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HOMOTOPY REPRESENTATIONS OVER THE ORBIT CATEGORY

IAN HAMBLETON AND ERGÜN YALÇIN

Abstract. Let G be a finite group. The unit sphere in a finite-dimensional orthogonal
G-representation motivates the definition of homotopy representations, due to tom Dieck.
We introduce an algebraic analogue and establish its basic properties, including the
Borel-Smith conditions and realization by finite G-CW-complexes.

1. Introduction

Let G be a finite group. The unit spheres S(V ) in finite-dimensional orthogonal rep-
resentations of G provide the basic examples of smooth G-actions on spheres. Moreover,
character theory reveals intricate relations between the dimensions of the fixed subspheres
S(V )H , for subgroups H ≤ G, and the structure of the isotopy subgroups {Gx | x ∈ S(V )}.
Our goal is to better understand the constraints on these basic invariants, in order to con-
struct new smooth non-linear finite group actions on spheres (see [8], [9]).

In order to put this problem in a more general setting, tom Dieck [12, II.10.1] introduced
geometric homotopy representations, as finite G-CW-complexes X with the property that
each fixed set XH is homotopy equivalent to a sphere. In this paper, we study an algebraic
version of this notion for R-module chain complexes over the orbit category ΓG = OrF G,
with respect to a ring R and a family F of subgroups of G. We usually work with R = Z(p),
for some prime p, or R = Z. This theory was developed by Lück [10, §9, §17] and tom
Dieck [12, §10-11].

The homological dimensions of the various fixed sets are encoded in a conjugation-
invariant function n : S(G) → Z, where S(G) denotes the set of subgroups of G. The
function n is supported on the family F, if n(H) = −1 for H /∈ F (see Definition 2.4). We
say that a finite projective chain complex C over RΓG is an R-homology n-sphere if the
reduced homology of C(K) is the same as the reduced homology of an n(K)-sphere (with
coefficients in R) for all K ∈ F.

If C is an R-homology n-sphere, which satisfies the internal homological conditions
observed for representation spheres (see Definition 2.8), then we say that C is an alge-
braic homotopy representation. By [12, II.10], these conditions are all necessary for C to
be chain homotopy equivalent to a geometric homotopy representation. In Proposition
2.10, we show more generally that these conditions hold for C an R-homology n-sphere,
whenever n = DimC, where DimC denotes the chain dimension function of C. When
this equality holds, we say that C is a tight complex.
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In general, n(K) ≤ DimC(K) for each K ∈ F, and one would expect obstructions
to finding a tight complex which is chain homotopy equivalent to a given R-homology
n-sphere. Our first main result shows the relevance of the internal homological conditions
for this question.

Theorem A. Let G be a finite group, and F be a family of subgroups of G. Suppose that

(i) R is a principal ideal domain,
(ii) n : S(G) → Z is a conjugation-invariant function supported on F, and
(iii) C is a finite chain complex of free RΓG-modules which is an R-homology n-sphere.

Then C is chain homotopy equivalent to a finite free chain complex D satisfying n =
DimD if and only if C is an algebraic homotopy representation.

Theorem A was motivated by [8, Theorem 8.10], which states that a finite chain complex
of free ZΓG-modules can be realized by a geometricG-CW-complex if it is a tight homology
n-sphere such that n(H) ≥ 3 for all H ∈ F. Upon combining these two statements, we
get the following geometric realization result.

Corollary B. Let C be a finite chain complex of free ZΓG-modules which is a homology
n-sphere. If C is an algebraic homotopy representation, and in addition, if n(K) ≥ 3 for
all K ∈ F, then there is a finite G-CW-complex X, with isotropy in F, such that C(X?;Z)
is chain homotopy equivalent to C as chain complexes of ZΓG-modules.

We are interested in constructing finite G-CW-complexes with some restrictions on the
family of isotropy subgroups. We say a G-CW-complex X has rank one isotropy if for
every x ∈ X , the isotropy subgroup Gx has rankGx ≤ 1. Recall that rank of a finite
group G is defined as the largest integer k such that (Z/p)k ≤ G for some prime p. We
will use Theorem A and Corollary B to study the following:

Question. Which finite groupsG admit a finiteG-CW-complexX with rank one isotropy,
such that X is homotopy equivalent to a sphere ?

One motivation for this work is that rank one isotropy examples lead to free G-CW-
complex actions of finite groups on products of spheres (see Adem and Smith [1]).

In [8] we gave the first non-trivial example, by constructing a finite G-CW-complex
X ≃ Sn for the symmetric group G = S5, with cyclic 2-group isotropy. However, the
arguments used special features of the isotropy family. Corollary B now provides an
effective general method for the geometric realization of algebraic models. The algebraic
homotopy representation conditions are easy to check locally over R = Z(p) at each prime,
and fit well with the local-to-global procedure for constructing chain complexes C over
ZΓG. In a sequel [9] to this paper, we apply Corollary B to construct infinitely many new
examples with rank one isotropy, for certain interesting families of rank two groups.

In Section 5 we consider the algebraic version of a well-known theorem in transformation
groups: the dimension function of a homotopy representation satisfies certain conditions
called the Borel-Smith conditions (see Definition 5.1).

Theorem C. Let G be a finite group, R = Z/p, and F be a given family of subgroups of
G. If C is a finite projective chain complex over RΓG, which is an R-homology n-sphere,
then the function n satisfies the Borel-Smith conditions at the prime p.
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As an application, we show that such a finite projective chain complex over RΓG does
not exist for the group G = Qd(p) with respect to the family F of rank 1 subgroups (see
Example 5.13 and Proposition 5.14). This is an important group theoretic constraint on
the existence question for geometric homotopy representations with rank one isotropy.

One of the main ideas in the proof of Theorem C is the reduction of a given chain com-
plex of RΓG-module C to a chain complex over RΓK/N for a subquotient K/N appearing
in the Borel-Smith conditions. For this reduction, we introduce inflation and deflation
of modules over the orbit category, via restriction and induction associated to a certain
functor F (see Section 4). Then we use spectral sequence arguments to conclude that the
conditions given in the Borel-Smith conditions hold for these reduced chain complexes
over RΓK/N .

Here is a brief outline of the paper. In Section 2 we give the precise setting and
background definitions for the concepts just presented (see Definition 2.8) and prove the
“only if” direction of Theorem A. The “if” direction of Theorem A is proved in Section 3,
together with Corollary B. In Section 5 we discuss the Borel-Smith conditions and prove
Theorem C.

Our methods involve the study of finite-dimensional chain complexes of finitely gener-
ated projective modules over the orbit category, called finite projective chain complexes,
for short. Such chain complexes are the algebraic analogue of finitely-dominated G-CW
complexes.

Acknowledgement. We thank the referees for their helpful comments and suggestions.

2. Algebraic homotopy representations

Let G be a finite group and F be a family of subgroups of G which is closed under
conjugations and taking subgroups. The orbit category OrF G is defined as the category
whose objects are orbits of type G/K, with K ∈ F, and where the morphisms from G/K
to G/L are given by G-maps:

MorOrF G(G/K,G/L) = MapG(G/K,G/L).

The category ΓG = OrF G is a small category, and we can consider the module category
over ΓG in the following sense. Let R be a commutative ring with 1. A (right) RΓG-
module M is a contravariant functor from ΓG to the category of R-modules. We denote
the R-module M(G/K) simply by M(K) and write M(f) : M(L) → M(K) for a G-map
f : G/K → G/L.

The category of RΓG-modules is an abelian category, so the usual concepts of homo-
logical algebra, such as kernel, direct sum, exactness, projective module, etc., exist for
RΓG-modules. A sequence of RΓG-modules 0 → A → B → C → 0 is exact if and only if

0 → A(K) → B(K) → C(K) → 0

is an exact sequence of R-modules for every K ∈ F. For an RΓG-module M the R-
module M(K) can also be considered as an RWG(K)-module in an obvious way where
WG(K) = NG(K)/K. We will follow the convention in [10] and consider M(K) as a right
RWG(K)-module. In particular, we will consider the sequence above as an exact sequence
of right RWG(K)-modules.
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For each H ∈ F, let FH := R[G/H?] denote the RΓG-module with values FH(K) =
R[(G/H)K ] for every K ∈ F, and where for every G-map f : G/L → G/K, the induced
map FH(f) : R[(G/H)K ] → R[(G/H)L] is defined in the obvious way. By the Yoneda
lemma, there is an isomorphism

HomRΓG
(R[G/H?],M) ∼= M(H)

for every RΓG-module M . From this it is easy to show that the module R[G/H?] is a
projective module in the usual sense, for each H ∈ F. An RΓG-module is called free if
it is isomorphic to a direct sum of RΓG-modules of the form R[G/H?]. It can be shown
that an RΓG-module is projective if and only if it is a direct summand of a free module.
The further details about the properties of modules over the orbit category can be found
in [8] (see also Lück [10, §9,§17] and tom Dieck [12, §10-11]).

In this section we consider chain complexes C of RΓG-modules, with respect to a given
family F. When we say a chain complex we always mean a non-negative complex, so
Ci = 0 for i < 0. We call a chain complex C projective (resp. free) if for all i ≥ 0,
the modules Ci are projective (resp. free). We say that a chain complex C is finite if
Ci = 0 for all i > n, for some n ≥ 0, and the chain modules Ci are all finitely generated
RΓG-modules.

Remark 2.1. Up to chain homotopy equivalence, there is no difference between finite
projective chain complexes and finite-dimensional projective chain complexes with finitely
generated homology (see [9, 3.6]). For this reason, our definitions and results are mostly
stated for finite chain complexes.

We define the support of a chain complex C over RΓG as the family of subgroups

Supp(C) = {H ∈ F |C(H) 6= 0}.

It is sometimes convenient to vary the family of subgroups.

Definition 2.2. If F ⊂ G are two families, the orbit category ΓG,F = OrF G is a full-

subcategory of ΓG,G = OrG G. If M is a module over RΓG,F, then we define IncG
F
(M)(H) =

M(H), if H ∈ F, and zero otherwise. Similarly, for a module N over RΓG,G, define

ResG
F
(N)(H) = N(H), for H ∈ F. We extend to maps and chain complexes similarly.

Note that Supp(IncG
F
(C)) = Supp(C), and Supp(ResG

F
(D)) = Supp(D) ∩ F.

Given a G-CW-complex X , there is an associated chain complex of RΓG-modules over
the family of all subgroups

C(X?;R) : · · · → R[Xn
? ]

∂n−→ R[Xn−1
? ] → · · ·

∂1−→ R[X0
? ] → 0

where Xi denotes the set of (oriented) i-dimensional cells in X and R[Xi
? ] is the RΓG-

module defined by R[Xi
? ](H) = R[XH

i ] for every H ≤ G. We denote the homology
of this complex by H∗(X

?;R). The chain complex C(XH ;R) is actually defined for all
subgroups H ≤ G, but for a given family of subgroups F, we can restrict its values from
Or(G) to the full sub-category OrF G.

The smallest family containing all the isotropy subgroups {Gx | x ∈ X} is

Iso(X) = {H ≤ G |XH 6= ∅}
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and this motivates our notion of support for algebraic chain complexes. In particular, we
have

Supp(ResF(C(X?;R))) = F ∩ Iso(X).

If the family F includes all the isotropy subgroups of X , then the complex C(X?;R) is
a chain complex of free RΓG-modules, hence projective RΓG-modules, but otherwise the
chain modules R[Xn

? ] may not be projective over RΓG.
Given a finite-dimensional G-CW-complex X , there is a dimension function

DimX : S(G) → Z,

given by (DimX)(H) = dimXH for all H ∈ S(G) where S(G) denote the set of all
subgroups of G. By convention, we set dim ∅ = −1 for the dimension of the empty set.
In a similar way, we define the following.

Definition 2.3. The (chain) dimension function of a finite-dimensional chain complex C

over RΓG is defined as the function DimC : S(G) → Z which has the value

(DimC)(H) = dimC(H)

for all H ∈ F, where the dimension of a chain complex of R-modules is defined as the
largest integer d such Cd 6= 0 (hence the zero complex has dimension −1). If H /∈ F, then
we set (DimC)(H) = −1.

The dimension function DimC : S(G) → Z is conjugation-invariant, meaning that it
takes the same value on conjugate subgroups of G. The term super class function is often
used for such functions.

Definition 2.4. The support of a super class function n is defined as the set

Supp(n) = {H ≤ G : n(H) 6= −1}.

We say that a super class function n : S(G) → Z is supported on F, if Supp(n) ⊆ F. Note
that Supp(C) ⊆ F is the support of the dimension function DimC of a chain complex C

over RΓG.

In a similar way, we can define the homological dimension function of a chain complex
C of RΓG-modules as the function HomDimC : S(G) → Z where for each H ∈ F, the
integer

(HomDimC)(H) = hdimC(H)

is defined as the largest integer d such that Hd(C(H)) 6= 0. If H /∈ F, then we set
n(H) = −1, as before.

Let us write (H) ≤ (K) whenever g−1Hg ≤ K for some g ∈ G. Here (H) denotes the
set of subgroups conjugate to H in G. The notation (H) < (K) means that (H) ≤ (K)
but (H) 6= (K).

Definition 2.5. We call a function n : S(G) → Z monotone if it satisfies the property
that n(H) > n(K) whenever (H) ≤ (K). We say that a monotone function n is strictly
monotone if n(H) > n(K), whenever (H) < (K). �

We have the following:
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Lemma 2.6. The (chain) dimension function of every finite-dimensional projective chain
complex C of RΓG-modules is monotone.

Proof. Let (L) ≤ (K). If n(K) = −1, then the inequality n(L) ≥ n(K) is clear. So
assume n(K) = n 6= −1. Then Cn(K) 6= 0. By the decomposition theorem for projective
RΓG-modules [12, Chap. I, Theorem 11.18], every projective RΓG-module P is of the
form P ∼= ⊕HEHPH , where H ∈ F and PH is a projective NG(H)/H-module. Here the
RΓG-module EHPH is defined by

EHPH(?) = PH ⊗RNG(H)/H RMapG(G/?, G/H).

Applying this decomposition theorem to Cn, we observe that Cn must have a summand
EHPH with (K) ≤ (H). But then Cn(L) 6= 0, and hence n(L) ≥ n(K). �

We are particularly interested in chain complexes which have the homology of a sphere
when evaluated at every K ∈ F. To specify the restriction maps in dimension zero, we will
consider chain complexes C which are equipped with an augmentation map ε : C0 → R
such that ε ◦ ∂1 = 0. Here R denotes the constant functor, and we assume that ε(H) is
surjective for H ∈ Supp(C). We often consider ε as a chain map C → R by considering R
as a chain complex over RΓG which is concentrated at zero. We denote a chain complex
with an augmentation as a pair (C, ε).

By the reduced homology of a complex (C, ε), we always mean the homology of the
augmented chain complex

C̃ = {· · · → Cn
∂n−→ · · · → C2

∂2−→ C1
∂1−→ C0

ε
−→ R → 0}

where R is considered to be at dimension −1. Note that the complex C̃ is the −1 shift
of the mapping cone of the chain map ε : C → R.

Definition 2.7. Let n be a super class function supported on F, and let C be a chain
complex over RΓG with respect to a family F of subgroups.

(i) We say thatC is an R-homology n-sphere if there is an augmentation map ε : C →
R such that the reduced homology of C(K) is the same as the homology of an
n(K)-sphere (with coefficients in R) for all K ∈ F.

(ii) We say that C is oriented if the WG(K)-action on the homology of C(K) is trivial
for all K ∈ F.

Note that we do not assume that the dimension function is strictly monotone as in
Definition II.10.1 in [12].

In transformation group theory, aG-CW-complexX is called a homotopy representation
if XH is homotopy equivalent to the sphere Sn(H) where n(H) = dimXH for every H ≤ G
(see tom Dieck [12, Section II.10]). We now introduce an algebraic analogue of this useful
notion for chain complexes over the orbit category.

In [12, II.10], there is a list of properties that are satisfied by homotopy representations.
We will use algebraic versions of these properties to define an analogous notion for chain
complexes.

Definition 2.8. Let C be a finite projective chain complex over RΓG, which is an R-
homology n-sphere. We say C is an algebraic homotopy representation (over R) if



HOMOTOPY REPRESENTATIONS OVER THE ORBIT CATEGORY 7

(i) The function n is a monotone function.
(ii) If H,K ∈ F are such that n = n(K) = n(H), then for every G-map f : G/H →

G/K the induced map C(f) : C(K) → C(H) is an R-homology isomorphism.
(iii) SupposeH,K,L ∈ F are such thatH ≤ K,L and letM = 〈K,L〉 be the subgroup

of G generated by K and L. If n = n(H) = n(K) = n(L) > −1, then M ∈ F

and n = n(M).

Note that conditions (ii) and (iii) of Definition 2.8 are automatic if the dimension
function n is strictly monotone. Under condition (iii), the isotropy family F has an
important maximality property.

Proposition 2.9. Let n be a super class function and let C be a projective chain complex
of RΓG-modules, which is an R-homology n-sphere. If condition (iii) holds, then for each
H ∈ F, the set of subgroups FH = {K ∈ F | (H) ≤ (K), n(K) = n(H) > −1} has a
unique maximal element, up to conjugation.

Proof. Clear by induction from the statement of condition (iii). �

In the remainder of this section we will assume that R is a principal ideal domain. The
important examples for us are R = Z(p) or R = Z. The main result of this section is the
following proposition.

Proposition 2.10. Let n be a super class function and C be a finite projective chain
complex over RΓG, which is an R-homology n-sphere. Assume that R is a principal ideal
domain. If the equality n = DimC holds, then C is an algebraic homotopy representation.

Before we prove Proposition 2.10, we make some observations and give some definitions
for projective chain complexes.

Lemma 2.11. Let C be a projective chain complex over RΓG. Then, for every G-map
f : G/H → G/K, the induced map C(f) : C(K) → C(H) is an injective map with an
R-torsion free cokernel.

Proof. It is enough to show that if P a projective RΓG-module, then for every G-map
f : G/H → G/K, the induced map P (f) : P (K) → P (H) is an injective map with a
torsion free cokernel. Since every projective module is a direct summand of a free module,
it is enough to prove this for a free module P = R[X?], where X is a finite G-set.
Let f : G/H → G/K be the G-map defined by f(H) = gK. Then the induced map
P (f) : R[XK ] → R[XH ] is the linearization of the map XK → XH given by x 7→ gx.
Since this map is one-to-one, we can conclude that P (f) is injective with torsion free
cokernel. �

When H ≤ K and f : G/H → G/K is the G-map defined by f(gH) = gK for each
g ∈ G, then we denote the induced map C(f) : C(K) → C(H) by rKH and call it the
restriction map. When H and K are conjugate, so that K = x−1Hx for some x ∈ G,
then the map C(f) : C(K) → C(H) induced by the G-map f : G/H → G/K defined by
f(gH) = gxK for each g ∈ G, is called the conjugation map and usually denoted by cgK .
Every G-map can be written as a composition of two G-maps of the above two types, so
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every induced map C(f) : C(K) → C(H) can be written as a composition of restriction
and conjugation maps.

Since conjugation maps have inverses, they are always isomorphisms. So, the condition
(ii) of Definition 2.8 is actually a statement only about restriction maps. To study the
restriction maps more closely, we consider the image of rKH : C(K) → C(H) for a pair
H ≤ K and denote it by CK

H . Note that C
K
H is a subcomplex of C(H) as a chain complex

of R-modules. We also remark that CK
H is isomorphic to C(K), as a chain complex of

R-modules, by Lemma 2.11, whenever C is a projective chain complex.

Lemma 2.12. Let C be a projective chain complex over RΓG. Suppose that K,L ∈ F are
such that H ≤ K and H ≤ L, and let M = 〈K,L〉 be the subgroup generated by K and
L. If CK

H ∩CL
H 6= 0 then M ∈ F, and hence we have CK

H ∩CL
H = CM

H .

Proof. As before it is enough to prove this for a free RΓG-module P = R[X?] where X
is a finite G-set whose isotropy subgroups lie in F. The restriction maps rKH and rLH are
linearizations of the maps XK → XH and XL → XH , respectively, which are defined
by inclusion of subsets. Then it is clear that the intersection of images of rKH and rLH
(if non-zero) would be R[XK ∩ XL], considered as an R-submodule of R[XH ]. We have
XK ∩ XL = XM where M = 〈K,L〉. Therefore, if CK

H ∩ CL
H 6= 0, then we must have

XM 6= ∅ which implies that M ∈ F. Thus CM
H is defined and we can write CK

H∩CL
H = CM

H

by the above fixed point formula. �

Now, we are ready to prove Proposition 2.10.

Proof of Proposition 2.10. The first condition in Definition 2.8 follows from Lemma 2.6.
For (ii) and (iii), we use the arguments similar to the arguments given in II.10.12 and
II.10.13 in [12].

To prove (ii), let f : G/H → G/K be a G-map. By Lemma 2.11, the induced map
C(f) : C(K) → C(H) is injective with torsion free cokernel. Let D denote the cokernel
of C(f). Then we have a short exact sequence of R-modules

0 → C(K) → C(H) → D → 0

where both C(K) and C(H) have dimension n. Now consider the long exact reduced
homology sequence (with coefficients in R) associated to this short exact sequence:

· · · → 0 → Hn+1(D) → Hn(C(K))
f∗

−→ Hn(C(H)) → Hn(D) → · · ·

Note that D has dimension less than or equal to n, so Hn+1(D) = 0 and Hn(D) is
torsion free. Since Hn(C(K)) = Hn(C(H)) = R, it follows that f ∗ is an isomorphism.
Since both C(K) and C(H) have no other reduced homology, we conclude that C(f)
induces an R-homology isomorphism between associated augmented complexes. Since
the induced map R(f) : R(K) → R(H) is the identity map id : R → R, the chain map
C(f) : C(K) → C(H) is an R-homology isomorphism.

To prove (iii), observe that there is a Mayer-Vietoris type exact sequence associated to
the pair of complexes CK

H and CL
H which gives an exact sequence of the form

0 → Hn(C
K
H ∩CL

H) → Hn(C
K
H)⊕Hn(C

L
H) → Hn(C

K
H +CL

H) → Hn−1(C
K
H ∩CL

H) → 0.

Here we again take the homology sequence as the reduced homology sequence.
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Let iK : CK
H → C(H), iLH : CL

H → C(H), and j : CK
H+CL

H → C(H) denote the inclusion
maps. We have zero on the left-most term since CK

H +CL
H is an n-dimensional complex.

To see the zero on the right-most term, note that by Lemma 2.11, CK
H

∼= C(K) and
CL

H
∼= C(L) as chain complexes of R-modules, so they have the same homology. This

gives that Hi(C
K
H) = Hi(C

L
H) = 0 for i ≤ n− 1.

Also note that by part (ii), the composition

Hn(C(K)) ∼= Hn(C
K
H)

iK
∗−→ Hn(C

K
H +CL

H)
j∗
−→ Hn(C(H))

is an isomorphism. So, j∗ is surjective. Since Hn+1(C(H)/(CK
H + CL

H)) = 0, we see
that j∗ is also injective. Therefore, j∗ is an isomorphism. This implies that iK∗ is an
isomorphism. Similarly one can show that iL∗ : Hn(C

L
H) → Hn(C

K
H + CL

H) is also an
isomorphism. Using these isomorphisms and looking at the exact sequence above, we
conclude that Hn(C

K
H ∩CL

H)
∼= R and Hi(C

K
H ∩CL

H) = 0 for i ≤ n− 1. So, CK
H ∩CL

H is
an R-homology n-sphere.

Since n > −1, this implies that CK
H ∩CL

H 6= 0, and hence M = 〈K,L〉 ∈ F by Lemma
2.12. Moreover, CK

H ∩CL
H = CM

H . This proves that n(M) = n as desired. �

3. The Proof of Theorem A

In this section we will again assume that R is a principal ideal domain. The main
examples for us are R = Z(p) or R = Z, as before.

Definition 3.1. We say a chain complex C of RΓG-modules is tight at H ∈ F if

dimC(H) = hdimC(H).

We call a chain complex of RΓG-modules tight if it is tight at every H ∈ F.

Suppose that C is a finite projective complex over RΓG which is an R-homology n-
sphere. If C is chain homotopy equivalent to a tight complex, then Proposition 2.10
shows that C is an algebraic homotopy representation. This establishes one direction of
Theorem A. The other direction uses the assumption that the chain modules of C are free
over RΓG.

Theorem 3.2. Let C be a finite chain complex of free RΓG-modules which is a homology
n-sphere. If C is an algebraic homotopy representation over R, then C is chain homotopy
equivalent to a finite free chain complex D which is tight.

Remark 3.3. If C is a finite projective chain complex, then the analogous result holds
for a sufficiently large k-fold join tensor product C′ = >kC, by [8, Theorem 7.6].

We need to show that the complex C can be made tight at each H ∈ F by replacing it
with a chain complex homotopic to C. The proof is given in several steps.

3A. Tightness at maximal isotropy subgroups. Let H be a maximal element in
F. Consider the subcomplex C(H) of C formed by free summands of C isomorphic to
R[G/H ? ]. Note that C(H) is a submodule because HomRΓG

(R[G/H?], R[G/K?]) 6= 0

only if (H) ≤ (K), and since H is maximal, we have ∂i(C
(H)
i ) ⊆ C

(H)
i−1 for all i. The
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complex C(H) is a complex of isotypic modules of type R[G/H ? ]. Recall that free RΓG-
module F is called isotypic of type G/H if it is isomorphic to a direct sum of copies of

a free module R[G/H ? ], for some H ∈ F. For extensions involving isotypic modules we
have the following:

Lemma 3.4. Let
E : 0 → F → F ′ → M → 0

be a short exact sequence of RΓG-modules such that both F and F ′ are isotypic free modules
of the same type G/H. If M(H) is R-torsion free, then E splits and M is stably free.

Proof. This is Lemma 8.6 of [8]. The assumption that R is a principal ideal domain
ensures that finitely generated R-torsion free modules are free. �

Note that C(H)(H) = C(H), since H is maximal in F. This means that C(H) is a finite
free chain complex over RΓG of the form

C(H) : 0 → Fd → Fd−1 → · · · → F1 → F0 → 0

which is a R-homology n(H)-sphere, with n(H) ≤ d.

Lemma 3.5. Let C be a finite chain complex of free RΓG-modules. Then C is chain
homotopy equivalent to a finite free chain complex D which is tight at every maximal
element H ∈ F.

Proof. We apply [8, Proposition 8.7] to the subcomplex C(H), for each maximal element
H ∈ F. The key step is provided by Lemma 3.4. �

3B. The inductive step. To make the complex C tight at every H ∈ F we use a
downward induction, but the situation at an intermediate step is more complicated than
the first step considered above.

Suppose that H ∈ F is such that C is tight at every K ∈ F such that (K) > (H).

Let C(H) denote the subcomplex of C with free summands of type R[G/K ? ] satisfying
(H) ≤ (K). In a similar way, we can define the subcomplex C>(H) of C whose free

summands are of type R[G/K ? ] with (H) < (K). The complex C>(H) is a subcomplex
of C(H). Let us denote the quotient complex C(H)/C>(H) by C(H). The complex C(H) is

isotypic with isotropy type R[G/H ? ]. We have a short exact sequence of chain complexes
of free RΓG-modules

0 → C>(H) → C(H) → C(H) → 0.

By evaluating at H , we obtain an exact sequence of chain complexes

0 → C>(H)(H) → C(H)(H) → C(H)(H) → 0.

Since C(H)(H) = C(H) and the image of the map on the left is generated by summands
of the form R[G/K?] with (H) < (K), the complex C(H)(H) is isomorphic to SHC as
an R[NG(H)/H ]-module. Here SH denotes is splitting functor defined more generally for
any module over an EI-category (see [10, Definition 9.26]).

We also have an exact sequence

0 → C(H) → C → C/C(H) → 0.
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If we can show that C(H) is homotopy equivalent to a complex D′ which is tight at H ,
then by taking the push-out of D′ along the injective map C(H) → C, we can find a
complex D homotopy equivalent to C which is tight at every K ∈ F with (K) ≥ (H). So
it is enough to show that C(H) is homotopy equivalent to a complex D′ which is tight at
H .

Lemma 3.6. Let C be a finite free chain complex of RΓG-modules, such that C is tight
at every K ∈ F with (K) > (H), for some H ∈ F. Suppose

(i) n = hdimC(H) ≥ dimC(K), for all (K) > (H), and that
(ii) Hn+1(SHC) = 0.

Then C(H) is homotopy equivalent to a finite free chain complex D′ which is tight at every
K ∈ F with (K) ≥ (H).

Proof. Let us fix H ∈ F and assume that C is tight at every K ∈ F with (K) > (H).
We first observe that C>(H) has dimension ≤ n = hdimC(H), since C>(H)(K) = C(K)
for (K) > (H), and dimC(K) ≤ n. Let d = dimC(H). If d = n, then we are done, so
assume that d > n. Then dimC(H) = d, and C(H) is a complex of the form

C(H) : 0 → Fd → Fd−1 → · · · → F1 → F0 → 0.

We claim that the map ∂d : Fd → Fd−1 in the above chain complex is injective. Since
C(H) is isotypic of type (H), it is enough to show that this map is injective when it is
calculated at H . To see this observe that the map ∂d is the same as the map obtained
by applying the functor EH to the NG(H)/H-homomorphism ∂d(H) : Fd(H) → Fd−1(H)
(see [10, Lemma 9.31]). Since the functor EH is exact, we have ker ∂d = EH(ker ∂d(H)).
Hence, if ∂d(H) is injective, then ∂n is injective.

We will show that Hd(C(H)(H)) = Hd(SHC) = 0. To see this consider the short exact

sequence 0 → C>(H)(H) → C(H) → SHC → 0. Since the complex C>(H) has dimension
≤ n, the corresponding long exact sequence gives that Hd(SHC) ∼= Hd(C(H)) = 0 when
d > n+ 1. If d = n+ 1, then this is true by assumption (ii) in the lemma. Now we apply
[8, Proposition 8.7] to C(H) to obtain a tight complex D′′ ≃ C(H), and then let D′ ≃ C(H)

denote the pullback of D′′ along the surjection C(H) → C(H). �

3C. Verifying the hypothesis for the inductive step. To complete the proof of The-
orem 3.2, we need to show that the assumptions in Lemma 3.6 hold at an intermediate
step of the downward induction. We will make detailed use of the internal homological
conditions (i), (ii), and (iii) in Definition 2.8, satisfied by an algebraic homotopy repre-
sentation C. We proceed as follows:

(1) The dimension assumptions in Lemma 3.6 follow from the condition (i), since
when n is monotone, we have

n := hdimC(H) = n(H) ≥ n(K) = hdimC(K) = dimC(K)

for all K ∈ F with (K) > (H).
(2) The assumption that Hn+1(SHC) = 0 is established in Corollary 3.9. It follows

from the conditions (ii) and (iii) and the Mayer-Vietoris argument given below.
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In the rest of the section, we assume that C is a finite projective chain complex of
RΓG-modules, which is an R-homology n-sphere, and satisfies the conditions (i), (ii), and
(iii) in Definition 2.8. Assume also that C is tight for all K ∈ F with (K) > (H) for some
fixed subgroup H ∈ F. We will say C is tight above H , for short. Let KH denote the set
of all subgroups

KH = {K ∈ F |K > H and n := n(K) = n(H)}.

Let C be an algebraic homotopy representation, which is tight above H . Let CK
H denote

the image of the restriction map

rKH : C(K) → C(H),

for every K ∈ F with K ≥ H . Then CK
H is a subcomplex of C(H) and by Lemma 2.11,

it is isomorphic to C(K). By condition (iii) of Definition 2.8, the collection KH has a
unique maximal element M . In addition, we have the equality

C>(H)(H) =
∑

K∈KH

CK
H ,

since (G/K)H is the union of the subspaces (G/K)L, with L > H and (L) = (K).
Moreover, if K ∈ KH , then by condition (ii), the subcomplex CK

H is an R-homology
n-sphere and the map

Hn(C
M
H ) → Hn(C

K
H)

induced by the inclusion mapCM
H →֒ CK

H is an isomorphism. More generally, the following
also holds.

Lemma 3.7. Let C be an algebraic homotopy representation which is tight above H, for
some fixed H ∈ F, and let K1, . . . , Km be a set of subgroups in KH . Then the subcomplex∑m

i=1C
Ki
H is an R-homology n-sphere and the map

(3.8) Hn(C
M
H ) → Hn(

m∑

i=1

CKi
H )

induced by the inclusion maps is an isomorphism.

Proof. This follows from the Mayer-Vietoris spectral sequence in algebraic topology (see
[4, pp. 166-168]), which computes the homology of a union of spaces X =

⋃
Xi in terms

of the homology of the subspaces and their intersections. We include a direct argument
for the reader’s convenience.

The case m = 1 follows from the remarks above. For m > 1, we have the following
Mayer-Vietoris type long exact sequence

0 → Hn(Dm−1 ∩CKm
H ) → Hn(Dm−1)⊕Hn(C

Km
H ) → Hn(Dm) → Hn−1(Dm−1 ∩CKm

H ) →

where Dj =
∑j

i=1C
Ki
H for j = m−1, m. By the inductive assumption, we know thatDm−1

is an R-homology n-sphere and the map Hn(C
M
H ) → Hn(Dm−1) induced by inclusion is

an isomorphism.
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We have

Dm−1 ∩CKm
H = (

m−1∑

i=1

CKi
H ) ∩CKm

H =
m−1∑

i=1

(CKi
H ∩CKm

H ) =
m−1∑

i=1

C
〈Ki,Km〉
H

where the last equality follows from Lemma 2.12. We can apply Lemma 2.12 here because
CM

H ⊆ CK
H for all K ∈ KH gives that CKi

H ∩ CKm
H 6= 0 for every i = 1, . . . , m − 1. We

also obtain 〈Ki, Km〉 ∈ KH for all i. Applying our inductive assumption again to these
subgroups, we conclude that Dm−1 ∩CKm

H is an R-homology n-sphere and that the map

Hn(C
M
H ) → Hn(Dm−1 ∩CKm

H )

induced by inclusion is an isomorphism. This gives that Hi(Dm) = 0 for i ≤ n − 1. We
also obtain a commuting diagram

0 // Hn(C
M
H ) //

��

Hn(C
M
H )⊕Hn(C

M
H ) //

��

Hn(C
M
H ) //

ϕ

��

0

0 // Hn(Dm−1 ∩CKm
H ) // Hn(Dm−1)⊕Hn(C

Km
H ) // Hn(Dm) // 0

Since all the vertical maps except the map ϕ are known to be isomorphisms, we obtain
that ϕ is also an isomorphism by the five lemma. This completes the proof. �

Corollary 3.9. Let C be an algebraic homotopy representation which is tight above H,
for some fixed H ∈ F. Then Hn+1(SHC) = 0.

Proof. Let KH = {K1, . . . , Km}. By condition (ii), we know that the composition

Hn(C(M))
∼=
−→ Hn(C

M
H ) → Hn(

m∑

i=1

C
Ki
H ) → Hn(C(H))

is an isomorphism. However, we have just proved that the middle map is an isomorphism,
and that all the modules involved in the composition are isomorphic to R. Therefore, the
map induced by inclusion

Hn(
m∑

i=1

CKi
H ) → Hn(C(H))

is an isomorphism. Since C is tight above H , we have dimC(K) < n whenever (H) ≤ (K)
and n(K) < n, for some K ∈ F. This implies the relation

Hn(C
>(H)(H)) = Hn(

m∑

i=1

CKi
H ) ∼= Hn(C(H))

where the isomorphism is induced by the the inclusion of chain complexes. From the
exact sequence 0 → C>(H)(H) → C(H) → SHC → 0, and the fact that hdimC(H) = n,
we conclude that Hn+1(SHC) = 0, as required. �

This completes the proof of Theorem 3.2 and hence the proof of Theorem A. In [8],
we proved the following realization theorem for free ZΓG-module chain complexes, with
respect to any family F, which are Z-homology n-spheres satisfying certain extra condi-
tions.
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Theorem 3.10 ([8, Theorem 8.10], [11]). Let C be a finite chain complex of free ZΓG-
modules which is a Z-homology n-sphere. Suppose that n(K) ≥ 3 for all K ∈ F. If
Ci(H) = 0 for all i > n(H) + 1, and all H ∈ F, then there is a finite G-CW-complex
X with isotropy in F, such that C(X?;Z) is chain homotopy equivalent to C as chain
complexes of ZΓG-modules.

Note that a Z-homology n-sphere C with DimC = n, and n(K) ≥ 3 for all K ∈ F, will
automatically satisfy these conditions. So Corollary B follows immediately from Theorem
A and Theorem 3.10.

Remark 3.11. The construction actually produces a finite G-CW-complex X with the
additional property that all the non-empty fixed sets XH are simply-connected. Moreover,
by construction, WG(H) = NG(H)/H will act trivially on the homology of XH . Therefore
X will be an oriented geometric homotopy representation (in the sense of tom Dieck).
From the perspective of Theorem A, since we don’t specify any dimension function, a
G-CW-complex X with all fixed sets XH integral homology spheres will lead (by three-
fold join) to a homotopy representation. The same necessary and sufficient conditions for
existence apply.

4. Inflation and deflation of chain complexes

In this section we define two general operations on chain complexes in preparation
for the proof of Theorem C. For a finite G-CW complex X which is a mod-p homology
sphere, the Borel-Smith conditions can be proved using a reduction argument to certain
p-group subquotients (compare [12, III.4]). For a subquotient K/L, the reduction comes
from considering the fixed point space XL as a K-space. To do a similar reduction for
chain complexes over RΓG, we first introduce a new functor for RΓG-modules, called
the deflation functor. We will introduce this functor as a restriction functor between
corresponding module categories. For this discussion R can be taken as any commutative
ring with 1 and FG is any family subject to the extra conditions we assume during the
construction.

Let N be a normal subgroup of G. We define a functor

F : ΓG/N → ΓG

by considering a G/N -set (or G/N -map) as a G-set (or G-map) via composition with the
quotient map G → G/N . For this definition to make sense, the families FG/N and FG

should satisfy the property that if K ≥ N is such that (K/N) ∈ FG/N , then K ∈ FG.
Since we always assume the families are nonempty, the above assumption also implies
that N ∈ FG. For notational simplicity from now on, let us denote K/N by K for every
K ≥ N .

If a family FG is already given, we will always take FG/N = {K |K ≥ N and K ∈ FG}
and the condition above will be automatically satisfied. We also assume that N ∈ FG to
have a nonempty family for FG/N .

The functor F gives rise to two functors (see [10, 9.15]):

ResF : Mod -RΓG → Mod -RΓG/N
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and

IndF : Mod -RΓG/N → Mod -RΓG .

The first functor ResF takes a RΓG-module M to the RΓG/N -module

DefGG/N (M) := M ◦ F : ΓG/N → R-Mod.

We call this functor the deflation functor. Note that

(DefGG/N M)(K) = M(K).

The induction functor InfGG/N := IndF associated to F is called the inflation functor. For
every H ∈ FG, we have

InfGG/N (M)(H) =
(⊕

K∈FG/N

M(K)⊗RWG(K) RMapG(G/H,G/K)
)
/ ∼

where the relations come from the tensor product over RΓG/N (see [10, Definition 9.12]).

In general, it can be difficult to calculate InfGG/N M for an arbitrary RΓG/N -module M .
In the case where M is a free RΓG/N -module we have the following lemma.

Lemma 4.1. Let X be a finite G/N-set. Then, we have

InfGG/N R[X ? ] = R[(InfGG/N X)? ].

Proof. It is enough to show this when X = G/K for some K ≤ G such that K ≥ N .
In this case, R[(G/K)? ] is isomorphic to EKPK where PK = R[WG(K)]. Since EK(−) is
defined as induction IndF ′(−) for the functor F ′ : R[WG(K)] → RΓG/N (see [10, 9.30]),
we have

InfGG/N R[(G/K)? ] = InfGG/N EKPK = IndF IndF ′ PK = IndF◦F ′ PK

where F : ΓG/N → ΓG is the functor defined above. Since WG(K) ∼= WG(K), after
suitable identification, the composition F ◦ F ′ becomes the same as the inclusion functor
i : WG(K) → ΓG, so we have

IndF◦F ′ PK = EKRWG(K) = R[G/K? ]

as desired. �

By general properties of restriction and induction functors associated to a functor F ,
the functor DefGG/N is exact and InfGG/N respects projectives (see [10, 9.24]). The deflation
functor has the following formula for free modules.

Lemma 4.2. Let X be a G-set. Then, we have

DefGG/N R[X ? ] = R[(XN)? ]

In particular, if H ∈ FG implies HN ∈ FG, then the functor DefGG/N respects projectives.

Proof. For every K ∈ FG such that K ≥ N , we have

(DefGG/N R[X ? ])(K) = R[X ? ](K) = R[XK ] = R[(XN)K/N ] = R[(XN)? ](K).
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Note that (G/H)N = G/HN as a G/N -set. If H ∈ FG implies HN ∈ FG, then by
assumption HN ∈ FG/N . Hence R[((G/H)N)? ] is free as an RΓG/N -module and DefGG/N

respects projectives. �

5. The Borel-Smith conditions for chain complexes

Let G be a finite group, and letX be a finite G-CW-complex which is a mod-p homology
sphere for some prime p. Then by Smith theory, the fixed point space XH is also a mod-p
homology sphere (or empty), for every p-subgroup H ≤ G. So if we take R = Z/p and ΓG

as the orbit category over the family Fp of all p-subgroups of G, then the chain complex
C(X?;Z) over RΓG is a finite free chain complex which is an R-homology n-sphere. Here,
as before, we take n(H) = −1 when XH = ∅. In this case, it is known that the super class
function n satisfies certain conditions called the Borel-Smith conditions (see [3, Thm. 2.3
in Chapter XIII] or [12, III.5]). These conditions are given as follows:

Definition 5.1. Let G be a finite group and let f : S(G) → Z be super class function,
where S(G) denotes the family of all subgroups of G. We say the function f satisfies the
Borel-Smith conditions at a prime p, if it has the following properties:

(i) If L⊳K ≤ G are such that K/L ∼= Z/p, and p is odd, then f(L)− f(K) is even.

(ii) If L⊳K ≤ G are such that K/L ∼= Z/p×Z/p, and if Li/L denote the subgroups
of order p in K/L, then

f(L)− f(K) =

p∑

i=0

(f(Li)− f(K)).

(iii) If p = 2, and L⊳K ⊳N ≤ G are such that L⊳N , K/L ∼= Z/2, and N/L ∼= Z/4,
then f(L)− f(K) is even.

(iv) If p = 2, and L⊳K ⊳N ≤ G are such that L⊳N , K/L ∼= Z/2, and N/L = Q8

is the quaternion group of order 8, then f(L)− f(K) is divisible by 4.

We will show that these conditions are satisfied by the homological dimension function
n of a finite projective complex C over RΓG which is an R-homology n-sphere. Recall
that n(H) = −1 whenever H /∈ F, by Definition 2.7.

Theorem C. Let G be a finite group, R = Z/p, and let F be a given family of subgroups of
G. If C is a finite projective chain complex over RΓG, which is an R-homology n-sphere,
then the function n satisfies the Borel-Smith conditions at the prime p.

The rest of the section is devoted to the proof of Theorem C. As a first step of the
proof we extend the given family F to the family S(G) of all subgroups of G by taking
C(H) = 0 for every H 6∈ F. Over the extended family, C is still a finite projective chain
complex over RΓG and an R-homology n-sphere.

The Borel-Smith conditions are conditions on subquotients K/L where L⊳K ≤ G. To
show that a Borel-Smith condition holds for a particular subquotient group K/L, we con-
sider the complex DefKK/LRes

G
K C (see Section 4). This is a finite projective complex over

RΓK/L because both restriction and deflation functors preserve projectives (the condition
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in Lemma 4.2 is satisfied because we extended our family F to the family of all subgroups
of G).

Our first observation is the following:

Lemma 5.2. Let G be a finite group and let R = Z/p. If C is a finite projective chain
complex over RΓG, which is an R-homology n-sphere, then whenever L ⊳ K ≤ G and
K/L is a p-group, we have n(L) ≥ n(K).

Proof. By the discussion above, it is enough to show that if G = Z/p and C is a finite
projective RΓG-complex which is an R-homology n-sphere, then the inequality n(1) ≥
n(G) holds. Assume that n(1) 6= n(G). Since R is projective, we can add C−1 = R

and consider the homology of the augmented complex C̃. The complex C̃ has nontrivial
homology only at two dimensions, say m and k with m > k, so we get an extension of the
form

0 → Hm(C̃) → C̃m/ im ∂m+1 → · · · → C̃k+1 → ker ∂k → Hk(C̃) → 0.

where the homology modules are I1R and IGR in some order.
For H ∈ F, the module IHM denotes the atomic module concentrated at H with the

value (IHM)(H) = M (see [10, 9.29]). We claim that Hm(C̃) = I1R and Hk(C̃) = IGR,
meaning that the module IGR appears before I1R in the homology. Once we show this,
it will imply that n(1) > n(G) as desired.

Let D denote the chain complex obtained by erasing the homology groups Hm(C̃) and

Hk(C̃) from the above exact sequence. Since ker ∂k is projective and im ∂m+1 has a finite
projective resolution, the Ext-group Ext∗RΓG

(D,M) is zero after some fixed dimension, for
every RΓG-module M . We will take M = I1R for simplicity.

There is a two-line spectral sequence Es,t
2 = ExtsRΓG

(Ht(D),M) which converges to

Ext∗RΓG
(D,M). Suppose, if possible, that Hk(C̃) = I1R. The module I1R is concentrated

at 1, so its projective resolution is of the form E1P∗ for some projective resolution P∗

of R as an RG-module. Then the bottom line of this spectral sequence E∗,0
2 would be

isomorphic to

Ext∗RΓG
(Hk(C̃),M) = Ext∗RΓG

(I1R, I1R) = H i(HomRΓG
(E1P∗, I1R)) = H∗(G;R).

Since this cohomology ring is not finitely generated, there must be a non-trivial differential
from the top line

Ext∗RΓG
(Hm(C̃),M) = Ext∗RΓG

(IGR, I1R)

in order for the spectral sequence to converge to a finite dimensional limit.
The differential of this spectral sequence is given by multiplication with an extension

class in Extm−k+1
RΓG

(I1R, IGR). But, by a similar calculation as above, we see that

ExtiRΓG
(I1R, IGR) = H i(G, (IGR)(1))) = 0

for all i ≥ 0, because (IGR)(1) = 0. This contradiction shows that Hk(C̃) = IGR and

Hm(C̃) = I1R, as required. �

The above lemma shows that under the conditions of Theorem C, the dimension func-
tion n is monotone in the sense defined in [12, p. 211]. Now we verify (in separate steps)
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that the dimension function satisfies the conditions of Definition 5.1. These conditions
come from the period of the cohomology of the corresponding subquotient groups.

Lemma 5.3 (Borel-Smith, part (i)). Let G = Z/p, for p an odd prime, let R = Z/p, and
C be a finite projective RΓG-complex which is an R-homology n-sphere. Then n(1)−n(G)
is even.

Proof. Consider the subcomplex C̃(G) of C̃ consisting of all projectives of type R[G/G? ],

and let D = C̃/C̃(G) denote the quotient complex. The complex D has nontrivial homol-
ogy only in dimensions m and k + 1, where m = n(1) and k = n(G). Moreover, all the

RΓG-modules in the complex D are of the form R[G/1 ? ]. Evaluating at the subgroup 1,
we obtain a chain complex of free RG-modules

0 → Qd → · · · → Qm+1
∂m+1

−−−→ Qm → · · · → Qk+1
∂k+1

−−→ Qk → · · · → Q0 → 0.

whose homology is R at dimensions m and k + 1. This gives an exact sequence of the
form

0 → R → Qm/ im ∂m+1 → · · · → Qk+2 → ker ∂k+1 → R → 0.

Using the fact that free RG-modules are both projective and injective, we conclude that
all the modules in the above sequence, except the two R’s on the both ends, are projective
as RG-modules, so we have a periodic resolution. Since the group G = Z/p has periodic
R-cohomology with period 2, we have m− k = n(1)− n(G) ≡ 0 (mod 2). �

Remark 5.4. The R-cohomology of the group G = Z/2 is periodic of period 1.

For condition (ii), the argument is more involved. As before, after the subquotient
reduction we may assume that G = K/L = Z/p × Z/p, and that F is the family of all
subgroups of G. Since the complex C is a finite complex of projective modules, for any
RΓG-module M , we have

Hn(HomRΓG
(C,M)) = 0

for n > d, where d is the dimension of the chain complex C. Consider the hyper-
cohomology spectral sequence for the complexC. This is a spectral-sequence with E2-term
given by

(5.5) Es,t
2 = ExtsRΓG

(Ht(C),M)

which converges to Hs+t(HomRΓG
(C,M)). Since R is a projective RΓG-module, we can

replace Ht(C) with the reduced homology H̃t(C). So, we have nonzero terms for Es,t
2 only

when t is equal to n1 = n(1), nG = n(G), or nHi
= n(Hi) where Hi are the subgroups of

G of order p. Since n is monotone, we have n1 ≥ nHi
≥ nG for all i ∈ {0, . . . , p}. The

required formula is

n1 − nG =

p∑

i=0

(nHi
− nG).

Remark 5.6. In the proof below we assume n1 > nHi
> nG for all i, to make the

argument easy to follow. If for some i, we have nHi
= n1 or nHi

= nG, then the argument
below can be adjusted easily to include these cases as well.
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By adding free summands to the complex C, we can assume that all the cohomology
between dimensions n1 and nG is concentrated at the dimension nM = maxi{nHi

}. Then
the homology at this dimension will be an RΓG-module which is filtered by Heller shifts
of homology groups Ht(C) at dimensions t = nHi

for i = 0, . . . , p. The homology of the
complex C at dimension nHi

is IHi
R, where IHi

R denotes the RΓG module with value R
at Hi and zero at all the other subgroups. We have the following lemma.

Lemma 5.7. If i, j ∈ {0, . . . , p} are such that i 6= j, then

ExtmRΓG
(IHi

R, IHj
R) = 0

for every m ≥ 0.

Proof. The projective resolution of IHi
is formed by projective modules of type EHP with

H = 1 or Hi. Since

HomRΓG
(EHP, IHj

R) ∼= HomRWG(H)(P, IHj
(H)) = 0

when i 6= j, we obtain the desired result. �

As a consequence of Lemma 5.7, we conclude that all the extensions in this filtration of
HnM

(C) are split extensions. So, the homology module HnM
(C) is isomorphic to a direct

sum of Heller shifts of modules IHi
R. In particular, we obtain that, for any RΓG-module

M ,

ExtsRΓG
(HnM

(C),M) ∼= ⊕i Ext
s+nM−nHi
RΓG

(IHi
R,M)

for every s ≥ 0.
The spectral sequence given in (5.5) converges to zero for total dimension > d. It has

only three non-zero horizontal lines, so it gives a long exact sequence of the form

· · · → Extk+n1−nG+1
RΓG

(IGR,M)
δ
−→ ExtkRΓG

(I1R,M)
γ
−→ ⊕p

i=0 Ext
k+n1−nHi

+1

RΓG
(IHi

R,M)

→ Extk+n1−nG+2
RΓG

(IGR,M)
δ
−→ Extk+1

RΓG
(I1R,M) → · · ·

where k is an integer such that k > d−n1 andM is any RΓG-module. If we takeM = I1R,
then ExtkRΓG

(I1R,M) ∼= Hk(G,R). When M = I1R, the other Ext-groups in the above
exact sequence also reduce to the cohomology of the group G with some dimension shifts.

Lemma 5.8. For every i ∈ {0, . . . , p}, we have

ExtmRΓG
(IHi

R, I1R) ∼= Extm−1
RΓG

(I1R, I1R) ∼= Hm−1(G;R)

for every m ≥ 1. We also have

ExtmRΓG
(IGR, I1R) ∼= ⊕p Ext

m−2
RΓG

(I1R, I1R) ∼= ⊕pH
m−2(G;R)

for every m ≥ 2. Here ⊕p denotes the direct sum of p-copies of the same R-module.

Proof. Since we already observed that ExtkRΓG
(I1R, I1R) ∼= Hk(G,R) for every k ≥ 0,

it is enough to show the first isomorphisms. Let i ∈ {0, . . . , p} and JHi
R denote the

RΓG module with value R at subgroups 1 and Hi and zero at every other subgroup. We
assume that the restriction map is an isomorphism. So we have a non-split exact sequence
of RΓG-modules of the form

0 → I1R → JHi
R → IHi

R → 0.
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Since the projective resolution of JHi
R will only include projective modules of the form

EHi
P , we have ExtmRΓG

(JHi
R, I1R) = 0 for all m ≥ 0. The long exact Ext-group sequence

associated to the above short exact sequence will give the desired isomorphism for the
module IHi

R.
For the second statement in the lemma, we again only need to show that the isomor-

phism

ExtmRΓG
(IGR, I1R) ∼= ⊕p Ext

m−2
RΓG

(I1R, I1R)

holds for all m ≥ 2. Let N denote the RΓG-module defined as the kernel of the map
R → IGR which induces the identity homomorphism at G. Since the constant module R
is projective as a RΓG-module, we have

ExtmRΓ (IGR, I1R) ∼= Extm−1
RΓ (N, I1R)

for m ≥ 2. In addition, there is an exact sequence of the form

0 → ⊕pI1R → ⊕p
i=0JHi

R → N → 0.

Since ExtmRΓG
(JHi

R, I1R) = 0 for all m ≥ 0, we obtain

ExtmRΓ (IGR, I1R) ∼= Extm−1
RΓ (N, I1R) ∼= ⊕p Ext

m−2
RΓ (I1R, I1R) ∼= ⊕pH

m−2(G;R)

for every m ≥ 2. This completes the proof of the lemma. �

Lemma 5.9 (Borel-Smith, part (ii)). Let G = Z/p × Z/p, let R = Z/p, and let C be a
finite projective RΓG-complex which is an R-homology n-sphere. Then

n(1)− n(G) =

p∑

i=0

(n(Hi)− n(G))

where H0, H1, . . . , Hp denote the distinct subgroups of G of order p.

Proof. Using the Ext-group calculations given in Lemma 5.8, we obtain a long exact
sequence of the form

· · · → ⊕pH
k+n1−nG−1(G;R)

δ
−→ Hk(G;R)

γ
−→ ⊕p

i=0H
k+n1−nHi (G;R)

→ ⊕pH
k+n1−nG(G;R)

δ
−→ Hk+1(G;R) → · · ·

where k > d − n1. We claim that the map γ is injective. Observe that if γ = ⊕γi, then
for each i, the map γi can be defined as multiplication with some cohomology class ui.
To see this observe that γ is the map induced by the differential

dn1−nM+1 : ExtkRΓG
(Hn1

(C), I1R) → Extk+n1−nM+1
RΓG

(HnM
(C), I1R)

on the hypercohomology spectral sequence given at (5.5). This spectral sequence has
an Ext∗RΓ (I1R, I1R)-module structure, where the multiplication is given by the Yoneda
product, defined by splicing the corresponding extensions (see [2, Section 4]).

Under the isomorphisms given in Lemma 5.8, the differential dn1−nM+1 becomes a map
Hk(G,R) → ⊕iH

k+n1−nHi (G,R) and the Yoneda product of Ext-groups is the same as the
usual cup product multiplication in group cohomology under the canonical isomorphism
ExtmRΓG

(I1R, I1R) ∼= Hm(G,R) (for comparison of different products on group cohomology
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see [5, Proposition 4.3.5]). So we can conclude that γi is the map defined by multiplication
(the usual cup product) with a cohomology class ui ∈ Hn1−nHi (G,R).

For p = 2, the cohomology ring H∗(G,R) is isomorphic to a polynomial algebra R[t1, t2]
with deg ti = 1 for i = 1, 2. Since there are no nonzero divisors in a polynomial algebra,
the map γ is either injective or the zero map.

For p an odd prime, the cohomology ring H∗(G,R) is isomorphic to the tensor product
of an exterior algebra with a polynomial algebra

ΛR(a1, a2)⊗ R[x1, x2]

where deg ai = 1 and deg xi = 2, and the nonzero divisors of this ring are multiples of ai
or aj. By Lemma 5.3, deg ui = n1 − nHi

≡ 0 (mod 2), so the map γ is either injective, or
each ui must be a multiple of a1a2.

The assumption that γ is not injective implies that the entire spectral sequence re-
stricted to some Hi

∼= Z/p, with ResGHi
(a1a2) = 0, will result in a spectral sequence which

collapses. This is because ResGHi
IGR = 0 and ResGHi

IHj
R = 0 if i 6= j. But the cohomol-

ogy H∗(Z/p;R) is not finite-dimensional, and the restriction of C to a proper subgroup
is still a finite projective chain complex, so this gives a contradiction. Hence, we can
conclude that γ is injective.

The fact that γ is injective gives a short exact sequence of the form

0 → Hk(G;R)
γ
−→ ⊕p

i=0H
k+n1−nHi (G;R) → ⊕pH

k+n1−nG(G;R) → 0,

for every k > d− n1. Since dimR Hm(G;R) = m+ 1, we obtain

(k + 1) + p(k + n1 − nG + 1) =

p∑

i=0

(k + n1 − nHi
+ 1).

Cancelling the (k + 1)’s and grouping the terms in a different way gives the desired
equality. �

The next part uses the same spectral sequence, but the details are much simpler.

Lemma 5.10 (Borel-Smith, part (iii)). Let G = Z/4, let R = Z/2, and let C be a finite
projective RΓG-complex which is an R-homology n-sphere. If 1 ⊳K ⊳ G with K ∼= Z/2,
then n(1)− n(K) is even.

Proof. We consider the spectral sequence

Es,t
2 = ExtsRΓG

(Ht(C),M),

with M = I1R, which converges to Hs+t(HomRΓG
(C,M)). Write n1 = n(1), nK = n(K),

and nG = n(G). Once again, the fact that Hk(C;M) is zero in large dimensions k > d =
dimC(1) gives rise to a long exact sequence

· · · → Extk+n1−nG+1
RΓG

(IGR,M)
δ
−→ ExtkRΓG

(I1R,M)
γ
−→ Extk+n1−nK+1

RΓG
(IKR,M)

→ Extk+n1−nG+2
RΓG

(IGR,M)
δ
−→ Extk+1

RΓG
(I1R,M) → · · ·

The analogue of Lemma 5.8 is easier in this case. We obtain

ExtmRΓG
(IKR, I1R) ∼= Extm−1

RΓG
(I1R, I1R) ∼= Hm−1(G;R)
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for every m ≥ 1, and ExtmRΓG
(IGR, I1R) = 0 for every m ≥ 0. The vanishing result follows

from the short exact sequence

0 → JKR → R → IGR → 0

and the fact that ExtmRΓG
(JKR, I1R) = 0, for m ≥ 0, since JKR has a projective resolution

consisting of modules of the form EKP . On substituting these values into the long exact
sequence, we obtain an isomorphism

γ : Hk(G;R) ∼= Hk+n1−nK (G;R)

induced by cup product, for all large k. Since the cohomology ring H∗(G;R) modulo
nilpotent elements is generated by a 2-dimensional class, it follows that n1 − nK must be
even. �

Lemma 5.11 (Borel-Smith, part (iv)). Let G = Q8, let R = Z/2, and let C be a finite
projective RΓG-complex which is an R-homology n-sphere. If 1 ⊳K ⊳ G with K ∼= Z/2,
then n(1)− n(K) is divisible by 4.

Proof. This time we have three index 2 normal subgroups H1, H2, H3, each isomorphic to
Z/4. Write n1 = n(1), nK = n(K), nHi

= n(Hi), for 1 ≤ i ≤ 3, and nG = n(G). We
again consider the spectral sequence

Es,t
2 = ExtsRΓG

(Ht(C),M),

with M = I1R, which converges to Hs+t(HomRΓG
(C,M)). The exact sequences

0 → N → R → IGR → 0

and

0 → (JKR)2 → ⊕iJHi
R → N → 0

lead to the calculation

ExtmRΓG
(IGR, I1R) = 0

for every m ≥ 0. The exact sequence

0 → I1R → JKR → IKR → 0

implies that ExtmRΓG
(IKR, I1R) = Hm−1(G;R), for m ≥ 1. Finally, the exact sequences

0 → JKR → JHi
R → IHi

R → 0

show that ExtmRΓG
(IHi

R, I1R) = 0, for m ≥ 0 and 1 ≤ i ≤ 3.
As a result of these calculations, we again obtain a 3-line spectral sequence with corre-

sponding long exact sequence

· · · → Extk+n1−nG+1
RΓG

(IGR,M)
δ
−→ ExtkRΓG

(I1R,M)
γ
−→ Extk+n1−nK+1

RΓG
(IKR,M)

→ Extk+n1−nG+2
RΓG

(IGR,M)
δ
−→ Extk+1

RΓG
(I1R,M) → · · ·

in all large dimensions k > d. By the vanishing result above, the map

γ : Hk(G;R) ∼= Hk+n1−nK (G;R)
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is an isomorphism induced by cup product. Since the cohomology ring H∗(G;R) modulo
nilpotent elements is generated by a 4-dimensional class, it follows that n1−nK is divisible
by 4. �

Remark 5.12. The fact that the dimension function of an algebraic n-homology sphere
satisfies the Borel-Smith conditions suggests that more of the classical results on finite
group actions on spheres might hold for finite projective chain complexes over a suitable
orbit category. For example, one could ask for an algebraic version of the results of Dotzel-
Hamrick [6] on p-groups. Other potential applications of algebraic models to finite group
actions are outlined in [7].

Example 5.13. An important test case for groups acting on spheres, or on products of
spheres [1], is the rank two group Qd(p) = (Z/p × Z/p) ⋊ SL2(p). At present, it is not

known whether Qd(p) can act freely on a product of two spheres, but Ünlü [13] showed
that Qd(p) does not act on a finite complex homotopy equivalent to a sphere with rank
one isotropy.

We can apply the Borel-Smith conditions prove an algebraic version of this result.

Proposition 5.14. Let p be an odd prime, G = Qd(p), R = Z/p, and F be the family
of all subgroups H ≤ G such that rankp(H) ≤ 1. Let n be a super class function with
n(1) ≥ 0. Then, there exists no finite projective chain complex C over RΓG which is an
R-homology n-sphere.

Proof. We can extend the family F to the family S(G) of all subgroups of G by taking
C(H) = 0 for all subgroups such that H 6∈ F. For these subgroups, we take n(H) = −1.
Observe that by Theorem C, the dimension function n : S(G) → Z satisfies the Borel-
Smith conditions at the prime p.

Now the rest of the argument follows as in Ünlü [13, Theorem 3.3]. Let P be a Sylow
p-subgroup of Qd(p). The group P is isomorphic to the extra-special p-group of order
p3 and exponent p. If Z(P ) is the center of P , then the quotient group P/Z(P ) is
isomorphic to Z/p × Z/p. Applying the Borel-Smith condition (ii) for this quotient, we
get n(Z(P )) = −1. In G, it is possible to find two Sylow p-subgroups P1 and P2 such that
E = P1 ∩ P2

∼= Z/p× Z/p and Z(P1) and Z(P2) are distinct subgroups of order p in E.
Two such Sylow p-subgroups can be given as Pi = (Z/p× Z/p)⋊ 〈Ai〉 for i = 1, 2 where

A1 =

(
1 1
0 1

)
A2 =

(
1 0
1 1

)

By the above argument, n(Z(Pi)) = −1, and non-central p-subgroups in E are conjugate
to each other. So, we obtain that n(K) = −1 for every subgroup K of order p in E. By
the Borel-Smith conditions applied to E, we get n(1) = −1, contradicting our assumption
on n. �
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