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Abstract

It has been found in numerical experiments [15] that when one removes a sector from an
elastic sheet and glues the edges of the sector back together, the resulting configuration is
radially symmetric and nearly conical. We make a rigorous analysis of this setting under
two simplyfying assumptions: Firstly, we only consider radially symmetric configurations.
Secondly, we consider the so-called von-Kármán limit, where the size of the removed region as
well as the deformations are small. We choose free boundary conditions for a sheet of infinite
size. We show existence of minimizers of the suitably renormalized free energy functional. As
a by-product, we obtain a lower bound for the elastic energy that has been conjectured in the
related context of d-cones [17]. Moreover, we determine the shape of minimizers at infinity up
to terms that decay like exp(−c

√

r).

1 Introduction

The folding of paper or other thin elastic sheets is one of the many examples of energy focusing
in the physical world. Starting in the late 90’s, there has been a lot of interest in this problem
in the physics community [14, 4, 6, 19, 3, 10, 13, 16, 5]. In particular the crumpling of paper
(i.e. the crushing of a thin elastic sheet into a container whose diameter is smaller than the size
of the sheet) which results in complex folding patterns has drawn a lot of attention. It has been
conjectured that the energy density per thickness h of such a folding pattern scales with h5/3. One
major contribution in the rigorous analysis of this problem is [9], building on ideas from [18].
Here we focus on approximately conical deformations of thin elastic sheets, that can be viewed
as (one kind of) building blocks of crumpled deformations. One example for this is a sheet that
is pushed into a hollow cylinder, such that the indentation of the sheet is small. The resulting
structure is called a d-cone (developable cone). In the physics literature, it has been discussed
e.g. in [4, 6, 14, 19]. There are several remarkable features of the d-cone, one of which is that the
tip of the d-cone consists of a crescent-shaped ridge where curvature and elastic stress focus. In
numerical simulations it was found that the radius of the crescent Rcres. scales with the thickness
of the sheet h and the radius of the container Rcont. as Rcres. ∼ h1/3R

2/3
cont.. This dependence

on the container radius of the shape of the region near the tip is not fully understood [19]. As
argued in this latter reference, it cannot be explained by an analysis of the dominant contributions
to the elastic energy, which are: The bending energy from the region far away from the center,
which is well captured by modeling the d-cone as a developable surface there; and the bending
and stretching energy part from a core region of size O(h) where elastic strain is not negligible.
The result of this (non-rigorous) argument is an energy scaling E ∼ h2(C1| log h| + C2). This is
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a natural guess – the situation here bears some resemblance to vortices in the Ginzburg-Landau
model, where this is the right energy scaling [1].
In [17, 2] the scaling of the elastic energy of a d-cone with respect to its thickness h has been
analyzed in a rigorous setting. The result from [17] is

h2(C1| log h| − C2 log | log h|) ≤ Eh ≤ h2(C1| log h|+ C3) . (1)

The lower bound does not achieve the conjectured scaling behaviour, and it seems that this claim
can not be proved with the methods used in [17].

Here we consider another situation which involves the regularization of an isometric cone through
the higher order bending energy. The main difference with the (general) d-cone is that here the
underlying cone is a surface of revolution. Hence it is meaningful to study the problem of the
competition between bending and stretching energies in a radially symmetric setting. This makes
it possible to use ODE methods in addition to energy methods. We will show that a scaling result
analogous to the one above without the log log h terms on the left hand side holds in this simpler
setting.

The setting is the following: to create an approximately conical deformation of an elastic sheet,
we cut out a sector of angle β and glue the edges of this sector back together. This situation has
been investigated numerically in [15], where it is called “regular cone”. In this situation, radially
symmetric deformations are admissible – in contrast to the case of the d-cone, where the boundary
conditions are not radially symmetric. To the best of our knowledge, it is not known whether the
global minimizers of the “regular cone” are radially symmetric. We nonetheless believe that a care-
ful study of minimizers within the class of radially symmetric deformations will help to understand
the structure of local and global minimizers as well as the local and global stability of possible
radially symmetric minimizers. Since we are interested in the asymptotic behaviour, we consider a
sheet of infinite radius with free boundaries (after suitable renormalization of the energy, see below).

Apart from the restriction to radially symmetric configurations, we make one more simplifica-
tion in comparison to the situation in [17]: We use the so-called von-Kármán approximation of
non-linear elasticity [7, 11]. This means that the out-of-plane component of the deformation is
supposed to be of the order ε ≪ 1, and the size of the removed sector as well as the in-plane
deformation are of order ε2. All terms in the elastic energy of order εk, k > 4, and of order h2εk,
k > 2 are discarded.

As we will explain in Section 2, these considerations lead to the definition of the free elastic
energy density

ρel.λ = (ŵ2 − 1 + û′)2 +

(

û

r

)2

+ λ2
(

ŵ′2 +
ŵ2

r2

)

where λ = h/ε and the deformation of the sheet is given as a map from spherical to cylindrical
coordinates by

(r, ϕ) 7→
(

r +
ε2

2
(û − r),

√

1 + ε2ϕ, εW

)

(2)

with W ′ = ŵ. The renormalized energy functional is

Êλ : W → R ∪ {+∞}
(û, ŵ) 7→ limR→∞

∫ R

0 rdr
(

ρel.λ (r) − λ2 ψ(r/λ)
2

r2

) (3)

where

W =
{

(û, ŵ) ∈W 1,2
loc ((0,∞),R2) :

∫ 1

0

rdrρel.λ (r) <∞
}

,
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and ψ is some cutoff function with ψ(r) = 0 for r close to 0 and ψ(r) = 1 for r ≥ 1. We will show in

Lemma 1 that the condition
∫ 1

0 rdrρ
el.
λ (r) <∞ implies û(0) = ŵ(0) = 0 and thus the deformation

(2) is continuous at the origin for all (û, ŵ) ∈ W .

The aim of the present contribution is to prove

Theorem 1. The functional Êλ from eq. (3) is well defined and bounded from below. It possesses
minimizers (û, ŵ) in W with ŵ ≥ 0 and Êλ(û, ŵ) < ∞. Furthermore, each minimizer (û, ŵ) with
ŵ ≥ 0 satisfies

û(r) =
λ

2r
+ o(exp(−σ

√

r/λ))

ŵ(r) =1 + o(exp(−σ
√

r/λ))

as r → ∞ for any σ < 2.

As a side product of the proof of Theorem 1, we will get a lower bound for the elastic energy
when the radius of the elastic sheet in the reference configuration is assumed to be finite. This
lower bound is better than the analogous one from eq. (1) in that the log log-terms are not present.
To give an idea how this “improved” lower bound comes about, let

Iλ =

∫ 1

0

rdrρel.λ . (4)

The first step to establish the lower bound in the present setting is the right renormalization of
the elastic energy density. We expect a logarithmic divergence in λ of λ−2Iλ as λ → 0. Thus we
make the replacement

ρel.λ (r) → ρel.λ (r)− λ2
ψ(r/λ)2

r2

The key step is now to find a change of variables that makes it obvious that

∫ 1

0

rdr

(

ρel.λ (r) − λ2
ψ(r/λ)2

r2

)

(5)

is bounded from below by some constant times λ2. As we will see in Section 3, such a change of
variables does exist, and will leave us only with manifestly positive terms in the renormalized energy
eq. (5) plus some divergence-like term that will be estimated in a suitable manner in Proposition
4. Thus we get the sought-for lower bound

λ−2Iλ ≥ | logλ| − C . (6)

This paper is organised as follows: In Section 2, we motivate and define our model. In Section 3 we
establish a lower bound for the renormalized energy and prove the existence of minimizers of the
elastic free energy functional. In a remark at the end of that section, we will discuss a pathology
of the model presented here. In section 4, we use stable manifold theory to show that minimizers
converge to the conical configuration at infinity.

Notation. In this paper, the letter C stands for numerical constants that are independent of
all the other variables. Its value may change within the same equation. In section 2, we will choose
a cutoff function ψ ∈ C∞([0,∞)), that we have already mentioned above. The cutoff function ψ
will then be fixed for the rest of the paper. We will not indicate the dependence of constants on
this choice of ψ. Whenever we speak of functions f ∈ W 1,2

loc.(I) for some I ⊂ R, it will be tacitly
understood that we mean its continuous representative.
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2 The model

Cutting out a sector, glueing the edges back together. For small ε > 0 let β(ε) be defined
by 2π/(2π − β(ε)) =

√
1 + ε2, and let

B(ε) = R
2 \
{

(x1, x2) : x2 < 0 < x1, −β(ε) < arctanx2/x1 < 0
}

We define a deformation y : B(ε) → R
3 whose image has rotational symmetry. We are going to use

cylindrical coordinates (r, ϕ),
y(r, ϕ) = U(r)e(ε)r + V (r)ez (7)

where

U : [0,∞) → [0,∞)

V : [0,∞) → (−∞,∞)

e(ε)r = (cosϕ(ε), sinϕ(ε), 0)

ϕ(ε) =
2π

2π − β(ε)
ϕ

We calculate

∇y =
(

U ′e(ε)r + V ′ez

)

⊗ er +

√
1 + ε2

r
U e(ε)ϕ ⊗ eϕ

∇yT∇y − Id =
(

(U ′)2 + (V ′)2 − 1
)

er ⊗ er +

(

1 + ε2

r2
U2 − 1

)

eϕ ⊗ eϕ

∇2y =
(

U ′′e(ε)r + V ′′ez

)

⊗ er ⊗ er +
√

1 + ε2
(

U

r

)′

e(ε)ϕ ⊗ (eϕ ⊗ er + er ⊗ eϕ)

+

(

U ′

r
− (1 + ε2)U

r2

)

e(ε)r ⊗ eϕ ⊗ eϕ +
V ′

r
ez ⊗ eϕ ⊗ eϕ

Definition of the elastic energy. As a starting point, we choose the elastic energy density to
be

ρ̄el. =
∣

∣∇yT∇y − Id
∣

∣

2
+ h2|∇2y|2

where h is a parameter for the thickness of the sheet under consideration. The first term on the
right hand side represents the stretching energy density, the second one the bending energy density.
This is a standard ansatz for the elastic energy, for a justification see e.g. [9].

Von-Kármán ansatz, change of variables. Now we make the ansatz

U(r) =r +O(ε2)

V (r) =O(ε) , (8)

where ε is some small parameter. The following changes of variables will be convenient,

U(r) =r +
ε2

2
(û(r) − r)

V ′(r) =εŵ(r) (9)

and, alternatively,

U(r) = r +
ε2

2

(

u(r) + λ2
ψ(r/λ)

2r
− r

)

V ′(r) = ε(ψ(r/λ) + w(r)) ,

4



where λ = h/ε, ψ ∈ C∞([0,∞) with ψ(r) = 0 near r = 0 and ψ(r) = 1 for r ≥ 1.
A short computation shows that the elastic energy density is given by

ρ̄el. =ε
4

(

(ŵ2 − 1 + û′)2 +

(

û

r

)2

+ λ2
(

ŵ′2 +
ŵ2

r2

)

)

+O(ε6) +O(ε6λ2) .

We build our model only considering the leading terms in ε for fixed λ, defining

ρel.λ = lim
ε→0

ε−4ρ̄el.

=

(

(ŵ2 − 1 + û′)2 +

(

û

r

)2

+ λ2
(

ŵ′2 +
ŵ2

r2

)

)

. (10)

Renormalization and rescaling. The (u,w) variables have been chosen such that we expect
u, u′, w, w′ to vanish as r → ∞. By an inspection of the energy density ρel.λ (r) we expect that the
integral

∫ R

0

rdrρel.λ (r)

diverges logarithmically as R → ∞. To have some hope of a meaningful limit for R → ∞, we
introduce the renormalized functional

ÊRλ : W → R

(û, ŵ) 7→
∫ R

0 rdr
(

ρel.λ (r) − λ2 ψ(r/λ)
2

r2

)

.

In the sequel, we will set λ ≡ 1, and derive all results for this value of λ. The general case can be
recovered by the change of variables r → r/λ, which we will do at the very end. In fact the change
of variable formula yields

ÊRλ (û, ŵ) = λ2Ê
R/λ
1

(

λ−1û(λ·), ŵ(λ·)
)

(11)

for any û, ŵ ∈ W 1,2
loc .

We will use the following notation:

ÊR1 =ÊR

ER(u,w) =ÊR(û, ŵ)

For the reader’s convenience, we summarize some of the notation for future reference (with λ ≡ 1):

W =
{

(û, ŵ) ∈ W 1,2
loc ((0,∞),R2) : E1(u,w) <∞

}

ψ ∈C∞([0,∞)) with

ψ(r) = 0 near r = 0 and ψ(r) = 1 for r ≥ 1

u(r) =û(r) − ψ(r)

2r
w(r) =ŵ(r) − ψ(r)

ρel. =(ŵ2 − 1 + û′)2 + (û/r)2 + ŵ′2 + r−2ŵ2

ÊR, ER :W → R

ÊR(û, ŵ) =

∫ R

0

rdr
(

ρel.(r) − r−2ψ2
)

ER(u,w) =ÊR(û, ŵ)

(12)
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Proposition 1. If (u,w) ∈ W then

lim
r→0

u(r) = 0, lim
r→0

w(r) = 0. (13)

To show this we recall the following result.

Lemma 1. (i) Let a ∈ R and let I = (−∞, a) or I = (a,∞). If g ∈ W 1,2(I) then

sup
I
g2 ≤ 2‖g‖L2 ‖g′‖L2 ≤

∫

I

dt(g2 + g′2) (14)

and
lim

t→−∞
g(t) = 0 or lim

t→∞
g(t) = 0, respectively. (15)

(ii) If r0 ∈ (0,∞) let J = (0, r0) or J = (r0,∞) and assume that h ∈W 1,2
loc (J) and

∫

J

rdr

[

h′2 +
h2

r2

]

<∞ (16)

then

sup
I
h2 ≤ 2‖h‖L2(I;dr/r) ‖h′‖L2(I;rdr) ≤

∫

J

rdr

[

h′2 +
h2

r2

]

(17)

and
lim
r→0

h(r) = 0 or lim
r→∞

h(r) = 0, respectively. (18)

Proof. Assertion (ii) follows from assertion (i) and the change of variables r = et. To prove (i)
note that (g2)′ = 2gg′ and thus by the fundamental theorem of calculus

sup g2 − inf g2 =

∫

I

dt 2|gg′| ≤
∫

I

dt(g2 + g′2). (19)

Moreover inf g2 = 0 since g2 ∈ L1(I) and I is unbounded. This proves (14). Assume that
I = (−∞, a).Then for any t < a we also have

sup
(−∞,t)

g2 ≤
∫ t

−∞

dt(g2 + g′2) (20)

Now the right hand side goes to 0 as t → −∞. Thus limt→−∞ g(t) = 0. The case I = (a,∞) is
analogous.

Proof of Proposition 1. It follows from the conditionE1(u,w) <∞ and Lemma 1 that sup(0,1) |ŵ| <
∞ and limr→0 ŵ(r) = 0. This implies that

∫ 1

0 rdrû
′2 < ∞. Hence another application of Lemma

1 shows that limr→0 û(r) = 0. Since u = û and w = ŵ in some interval (0, r0) the assertion of the
proposition follows.

3 Existence of minimizers

We will show that for (u,w) ∈ W the limit E(u,w) = limR→∞ER(u,w) exists in (−∞,∞] and
that E has a minimizer in W .

The main difficulty is that the renormalized energy density ρel.(r) − r−2ψ2 is not pointwise
positive and therefore it is not clear that ER(u,w) is bounded from below as R → ∞. We thus
proceed in several steps.
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1. We first show that ρel.(r)− r−2ψ2 can be rewritten as a pointwise positive term plus − 1
r

(

u
r

)′

(plus a harmless explicit term with rapid decay at infinity). The point is that − 1
r

(

u
r

)′
reduces

to a boundary term when integrated against the measure rdr. Thus ER(u,w) is bounded
from below by the positive functional

E+,R(u,w) :=

∫ 1

0

rdr

[

(

ŵ2 − 1 + û′
)2

+
û2

r2
+ ŵ′2 +

ŵ2

r2

]

(21)

+

∫ R

1

rdr

[

(2w + w2 + u′)2 +
u2

r2
+ w′2

]

. (22)

up to the terms u(1) and u(R)/R.

2. The integrand in E+ is a sum of positive terms but does not directly give bounds for w and
u′. We derive an interpolation inequality which allows us to estimate g in a (weighted) L2

space if we control (g + f ′) and f and g′ in suitably weighted L2 spaces (this is essentially
and interpolation between H1 and H−1, see Lemma 2).

3. We would like to apply the interpolation inequality with g = 2w+w2 but to control g′ in L2

we need to control the L∞ norm of w. On the other hand if we control g and g′ in L2 then
we control g, and hence w, in L∞. In Lemma 3 we show that one can simultaneously bound
the (weigthed) L2 norm of g and the L∞ norm of w. This also gives enough control of u′ to
deduce that u(R)/R1/2 is controlled by E+,R(u,w).

4. We finally bound u(1) by a sublinear expression in E+,R(u,w). This allows us to absorb the
boundary terms and to obtain a lower bound

ER(u,w) ≥ 1

2
E+,R(u,w)− C, (23)

for R ≥ R0. From this it easily follows that the limit limR→∞ER(u,w) exists and moreover
that this limit is finite if and only if E+(u,w) is finite, see Lemma 4.

5. With these preparations we deduce the existence of minimizers in the usual way by the direct
method of the calculus of variations.

We begin by rewriting the renormalized energy. We have ŵ = w + 1 and û = u+ 1
2r for r ≥ 1

and thus the renormalized energy (cf. eq. (12)) simplifies for r ≥ 1 to

ρel.(r) − 1

r2
=

(

2w + w2 + u′ − 1

2r2

)2

+

(

u+ 1/(2r)

r

)2

+ w′2 +
2w + w2

r2

=
(

2w + w2 + u′
)2 − 1

r2
(2w + w2 + u′) +

1

4r4
+
(u

r

)2

+
u

r3
+

1

4r4
+ w′2 +

2w + w2

r2

=
(

2w + w2 + u′
)2

+
(u

r

)2

+ w′2 − u′

r2
+
u

r3
+

1

2r4

=
(

2w + w2 + u′
)2

+
(u

r

)2

+ w′2 − 1

r

(u

r

)′

+
1

2r4
. (24)

The first three terms in (24) are positive, the last term is harmless (since it is integrable with
respect to the measure rdr) and the last but one term produces a boundary term −u(R)/R+u(1)
when integrated against rdr.

Definition 1. For 0 ≤ a < 1 < R ≤ ∞ define

E+(u,w; (a, 1)) :=

∫ 1

a

rdr

[

(ŵ2 − 1 + û′)2 +
û2

r2
+ ŵ′2 +

ŵ2

r2

]

, (25)

E+(u,w; (1, R)) :=

∫ R

1

rdr

[

(2w + w2 + u′)2 +
u2

r2
+ w′2

]

(26)

E+,R(u,w) := E+(u,w; (0, 1)) + E+(u,w; (1, R)) (27)

E+(u,w) := E+,∞ (28)
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where ŵ(r) = w(r) + ψ(r), û(r) = u(r) + ψ(r)
2r .

Note that by positivity of the integrand and the monotone convergence theorem the limit
limR→∞ E+,R(u,w) exists in R ∪ {∞} for all (u,w) ∈ W and agrees with E+(u,w).

From the formula (24) for the renormalized energy we get

E1(u,w) = E+(u,w; (0, 1))−
∫ 1

0

rdr
ψ2

r2
(29)

ER(u,w) = E+,R(u,w) + u(1)− u(R)

R
+

1

4
(1 −R−2)−

∫ 1

0

rdr
ψ2

r2
(30)

We want to show that ER ≥ 1
2E

+,R−C for R ≥ R0 and that limR→∞ u(R)/R = 0 if E+(u,w) <
∞. One difficulty is that the functional E+(u,w) is not obviously coercive. We get immediately
bounds for u and w′, but there are no direct bounds for u′ and w. We will obtain bounds on u′ and
w from an interpolation result. To state it, it is more convenient to make the change of variables
R = eT , ũ(t) = u(et) and w̃(t) = w(et). Then

E+(u,w; (1, R)) =

∫ R

1

rdr

[

(2w + w2 + u′)2 +
u2

r2
+ w′2

]

=

∫ T

0

dt
[

(

et(2w̃ + w̃2) + ũ′
)2

+ ũ2 + w̃′2
]

(31)

Lemma 2. Let T ∈ [1,∞], let I = (0, T ) and suppose that f, g ∈W 1,2
loc (I) and

et/2g + e−t/2f ′ ∈ L2(I), f ∈ L2(I), g′ ∈ L2(I). (32)

Then
g ∈ L2(I), e−tf ′ ∈ L2(I) (33)

and
‖g‖2L2 + ‖e−tf ′‖2L2 ≤ C

(

‖et/2g + e−t/2f ′‖2L2 + ‖f‖2L2 + ‖g′‖2L2

)

. (34)

Remark. For T = ∞ one can also prove a bound with the optimal exponential rate: the L2 norms
of et/2g and e−t/2f ′ are bounded in terms by a constant times ‖e−t/2f ′+et/2g‖L2+‖f‖L2+‖g′‖L2.
To see this one uses the identity (e−t/2f ′)2 + (et/2g)2 = (e−t/2f ′ + et/2g)2 − 2f ′g and integration
by parts. The following example shows that one cannot estimate eβtg for any β > 1

2 . Let α > 0

and f = 2e−αt sin et/2, g = −e−αte−t/2 cos et/2. Then f , etg + f ′ and g′ are in L2((0,∞)) but
eβtg /∈ L2((0,∞)) if β ≥ 1

2 + α.

Proof. Let

G(t) := −
∫ T

t

ds e−s/2(e−s/2f ′(s) + es/2g) +

∫ T

t

ds e−sf(s)− e−tf(t). (35)

Note that both integrals exist (even for T = ∞) since e−s/2f ′(s) + es/2g ∈ L2, f ∈ L2 and
e−s/2 ∈ L2. Moreover G is absolutely continuous and for a.e. t we have

G′(t) = e−tf ′(t) + g(t)− e−tf(t)− (e−tf(t))′ = g(t). (36)

Thus G ∈W 2,2
loc (I) and G

′′ = g′. Moreover by the Cauchy-Schwarz inequality

|G(t)| ≤ e−t/2‖e−s/2f ′ + es/2g‖L2 + e−t‖f‖L2 + e−tf(t) (37)

and this implies that
‖G‖L2 ≤ ‖e−s/2f ′(s) + es/2‖L2 + 2‖f‖L2. (38)
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For a ∈ (0, T − 1) we use the interpolation inequality

‖G′‖2L2((a,a+1) ≤ C
(

‖G‖2L2((a,a+1)) + ‖G′′‖2L2((a,a+1))

)

(39)

For a proof see, e.g., [12] or derive a contradiction from the assumptions ‖G′
j‖L2((0,1)) = 1 and

‖Gj‖2L2((0,1)) + ‖G′′
j ‖2L2((0,1)) → 0. Passage to the limit a ↓ 0 and a ↑ T − 1 (if T < ∞) shows

that the inequality also holds for a = 0 and a = T − 1 (if T < ∞). If T = ∞ we sum the
inequalities for a ∈ N. If T < ∞ we denote by [T ] the integer part of T and sum the inequalities
for a = 0, . . . , [T ]− 1 and a = T − 1. Since at most two of the intervals (a, a+ 1) overlap we get

‖G′‖2L2 ≤ 2C
(

‖G‖2L2 + ‖G′′‖2L2

)

(40)

Since G′ = g and G′′ = g′ the estimate for ‖g‖L2 follows from (38). The estimate for e−tf ′ follows
from the triangle inequality since e−tf ′ = e−t/2(e−t/2f ′ + et/2g)− g.

We would like to apply the interpolation result with f = ũ and g = 2w̃ + w̃2. We have
g′ = 2(1+ w̃)w̃′ and E+,R controls only the L2 norm of w̃′ and not directly the L2 norm of g′. We
thus simulataneously prove an L∞ bound for w̃ and an L2 bound for g.

Lemma 3. There exists a constant C with the following property. If R > 1 and (u,w) ∈
W 1,2

loc ([1, R)) with E(R) := E+(u,w; (1, R)) <∞ then

sup
[1,R]

|w| ≤ C(1 + E1/2(R)), (41)

∫ R

1

dr

r

[

(2w + w2)2 + u′2
]

≤ C(1 + E(R)2), (42)

R−1/2|u(R)| ≤ C(1 + E(R)). (43)

Proof. Let R = eT , ũ(t) = u(et), w̃(t) = w(et) and g = 2w̃ + w̃2. To prove (41) we will assume
in addition that w ∈ L∞((1, R)). This is no loss of generality since by the Sobolev embedding
theorem w ∈ L∞((1, R− ε)) for all ε positive. If we have (41) with R− ε instead of R for all ε > 0
we can then consider the limit ε ↓ 0 to obtain the estimate for R.

Let
M := sup

[0,T ]

|w̃| = sup
[1,R]

|w|. (44)

If M < 4 there is nothing to show. We may thus assume M ≥ 4. Then

1

2
M2 ≤ sup g, |g′| ≤ |2(1 + w̃)w̃′| ≤ 4M |w̃′|. (45)

By (31) we have

E(R) =

∫ T

0

dt
[

(

etg + ũ′
)2

+ ũ2 + w̃′2
]

. (46)

Thus arguing as in Lemma 1 and using the interpolation estimate with f = ũ we get

1

4
M4 ≤ inf

[0,T ]
g2 + (sup

[0,T ]

g2 − inf
[0,T ]

g2) ≤ 1

T

∫ T

0

dt g2 +

∫ T

0

dt g2 +

∫ T

0

dt g′2 (47)

≤ 2C

∫ T

0

dt
[

(e−t/2ũ′ + et/2g)2 + ũ2
]

+ (2C + 1)

∫ T

0

dt g′2 (48)

≤ CE(R) + 16M2(2C + 1)E(R) ≤ 1

8
M4 + C(1 + E(R)2), (49)

where we used Young’s inequality ab ≤ 1
8a

2 + 2b2. This implies (41).
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Now (42) follows directly from the interpolation estimate, (41) and (45). Indeed we have

∫ R

1

dr

r
(2w + w2)2 =

∫ T

0

dt g2

≤C
∫ T

0

dt
[

(e−t/2ũ′ + et/2g)2 + ũ2 + g′2
]

≤C(1 + E(R))E(R). (50)

and the bound for u′ follows by the triangle inequality since
∫ R

1 rdr(2w + w2 + u′)2 ≤ E(R) and
r−1 ≤ r on [1,∞).

Using again the interpolation inequality and the L∞ bound for w we get

R−1u2(R) ≤ sup
[0,T ]

e−tũ2 = inf
[0,T ]

e−tũ2 + (sup
[0,T ]

e−tũ2 − inf
[0,T ]

e−tũ2)

≤ 1

T

∫ T

0

dt e−tũ2 + 2

∫ T

0

dt
(

e−tũ2
)′

≤3

∫ T

0

dt e−tũ2 +

∫ T

0

dt ũ2 +

∫ T

0

dt e−2tũ′2 ≤ C(1 + E(R)2). (51)

Taking the square root we get (43).

Lemma 4. There exists a constant C and R0 ≥ 1 such that for all R ∈ [R0,∞) and all (u,w) ∈ W
we have

ER(u,w) ≥ 1

2
E+,R(u,w)− C. (52)

Moreover for all (u,w) ∈ W the limit

E(u,w) := lim
R→∞

ER(u,w) (53)

exists in R ∪ {∞} and
E(u,w) <∞ ⇐⇒ E+(u,w) <∞. (54)

In addition, if E(u,w) <∞ then

E(u,w) = E+(u,w) + u(1) +
1

4
−
∫ 1

0

rdr
ψ2

r2
. (55)

Proof. The starting point is the relation (30)

ER(u,w) = E+,R(u,w) + u(1)− u(R)

R
+

1

4
(1 −R−2)−

∫ 1

0

rdr
ψ2

r2
(56)

Note that with the notation of Lemma 3 we have

E+,R(u,w) = E(R) +X1, where X1 := E+(u,w; (0, 1)) ≥ 0. (57)

By (43)
|u(R)|
R

≤ R−1/2C(1 + E(R)) ≤ 1

4
E(R) + C (58)

if R ≥ R0 := 4C.
Let I = (0, 1). By Lemma 1

|û(1)|2 ≤ 2‖û‖L2(I;dr/r) ‖û′‖L2(I;rdr) (59)

≤ 2‖û‖L2(I;dr/r)

(

‖û′ + ŵ2 − 1‖L2(I;rdr) + ‖ŵ2 − 1‖L2(I;rdr)

)

(60)

≤ X1 + 2X
1/2
1 ‖ŵ2 − 1‖L2(I;rdr). (61)
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Again by Lemma 1 we have sup[0,1] ŵ
2 ≤ X1. Thus

‖ŵ2 − 1‖L2(I;rdr) ≤ sup |ŵ2 − 1| ≤ (1 +X1) (62)

and therefore |û(1)|2 ≤ (2X
1/2
1 + X1 + 2X

3/2
1 ). Using Young’s inequality ab ≤ 1

3a
3 + 2

3b
3/2 first

with (a, b) = (X
1/2
1 , 1) and then with (a, b) = (1, X1) we get |û(1)|2 ≤ 4(1 +X

3/2
1 ). Finally we get

|u(1)| = |û(1)− 1

2
| ≤ 3 + 2X

3/4
1 ≤ 3 +

1

4
84 +

1

4
X1, (63)

where we used ab ≤ 3
4a

4/3 + 1
4b

4 with a = 1
4X

3/4 and b = 8.
Combining this with (58) and (56) and using that X1 ≤ E+,R(u,w) and E(R) ≤ E+,R(u,w)

we obtain (52) (for R ≥ R0).
Now if E+(u,w) = ∞ then it follows from (52) that limR→∞ ER(u,w) = ∞. Assume now

E+(u,w) <∞. Since E+,R(u,w) ≤ E+(u,w) it follows from Lemma 3 that limR→∞ u(R)/R = 0.
In view of (56) we deduce that that limR→∞ER(u,w) exists and

E(u,w) = E+(u,w) + u(1) +
1

4
−
∫ 1

0

rdr
ψ2

r2
<∞. (64)

Corollary 1. For the unrenormalized energy Iλ (cf. eq. (4)),

| logλ| − C ≤ λ−2 inf Iλ ≤ | logλ|+ C for all λ ∈ (0, R−1
0 ).

Proof. By eq. (11),

Ê1
λ(û, ŵ) = λ2Êλ

−1

1 (ûλ, ŵλ) where ûλ = λû(·/λ), ŵλ = ŵ(·/λ) . (65)

Using the definition of ÊR, eq. (12), we get

inf Ê1
λ ≤ λ2Êλ

−1

(0, ψ) ≤ Cλ2

which proves the upper bound since

Iλ = Ê1
λ + λ2

∫ 1

0

ψ(r/λ)2dr/r = Ê1
λ + λ2(C + | logλ|) .

The lower bound follows from eq. (65) since by (52) we have

Êλ
−1

1 (ûλ, ŵλ) = Eλ
−1

(uλ, wλ) ≥ −C (66)

for λ ≤ 1/R0.

Now we are in a position to prove the existence of minimizers for the renormalized energy.

Theorem 2. We have infW E ∈ R and the functional E attains its minimum in W. Moreover
there exists a minimizer (u,w) of E which satisfies

w + ψ ≥ 0 a.e. (67)

Proof. By Lemma 4, E is bounded from below. Moreover E(0, 0) < ∞. Thus inf E ∈ R. Let
(uj , wj) be a minimizing sequence, i.e.,

E(uj , wj) → inf
W
E. (68)

The energy is E does not change if we replace ŵ = w+ψ by |ŵ|. We may thus assume in addition
that

wj + ψ ≥ 0. (69)
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Since supj E(uj , wj) is bounded we deduce from (52) that

E+(uj , wj) ≤ C ∀j ∈ N. (70)

Let 0 < a < b < ∞. Then it follows directly from the formula for E+ that uj and w′
j are

bounded in L2((a, b)). By Lemma 3 the sequence wj is bounded in L∞. Thus wj and w2
j are

bounded in L2((a, b)). Since u′j+2wj+w
2
j is bounded in L2((a, b)) it follows that u′j is bounded in

L2((a, b)). Thus there exist a subsequence of (uj, wj) which converges weakly in W 1,2((a, b)). We
can apply this argument with a = 1/k, b = k for k ∈ N, k ≥ 2 and successively select subsequences.
By a diagonalization argument there exists a single subsequence (still denoted by (uj , wj)) that

converges weakly in W 1,2
loc ((0,∞)):

(uj , wj)⇀ (u,w) in W 1,2
loc ((0,∞)). (71)

By the compact Sobolev embedding this implies

(uj , wj) → (u,w) locally uniformly in (0,∞) (72)

In particular we have the weak convergences

2wj + w2
j + u′j ⇀ 2w + w2 + u in L2

loc((0,∞)) (73)

and
ŵ2
j − 1 + û′j ⇀ ŵ2 − 1 + û in L2

loc((0,∞)), (74)

where ŵj = wj + ψ , ûj = uj + ψ/2r, ŵ = w + ψ , û = u+ ψ/2r.
Weak lower semicontinuity of the L2 norm implies that for 0 < a < 1 < b <∞.

∫ 1

a

rdr

[

(ŵ2 − 1 + û′2)2 +
û2

r2
+
ŵ2

r2
+ ŵ′2

]

≤ lim inf
j→∞

∫ 1

a

rdr

[

(ŵ2
j − 1 + û′2j )

2 +
û2j
r2

+
ŵ2
j

r2
+ ŵ′2

j

]

(75)

and

∫ b

1

rdr

[

(2w + w2 + u′2)2 +
u2

r2
+ w′2

]

≤ lim inf
j→∞

∫ 1

a

rdr

[

(2wj + w2
j + u′2j )

2 +
u2j
r2

+ w′2
j

]

. (76)

Adding these two inequalities we get

E+(u,w; [a, b]) ≤ lim inf
j→∞

E+(uj, wj), (77)

where E+(u,w; [a, b]) is defined as the sum of the terms on the left hand side of (75) and (76).
Finally the monotone convergence theorem implies that we can take the limit a → 0 and b → ∞
in (77) and deduce

E+(u,w) ≤ lim inf
j→∞

E+(uj , wj). (78)

This in particular implies that E+(u,w) <∞ and thus (u,w) ∈ W .
We now use the relation (55) between E+ and E and the fact that uj(1) → u(1) (see (72)) to

deduce that
E(u,w) ≤ lim inf

j→∞
E(uj , wj) = inf

W
E. (79)

Thus (u,w) minimizes E in W .
Finally the condition wj + ψ ≥ 0 implies that w + ψ ≥ 0.
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Remark 1 (Self-penetration of solutions). The von Kármán model displays a pathology at the ori-
gin for the situation we want to model. Namely, the solutions we have found show interpenetration
of matter. Consider again the Euler-Lagrange equation obtained by variation of û,

(

r
(

ŵ2 − 1 + û′
))′

=
û

r
.

Since ŵ → 0 for r → 0, the qualitative behaviour of solutions u near the origin is the same as the
one of solutions of the linear equation

(r (û′ − 1))
′
=
û

r
.

The solutions of this latter equation are given by

1

2
r log r + C1r + C2r

−1.

The integration constant C2 has to be set to zero to fulfill the boundary condition û(0) = 0. Going
back to eq. (9), we see that the value of U will be negative in some punctured neighbourhood of
the origin and we have self-penetration of the solution (somewhere in the region r ∼ exp

(

−ε−2
)

).
We expect that this pathology could be cured by including nonlinear or higher order terms in u
in our model. We refrain from doing so, since the main aspect of this work is the analysis of the
solutions away from the origin.

4 Decay properties

We now turn our interest to the decay properties of minimizers. We first show that limr→∞ w(r) =
0 (if w+ψ ≥ 0). This will level the field for an application of stable manifold theory, by which we
prove that u and w decay like a stretched exponential exp(−c√r).

Lemma 5. Assume that (u,w) ∈ W with E+(u,w) <∞ and w + ψ ≥ 0. Then

lim
R→∞

w(R) = 0 (80)

Proof. It follows from Lemma 3 and Lemma 1 that

lim
r→∞

2w(r) + w2(r) = 0. (81)

Now w(r) ≥ −1 and the function F (s) = 2s + s2 = (s + 1)2 − 1 has a continuous inverse on
[−1,∞). Thus limr→∞ w(r) = 0.

Now we show that minimizers actually have decay as exp(−c√r) at infinity. We will use the
following standard tool from stable manifold theory:

Theorem 3 ([8]). Let s0 ∈ R, A ∈ R
n×n a matrix with k ≤ n eigenvalues with negative real part

and n − k eigenvalues with positive real part , F : R
n × [s0,∞) → R

n with the property that for
every ε > 0, there exist S ∈ [s0,∞) and δ0 > 0 such that

|F (x, s) − F (x̄, s)| ≤ ε|x− x̄|

whenever |x − x̄| ≤ δ0 and s ≥ S. Then there exist δ > 0, s̄ > S such that for |p| < δ and s̄ > S,
there exists a k-dimensional submanifold M̄(s̄) of R

n containing the origin such that the initial
value problem

d

ds
x(s) = Ax(s) + F (x, s) , x(s̄) = p (82)
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has a solution x : [s̄,∞) → R
n for any p ∈ M̄(s̄), and the property

|x(s)| = o(exp(−σs)) as s→ ∞
for any σ > 0 such that the absolute values of the real parts of the eigenvalues of A are all bigger
than σ. Furthermore there exists η > 0 independent of s̄ such that, if p 6∈ M̄(s̄), then

‖x‖L∞(s0,∞) > η .

Proposition 2. For any minimizer (u,w) of E with w ≥ −ψ,
|(u(r), u′(r), w(r), w′(r))| = o

(

exp(−σ
√
r)
)

as r → ∞ for any σ < 2.

Proof. Since E and E+ only differ by a boundary term they lead to the same Euler-Lagrange
equations. Thus for r > 1 the Euler Lagrange equations for (u,w) are the same as the Euler-
Lagrange equations for the functional

∫ ∞

1

rdr

[

(2w(r) + w2(r) + u′(r))2 +
u2(r)

r2
+ w′2(r)

]

. (83)

It turns out that these EL equations are not of the form required in Theorem 3 since the linear
part is not autonomous (up to a contribution which decays as r → ∞). We will make a change
of variables to bring the EL equations in a suitable form. To motivate that change of variables it
suffices to focus on the linearization, i.e., we may neglect the terms w2 in the energy functional (as
we already know w → 0 at ∞). The linearized equations are

(r(2w + u′))′ =
u

r
(84)

2r(2w + u′) = (rw′)′ = rw′′ + w′ (85)

Differentiation of the second equation and use of the first yields rw′′′ + 2w′′ = 2u/r. Thus 2u′ =
r2w(4)+4rw(3)+2w′′ and inserting this into the second equation we get the linearized fourth order
equation for w

1

2
(r2w(4) + 4rw(3) + 2w′′) + 2w =

1

2
w′′ +

1

2r
w′ (86)

Now we make the change of variables w(r) = w(rα). Then

w′ = αrα−1w′, w(k) = αkrk(α−1)w(k) + lower order derivatives. (87)

This suggests to choose α = 1
2 so that the leading order term in the linear equation becomes

1
32w

(4) + 2w = 0. We will now derive the EL equations in the new variables in detail. It is most
convenient to first transform the functional.

We make the change of variables

w(r) = w(
√
r), u(r) = u(

√
r), s =

√
r, r = s2. (88)

Then

w′(r) =
1

2
√
r
w′(

√
r) =

1

2s
w′(s), u′(r) =

1

2s
u′(s). (89)

Thus for (u,w) ∈ W

E+(u,w) ≥
∫ ∞

1

rdr

[

(2w(r) + w2(r) + u′(r))2 +
u2(r)

r2
+ w′2(r)

]

=

∫ ∞

1

2s3ds

[

(2w(s) + w2(s) +
1

2s
u′(s))2 +

u2(s)

s4
+ (

1

2s
w′(s))2

]

=2

∫ ∞

1

ds

[

s

(

s(2w + w2) +
1

2
u′
)2

+
u2

s
+

1

4
sw′2

]

. (90)
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From (90) we easily obtain the Euler-Lagrange equations (for s > 1)

2s2(1 + w)

(

s(2w + w2) +
1

2
u′
)

=
1

4
(sw′)′ (91)

1

2

[

s

(

s(2w + w2) +
1

2
u′
)]′

=
u

s
. (92)

These equations first hold in the weak sense, but by standard elliptic regularity we get w ∈ W 2,2
loc

and u ∈ W 2,2
loc and the equations hold a.e. By induction one easily sees that (u,w) ∈ W k,2

loc for all
k and hence (u,w) ∈ C∞.

We choose s0 > 1 large enough so that

1

2
< 1 + w(s) <

3

2
for s ≥ s0 , (93)

which is possible by (80). In this region we may divide eq. (91) by 2s(1 + w) and get

s

(

s(2w + w2) +
1

2
u′
)

=
1

8s

1

(1 + w)
(sw′)′. (94)

Then (92) becomes

u(s) =
1

2
s

[

1

8s(1 + w)
(sw′)′

]′

. (95)

Inserting this into (91) we get a fourth order equation for w

(1 + w)

[

s(2w + w2) +
1

4

(

s

(

(sw′)′

8s(1 + w)

)′
)′]

=
1

8s2
(sw′)′. (96)

This can be rewritten as

w(4)(s) = −64w(s) + g(x(s), s) + h(x(s), s) (97)

where x(s) = (w(3)(s), w′′(s), w′(s), w(s)), and g : R
4 ×R

+ → R contains the nonlinear terms in x,
h : R

4 × R
+ → R the linear ones with coefficients O(s−1). More precisely,

g(x, s) =
1

1 + w

(

2w′w(3) +
4

s
w′′w′ + w′′2 − 1

s2
w′2 − 1

1 + w

(

2w′2w′′ +
2

s
w′3

))

− 96w2 − 32w3 (98)

h(x, s) =− 2

s
w(3) +

5

s2
w(2) +

3

s3
w′ (99)

In particular, for f := g + h, and given ε > 0, there exist S ≥ s0, δ > 0 such that

|f(x, s)− f(x̄, s)| ≤ ε|x− x̄|

whenever |x− x̄| < δ and s > S. Additionally, we have f(0, s) = 0. Now we may rewrite eq. (97)
as a system of first order equations,

d

ds
x(s)T = Ax(s)T + F (x, s)

where F : R
4 × [s0,∞) → R

4 is given by F (x, s) = (f(x, s), 0, 0, 0)T and

A =

(

0 −64
Id3×3 0

)

The eigenvalues of A are 2(±1± i), i.e., A has two eigenvalues with positive real part and two with
negative real part.
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We already know that lims→∞ w(s) = lims→∞ w(s2) = 0. We will now show that

lim
s→∞

w(3)(s) = lim
s→∞

w′′(s) = lim
s→∞

w′(s) = 0 . (100)

It follows that lims→∞ x(s) = 0. From Theorem 3, it follows that there exists s̄ such that
x(s̄) ∈ M̄(s̄), and hence |x(s)| = o(exp(−σs)) for σ < 2. It remains to prove (100).

We first show w′′ ∈ L2((s0,∞); ds/s). From (91) we get

|w′′ + s−1w′| ≤ Cs

∣

∣

∣

∣

s(2w + w2) +
1

2
u′
∣

∣

∣

∣

. (101)

Therefore

∫ ∞

s0

ds

s
w′′2 ≤ 2

∫ ∞

s0

ds

s

[

s2
(

s(2w + w2) +
1

2
u′
)2

+ s−2w′2

]

<∞

by (90). Again by (90) we have w′ ∈ L2((s0,∞); sds). Thus Lemma 1 yields

lim
s→∞

w′(s) = 0. (102)

Next we derive a weighted L2 estimate for the third derivative w(3). It follows from (95) that

u

s
=

1

16(1 + w)

(

w(3) +
w′′

s
− w′

s2
− w′w′′

1 + w
− w′2

s(1 + w)

)

,

which implies (using the convergence of w and w′)

∣

∣

∣
w(3)(s)

∣

∣

∣

2

≤ C

(

∣

∣

∣

∣

u(s)

s

∣

∣

∣

∣

2

+

∣

∣

∣

∣

w′′

s

∣

∣

∣

∣

2

+

∣

∣

∣

∣

w′

s2

∣

∣

∣

∣

2

+ w′′2w′2 +

∣

∣

∣

∣

w′2

s

∣

∣

∣

∣

2
)

. (103)

With the possible exception of w′′2w′2 all terms on the right hand side are integrable against sds.
Thus we get for s1 > s0

∫ s1

s0

sds
∣

∣

∣
w(3)

∣

∣

∣

2

≤ C(1 + sup
[s0,s1]

|w′′|2), (104)

where C is controlled by E+(u,w) and in particular independent of s1. Now we get as usual

sup
[s0,S1]

|w′′|2 − inf
[s0,s1]

|w′′|2 ≤ 2

∫ s1

s0

ds|w′′w(3)|

≤2‖w′′‖L2((s0,∞);ds/s)C
1/2(1 + sup

[s0,s1]

|w′′|2)1/2

≤4C‖w′′‖2L2((s0,∞);ds/s) +
1

4
(1 + sup

[s0,s1]

|w′′|2) (105)

Moreover

inf
[s0,s1]

w′′2 ≤ 1

ln s1/s0

∫ s1

s0

ds

s
w′′2 ≤ C

ln s1/s0
. (106)

Thus absorbing the term 1
4 (1 + sup[s0,s1] |w′′|2) into the left hand side of the (105) and taking

s1 → ∞ we get
3

4
sup

[s0,∞]

w′′2 ≤ 4C‖w′′‖2L2((s0,∞);ds/s) <∞ (107)

and by (104)
∫ ∞

s0

sds
∣

∣

∣
w(3)

∣

∣

∣

2

<∞. (108)
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Since w′′ ∈ L2((s0,∞); ds/s) it follows that

lim
s→∞

w′′(s) = 0. (109)

Finally we claim that w(4) ∈ L2((s0,∞); ds/s). Indeed from the previous L2 bounds we see
immediately that h ∈ L2((s0,∞); ds/s). Moreover the convergence of w′ and w′′ imply that
g(x(s), s) ≤ C(|w(3)|+ |w′|+ |w′′|+ |w|). By (42) we have

∫ ∞

s0

ds

s
(2w + w2)2 =

1

2

∫ ∞

s2
0

dr

r
(2w + w2)2 <∞. (110)

Since 5
2 < 2 + w(s) < 7

2 , we get w ∈ L2((s0,∞); ds/s). Together with the weighted L2 estimates

for w(i) for i = 1, 2, 3 we get w(4) ∈ L2((s0,∞); ds/s). In combination with the estimate w(3) ∈
L2((s0,∞); sds) this implies that

lim
s→∞

w(3)(s) = 0. (111)

Thus w(i) = o(exp(−σs)) as s→ ∞ for i = 0, 1, 2, 3 and all σ < 2. This implies u(r), u′(r), w(r), w′(r) =
o(exp(−σ√r)) as r → ∞ for all σ < 2.

Proof of Theorem 1. For λ = 1, this follows from Theorem 2 and Proposition 2. For λ 6= 1, we

recall that by (11), we have ÊRλ (û, ŵ) = λ2Ê
R/λ2

1 (û, ŵ) and hence

Êλ(û, ŵ) = λ2 lim
R→∞

Ê
R/λ
1 (ûλ, ŵλ) = λ2E(uλ, wλ)

for all (û, ŵ) ∈ W , where we used the notation ûλ = λ−1û(λ·), ŵλ = ŵ(λ·), uλ(r) = ûλ(r) −
ψ(r)/(2r), wλ = ŵλ − ψ and Lemma 4. Now all statements follow from the case λ = 1 already
treated.
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