R) =
{(

0 x12 x13
0 0 x23
0 0 0

)}
, g∗ = n−(3,R) =

{(
0 0 0
y21 0 0
y31 y32 0

)}
.

The adjoint action Ad : G→ Aut(g) of the group G on its Lie algebra g is:

(2.10) g ∋ x 7→ Adt(x) := txt−1 ∈ g, t ∈ G,

the pairing between the g and g∗:

(2.11) g∗ × g ∋ (y, x) 7→ 〈y, x〉 := tr(xy) =
∑

1≤k<n≤3

xknynk ∈ R.

Since tr(txt−1y) = tr(xt−1yt) the coadjoint action of G on the dual g∗ to g is

(2.12) g∗ ∋ y 7→ Ad∗
t (y) := (t−1yt)− ∈ g∗, t ∈ G,

where (z)− means that we take lower triangular part of the matrix z.
To calculate Ad∗

t (y) explicitly for n = 3, we have

t−1yt =
(

1 t12 t13
0 1 t23
0 0 1

)−1 ( 0 0 0
y21 0 0
y31 y32 0

)(
1 t12 t13
0 1 t23
0 0 1

)

=
(

1 −t12 −t13+t12t23
0 1 −t23
0 0 1

)(
0 0 0
y21 y21t12 y21t13
y31 y31t12+y32 y31t13+y32t23

)
,

hence

Ad∗
t (y) := (t−1yt)− =

(
0 0 0

y21−t23y31 0 0
y31 y31t12+y32 0

)
.

We have two type of the orbits O:
1) if y31 = 0, then

( y21
0 y32

)
≃(y21, y32) for fixed y21, y32 is 0-dimensional orbit;

2) if y31 6= 0, then
(

R
y31 R

)
is 2-dimensional orbits.

In the case 1) fixe the point f = (y21, y32), the subordinate subalgebra h coinside
with all g, since [g, g] = 〈E13〉 := {tE13 | t ∈ R}. Corresponding one-dimensional
representation of the algebra h = g is

g ∋ x 7→ 〈f, x〉 = tr(xf) = tr
[(

0 x12 x13
0 0 x23
0 0 0

)(
0 0 0
y21 0 0
0 y32 0

)]
= x12y21 + x23y32 ∈ R.

The corresponding representation of the group G is

(2.13) G ∋ exp(x) 7→ exp(2πi〈f, x〉) ∈ S1.

So we have 1-dimensional representation

G3 ∋ exp
(

0 x12 x13
0 0 x23
0 0 0

)
7→ exp(2πi(x12y21 + x23y32)) ∈ S1.

We note that

exp(x) = exp
(

0 x12 x13
0 0 x23
0 0 0

)
=

(
1 x12 x13+

1
2
x12x23

0 1 x23
0 0 1

)
.

In the case 2) we have two subordinate subalgebras of the maximal dimension

h1 =
(

0 0 x13
0 0 x23
0 0 0

)
, and h2 =

(
0 x12 x13
0 0 0
0 0 0

)
. Set f =

(
0 0 0
y21 0 0
y31 y32 0

)
.
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The corresponding one-dimensional representations of the subalgebras hi, i = 1, 2 are

h1 ∋ x 7→ 〈f, x〉 = x13y31 + x23y32 ∈ R,

h2 ∋ x 7→ 〈f, x〉 = x12y21 + x13y31 ∈ R.

The corresponding representations S of the subgroups H1 and H2 respectively are:

H1 ∋
(

1 0 x13
0 1 x23
0 0 1

)
= exp(x) 7→ exp(2πi(x13y31 + x23y32)) ∈ S1,

H2 ∋
(

1 x12 x13
0 1 0
0 0 1

)
= exp(x) 7→ exp(2πi(x12y21 + x13y31)) ∈ S1.

In the case H1 we have the decomposition G3 = R2⋉B(2,R) ≃ H1⋉R, indeed we have

G3 ∋
(

1 x12 x13
0 1 x23
0 0 1

)
=
(

1 0 x13
0 1 x23
0 0 1

)(
1 x12 0
0 1 0
0 0 1

)
∈ R2 ⋉ B(2,R),

hence the space X = H1\G3 is isomorphic to B(2,R) ≃ R and s can be choosing as the
embedding s : B(2,R) 7→ B(3,R).

B(2,R) ∋ ( 1 x
0 1 ) =: x 7→ s(x) =

(
1 x 0
0 1 0
0 0 1

)
∈ B(3,R).

For general n we have

(2.14) B(n+ 1,R) = Rn ⋉B(n,R).

To calculate the right action of G on X i.e. to find h(x, t) such that

s(x)t = h(x, t)s(xt),

we have for x ∈ B(2,R) and t ∈ B(3,R)

s(x)t =
(

1 x 0
0 1 0
0 0 1

)(
1 t12 t13
0 1 t23
0 0 1

)
=
(

1 x+t12 t13+xt23
0 1 t23
0 0 1

)
=
(

1 0 t13+xt23
0 1 t23
0 0 1

)(
1 x+t12 0
0 1 0
0 0 1

)

= h(x, t)s(xt), hence h(x, t) =
(

1 0 t13+xt23
0 1 t23
0 0 1

)
.

Finally, the induced unitary representation IndG
H1
S have the following form in the Hilbert

space L2(R, dx) (case H1 and f = y31E31):

(2.15) f(x) 7→ S(h(x, t))f(xt) = exp(2πi(t13 + t23x)y31)f(x+ t12).

In the Kirillov [7] notations we have:

f(x) 7→ exp(2πi(c+ bx)λ)f(x+ a), y31 = λ,
(

1 t12 t13
0 1 t23
0 0 1

)
=
(

1 a c
0 1 b
0 0 1

)
.

2.3. The induced representations, corresponding to a generic orbits, finite-

dimensional case. We show following A. Kirillov [7] how the orbit method works for
the nilpotent group B(n,R) and small n.

For general n ∈ N the coadjoint action of the group Gn on g is as follows

t = I+
∑

1≤k<m≤n

tkmEkm, y =
∑

1≤m<k≤n

ykmEkm, t−1 := I+
∑

1≤k<m≤n

t−1
kmEkm

hence

(tyt−1)pq =

q∑

m=1

(ty)pmt
−1
mq =

q∑

m=1

n∑

r=p

tpryrmt
−1
mq, 1 ≤ p, q ≤ n,

and

(2.16) Ad∗
t (y) = (t−1yt)− = I +

∑

1≤q<p≤n

(t−1yt)pqEpq.
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Example 2.7. Generic orbits for the group G = B(n,R) (see [7], Example 7.9).

“The form of the action Ad∗
t (y) = (t−1yt)− implies, that Ad∗

t , t ∈ G acts as follows:
to a given column of y ∈ g∗, a linear combination of the previous columns is added and
to a given row of y, a linear combination of the following rows is added. More generally,
the minors ∆k, k = 1, 2, ..., [n

2
], consisting of the last k rows and first k columns of y

are invariant of the action. It is possible to show that if all the numbers ck are different
from zeros, then the manifold given by the equation

(2.17) ∆k = ck, 1 ≤ k ≤
[n
2

]

is a G-orbit in g∗. Hence generic orbits have codimension equal to [n
2
] and dimension

equal to n(n−1)
2
− [n

2
]. To obtain a representation for such an orbit, we can take a matrix

y of the form
y = ( 0 0

Λ 0 ) ,

where Λ is the matrix of order [n
2
] such that all nonzero elements are contained in the

anti-diagonal. It is easy to find a subalgebra of dimension [n
2
]× [n+1

2
] subordinate to the

functional y. It consist of all matrices of the form

( 0 A
0 0 ) ,

where A is an [n
2
]× [n+1

2
] or [n+1

2
]× [n

2
] matrix.”

Example 2.8. Let G = B(5,R), g = n+(5,R), g∗ = n−(5,R). We write the repre-
sentations for generic orbit corresponding to the point y = y51E51 + y42E42 ∈ g∗. Set
h3 = {t− I | t ∈ H3} where

G =

{(
1 x12 x13 x14 x15
0 1 x23 x24 x25
0 0 1 x34 x35
0 0 0 1 x45
0 0 0 0 1

)}
, H3 =

{(
1 0 0 t14 t15
0 1 0 t24 t25
0 0 1 t34 t35
0 0 0 1 0
0 0 0 0 1

)}
, g∗ =

{( 0 0 0 0 0
y21 0 0 0 0
y31 y32 0 0 0
y41 y42 y43 0 0
y51 y52 y53 y54 0

)}
.

The corresponding representation S of the subgroup H3 of the maximal dimension is:

H3 ∋ t 7→ exp(2πi〈y,(t− I)〉) = exp(2πi[t15y51 + t24y42]) ∈ S1.

For the group B(5,R) holds the following decomposition

(2.18) B(5,R) = B3B(3)B(3) i.e. x = x3x(3)x
(3),

where

B(3) =

{(
1 x12 x13 0 0
0 1 x23 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)}
, B(3) =

{(
1 0 0 x14 x15
0 1 0 x24 x25
0 0 1 x34 x35
0 0 0 1 0
0 0 0 0 1

)}
, B3 =

{(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 x45
0 0 0 0 1

)}
.

We calculate h(x, t) in the relation s(x)t = h(x, t)s(xt), but first we fix the section
s : X = H\G 7→ G of the projection p : G 7→ X . To define the section s : X 7→
G we show that in addition to the decomposition (2.18) the following decomposition
B(5,R) = B(3)B3B

(3) also holds. Indeed, to find h ∈ H3 = B(3) such that x = hx3x
(3),

we get x3x(3)x
(3) = hx3x

(3), hence

h = x3x(3)x
−1
3 =

(
1 0 0 x14 x15
0 1 0 x24 x25
0 0 1 x34 x35
0 0 0 1 x45
0 0 0 0 1

)(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 −x45
0 0 0 0 1

)
=

(
1 0 0 x14 x15−x14x45
0 1 0 x24 x25−x24x45
0 0 1 x34 x35−x34x45
0 0 0 1 0
0 0 0 0 1

)
∈ B(3).

We have two different decompositions

B3B(3)B(3) ∋ x3x(3)x
(3) = hx3x

(3) ∈ B(3)B3B
(3), with h = x3x(3)x

−1
3 .
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Remark 2.9. For an arbitrary n, m ∈ N, 1 < m < n, we have for the group Gn =
B(n,R) two decompositions:
(2.19)

Gn=BmB(m)B(m) ∋ xmx(m)x(m) = hxmx
(m) ∈ B(m)BmB

(m), h=xmx(m)x−1
m ,

where

Bm = {I+
∑

m<k<r≤n

xkrEkr}, B(m) = {I+
∑

1≤k≤m<r≤n

xkrEkr}, B(m) = {I+
∑

1≤k<r≤m

xkrEkr}.

Since X = B(m)\Gn is isomorphic to BmB
(m) by decomposition (2.19), the section s

can be choosing, by Remark 2.1, as the embedding

BmB
(m) ∋ xmx

(m) 7→ s(xmx
(m)) = xmx

(m) ∈ BmB(m)B(m).

Since s(x)t = h(x, t)s(xt), we have h(x, t) = s(x)t(s(xt))−1. It remains to calculate
s(x)t and s(xt).

Remark 2.10. We have

h(x, t)− I =

{
0, for t ∈ BmB

(m)

x(m)(t− I)x−1
m , for t ∈ B(m)

.

Indeed, let t = tmt
(m) ∈ BmB

(m) then s(x)t = xmx
(m)tmt

(m) = xmtmx
(m)t(m). We get

also xt = xmx
(m)tmt

(m) = xmtmx
(m)t(m), so s(xt) = xmtmx

(m)t(m), hence s(x)t = s(xt)
and we get h(x, t)=e. For t := t(m) ∈ B(m) and x = xmx

(m) ∈ BmB(m) we get

s(x)t = xmx
(m)t = xmx

(m)t(x(m))−1x(m) = xmx̃(m)x(m) = hxmx
(m) = h(x, t)s(xt),

where x̃(m) = x(m)t(x(m))−1. Then we get by (2.19)

(2.20) h(x, t) = h = xmx̃(m)x−1
m = xmx

(m)t(x(m))−1x−1
m = xmx

(m)t(xmx
(m))−1,

(2.21) h(x, t) =
(
x(m) 0
0 xm

)
( 1 t−I
0 1 )

(
(x(m))−1 0

0 x−1
m

)
=
(

1 x(m)(t−I)x−1
m

0 1

)
=
(
1 H(x,t)
0 1

)
,

where

(2.22) H(x, t) := x(m)(t− I)x−1
m .

Denote by Ekr(t) := I+tEkr, t ∈ R the one-parameter subgroups of the groups B(n,R).
We would like to find the generators Akn = d

dt
TI+tEkn

|t=0 of the induced representation
Tt (2.28).

Set for Gn =BmB(m)B(m) and 1 ≤ k ≤ m < r ≤ n
(2.23)

Skr(tkr) := 〈y, (h(x, Ekr(tkr))− I)〉, then Akr =
d

dt
exp(2πiSkr(t))|t=0 = 2πiSkr(1).

Let us denote by S the following matrix:

(2.24) S = (Skr)1≤k≤m<r≤n, where Skr = Skr(1), then S = (2πi)−1(Akr)k,r.

Lemma 2.11. Let B = (bkr)
n
k,r=1 ∈ Mat(n,C). Define the matrix C = (ckr)

n
k,r=1 ∈

Mat(n,C) by

(2.25) ckr = tr(EkrB), 1 ≤ k, r ≤ n, then we have C = BT ,

where Ekr are matrix units and BT means transposed matrix to the matrix B. The
equality C = BT holds also in the case when B is an arbitrary m×n rectangular matrix.
The statement is true also for matrices B ∈ Mat(∞,C).
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Proof. Indeed, we have tr(EkrB) = brk. �

We calculate now the matrix S(t) = (Skr(tkr))k,r and the matrix S = (Skr(1))k,r using
Lemma 2.11. Using (2.22) we have

〈y, h(x, t)− I〉 = tr (H(x, t)y) = tr
(
x(m)t0x

−1
m y
)
= tr

(
t0x

−1
m yx(m)

)
= tr (t0B(x, y)) ,

where t0 = t− I and

(2.26) B(x, y) = x−1
m yx(m) ∼=

(
1 0
0 x−1

m

) (
0 0
y 0

) (
x(m) 0
0 1

)
=
( 0 0
x−1
m yx(m) 0

)
.

By definition we have

Skr(tkr) = 〈y, (h(x, Ekr(tkr))− I)〉 = tr(tkrEkrB(x, y)),

hence by Lemma 2.11 and (2.26) we conclude that
(2.27)

S = (Skr(1))kr = (tr (EkrB(x, t)))k,r = BT (x, y) = (x(m))TyT (x−1
m )T =

(
0 (x(m))T yT (x−1

m )T

0 0

)
.

So the induced representation IndG
H(S) : G → U(L2(X, µ)) corresponding to the point

y ∈ g∗ has the following form

(2.28) (Ttf)(x)=S(h(x, t))

(
dµ(xt)

dµ(x)

)1/2

f(xt), f ∈ L2(X, µ), x ∈ X = H\G, t ∈ G,

where

(2.29) S(h(x, t)) = exp(2πi〈y, (h(x, t)− I)〉) = exp
(
2πitr ((t− I)B(x, y))

)
.

We calculate B(x, y) and S for different groups Gn. For G5 we get by (2.26):

G5 =

{(
1 x12 x13 x14 x15
0 1 x23 x24 x25
0 0 1 x34 x35
0 0 0 1 x45
0 0 0 0 1

)}
, y =

(
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 y42 0 0 0
y51 0 0 0 0

)
, x(3) =

(
1 x12 x13
0 1 x23
0 0 1

)
, x3 = ( 1 x45

0 1 ) ,

B(x, y) =
(

1 x−1
45

0 1

) (
0 y42 0
y51 0 0

) ( 1 x12 x13
0 1 x23
0 0 1

)
=
(

x−1
45 y51 y42+x−1

45 y51x12 y42x23+x−1
45 y51x13

y51 y51x12 y51x13

)
,

hence by (2.27) we have

(2.30) S := B(x, y)T =
(

1 0 0
x12 1 0
x13 x23 1

)(
0 y51
y42 0
0 0

)(
1 x−1

45
0 1

)
=

(
x−1
45 y51 y51

y42+x−1
45 y51x12 y51x12

y42x23+x−1
45 y51x13 y51x13

)
.

Remark 2.12. For the matrix x = I +
∑

1≤k<n≤m xknEkn ∈ B(m,R) we denote by x−1
kn

the matrix elements of the matrix x−1, i.e. x−1 =: I +
∑

1≤k<n≤m x−1
knEkn ∈ B(m,R).

The explicit expressions for x−1
kn are as follows (see [8], formula (4.4)) x−1

kk+1 = −xkk+1,

(2.31) x−1
kn = −xkn +

n−k−1∑

r=1

(−1)r−1
∑

k<i1<i2<...<ir<n

xki1xi1i2 ...xirn, k < n− 1.

The generators Akn = d
dt
TI+tEkn

|t=0 of the one-parameter subgroups Ekn(t) := I +
tEkn, t ∈ R generated by the representation Tt (2.28) are as follows (see (2.24) and
(2.30)):

(2.32) A12 = D12, A13 = D13, A23 = x12D13 +D23, A45 = D45,

(2.33) S =
1

2πi

(
A14 A15
A24 A25
A34 A35

)
=

(
x−1
45 y51 y51

y42+x−1
45 y51x12 y51x12

y42x23+x−1
45 y51x13 y51x13

)
,
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where Dkn = ∂
∂xkn

. For example, to obtain the expression A23 = x12D13 +D23 we note
that

B(3,R) ∋ x(I + tE23) =
(

1 x12 x13
0 1 x23
0 0 1

)(
1 0 0
0 1 t
0 0 1

)
=
(

1 x12 x13+tx12
0 1 x23+t
0 0 1

)
.

Here we denote by Dkn = Dkn(h) the operator of the partial derivative corresponding
to the shift x 7→ x+ tEkn on the group Bm×B(m) ∋ x = (xkn)k,n and the Haar measure
h:

(2.34) (Dkn(h)f)(x) =
d

dt

(
dh(x+ tEkn)

dh(x)

)1/2

f(x+ tEkn) |t=0, Dkn(h) :=
∂

∂xkn
.

Example 2.13. Let G = B(4,R) =

{(
1 x23 x24 x25
0 1 x34 x35
0 0 1 x45
0 0 0 1

)}
. The representations for generic

orbit corresponding to the point y = y43E43 + y52E52 ∈ g∗.

We calculate S in two different ways. First using (2.26) we get

B(x, y) = x−1
m yx(m) =

(
1 x−1

45
0 1

) (
0 y43
y52 0

)
( 1 x23
0 1 ) =

(
x−1
45 y52 y43+x−1

45 y52x23
y52 x23y52

)
,

1

2πi

(
A24 A25
A34 A35

)
= S = BT (x, y) = ( 1 0

x23 1 )
(

0 y52
y43 0

) ( 1 0
x−1
45 1

)
=
(

x−1
45 y52 y52

y43+x−1
45 y52x23 y52x23

)
,

A23 = D23, A45 = D45.

From the other hand, by (2.21) we get h(x, t) =
(
1 H(x, t)
0 1

)
, where

(2.35)

H(x, t)=x(3)(t−I)x−1
3 =( 1 x23

0 1 )
(
t24 t25
t34 t35

) (
1 x−1

45
0 1

)
=
(

t24+x23t34 (t24+x23t34)x
−1
45 +t25+x23t35

t34 t34x
−1
45 +t25+t35

)
.

Therefore,

〈y, (h(x, t)−I)〉 = h(x, t)34y43+h(x, t)25y52 = t34y43+[(t24+x23t34)x
−1
45 + t25+x23t35]y52,

hence
S2(t) :=

(
S24(t24) S25(t25)
S34(t34) S35(t35)

)
=
(

t24x
−1
45 y52 t25y52

t34y43+x23t34x
−1
45 y52 x23t35y52

)
,

(2.36) S2 := S2(1) =
(
S24 S25
S34 S35

)
=
(

x−1
45 y52 y52

y43+x−1
45 y52x23 y52x23

)
= ( 1 0

x23 1 )
(

0 y52
y43 0

) ( 1 0
x−1
45 1

)
.

Example 2.14. Let G = B(6,R), g = n+(6,R), g∗ = n−(6,R). We write the represen-
tations for generic orbit corresponding to the point y = y43E43 + y52E52 + y61E61 ∈ g∗.
Set

G6 =








1 x12 x13 x14 x15 x16
0 1 x23 x24 x25 x26
0 0 1 x34 x35 x36
0 0 0 1 x45 x46
0 0 0 0 1 x56
0 0 0 0 0 1





 , H3 =








1 0 0 t14 t15 t16
0 1 0 t24 t25 t26
0 0 1 t34 t35 t36
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





 , y =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 y43 0 0 0
0 y52 0 0 0 0
y61 0 0 0 0 0


 ,

h3 = {t− I | t ∈ H3}. The corresponding representations S of the subgroup H3 is:

H3 ∋ exp(t− I) = t 7→ exp(2πi〈y, (t− I)〉) = exp(2πi[t34y43 + t25y52 + t16y61]) ∈ S1.

For the group B(6,R) holds the following decomposition (see Remark 2.9)

(2.37) B(6,R) = B3B(3)B(3) i.e. x = x3x(3)x
(3),

where

x(3) =




1 x12 x13 0 0 0
0 1 x23 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 , x(3) =




1 0 0 x14 x15 x16
0 1 0 x24 x25 x26
0 0 1 x34 x35 x36
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 , x3 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 x45 x46
0 0 0 0 1 x56
0 0 0 0 0 1


 .
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We get by (2.26) and (2.27)

B(x, y) =

(
1 x−1

45 x−1
46

0 1 x−1
56

0 0 1

)( 0 0 y43
0 y52 0
y61 0 0

)(
1 x12 x13
0 1 x23
0 0 1

)

=

(
x−1
46 y61 x−1

45 y52+x−1
46 y61x12 y43+x−1

45 y52x23+x−1
46 y61x13

x−1
56 y61 y52+x−1

56 y61x12 y52x23+x−1
56 y61x13

y61 y61x12 y61x13

)
,

hence

S = BT (x, y) =
(

1 0 0
x12 1 0
x13 x23 1

)( 0 0 y61
0 y52 0
y43 0 0

)( 1 0 0
x−1
45 1 0

x−1
46 x−1

56 1

)

=

(
x−1
46 y61 x−1

56 y61 y61

x−1
45 y52+x−1

46 y61x12 y52+x−1
56 y61x12 y61x12

y43+x−1
45 y52x23+x−1

46 y61x13 y52x23+x−1
56 y61x13 y61x13

)
.

Using again (2.24), (2.28) and Remark 2.10 we get the following expressions for the
generators Akn = d

dt
TI+tEkn

|t=0 of one-parameter subgroups I + tEkn, t ∈ R:

A12 = D12, A13 = D13, A23 = x12D13 +D23,(2.38)

A45 = D45, A46 = D46, A56 = x45D46 +D56,(2.39)

(2.40) S =
1

2πi

(
A14 A15 A16
A24 A25 A26
A34 A35 A36

)
=

(
x−1
46 y61 x−1

56 y61 y61

x−1
45 y52+x−1

46 y61x12 y52+x−1
56 y61x12 y61x12

y43+x−1
45 y52x23+x−1

46 y61x13 y52x23+x−1
56 y61x13 y61x13

)
.

We recall the expressions for B(x, y) and hence for S = B(x, y)T for small n. For n = 4
we have

B(x, y) = x−1
m yx(m) =

(
1 x−1

45
0 1

) (
0 y43
y52 0

)
( 1 x23
0 1 ) =

(
x−1
45 y52 y43+x−1

45 y52x23
y52 y52x23

)
,

S = ( 1 0
x23 1 )

(
0 y52
y43 0

) ( 1 0
x−1
45 1

)
=
(

x−1
45 y52 y52

y43+x−1
45 y52x23 y52x23

)
.

For G3
2 ≃ B(6,R) (see (2.41) for the notation Gm

n ) holds:

B(x, y) =

(
1 x−1

45 x−1
46

0 1 x−1
56

0 0 1

)( 0 0 y43
0 y52 0
y61 0 0

)(
1 x12 x13
0 1 x23
0 0 1

)

=

(
x−1
46 y61 x−1

45 y52+x−1
46 y61x12 y43+x−1

45 y52x23+x−1
46 y61x13

x−1
56 y61 y52+x−1

56 y61x12 y52x23+x−1
56 y61x13

y61 y61x12 y61x13

)

hence

S =

(
x−1
46 y61 x−1

56 y61 y61

x−1
45 y52+x−1

46 y61x12 y52+x−1
56 y61x12 y61x12

y43+x−1
45 y52x23+x−1

46 y61x13 y52x23+x−1
56 y61x13 y61x13

)

=
(

1 0 0
x12 1 0
x13 x23 1

)( 0 0 y61
0 y52 0
y43 0 0

)( 1 0 0
x−1
45 1 0

x−1
46 x−1

56 1

)
.

For G3
3 ≃ B(8,R) holds:




1 x01 x02 x03 t04 t05 t06 t07
0 1 x12 x13 t14 t15 t16 t17
0 0 1 x23 t24 t25 t26 t27
0 0 0 1 t34 t35 t36 t37
0 0 0 0 1 x−1

45 x−1
46 x−1

47

0 0 0 0 0 1 x−1
56 x−1

57

0 0 0 0 0 0 1 x−1
67

0 0 0 0 0 0 0 1




, y =




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 y43 0 0 0 0
0 0 y52 0 0 0 0 0
0 y61 0 0 0 0 0 0
y70 0 0 0 0 0 0 0


 .
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As before we have

B(x, y) =




1 x−1
45 x−1

46 x−1
47

0 1 x−1
56 x−1

57

0 0 1 x−1
67

0 0 0 1



( 0 0 0 y43

0 0 y52 0
0 y61 0 0
y70 0 0 0

)(
1 x01 x02 x03
0 1 x12 x13
0 0 1 x23
0 0 0 1

)
,

S = (x(m))TyT (x−1
m )T =

(
1 0 0 0

x01 1 0 0
x02 x12 1 0
x03 x13 x23 1

)( 0 0 0 y70
0 0 y61 0
0 y52 0
y43 0 0 0

)


1 0 0 0
x−1
45 1 0 0

x−1
46 x−1

56 1 0

x−1
47 x−1

57 x−1
67 1


 .

2.4. New proof of the irreducibility of the induced representations corre-

sponding to a generic orbits.

Remark 2.15. By Kirillov’s Theorem 2.5 the induced representation Tf,H = IndG
HUf,H

is irreducible if and only if the Lie algebra h of the group H is a subalgebra of g subor-
dinate to the functional f with maximal possible dimension.

The condition of “maximal possible dimension” is difficult to extend for the infinite-
dimensional case. That is why in this section we give another proof of the irreducibility
of the induced representation of a nilpotent group B(n,R) that will be extended in Sec-
tion 3.8 for the infinite-dimensional analog BZ

0 of the group B(n,R).

Let us consider a sequence of a Lie groups Gm
n and its Lie algebras gmn , m ∈ Z, n ∈ N

defined as follows

(2.41) Gm
n = {I +

∑

m−n≤k<n≤m+n+1

xknEkn}, gmn = {
∑

m−n≤k<n≤m+n+1

xknEkn}.

We note that for any m ∈ N holds BZ
0 = lim

−→n
Gm

n . We have the decomposition (see

(2.9))

Gm
n = Bm,nB(m,n)B(m,n),

where

Bm,n = {I +
∑

(k,r)∈∆m,n

xkrEkr}, B(m,n) = {I +
∑

(k,r)∈∆(m,n)

xkrEkr},

B(m,n) = {I +
∑

(k,r)∈∆(m,n)

xkrEkr},

and

∆(m,n) = {(k, r) ∈ Z2 | m− n ≤ k ≤ m < r ≤ m+ n + 1},

∆m,n = {(k, r) ∈ Z2 | m+ 1 ≤ k < r ≤ m+ n+ 1},

∆(m,n) = {(k, r) ∈ Z2 | m− n ≤ k < r ≤ m}.

The corresponding elements of the group Gm
n are as follows




1 xm−n,m−n+1 ... xm−n,m−1 xm−n,m tm−n,m+1 tm−n,m+2 ... tm−n,m+n+1

0 1 ... xm−n+1,m−1 xm−n+1,m tm−n+1,m+1 tm−n+1,m+2 ... tm−n+1,m+n+1
... ...

0 0 ... 1 xm−1,m tm−1,m+1 tm−1,m+2 ... tm−1,m+n+1

0 0 ... 0 1 tm,m+1 tm,m+2 ... tm,m+n+1

0 0 ... 0 0 1 xm+1,m+2 ... xm+1,m+n+1

0 0 ... 0 0 0 1 ... xm+2,m+n+1
... ...

0 0 ... 0 0 0 0 ... xm+n,m+n+1

0 0 ... 0 0 0 0 ... 1




.
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The induced representation of the group Gm
n is defined in the space L2(X, dµ) by the

following formula
(2.42)

(Tm,yn
t f)(x) = S(h(x, t))

(
dµ(xt)

dµ(x)

)1/2

f(xt), f ∈ L2(X, µ), x ∈ X = H\G, t ∈ G

where X = B(m,n)\Gm
n
∼= Bm,n ×B(m,n) (see (2.4)),

(2.43) dµ(xm, x
(m)) = dxm ⊗ dx(m) = ⊗(k,n)∈∆m,n

dxkn ⊗⊗(k,n)∈∆(m,n)dxkn

be the Haar measure on the group Bm,n × B(m,n). Denote by Hm,n = L2(Bm,n ×
B(m,n), dxm ⊗ dx(m)).

Theorem 2.16. The induced representation Tm,yn of the group Gm
n defined by formula

(2.42), corresponding to generic orbit Oyn, generated by the point yn ∈ (gmn )
∗,

yn =
∑n−1

r=0 ym+r+1,m−rEm+r+1,m−r is irreducible. Moreover the generators of one-parameter
groups Akr =

d
dt
Tm,yn
I+tEkr

|t=0 are as follows

Akr =
k−1∑

s=m−n

xksDrs +Dkr, (k, r) ∈ ∆(m,n), Akr =
k−1∑

s=m+1

xksDrs +Dkr, (k, r) ∈ ∆m,n,

(2πi)−1
(
Akr

)
(k,r)∈∆(m,n)

= S(m)
n = (Skr)(k,r)∈∆(m,n) =

(
x−1
m yx(m)

)T
.

The irreducibility of the induced representation of the group Gm
n is based on the

following lemma.

Lemma 2.17. Two von Neumann algebra AS and Ax in the space Hm,n generated
respectively by the sets of unitary operators Ukr(t) and Vkr(t) coincides, where

(2.44) (Ukr(t)f)(x) = exp(2πiSkr(t))f(x), (Vkr(t)f)(x) := exp(2πitxkr)f(x),

AS =
(
Ukr(t) = Tm,yn

I+tEkr
= exp(2πiSkr(t)) | t ∈ R, (k, r) ∈ ∆(m,n)

)′′
,

Ax =
(
Vkr(t) := exp(2πitxkr) | t ∈ R, (k, r) ∈ ∆m,n

⋃
∆(m,n)

)′′
.

Proof. Using the decomposition (see (2.26) and (2.27))

(2.45) S(m)
n = (x−1

m yx(m))T = (x(m))TyT (x−1
m )T

we conclude that AS ⊆ Ax. Indeed, we get Vkr(t) := exp(2πitxkr) ∈ Ax hence the
operators xkr of multiplication by the independent variable f(x) 7→ xkrf(x) in the
space Hm,n are affiliated with the von Neumann algebra Ax i.e. xkr η Ax for (k, r) ∈
∆m,n

⋃
∆(m,n).

Definition 2.18. Recall (c.f. e.g. [3]) that a non necessarily bounded self-adjoint op-
erator A in a Hilbert space H is said to be affiliated with a von Neumann algebra M
of operators in this Hilbert space H, if exp(itA) ∈ M for all t ∈ R. One then writes
A η M .

By (2.31) the matrix elements x−1
kr of the matrix x−1

m ∈ Bm,n are also affiliated
x−1
kr η Ax. Using (2.45) we conclude that the matrix elements Skr, ∈ ∆(m,n) of the

matrix S
(m)
n are affiliated: Skr η Ax, (k, r) ∈ ∆(m,n), so AS ⊆ Ax.

To prove that AS ⊇ Ax we find the expressions of the matrix element of the ma-
trix x(m) ∈ B(m,n) and x−1

m ∈ Bm,n in terms of the matrix elements of the matrix

S
(m)
n = (Skr)(k,r)∈∆(m,n). To do that we connect the above decomposition S

(m)
n =
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(x(m))TyT (x−1
m )T and the Gaussian decomposition C = LDU (see Theorem 4.1). Let us

denote by J the n × n anti-diagonal matrix J =
∑n−1

r=0 Em−r,m+r+1 Using J2 = I and
(2.27) we get

(2.46) SJ = BT (x, y)J = (x(m))TyT (x−1
m )TJ = (x(m))T (yTJ)(J(x−1

m )TJ).

The latter decomposition (2.46) is in fact the Gauss decomposition of the matrix SJ i.e.
we get

SJ = LDU, where L = (x(m))T , D = yTJ, U = J(x−1
m )TJ.

Using the Theorem 4.1 we can find the matrix elements of the matrix x(m) ∈ B(m,n) and

x−1
m ∈ Bm,n in terms of the matrix elements of the matrix S

(m)
n , hence we can also find

the matrix elements of the matrix xm ∈ Bm,n. This finish the proof of the lemma. �

We give below the expressions for SnJ . For m = 3 and n = 1 i.e. for G3
1 we have

(remind that J2 = I )

S2 = ( 1 0
x23 1 )

(
0 y52
y43 0

) ( 1 0
x−1
45 1

)
= ( 1 0

x23 1 )
(
y52 0
0 y43

) (
x−1
45 1
1 0

)
,

S2J = ( 1 0
x23 1 )

(
y52 0
0 y43

) (
1 x−1

45
0 1

)
.

For G3
2 we get

S3 =
(

1 0 0
x12 1 0
x13 x23 1

)( y61 0 0
0 y52 0
0 0 y43

)( x−1
46 x−1

56 1

x−1
45 1 0
1 0 0

)
,

S3J =
(

1 0 0
x12 1 0
x13 x23 1

)( y61 0 0
0 y52 0
0 0 y43

)( 1 x−1
56 x−1

46

0 1 x−1
45

0 0 1

)
.

For G3
3 we have

S4 =

(
1 0 0 0

x01 1 0 0
x02 x12 1 0
x03 x13 x23 1

)( y70 0 0 0
0 y61 0 0
0 0 y52 0
0 0 0 y43

)


x−1
47 x−1

57 x−1
67 1

x−1
46 x−1

56 1 0

x−1
45 1 0 0
1 0 0 0


 ,

(2.47) S4J =

(
1 0 0 0

x01 1 0 0
x02 x12 1 0
x03 x13 x23 1

)( y70 0 0 0
0 y61 0 0
0 0 y52 0
0 0 0 y43

)


1 x−1
67 x−1

57 x−1
47

0 1 x−1
56 x−1

46

0 0 1 x−1
45

0 0 0 1


 .

Proof. of the Theorem 2.16. The irreducibility follows from the Kirillov results (see
Remark 2.15). To give another proof of the irreducibility of the induced representation
consider the restriction Tm,yn |B(m,n) of this representation to the commutative subgroup
B(m,n) of the group Gm

n . Note that

Ax =
(
exp(2πitxkr) | t ∈ R, (k, r) ∈ ∆m,n

⋃
∆(m,n)

)′′
= L∞(Bm,n×B

(m,n), dxm⊗dx
(m)).

By Lemma 2.17 the von Neumann algebra AS generated by this restriction coincides
with L∞(Bm,n×B(m,n), dxm⊗dx(m)). Let now a bounded operator A in a Hilbert space
Hm,n commute with the representation Tm,yn . Then A commute by the above arguments
with L∞(Bm,n × B(m,n), dxm ⊗ dx(m)), therefore the operator A itself is an operator of
multiplication by some essentially bounded function a ∈ L∞ i.e. (Af)(x) = a(x)f(x)
for f ∈ Hm,n. Since A commute with the representation Tm,yn i.e. [A, Tm,yn

t ] = 0 for all
t ∈ Bm,n × B(m,n) we conclude that

a(x) = a(xt) (mod dxm ⊗ dx(m)) for all t ∈ Bm,n ×B(m,n).
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Since the measure dh = dxm ⊗ dx(m) is the Haar measure on G = Bm,n × B(m,n), this
measure is G-right ergodic. We conclude that a(x) = const (mod dxm ⊗ dx(m)). �

3. Induced representations, infinite-dimensional case

3.1. Regular and quasiregular representations of infinite-dimensional groups.

To define the induced representation we explain first how to define the regular represen-
tation of infinite-dimensional group G. Since the initial group in not locally compact
there is neither Haar (invariant) measure on G (Weil, [18]), nor a G-quasi-invariant mea-

sure (Xia Dao-Xing, [19]). We can try to find some bigger topological group G̃ and the

G-quasi-invariant measure µ on G̃ such that G is the dense subgroup in G̃. In this case
we define the right or left regular representation of the group G in the space L2(G̃, µ) if
µRt ∼ µ (resp. µLt ∼ µ) for all t ∈ G as follows:

(3.1) (TR,µ
t f)(x) = (dµ(xt)/dµ(x))1/2f(xt), f ∈ L2(G̃, µ), t ∈ G,

(3.2) (TL,µ
t f)(x) = (dµ(t−1x)/dµ(x))1/2f(t−1x), f ∈ L2(G̃, µ), t ∈ G.

Conjecture 3.1 (Ismagilov, 1985). The right regular representation TR,µ : G→ U(L2(G̃, µ))
is irreducible if and only if

1) µLt ⊥ µ ∀t ∈ G\{e},
2) the measure µ is G-ergodic.

Analogously we can define the quasiregular representation. Namely, if H is a closed

subgroup of the group G, then on the space X = H̃\G = H̃\G̃ the right action of

the group G is well defined, where G̃ (resp. H̃) is some completion of the group G
(resp. H). If we have some G-right-quasi-invariant measure µ on X one may define
the “quasiregular representation” of the group G in the space L2(X, µ) as in a locally
compact case:

(πR,µ,X
t f)(x) = (dµ(xt)/dµ(x))1/2f(xt), t ∈ G.

The regular and quasiregular representations for general infinite-dimensional groups
were introduced and investigated in e.g. [1, 9, 10, 11, 13].

3.2. Induced representations for infinite-dimensional groups. The induced rep-
resentation IndG

HS of a locally-compact group is the unitary representation of the group
G associated with a unitary representation S of a subgroup H of the group G (see
Section 2).

As it was mentioned in section 2.2 (see [4, 7]) all unitary irreducible representations

up to equivalence Ĝn of the nilpotent group Gn = B(n,R), are obtained as induced
representations IndGn

H Uf,H associated with a points f ∈ g∗n and the corresponding subor-

dinate subgroup H ⊂ Gn. The induced representation IndGn

H Uf,H is defined canonically
in the Hilbert space L2(H\Gn, µ).

A. Kirillov [7], Chapter I, §4, p.10 says: ”The method of induced representations is not
directly applicable to infinite-dimensional groups (or more precisely to a pair G ⊃ H)
with an infinite-dimensional factor H\G)”.

Our aim is to develop the concept of induced representations for infinite-dimensional
groups. Let we have the infinite-dimensional group G and a unitary representation
S : H → U(V ) in a Hilbert space V of a subgroup H of the group G such that the
factor space H\G is infinite-dimensional.
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In general, it is difficult to constructG-quasi-invariant measure on an infinite-dimensional
homogeneous space H\G. As is the case of the regular and quasiregular representations
of infinite-dimensional groups G (see Subsection 3.1) it is reasonable to construct some

G-quasi-invariant measure on a suitable completion H̃\G = H̃\G̃ of the initial space

H\G in a certain topology, where H̃ (resp. G̃) is some completion of the group H (resp.
G). To go further we should be able to extend the representation S : H → U(V ) of the
group H to the representation S̃ : H̃ → U(V ) of the completion H̃ of the group H .

Finally, the induced representation of the group G associated with a unitary represen-
tation S of a subgroupH will depend on two completions H̃ and G̃ of the subgroupH and
the group G, on an extension S̃ : H̃ → U(V ) of the representation S : H → U(V ) and
on a choice of the G-quasi-invariant measure µ on an appropriate completion X̃ = H̃\G̃
of the space H\G.

Hence the procedure of induction will not be unique but nevertheless well-defined (if

a G-quasi-invariant measure on H̃\G exists). So the uniquely defined induced repre-
sentation IndG

HS in the Hilbert space L2(H\G, V, µ) (in the case of a locally-compact

group G) should be replaced by the family of induced representations IndG̃,G,µ

H̃,H
(S̃, S) in

the Hilbert spaces L2(H̃\G̃, V, µ) depending on different completions G̃ of the group G,

completions H̃ of the group H and different G-quasi-invariant measures µ on H̃\G̃.

Example 3.2 ([9, 11]). Regular representations TR,µ of the infinite-dimensional group
G in the space L2(G̃, µ), associated with the completion G̃ of the group G and a G-right

-quasi-invariant measure µ on G̃, is a particular case of the induced representation (see
Remark 2.3)

TR,µ = IndG̃,G,µ
e (Id),

generated by the trivial representation S = Id of the trivial subgroup H = {e} (as in the
case of a locally compact groups).

Example 3.3 ([1, 13]). Quasi-regular representations πR,µ,X of the infinite-dimensional

group G in the space L2(X, µ) where X = H̃\G̃ and H is some subgroup of the group G
is a particular case of the induced representation (see Remark 2.3)

πR,µ,X = IndG̃,G,µ

H̃,H
(Id)

generated by the trivial representation S = Id of the completion H̃ in the group G̃ of
the subgroup H in the group G.

Let G be an infinite-dimensional group and S : H → U(V ) be a unitary representation
in a Hilbert space V of the subgroup H ⊂ G, such that the space H\G is infinite-
dimensional. We give the following definition.

Definition 3.4. The induced representation

IndG̃,G,µ

H̃,H
(S̃, S),

generated by the unitary representations S : H → U(V ) of the subgroup H in the group
G is defined (similarly to (3.2) and (3.3)) as follows:

1) we should first find some completion H̃ of the group H such that

S̃ : H̃ → U(V )

is the continuous unitary representation of the group H̃, such that S̃|H = S,
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2) take any G-right-quasi-invariant measure µ on the an appropriate completion X̃ =
H̃\G̃ of the space X = H\G, on which the group G acts from the right, where H̃ (resp.

G̃) is a suitable completion of the group H (resp. G),
3) in the space L2(X̃, V, µ) of all vector-valued functions f on X̃ with values in V

such that

‖f‖2 :=

∫

X̃

‖f(x)‖2V dµ(x) <∞,

define the representation of the group G by the following formula

(3.3) (Ttf)(x) = S(h̃(x, t))

(
dµ(xt)

dµ(x)

)1/2

f(xt), x ∈ X̃, t ∈ G,

where h̃ is defined by

s̃(x)t = h̃(x, t)s̃(xt).

The section s : H → G of the projection p : G→ H should be extended to the appropriate
section s̃ : H̃ → G̃ of the extended projection p̃ : G̃→ H̃.

The comparison of the induced representation for locally compact group and the above
definition for infinite-dimensional groups may be given in the following table:

1 G G loc.comp. dimG =∞
2 H H ⊂ G H ⊂ G

3 S S : H → U(V ) S : H → U(V ) ⇒ S̃ : H̃ →
U(V )

4 X X = H\G X̃ = H̃\G = H̃\G̃

5 H L2(X = H\G, V, µ) L2(X̃ = H̃\G̃, V, µ)

6 Ind IndG
HS IndG̃,G,µ

H̃,H
(S̃, S)

7 Tt (Ttf)(x) =

S(h(x, t))(dµ(xt)
dµ(x)

)1/2f(xt)

(Ttf)(x) =

S̃(h̃(x, t))(dµ(xt)
dµ(x)

)1/2f(xt)

8 p p : G→ X p̃ : G̃→ X̃

9 s s : X → G s : H\G→ G⇒ s̃ : H̃\G→
G̃

10 h(x, t) s(x)t = h(x, t)s(xt) s̃(x)t = h̃(x, t)s̃(xt)

3.3. How to develop the orbit method for infinite-dimensional “nilpotent”

group BN
0 and BZ

0 ? We would like to develop the orbit method for infinite-dimensional
“nilpotent” group G = lim−→n

Gn with Gn = B(n,R). The corresponding Lie algebra g

is the inductive limit g = lim−→n
bn of upper triangular matrices, so as the linear space

it is isomorphic to the space R∞
0 of finite sequences (xk)k∈N hence the dual space g∗ is

isomorphic to the space R∞ of all sequences (xk)k∈N, but the latter space R∞ is too large
to manage with it, for example to equip with a Hilbert structure or to describe all orbits.
To make it less it is reasonable to increase the initial group G or to make completion G̃
of this group in some stronger topology.

To develop the orbit method for groups BN
0 and BZ

0 we should answer some questions:
(1) How to define the appropriate completion G̃ of the group G, corresponding Lie

algebras g (resp. g̃) and corresponding dual spaces g∗ (resp.g̃∗)?
(2) Which pairing should we use between g and g∗?
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(3) Let the dual space g∗, some element f ∈ g∗ and corresponding algebra h, subor-
dinate to the element f , are chosen. How to define the corresponding induced represen-
tation IndG

HUf,H and study its irreducibility ?
(4) Shall we get all irreducible representations of the corresponding groups, using

induced representations?
(5) Find the criteria of irreducibility and equivalence of induced representations.
The problem of completion of the inductive limit group G = lim−→n

Gn, where Gn

are finite-dimensional classical groups were studied by A. Kirillov ([5], 1972) for the
group U(∞) = lim−→n

U(n) and G. Olshanskĭı([16], 1990) for inductive limit of classical
groups. They described all unitary irreducible representations of the corresponding
groups G = lim−→n

Gn, continuous in stronger topology, namely in the strong operator

topology. The description of the dual Ĝ of the initial group G = lim−→n
Gn is much more

complicated.
In [8] (see details in section 3.4) we have constructed for the group GL0(2∞,R)

= lim−→n
GL(2n− 1,R) a family of the Hilbert-Lie groups GL2(a), a ∈ A such that

a) GL0(2∞,R) ⊂ GL2(a) and GL0(2∞,R) is dense in GL2(a) for all a ∈ A,
b) GL0(2∞,R) = ∩a∈AGL2(a),
c) any continuous representation of the group GL0(2∞,R) is in fact continuous in some
stronger topology, namely in a topology of a suitable Hilbert -Lie group GL2(a).

(1) Therefore, as we show in Sections 3.5, 3.4 it is sufficient to consider a Hilbert-Lie
completions B2(a) of the initial group BZ

0 .
(2) In this case the pairing between the corresponding Hilbert-Lie algebra b2(a) and

its dual b2(a)
∗ is correctly defined by the trace (as in the finite-dimensional case).

(3.1) We define in Section 3.7 the induced representations of the group BZ
0 correspond-

ing to a special orbits, generic orbits, using schema given in Section 3.2. We consider
only the simplest example of G−quasi-invariant measures on X̃ = H̃ \ G̃, namely the
infinite product of one-dimensional Gaussian measures.

(3.2) How to construct the induced representation corresponding to an arbitrary orbit?

Conjecture 3.5. Two induced representations IndG̃,µ1

H1
Uf1,H1 and Ind

G̃,µ2

H2
Uf2,H2 are equiv-

alent if and only if the corresponding measures µ1 and µ2 are equivalent and the func-
tionals f1 and f2 belong to the same orbit of (g̃)∗.

3.4. Hilbert-Lie groups GL2(a). We show that the Hilbert-Lie groups appear natu-
rally in the representation theory of infinite-dimensional matrix group. The remarkable
fact is that for the inductive limit G = lim

−→n
Gn of matrix groups Gn ⊂ GL(2n − 1,R)

it is sufficient to consider only the Hilbert completions of the initial group G and of the
spaces H\G.

Let us consider the group GL0(2∞,R) = lim
−→n

GL(2n − 1,R) with respect to the
symmetric embedding isn : Gn 7→ Gn+1, Gn ∋ x 7→ x + E−n,−n + Enn ∈ Gn+1, where
Gn = GL(2n− 1,R). We consider here only the real matrices.

The Hilbert-Lie group GL2(a) we define (see [8]) by its Hilbert-Lie algebra gl2(a) with
composition [x, y] = xy − yx

gl2(a) = {x =
∑

k,n∈Z

xknEkn | ‖x‖
2
gl2(a)

=
∑

k,n∈Z

| xkn |
2 akn <∞}, a ∈ AGL,

GL2(a) = {I + x | (I + x)−1 = 1 + y x, y ∈ gl2(a)}.
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To be more precise, let us consider an analogue σ2(a) of the algebra of the Hilbert-
Schmidt operators σ2(H) in a Hilbert space H :

σ2(a) = {x =
∑

k,n∈Z

xknEkn | ‖x‖
2
σ2(a)

=
∑

k,n∈Z

| xkn |
2 akn <∞}.

Lemma 3.6 ([8]). The Hilbert space σ2(a) is an (associative) Hilbert algebra (i.e.
‖xy‖ ≤ C‖x‖‖y‖, x, y ∈ σ2(a)) if and only if the weight a = (akn)(k,n)∈Z2 belongs to
the set AGL defined as follows:

(3.4) AGL = {a = (akn)(k,n)∈Z2 | 0 < akn ≤ Cakmamn, k, n,m ∈ Z, C > 0}.

We define the Hilbert-Lie algebra gl2(a) as the Hilbert space σ2(a) with an operation
[x, y] = xy − yx.

Corollary 3.7. The Hilbert space gl2(a) is a Hilbert-Lie algebra if and only if the weight
a = (akn)(k,n)∈Z2 belongs to the set AGL.

We remark also [8] that GL0(2∞,R) = ∩a∈AGL
GL2(a).

Theorem 3.8 (Theorem 6.1 [8]). Every continuous unitary representation U of the
group GL0(2∞,R) in a Hilbert space H can be extended by continuity to a unitary
representation U2(a) : GL2(a)→ U(H) of some Hilbert-Lie group GL2(a) depending on
the representation.

3.5. Hilbert-Lie groups B2(a). Let us consider the following Hilbert-Lie groupB2(a) :=
BZ

2 (a)

(3.5) B2(a) = {I + x | x ∈ b2(a)},

where the corresponding Hilbert-Lie algebra b2(a) := bZ2 (a) is defined as

(3.6) b2(a) = {x =
∑

(k,n)∈Z2,k<n

xknEkn | ‖x‖
2
b2(a)

=
∑

(k,n)∈Z2,k<n

| xkn |
2 akn <∞}.

Lemma 3.9 ([8]). The Hilbert space b2(a) (with an operation (x, y) 7→ xy) is a Banach
algebra if and only if the weight a = (akn)(k,n)∈Z2,k<n satisfies the conditions

(3.7) a = (akn)k<n, akn ≤ Cakmamn, k < m < n, k,m, n ∈ Z.

Denote by A the set of all weight a satisfying the mentioned condition.

3.6. Orbit method for infinite-dimensional “nilpotent” group BZ
0 , first steps.

Take the group BZ
0 , fix some its Hilbert completion i.e. a Hilbert-Lie group B2(a), a ∈ A

and the corresponding Hilbert-Lie algebra g = b2(a). The corresponding dual space
g∗ = b∗2(a) has the form

(3.8) b∗2(a) = {y =
∑

(k,n)∈Z2,k>n

yknEkn | ‖y‖
2
b∗2(a)

=
∑

(k,n)∈Z2,k>n

| ykn |
2 a−1

kn <∞}.

The adjoint action B2(a)→ Aut(b2(a)) of the group B2(a) on its Lie algebra b2(a) is:

(3.9) b2(a) ∋ x 7→ Adt(x) := txt−1 ∈ b2(a), t ∈ B2(a).

The pairing between g = b2(a) and g∗ = b∗2(a) is correctly defined by the trace:

(3.10) g∗ × g ∋ (y, x) 7→ 〈y, x〉 := tr(xy) =
∑

(k,n)∈Z2,k<n

xknynk ∈ R.
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The coadjoint action of the group B2(a) on the dual g∗ = b∗2(a) to g = b2(a) is as follows:
for t ∈ B2(x) and y ∈ b∗2(a)

t = I+
∑

(k,n)∈Z2,k<n

tknEkn, y =
∑

(k,n)∈Z2,k>n

yknEkn, t−1 := I+
∑

(k,n)∈Z2,k<n

t−1
knEkn

we have

(t−1yt)pq =

q∑

m=−∞

(t−1y)pmtmq =

q∑

m=−∞

∞∑

r=p

t−1
pr yrmtmq, (p, q) ∈ Z2, p > q,

hence

(3.11) Ad∗
x(y) = (t−1yt)− := I +

∑

(p,q)∈Z2,p>q

(t−1yt)pqEpq.

We consider four different type of orbits with respect to the coadjoint action of the
group B2(a) in the dual space b∗2(a).

Case 1) The finite-dimensional orbits corresponding to a finite points y =∑
(k,n)∈Z,k>n yknEkn ∈ b∗2(a) (finiteness of y means that only finite number of ykn are

nonzero). This orbits leads to the induced representations of an appropriate finite-
dimensional groups Gm

n , m ∈ Z, n ∈ N defined by (2.41). All irreducible unitary
representations of the groups Gm

n are completely described by the Kirillov orbit method

hence the finite-dimensional orbits gives us the set
⋃

n∈N Ĝ
m
n ⊂ B̂Z

0 (see subsection 3.9,

Remark 3.17 for embedding Ĝm
n ⊂ Ĝm

n+1).
Case 2) 0-dimensional orbits are of the form:

O0 = y, y ∈ b∗2(a), y =
∑

k∈Z

yk+1,kEk+1,k.

The Lie algebra b2(a) is subordinate to the functional y, 〈y, [b2(a), b2(a)]〉 = 0 since

[b2(a), b2(a)] = {x ∈ b2(a) | x =
∑

(k,n)∈Z2,k+1<n

xknEkn}.

The one-dimensional representation of the Lie algebra b2(a) are

b2(a) ∋ x 7→ 〈y, x〉 =
∑

k∈Z

xk,k+1yk+1,k ∈ R.

Corresponding one-dimensional representations of the group B2(a) are as follows:

(3.12) B2(a) ∋ exp(x) 7→ exp(2πi(〈y, x〉)) = exp(2πi
∑

k∈Z

xk,k+1yk+1,k) ∈ S1.

They are all irreducible and nonequivalent for different y =
∑

k∈Z yk+1,kEk+1,k ∈ b∗2(a).
Case 3) Generic orbit is generated for an arbitrary m ∈ Z by a point y ∈ b∗2(a)

(3.13) y=

∞∑

p=0

ym+p+1,m−pEm+p+1,m−p ∈ b∗2(a), with ym+p+1,m−p 6= 0, p+ 1 ∈ N.

Sections 3.7 and 3.8 are devoted to the study of this case.
Case 4) General orbits generated by an arbitrary non finite points

y =
∑

(k,n)∈Z,k>n

yknEkn ∈ b∗2(a).



INDUCED REPRESENTATIONS OF INFINITE-DIMENSIONAL GROUPS 21

Problem. How to construct the induced representations for general orbits and study
their irreducibility?

3.7. Construction of the induced representations of the group BZ
0 correspond-

ing to a generic orbits. Consider more carefully the case 3). The irreducibility we
shall study in the following subsection. Take as before the group BZ

0 , fix some its Hilbert
completion i.e. a Hilbert-Lie group B2(a), a ∈ A, the corresponding Hilbert-Lie algebra
g = b2(a) and its dual g∗ = b∗2(a) as in the previous subsection.

We shall write the analog of the induced representation of the group BZ
0 for generic

orbits (see Examples 2.7, 2.8 and 2.14) corresponding to the point y ∈ b∗2(a) defined by
(3.13) following steps 1)–3) of Definition 3.4.

Step 1) Extension of the representation S : H → U(V ). For fixed m ∈ Z, consider
the decomposition

BZ = BmB(m)B(m)

similar to the decomposition (2.19), where BZ = {I +
∑

k,n∈Z, k<n xknEkn},

Bm = {I+
∑

(k,r)∈∆m

xkrEkr}, B(m) = {I+
∑

(k,r)∈∆(m)

xkrEkr}, B(m) = {I+
∑

(k,r)∈∆(m)

xkrEkr},

∆m = {(k, r) ∈ Z2 | m+ 1 ≤ k < r}, ∆(m) = {(k, r) ∈ Z2 | k ≤ m < r},

and ∆(m) = {(k, r) ∈ Z2 | k < r ≤ m}.
Since the algebras h0(m), m ∈ Z defined as follows h0(m) = {t − I | t ∈ B0(m)},
where B0(m) = B(m) ∩ BZ

0 , are commutative, so 〈y, [h0(m), h0(m)]〉 = 0, hence they
are subordinate to the functional y ∈ g∗ = b∗2(a). The corresponding one-dimensional
representation of the algebra h0(m) = h(m)

⋂
gZ0 is

h0(m) ∋ x 7→ 〈y, x〉 =
∞∑

p=0

xm−p,m+p+1ym+p+1,m−p ∈ R.

The unitary representation of the corresponding group H0(m) is

H0(m) ∋ exp(x) 7→ S(exp(x)) = exp(2πi〈y, x〉) ∈ S1.

This representation can be extended to representation of the corresponding Hilbert-Lie
group H̃ = H2(m, a) = B(m)

⋂
B2(a) (we note that t = exp(t− 1)):

H2(m, a) ∋ exp(x) 7→ S(exp(x)) = exp(2πi〈y, x〉) ∈ S1.

In what follows we shall use a notation B2(m, a) for the group H2(m, a).
Step 2 a) Construction of the completion X̃ = H̃\G̃ of the space X = H\G. It is

difficult to construct an appropriate measure on the space Xm,0 = B0(m)\BZ
0 since it is

isomorphic to the space R∞
0 ⊂ R∞

0 . That is why we consider two homogeneous spaces,
an appropriate completions of the space Xm,0:

Xm,2(a) = Bm,2(a)\B2(a), Xm = B(m)\BZ.

Since the decompositions holds

BZ
0 = Bm,0B0(m)B

(m)
0 , B2(a) = Bm,2(a)B2(m, a)B

(m)
2 (a), BZ = BmB(m)B(m),

(see Remark 2.9), we have the following inclusions: Xm,0 ⊂ Xm,2(a) ⊂ Xm, where

Xm,0 ≃ Bm,0 ×B
(m)
0 , Xm,2(a) ≃ Bm,2(a)× B

(m)
2 (a), Xm = B(m)\BZ ≃ Bm × B(m).

Step 2 b) We construct a measure µb on the space Xm with support Xm,2(a) i.e. such

that µb(Xm,2(a)) = 1. That is we take X̃ = H̃\G̃ = B2(m, a)\B2(a).
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Remark 3.10. On the space Xm we can take any BZ
0 -quasi-invariant ergodic measure,

construct the induced representation and study the irreducibility. We consider the sim-
plest case of the Gaussian measure, the infinite product of one-dimensional Gaussian
measure.

We construct the measure µb on the space Xm ≃ Bm × B(m) as a product-measure

µb = µb,m ⊗ µ
(m)
b , where µb,m (resp. ⊗µ

(m)
b ) is Gaussian product measure on the group

Bm (resp. B(m)) defined as follows:

dµb,m(xm)=⊗(k,n)∈∆m
dµbkn(xkn)=⊗(k,n)∈∆m

√
bkn
π

exp(−bknx
2
kn)dxkn,(3.14)

dµ
(m)
b (x(m))=⊗(k,n)∈∆(m)dµbkn(xkn)=⊗(k,n)∈∆(m)

√
bkn
π

exp(−bknx
2
kn)dxkn.(3.15)

The corresponding Hilbert space is

Hm = L2(Xm, µb) = L2(Bm × B(m), µb,m ⊗ µ
(m)
b ).

Lemma 3.11 (Kolmogorov’s zero-one law, [17]). We have µb,m⊗µ
(m)
b (Bm,2(a)×B

(m)
2 (a)) =

1 if and only if ∑

(k,n)∈∆(m)∪∆(m)

akn
bkn

<∞.

Lemma 3.12 ([9, 10]). The measure µb = µb,m ⊗ µ
(m)
b is Bm,0 × B

(m)
0 -right-quasi-

invariant i.e. (µb)
Rt ∼ µb for all t ∈ Bm,0 × B

(m)
0 if and only if

SR
kn(µb) =

k−1∑

r=−∞

brn
brk

<∞, for all, k < n ≤ m.

Step 3) The corresponding induced representation of the group BZ
0 we defined as

follows:

(3.16) (Tm,y
t f)(x) = S(h(x, t))

(
dµb(xt)

dµb(x)

)1/2

f(xt), x ∈ Xm, t ∈ G,

where (see (3.21))

S(h(x, t)) = exp(2πi〈y, h(x, t)− 1〉) = exp
(
2πitr ((t− I)B(x, y))

)
.

3.8. Irreducibility of the induced representations of the group BZ
0 correspond-

ing to a generic orbits. Consider the induced representation Tm,y of the group BZ
0

corresponding to a generic orbit Oy, generated by the point
y =

∑∞

r=0 ym+r+1,m−rEm+r+1,m−r ∈ b∗2(a) defined by (3.16). Set for (k, r) ∈ ∆(m)
(3.17)

Skr(tkr) := 〈y, (h(x, Ekr(tkr))− I)〉, then Akr =
d

dt
exp(2πiSkr(t))|t=0 = 2πiSkr(1).

Let us denote by S(m) = S the following matrix (compare with (2.23) and (2.24)):

(3.18) S = (Skr)(k,r)∈∆(m), where Skr = Skr(1).

We calculate now the matrix S(t) = (Skr(tkr))(k,r)∈∆(m) and the matrix S =
(Skr(1))(k,r)∈∆(m) using analog of the Lemma 2.11. As in (2.22) we have

〈y, h(x, t)− I〉 = tr (H(x, t)y) = tr
(
x(m)t0x

−1
m y
)
= tr

(
t0x

−1
m yx(m)

)
= tr (t0B(x, y)) ,
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where t0 = t− I and for xm ∈ Bm, x(m) ∈ B(m) we denote

(3.19) B(x, y) = x−1
m yx(m) ∼=

(
1 0
0 x−1

m

) (
0 0
y 0

) (
x(m) 0
0 1

)
=
( 0 0
x−1
m yx(m) 0

)
.

By definition we have (recall that Ekn(tkn) = I + tknEkn)

Skn(tkn) = 〈y, (h(x, Ekn(tkn))− I)〉 = tr(tknEknB(x, y)),

hence by analog of the Lemma 2.11 we conclude that
(3.20)

S = (Skn(1))k,r = (tr (EkrB(x, y)))k,r = BT (x, y) = (x(m))TyT (x−1
m )T =

(
0 (x(m))T yT (x−1

m )T

0 0

)
.

So, we have

(3.21) S(h(x, t)) = exp(2πi〈y, (h(x, t)− I)〉) = exp
(
2πitr ((t− I)B(x, y))

)
.

Using results of [12] we conclude that the following lemma holds.

Lemma 3.13. The measure µb = µb,m ⊗ µ
(m)
b is Bm,0 × B

(m)
0 -right-ergodic if

E(µb) =
∑

k<n≤m

SR
kn(µb)

bkn
<∞.

Theorem 3.14. The induced representation Tm,y of the group BZ
0 defined by formula

(3.16), corresponding to generic orbit Oy, generated by the point

y =
∑∞

r=0 ym+r+1,m−rEm+r+1,m−r ∈ b∗2(a) is irreducible if the measure µb,m⊗µ
(m)
b on the

group Bm×B
(m) is right Bm,0×B

(m)
0 -ergodic. Moreover the generators of one-parameter

groups Akr =
d
dt
Tm,y
I+tEkr

|t=0 are as follows

Akr =

k−1∑

s=−∞

xksDrs +Dkr, (k, r) ∈ ∆(m), Akr =

k−1∑

s=m+1

xksDrs +Dkr, (k, r) ∈ ∆m,

(2πi)−1
(
Akr

)
(k,r)∈∆(m)

= S(m) = (Skr)(k,r)∈∆(m) =
(
x−1
m yx(m)

)T
.

Here we denote by Dkn = Dkn(µb) the operator of the partial derivative corresponding
to the shift x 7→ x+tEkn and the measure µb on the group Bm×B

(m) ∋ x = I+
∑

xkrEkr:
(3.22)

(Dkn(µb)f)(x) =
d

dt

(
dµb(x+ tEkn)

dµb(x)

)1/2

f(x+ tEkn) |t=0, Dkn(µb) =
∂

∂xkn
− bknxkn.

The irreducibility of the induced representation of the group BZ
0 follows from the follow-

ing lemma.

Lemma 3.15. Two von Neumann algebra AS and Ax in the space Hm = L2(Xm, µb)
generated respectively by the sets of unitary operators Ukr(t) and Vkr(t) coincides, where

(3.23) (Ukr(t)f)(x) = exp(2πiSkr(t))f(x), (Vkr(t)f)(x) := exp(2πitxkr)f(x),

AS =
(
Ukr(t) = Tm,y

I+tEkr
= exp(2πiSkr(t)) | t ∈ R, (k, r) ∈ ∆(m)

)′′
,

Ax =
(
Vkr(t) = exp(2πitxkr) | t ∈ R, (k, r) ∈ ∆m

⋃
∆(m)

)′′
.
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Proof. Using the decomposition (3.20)

S(m) = B(x, y)T = (x−1
m yx(m))T = (x(m))TyT (x−1

m )T

we conclude that AS ⊆ Ax (see the proof of Lemma 2.17).
To prove that AS ⊇ Ax it is sufficient to find the expressions of the matrix element

of the matrix x(m) ∈ B(m) and x−1
m ∈ Bm in terms of the matrix elements of the

matrix S(m) = (Skr)(k,r)∈∆(m). To do this we connect the above decomposition S(m) =
B(x, y)T (see (3.19)) and the Gauss decomposition C = LDU for infinite matrices (see
Theorem 4.2). By (3.19) we get B(x, y) = x−1

m yx(m).
To find a matrix connected with the matrix S(m), for which an appropriate decompo-

sition LDU holds we recall the expressions for B(x, y) for small n and finite-dimensional
groups Gm

n (see Example (2.14)). We note that J2
m = I, where

Jm ∈ Mat(∞,R), Jm =
∑

r∈Z

Em+r+1,m−r.

For G3
3 we get

B(x, y) = x−1
m yx(m) =




1 x−1
45 x−1

46 x−1
47

0 1 x−1
56 x−1

57

0 0 1 x−1
67

0 0 0 1



( 0 0 0 y43

0 0 y52 0
0 y61 0 0
y70 0 0 0

)(
1 x01 x02 x03
0 1 x12 x13
0 0 1 x23
0 0 0 1

)
,

(3.24) B(x, y)J =




1 x−1
45 x−1

46 x−1
47

0 1 x−1
56 x−1

57

0 0 1 x−1
67

0 0 0 1



( y43 0 0 0

0 y52 0 0
0 0 y61 0
0 0 0 y70

)(
1 0 0 0

x23 1 0 0
x13 x12 1 0
x03 x02 x01 1

)
.

We use the infinite-dimensional analog of the latter presentation, i.e. instead of the
group Gn = B(n,R) consider the infinite-dimensional group BZ

0 and do the same. Let

xm ∈ Bm, x(m) ∈ B(m), y =
∞∑

r=0

ym+r+1,m−rEm+r+1,m−r ∈ g∗2(a)

and J = Jm =
∑

r∈Z Em+r+1,m−r. Then we get ST = B(x, y) = x−1
m yx(m).

Set C = C(x, y) = B(x, y)J then C = UDL, more precisely we have:
(3.25)

B(x, y)J = x−1
m yJmJmx

(m)Jm = UDL, where U = x−1
m , D = yJm, L = Jmx

(m)Jm,

(3.26) C = B(x, y)J =




1 x−1
45 x−1

46 x−1
47 ...

0 1 x−1
56 x−1

57 ...

0 0 1 x−1
67 ...

0 0 0 1 ...
...



(

y43 0 0 0 ...
0 y52 0 0 ...
0 0 y61 0 ...
0 0 0 y70 ...

...

)(
1 0 0 0 ...

x23 1 0 0 ...
x13 x12 1 0 ...
x03 x02 x01 1 ...

...

)
,

C =

( c11 c12 ... c1n ...
c21 c22 ... c2n ...

... ...
cn1 cn2 ... cnn ...

... ...

)
=

(
1 u12 ... u1n ...
0 1 ... u2n ...

... ...
0 0 ... 1 ...

... ...

)(
d1 0 ... 0 ...
0 d2 ... 0 ...

... ...
0 0 ... dn ...

... ...

)(
1 0 ... 0
l21 1 ... 0 ...

... ...
ln1 ln2 ... 1 ...

... ...

)
.

To finish the proof of the Lemma it is sufficient to find the decomposition (3.26)
C = UDL .

Let us suppose that we can find the inverse matrix C−1. Then by (3.25) holds C−1 =
L−1D−1U−1 and we can use Theorem 4.2 to find

L−1 = Jm(x
(m))−1Jm, D−1 = y−1Jm, U−1 = xm.

Hence, we can find the matrix elements of the matrix (x(m))−1 ∈ B(m) and xm ∈ Bm in
terms of the matrix elements of the matrix C−1 = (STJ)−1 = (B(x, y)J)−1. Finally, we
can also find the matrix elements of the matrix x(m) ∈ B(m) using formulas (2.31). This
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finish the proof of the lemma since in this case we have xkr η AS for (k, r) ∈ ∆m

⋃
∆(m).

Hence AS ⊆ Ax.
1) To find the inverse matrix C−1 we write two decompositions:

(3.27) C = L1D1U1 = UDL, C−1 = (U1)
−1(D1)

−1(L1)
−1 = L−1D−1U−1.

2) Using (3.27) we can find L1, D1 and U1 by Theorem 4.2. More precisely, for all
x ∈ ΓG, where

ΓC = {x ∈ Bm ×B(m) |M12...k
12...k (C(x)) 6= 0, k ∈ N}

holds the decomposition C(x) = L1D1U1 and the matrix elements of the matrix L1, D1

and U1 are rational functions in ckn(x).
3) We can find (L1)

−1 and (U1)
−1 using formulas (2.31). Note that JmLJm, U, and

JmL
−1Jm, U

−1 ∈ B2(a).
4) Using identity (3.27) we can calculate C−1 = (U1)

−1(D1)
−1(L1)

−1, since L−1, D−1

and U−1 are well defined.
5) Using equality (3.27) we can find the decomposition C−1 = L−1D−1U−1 of the matrix
C−1 by Theorem 4.2. In other words, the decompositions holds C−1 = L−1D−1U−1 for
all x ∈ ΓG−1 , where

ΓC−1 = {x ∈ Bm × B(m) |M12...k
12...k (C

−1(x)) 6= 0, k ∈ N}

and the matrix elements of the matrix L−1, D−1 and U−1 are rational functions in
matrix elements c−1

kn (x) of the matrix C−1.
We make the last remark. Let us denote (L1)

−1 = (L−1
1;kn)kn, (D1)

−1 = diag(d−1
1;k)k

and (U1)
−1 = (U−1

1;kn)kn. The decompositions C = L1D1U1 and C−1 = (U1)
−1(D1)

−1×

(L1)
−1 hold for x ∈ ΓC ∩ ΓC−1 , i.e. almost for all x ∈ Bm × B(m) with respect to the

measure µb since µb(ΓC ∩ ΓC−1) = 1. We conclude that the convergence

c−1
kn (x) =

∑

m∈N

U−1
1;kmd

−1
1;mL

−1
1;mn, k, n ∈ N

holds pointwise almost everywhere x ∈ Bm × B(m) (mod µb). Since U−1
1;km, d−1

1;m and

L−1
1;mn ηA

S by 2) and 3), we conclude by Lemma 5.1 that c−1
kn (x) ηA

S. This finish the
proof of the lemma. �

Proof. of the Theorem 3.14. To prove the irreducibility of the induced representation
consider the restriction Tm,y |B0(m) of this representation to the commutative subgroup
B0(m) of the group BZ

0 . Note that

Ax =
(
exp(2πitxkr) | t ∈ R, (k, r) ∈ ∆m

⋃
∆(m)

)′′
= L∞(Bm ×B(m), µb,m ⊗ µ

(m)
b ).

By Lemma 3.15 the von Neumann algebra AS generated by this restriction coincides with

Ax = L∞(Bm ×B(m), µb,m ⊗ µ
(m)
b ). Let now a bounded operator A in the Hilbert space

Hm commute with the representation Tm,y. Then A commute by the above arguments

with L∞(Bm × B(m), µb,m ⊗ µ
(m)
b ), therefore the operator A itself is an operator of

multiplication by some essentially bounded function a ∈ L∞ i.e. (Af)(x) = a(x)f(x)
for f ∈ Hm. Since A commute with the representation Tm,y i.e. [A, Tm,y

t ] = 0 for all

t ∈ Bm,0 × B
(m)
0 , where Bm,0 = Bm ∩ BZ

0 and B
(m)
0 = B(m) ∩ BZ

0 , we conclude that

a(x) = a(xt) (mod µb,m ⊗ µ
(m)
b ) for all t ∈ Bm,0 × B

(m)
0 .

Since the measure µb,m ⊗ µ
(m)
b on the group Bm ×B(m) is right Bm,0 ×B

(m)
0 -ergodic we

conclude that a(x) = const (mod dxm ⊗ dx(m)). �
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Remark 3.16. We would like to show that Tm,y = limn T
m,yn. To be more precise

consider the projection BZ
0 7→ Gm

n of the group BZ
0 on the subgroup Gm

n and all other
projections: homogeneous spaces, measures, Hilbert spaces and representations:

Xm = Bm ×B(m) 7→ Xm,n = Bm,n × B(m,n), µb,m ⊗ µ
(m)
b 7→ µb,m,n ⊗ µ

(m,n)
b

Hm = L2(Bm ×B(m), µb,m ⊗ µ
(m)
b ) 7→ L2(Bm,n ×B(m,n), µb,m,n ⊗ µ

(m,n)
b )

∼= L2(Bm,n × B(m,n), dxm,n ⊗ dx(m,n)) = Hm,n

Tm,y 7→ Tm,yn, n ∈ N.

Since the measure µb,m,n⊗µ
(m,n)
b is equivalent with the Haar measure (compare (2.43)

and (3.14)) we conclude that the corresponding representations T µ,m,yn in the spaces

L2(Bm,n×B
(m,n), µb,m,n⊗µ

(m,n)
b ) and Tm,yn in the space L2(Bm,n×B

(m,n), dxm,n⊗dx
(m,n))

are equivalent. This implies Tm,y = limn T
m,yn .

3.9. Dual description of the groups BN
0 and BZ

0 . First steps. Let Ĝ be the dual

of the group G. Our aim is to describe Ĝ for G = lim−→n
Gn where Gn = B(n,R) is the

group of all n × n upper triangular real matrices with units on the principal diagonal,
i.e. we would like to describe the dual of the group BN

0 of infinite in one direction and
BZ

0 infinite in both directions matrices. Consider the inductive limit G = lim−→n
Gn of

nilpotent groups Gn = B(n,R). The symmetric (resp. nonsymmetric) imbedding gives
us two infinite-dimensional analog of “nilpotent” groups BZ

0 (resp. BN
0 ).

We do not know the description of all Ĝ. We only know that the set Ĝ contains the
following three classes of representations.
1) The set Ĝ contains

⋃
n Ĝn i.e. Ĝ ⊃

⋃
n Ĝn. One may use Kirillov’s orbit method

[4, 7] to describe Ĝn. The embedding Ĝn ⊂ ˆGn+1 is described in Remark 3.17.

2) We have Ĝ\
⋃

n Ĝn 6= ∅. Namely Ĝ\
⋃

n Ĝn contains ”regular” TR,µ and ”quasiregular”
πR,µ,X representations of the group G (see subsection 3.1).
3) Induced representations (see subsection 3.6).

It is natural together with the group BN
0 (resp. BZ

0 ) consider all Hilbert-Lie completion
BN

2 (a) (resp. B
Z
2 (a)) and the group of all upper-triangular matrices BN (resp. BZ) (see

subsections 3.5, 3.4)
Gn → BN

0 → BN
2 (a)→ BN → Gn.

Gm
n → BZ

0 → BZ
2 (a)→ BZ → Gm

n .

Together with all imbedding and projections of all mentioned groups Gn = B(n,R) we
have:

B(n,R)
in+1
n→ B(n+ 1,R)

i∞n→ BN
0 → B2(a)→ BN → B(n+ 1,R)

pnn+1
→ B(n,R),

where the imbedding in+1
n and the projections pnn+1 are defined as follows:

B(n,R) ∋ x 7→ in+1
n (x) = x+ En+1,n+1 ∈ B(n+ 1,R),

B(n + 1,R) ∋ x = xn+1xn 7→ pnn+1(x) = xn ∈ B(n,R),

where xn+1 = I +

n∑

k=1

xkn+1Ekn+1, xn = I +
∑

1≤k<m≤n

xkmEkm.

For groups Gm
n ≃ B(2n,R) defined by (2.41) consider the homomorphism ps,m,n

n+1 :
Gm

n+1 7→ Gm
n defined as follows (for simplicity we define ps,m,n

n+1 for m = 0)

G0
n+1 ∋ x = xn+1

↑ xnx
n
→ 7→ ps,0,nn+1 (x) = xn ∈ G0

n,
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where

xn+1
↑ = I +

∑

−n<k<n+1

xk,n+1Ek,n+1, xn
→ = I +

∑

−n<k≤n+1

x−n,kE−n,k.

Remark 3.17. The embedding B̂(n,R) 7→ ̂B(n + 1,R) (resp. Ĝm
n 7→ Ĝm

n+1) is induced
by the homomorphism (3.9) pnn+1 : B(n+ 1,R) 7→ B(n,R) (resp. by the homomorphism

(3.9) ps,m,n
n+1 : Gm

n+1 7→ Gm
n ). So for m ∈ Z we get

⋃
n∈N Ĝ

(m)
n ⊂ B̂Z

0 . Similarly, we have

∪n∈NB̂(n,N) ⊂ B̂N
0

Let us denote byBN
2 (a) (resp. B

Z
2 (a)) the completion of the subgroupBN

0 ⊂ GL0(2∞,R)
(resp. BZ

0 ⊂ GL0(2∞,R)) in the Hilbert-Lie group GL2(a). Since (see [8])

BN
0 =

⋂

a∈A

BN
2 (a) (resp. BZ

0 =
⋂

a∈A

BZ
2 (a))

we conclude that

B̂N
0 =

⋃

a∈A

B̂N
2 (a) (resp. B̂Z

0 =
⋃

a∈A

B̂Z
2 (a)).

It leaves to describe B̂N
2 (a) (resp. B̂Z

2 (a)) for all a ∈ A. The problem of developing
the orbit method for the Hilbert-Lie group BN

2 (a) (resp. BZ
2 (a)) could be easier, since

the corresponding Lie algebra bN2 (a) (resp. bZ2 (a)) is a Hilbert-Lie algebra, the dual
(bN2 (a))

∗ (resp. (bZ2 (a))
∗) and the pairing between bN2 (a) (resp. bZ2 (a)) and (bN2 (a))

∗

(resp. (bZ2 (a))
∗) are well defined (see subsection 3.6).

Using (3.9) we conclude

(3.28) BN
0 = lim−→

n,i

B(n,R), BN
0 = lim←−

a

BN
2 (a), BN = lim←−

n,p

B(n,R),

B̂N
0 ⊃ B̂N

2 (a) ⊃ B̂N,

finally we conclude that

(3.29) B̂N
0 =

⋃

a∈A

B̂N
2 (a), B̂N =

⋃

n∈N

Ĝn =
⋃

n∈N

B̂(n,R).

The similar relations holds also for groups BZ
0 ⊂ BZ

2 (a) ⊂ BZ.

Definition 3.18. We call the representation of the group G = lim−→n
Gn local if it depends

only on the elements of the subgroup Gn for some fixed n ∈ N.

The last relation in (3.28) and (3.29) we can reformulated as follows:

Theorem 3.19. (V.L. Ostrovsky, PhD dissertation, 1986). The class of all irreducible
unitary local representations of the group BN

0 = lim
−→n

B(n,R) coincides with the class⋃
n Ĝn.

4. Appendix 1. Gauss decompositions

4.1. Gauss decomposition of n × n matrices. We need some decomposition of the
matrix C ∈ Mat(n,C). Let us denote by

M i1i2...ir
j1j2...jr

(C), 1 ≤ i1 < ... < ir ≤ n, 1 ≤ j1 < ... < jr ≤ n

the minors of the matrix C with i1, i2, ..., ir rows and j1, j2, ..., jr columns.
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Theorem 4.1 (Gauss decomposition, [2]). A matrix C ∈ Mat(n,C) admits the following
decomposition C = LDU (Gauss decomposition),
(4.1)


c11 c12 . . . c1n
c21 c22 . . . c2n

. . .
cn1 cn2 . . . cnn


 =




1 0 . . . 0
l21 1 . . . 0

. . .
ln1 ln2 . . . 1







d1 0 . . . 0
0 d2 . . . 0

. . .
0 0 . . . dn







1 u12 . . . u1n

0 1 . . . u2n

. . .
0 0 . . . 1




where L (resp. U) is lower (resp. upper) triangular matrix and D a diagonal ma-
trix if and only if all principal minors of the matrix C are different from zeros i.e.
M1,2,...,k

1,2,...,k (C) 6= 0, 1 ≤ k ≤ n. Moreover the matrix elements of the matrices L, U and
D are given by the formulas (see [2, Ch.II, §4, (44), (45)])

(4.2) lmk =
M1,2,...,k−1,m

1,2,...,k−1,k (C)

M1,2,...,k−1,k
1,2,...,k−1,k (C)

, ukm =
M1,2,...,k−1,k

1,2,...,k−1,m(C)

M1,2,...,k−1,k
1,2,...,k−1,k (C)

, 1 ≤ k < m ≤ n,

(4.3) d1 = M1
1 (C), dk =

M1,2,...,k
1,2,...,k (C)

M1,2,...,k−1
1,2,...,k−1 (C)

, 2 ≤ k ≤ n.

Proof. If we write L−1C = DU , we get

M1,2,...,k−1,k
1,2,...,k−1,k (C) = M1,2,...,k−1,k

1,2,...,k−1,k (L
−1C) = M1,2,...,k−1,k

1,2,...,k−1,k (DU) = d1 . . . dk,

this implies (4.3). Moreover, we get also

M1,2,...,k−1,k
1,2,...,k−1,m(L

−1C) = M1,2,...,k−1,k
1,2,...,k−1,m(C) = M1,2,...,k−1,k

1,2,...,k−1,m(DU) = d1 . . . dkukm, k < m,

this implies the second formula in (4.2). Similarly if we write CU−1 = LD we get

M1,2,...,k−1,m
1,2,...,k−1,k (CU−1) = M1,2,...,k−1,m

1,2,...,k−1,k (C) = M1,2,...,k−1,m
1,2,...,k−1,k (LD) = d1 . . . dklmk, k < m,

this implies the first formula in (4.2). �

4.2. Gauss decomposition of infinite order matrices. Let us consider the infinite
matrix C,L,D, U ∈ Mat(∞,C).

Theorem 4.2 (Gauss decomposition C = LDU). A matrix C ∈ Mat(∞,C) admits the
following decomposition C = LDU (Gauss decomposition),

(4.4)

( c11 c12 ... c1n ...
c21 c22 ... c2n ...

... ...
cn1 cn2 ... cnn ...

... ...

)
=

(
1 0 ... 0
l21 1 ... 0 ...

... ...
ln1 ln2 ... 1 ...

... ...

)(
d1 0 ... 0 ...
0 d2 ... 0 ...

... ...
0 0 ... dn ...

... ...

)(
1 u12 ... u1n ...
0 1 ... u2n ...

... ...
0 0 ... 1 ...

... ...

)

where L (resp. U) is lower (resp. upper) triangular matrix and D a diagonal matrix of
infinite order if and only if all principal minors of the matrix C are different from zeros
i.e. M1,2,...,k

1,2,...,k (C) 6= 0, k ∈ N. Moreover the matrix elements of the matrices L, U and
D are given by the same formulas as in the Theorem 4.1:

(4.5) lmk =
M1,2,...,k−1,m

1,2,...,k−1,k (C)

M1,2,...,k−1,k
1,2,...,k−1,k (C)

, ukm =
M1,2,...,k−1,k

1,2,...,k−1,m(C)

M1,2,...,k−1,k
1,2,...,k−1,k (C)

, k,m ∈ N, k < m,

(4.6) d1 = M1
1 (C), dk =

M1,2,...,k
1,2,...,k (C)

M1,2,...,k−1
1,2,...,k−1 (C)

, k ∈ N, k > 1.

Proof. The proof repeat word by word the proof of the Theorem 4.1. �
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5. Appendix 2. One elementary fact concerning abelian von Neumann

algebras

Let (X,F , µ) be a measurable space, with a finite measure µ(X) < ∞, where F is a
sigma-algebra. Consider the set (fn) = (fn)n∈N of measurable real valued functions on
X i.e. fn : X 7→ R. Denote by B(H) the von Neumann algebra of all bounded operators
in the Hilbert space H = L2(X, µ) and let A(fn)(∈ B(H)) be a von Neumann algebra
generated by operators Un(t) of multiplication by functions exp(itfn(x)), n ∈ N

A(fn) =
(
Un(t) = eitfn | n ∈ N, t ∈ R

)′′
.

We are interesting in the following question. Let fn → f as n → ∞ in some sense.
When U(t) = eitf ∈ A(fn) for all t ∈ R?

Since A(fn) is a von Neumann algebra it is sufficient to find when the strong conver-
gence of the unitary operators in the space H holds i.e. s. limn Un(t) = U(t), where the
operators Un(t), n ∈ N and U(t) are defined as follows

(Un(t)g)(x) = eitfn(x)g(x), (U(t)g)(x) = eitf(x)g(x), g ∈ L2(X, µ), t ∈ R.

Lemma 5.1. Let fn → f as n→∞ pointwise almost everywhere, then s. limn Un(t) =
U(t) hence U(t) = eitf ∈ A(fn).

Proof. For g ∈ H we get

‖(Un(t)− U(t))g‖2 =

∫

X

|
(
eitfn(x) − eitf(x)

)
g(x) |2 dµ(x) =

∫

X

| eitfn(x)−itf(x) − 1 |2| g(x) |2 dµ(x) =

∫

X

| eitαn(x) − 1 |2| g(x) |2 dµ(x)→ 0

as n → ∞, if αn(x) := fn(x) − f(x) → 0 pointwise almost everywhere by Lebesgue’s
dominated convergence theorem. �
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