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ON THE UNITARY GLOBALIZATION OF COHOMOLOGICALLY

INDUCED MODULES

L. BARCHINI AND PETR SOMBERG

Abstract. We describe the unitary globalization of cohomologically induced
modules Aq(λ). The purpose of the paper is to give a geometric realization of the
unitarizable modules. Our results do not constitute a proof of unitarity.

1. Introduction

The orbit method suggests a close connection between irreducible representa-

tions of a Lie group GR and co-adjoint orbits. In the case of nilpotent groups,

unitary representations correspond to co-adjoint orbits. Kirillov used such corre-

spondence to geometrically construct unitary representations of nilpotent groups.

When GR is a real reductive group, attached to elliptic co-adjoint orbits is a family

of irreducible unitarizable (g,K)-modules, Aq(λ). These are called cohomologically

induced modules. The purpose of this paper is to give a geometric description of

the corresponding GR unitary representations.

The representation theory of GR is more subtle than that of its Lie algebra.

According to a theorem of Harish-Chandra, the space of K-finite vectors of an

admissible irreducible GR-representation is an irreducible (g,K)-module. This rela-

tionship between GR and (g,K) modules is not bijective. The subtlety comes from

the fact that different topologies yield different GR-modules. It is known, from the

work of Casselman, Wallach [4] and Schmid [12], that each admissible irreducible

(g,K)-module admits a maximal globalization (resp. minimal globalization) to a GR

module over a Frechet space, F (resp. to a GR module over the topological dual of

F). When the (g,K)-module is an Aq(λ), the maximal globalization (minimal glob-

alization) corresponds to a Dolbeault cohomology representation, Hn,s(GR/LR,Lλ),
(corresponds to a compactly supported cohomology space). The unitary globaliza-

tion should correspond to a topological space “in between” the minimal and the

maximal globalization. This is the space we want to describe.

In [17], Vogan proposed to (a) explicitly describe the GR-invariant Hermitian

form on the minimal globalization of Aq(λ) (identified as a space of compactly

supported cohomology) and (b) describe the unitary globalization as the completion

of the compactly supported cohomology with respect to the Hermitian form given
1
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in (a). This proposal amounts to finding an explicit GR-intertwining map from the

Hermitian dual Hn,s(GR/LR,Lλ)
h to Hn,s(GR/LR,Lλ). Moreover, such map is

a “kernel type ” transform. Indeed, if (GR/LR)
opp is GR/LR endowed with the

opposite complex structure, then the kernel is determined by a diag (GR × GR)-

invariant class [w] in H(n,n)(s,s)(GR/LR × (GR/LR)
opp,Lλ ⊗L−λ). The problem is

to describe such a cohomology class.

Under some positivity assumptions on λ, Aq(λ) can be also realized as the space of

K-finite solutions of an elliptic differential operator D, acting on sections of a bundle

over GR/KR. This is indeed the content of ([[19], Corollary 38 and Section 7]). The

geometric construction of Dolbeault cohomology is related to the solution space of

D via the so-called Real Penrose transform. Moreover, the Real Penrose transform

determines an isomorphism between the cohomology realization and KerD. See

([[19], Section 7]), ([[1], Section 10]) and [2]. In this paper we determine (a) the

hermitian dual (KerD
)h
, (b) the space of continuous GR-intertwining maps from

(KerD
)h

to KerD. Such intertwining maps are also of “kernel type”. We describe

the kernels in terms of generalized spherical functions, F . In particular, when Aq(λ)

is the Harish-Chandra module of a representation in the discrete series, F is the

function defined by Flensted-Jensen in [6]. The function F , given in Theorem 5.7,

depends solely on the minimal K-type of Aq(λ). This is consistent with the fact

that Aq(λ) is unitary if and only if the Hermitian form is definite on its bottom

layer, see [17]. The cohomology class [w] is completely determined by F .

.

2. The maximal globalization of Aq(λ)

2.1. Dolbeault Cohomology. We recall results from [17] and [19] that will be

relevant to our work. Our underlying group GR is assumed to be real reductive

with complexification G and Cartan involution Θ. We let KR be the fixed point

group of Θ, the maximal compact subgroup. We denote the Lie algebra of Lie

groups by gR, kR etc., and their complexifications by g, k, etc. Letting θ be the

differential of Θ we write the decomposition of g into ±1 eigenspaces as g = p ⊕ k.

We choose a Cartan subalgebra t ⊂ k and extend it to a Cartan subalgebra h = t⊕a

of g. Using the Killing form, B(·, ·), we consider t∗ ⊂ h∗ ⊂ g∗. Then an element

λ ∈ t∗ is elliptic, and the orbit GR · λ ⊂ g∗ is an elliptic co-adjoint orbit. We may

identify this orbit with the homogeneous space GR/LR, where LR is the centralizer

in GR of λ. On the other hand, λ defines a θ-stable parabolic subalgebra of g as

follows. Denote by ∆ = ∆(g, h) the roots of h in g. Then the parabolic subalgebra

associated to λ is q = l ⊕ u, where the Levi factor l is spanned by h and all root

spaces gα with 〈λ, α〉 = 0, and u is spanned by all root spaces gα with 〈λ, α〉 > 0.

If Q is the normalizer of q in G, one sees that LR = Q ∩ GR, so GR/LR embeds
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into the generalized flag variety G/Q as an open subset. In particular, GR/LR

has a GR-invariant complex structure; the antiholomorphic tangent space at the

identity coset is naturally identified with g/q ≃ u. A similar construction makes

KR/(KR ∩ LR) into a complex compact submanifold of GR/LR.

Observe that each θ-stable parabolic subalgebra q containing l gives a complex

structure on GR/LR; these are in fact all different. In the language of geometric

quantization, these parabolic subalgebras are the invariant complex polarizations at

λ. Typically, in geometric quantization, one chooses a particular polarization and

this is what we will do here.

To attach a representation to GR · λ, we assume that λ lifts to a character χλ of

LR. Then there is a holomorphic homogeneous line bundle associated to χλ. If n is

the complex dimension of GR/LR, it is natural to attach cohomology representations

Hn,p(GR/LR,Lλ) to the orbit GR ·λ. The Dolbeault cohomology Hn,p(GR/LR,Lλ)
can be computed, for example, by Leray covers, by C∞-differential forms or by

currents (differential forms with distribution coefficients). All these approaches yield

the same cohomology groups, as vector spaces. Indeed, more is true. One can

define strong topologies on Hn,p(GR/LR,Lλ) with respect to Leray covers, as well

as with respect to C∞-forms or currents, see [9]. (For example, the strong topology

with respect to C∞-forms is given by uniform convergence on compact sets for

all derivatives of the coefficients when written in terms of coordinates in the local

charts.)

Theorem 2.1 ([9], Theorem 2.1, Theorem 3.2). The strong topologies on

Hn,p(GR/LR,Lλ) with respect to Leray covers, C∞-forms and currents all coincide.

It is not a priori clear that the natural action of GR (by left translation) on

Hn,p(GR/LR,Lλ) is continuous in the topology of Theorem 2.1. The difficulty is

that a topology on Hn,p(GR/LR,Lλ) is Hausdorff only if the operator ∂ that defines

the cohomology space has the closed range property in that given topology. This

delicate issue was settled by Wong in [19] and [20]. Wong proved that (a) when

p = s = dim(KR/(KR ∩ LR) H
n,p(GR/LR,Lλ) is a non-zero continuous Fréchet

representation (by showing that the image of ∂ is closed in the C∞-topology on

forms), (b) Hn,s(GR/LR,Lλ)K−finite is a cohomologically induced (g,K)-module,

(c) Hn,s(GR/LR,Lλ) is the maximal globalization of its underlying Harish-Chandra

module in the sense of [12].

Remark 2.2. It is important to note that the results in [19] and [20] are more general

than those stated above. On the one hand, [20] allows the inducing bundle to be

infinite dimensional. On the other hand, the conditions on the line bundle in [19]

are less restrictive that the ones used here. Indeed, for a fixed positive system

∆+(g, h) that contains ∆(u) the main theorem in [19] holds for a one-dimensional

representation χν of LR with weight ν, with 〈ν + ρ, α〉 > 0 for roots α in u (and ρ
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equal to the half the sum of positive roots). In this paper we assume that

〈λ, α〉 > 0 for all root α ∈ ∆(u). (2.3)

We impose this, more restrictive, assumption on λ in order to have control on the

K-type structure of Hn,s(GR/LR,Lλ)K−finite, see [16].

We keep the notation q = l⊕ u and write u = u∩ p⊕ u∩ k. We let ∆(u∩ p) stand

for the set of weights in u ∩ p with respect to h and we write ρ(u ∩ p) for half the

sum of the positive members of (u ∩ p) with respect to h.

Theorem 2.4. Suppose that q = l⊕ u is a θ-stable parabolic subalgebra of g and let

h = t ⊕ a ⊂ l be a Cartan subalgebra. Let λ ∈ t∗ be an integral weight and assume

that

〈λ, α〉 > 0, for all root α ∈ ∆(u).

Identify the elliptic co-adjoint orbit GR · λ with the homogeneous space GR/LR.

Endow GR/LR with the complex structure so that the antiholomorphic tangent space

at the identity is identified with u. Let s = dimC(KR/(LR ∩KR)). Then,

(1) The strong topology of Theorem 2.1 on Hn,s(GR/LR,Lλ) is Hausdorff. In

particular, the ∂ Dolbeault operator has closed range.

(2) Hn,p(GR/LR,Lλ) = 0, unless p = s.

(3) The continuous representation of GR on Hn,s(GR/LR,Lλ) is irreducible and
Hermitian. It is the maximal globalization of the underlying (g,K)-module.

(4) (πλ,H
n,s(GR/LR,Lλ)) contains with multiplicity one, the K-type with high-

est weight

µ = λ+ 2ρ(u ∩ p).

If µ′ is the highest weight of a K-type occurring in πλ|K , then µ′ is of the

form

µ′ = µ+
∑

nα α, with nα ∈ N and α ∈ ∆(u ∩ p).

Proof. Part (1) is proved in [19]. Parts (2) and (3) are results in [17], written here

in the language of Dolbeault cohomology. Part (4) is Theorem 5.3 in [16]. �

2.2. The kernel of Schmid’s D-differential operator. The maximal globaliza-

tion of Aq(λ) can be described as the solution space of an elliptic operator acting

on the space of smooth sections of a bundle over GR/KR. Let (τµ, Vµ) be the

minimal K-type occurring in Hn,s(GR/LR,Lλ)K-finite. The relevant vector bundle

over GR/KR is the one induced by Vµ. Indeed, such realization plays a key role in

proving that the Dolbeault cohomology endowed with the topology of Theorem 2.1

is Hausdorff ([10] and [19]). This alternative realization of cohomologically induced

modules will be important in our work. We start by recalling that µ = λ+2ρ(u∩p)

and that the highest weights of the irreducible K-modules occuring in Vµ ⊗ p are of

the form µ+α with α ∈ ∆(p, t). Following [19] we introduce the following definition.
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Definition 2.5. Let

V −
µ =

∑

β∈∆(u∩p)

τµ−β ⊂ Vµ ⊗ p

and let P : Vµ ⊗ p → V −
µ be the canonical projection. Choose {Xi} an orthonormal

basis of p with respect to (U, V ) = −B(U, θV ). For F ∈ C∞(GR/KR, Vµ) define

DF (g) =
∑

i

P
[

(XiF )(g) ⊗Xi

]

. (2.6)

Proposition 2.7. ([19], Proposition 49) D is well defined (i.e. independent of the

choice of basis). If λ is sufficiently positive, D is an elliptic operator.

Observe that C∞(GR/KR, Vµ), endowed with the topology of uniform conver-

gence over compact subsets of functions and their derivatives, is a Fréchet space.

The operator D : C∞(GR/KR, Vµ) → C∞(GR/KR, V
−
µ ) is continuous. Hence, the

kernel space KerD is closed in C∞(GR/KR, Vµ) and it inherits the structure of

Fréchet space. In order to emphasize the space on which D acts we write

KerD = C∞
D (GR/KR, Vµ). (2.8)

Theorem 2.9. Keep the assumptions on Theorem 2.4. If 〈λ− 2ρ(l ∩ k), α〉 > 0 for

all root α ∈ ∆(u), then there exists a GR-equivariant map

P : Hn,s(GR/LR,Lλ) → C∞
D (GR/KR, Vµ).

The map P is an homeomorphism of topological spaces.

Proof. When rank(GR) = rank(KR) and LR = TR is a maximal compact torus

ρ(l ∩ k) = 0 and the Theorem holds for all λ satisfying the positivity condition of

Theorem 2.4. This result is proved in [11]. The general statement follows form

([19], Corollary 38 and the proof of Proposition 52). Let N be the normal bundle

of the compact submanifold KR/(LR ∩KR) in GR/LR and let (k) signify the k-th

symmetric power. By ([19], Corollary 38) the Theorem holds if

H i(KR/(LR ∩KR),Lλ+2ρ(u) ⊗ (N ∗)(k)) = 0 for all i < s and all k ≥ 0. (2.10)

The vanishing condition (2.10) follows from ([7], Theorem G). Our assumption on

λ guarantees that the hypothesis of ([7], Theorem G) are satisfied.

�

Remark 2.11. The map P is the Real Penrose transform in ([10], Lemma 7.1) ([19],

Section 7), ([1], [2]) and ([21], Lecture 7) . The transform

P : Hn,s(GR/LR,Lλ) → C∞
D (GR/KR, Vµ)

is an integral transform; see [1]. If ωc ∈ ∧s(u ∩ k)∗ is a normalized top form, then

P(w)(x) =

∫

K/(L∩K)
τµ(k)vµ 〈w(xk), 1λ ⊗ ωc〉 dk, (2.12)
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with vµ a normalized highest weight vector in Vµ.

Under the positivity assumptions of Theorem 2.9 the transform P is injective

onto KerD. Each G ∈ KerD determines a unique cohomology class [ηG]. One way

to determine a representative of [ηG] is to follow the recursive procedure described

in ([10], Lemma 7.1) while keeping track of the required l-equivariant property.

3. The minimal globalization of Aq(λ)

3.1. Compactly supported cohomology. Theorem 2.4 identifies the maximal

globalization of cohomologically-induced modules as Dolbeault cohomology repre-

sentations. In this section we summarize relevant information on the minimal glob-

alization of Hn,s(GR/LR,Lλ)K-finite.

It is known that the minimal globalization Hn,s(GR/LR,Lλ)K-finite is the topo-

logical dual of its maximal globalization. Since we know that ∂ has the closed

range property, Serre duality implies that the minimal globalization occurs as com-

pactly supported cohomology. As for Dolbeault cohomology, compactly supported

cohomology can be calculated in different ways. In particular, such cohomology

groups can be computed by using Leray covers, C∞ compactly supported forms or

compactly supported currents (forms with compactly supported distribution coef-

ficients). All these approaches yield the same cohomology group as vector spaces.

These cohomology spaces can be endowed with strong topologies as described in [9].

Theorem 2.1 holds for compactly supported cohomology.

Theorem 3.1. ([9], Theorem 2.1). The strong topologies on H0,q
c (GR, LR,Lλ) with

respect to Leray covers, C∞
c -forms and compactly supported currents coincide.

Theorem 3.2. In the setting of Theorem 2.4 and Theorem 3.1, write L∗
λ for the

bundle dual to Lλ.

(1) There is a natural topological isomorphism

H0,n−s
c (GR/LR,L

∗
λ)

∗ ≃ Hn,s(GR/LR,Lλ).

(2) The topological space H0,n−s
c (GR/LR,L

∗
λ) is Hausdorff.

Proof. A more general version of this duality theorem is proved in ([9], Theorem

3.2). Also see [13] and the remarks in ([18], page 67). �

Theorem 3.3 ([3], page 285; [18], Corollary 8.15). Keep the hypothesis of Theorem

2.4.

(1) H0,q
c (GR/LR,L

∗
λ) = 0, unless q = n− s.

(2) H0,n−s
c (GR/LR,L

∗
λ) is non-zero and it admits a continuous GR action. The

resulting representation is irreducible. It is the minimal globalization of the

underlying (g,K)-module.
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(3) H0,n−s
c (GR/LR,L

∗
λ) admits an invariant Hermitian form.

3.2. The topological dual of KerD.

Proposition 3.4. Endow C∞
D
(GR/KR, Vµ) with the strong topology relative to the

smooth topology on C∞(GR/KR, Vµ). Write

(

KerD
)⊥

= {Λ ∈ C∞(GR/KR, Vµ)
∗| Λ|KerD = 0}.

(1) C∞(GR/KR, Vµ)
∗/
(

KerD
)⊥
, endowed with the quotient topology of the

strong topology on C∞(GR/KR, Vµ)
∗, is homeomorphic to C∞

D
(GR/KR, Vµ)

∗

endowed with the strong topology.

(2) The topological spaces C∞
c (GR/KR, Vµ)/

(

KerD
)⊥

∩C∞
c (GR/KR, Vµ) and

C∞
D
(GR/KR, Vµ)

∗ and are homeomorphic.

Proof. The first statement of the Proposition follows from ([18], Prop.8.8 (2)). In-

deed, the space of smooth sections of a finite-dimensional vector bundle, when en-

dowed with the smooth topology, is a Fréchet nuclear space. Thus, it is reflexive.

Also, KerD ⊂ C∞(GR/KR, Vµ) is a closed subspace, as D is a continuous opera-

tor. Hence, the hypothesis of ([18], Prop.8.8 (2)) is satisfied. We conclude that if

i : KerD → C∞(GR/KR, Vµ) is the natural inclusion, then the transpose map it

induces the desired homeomorphism. This is,

it : C∞(GR/KR, Vµ)
∗/
(

KerD
)⊥

→ C∞
D (GR/KR, Vµ)

∗,

is a homeomorphism of topological spaces.

In order to prove the second statement of the Proposition observe that

C∞(GR/KR, Vµ)
∗/
(

KerD
)⊥

endowed with the quotient topology of the strong

topology on C∞(GR/KR, Vµ)
∗ is Hausdorff. Indeed, the transpose Pt of the homeo-

morphism P in Theorem (2.9) is a homeomorphism from
(

KerD
)∗

to the compactly

supported cohomology H0,n−s
c (GR/LR,L

∗
λ). As the cohomology space is Hausdorff

(it is the minimal globalization of its underlying (g,K)-modules),
(

KerD
)∗

≃

C∞(GR/KR, Vµ)
∗/
(

KerD
)⊥

is Hausdorff. It follows, see ([14], Chapter 4), that

the kernel of the continuous map C∞
c (GR/KR, Vµ) → C∞(GR/KR, Vµ)

∗/
(

KerD
)⊥

is closed. Hence, we have a continuous GR-equivariant map

T : C∞
c (GR/KR, Vµ)/

(

KerD
)⊥

→ C∞(GR/KR, Vµ)
∗/
(

KerD
)⊥
, (3.5)

where C∞(GR/KR, Vµ)
∗/
(

KerD
)⊥

is the minimal globalization of its underlying

(g,K)-module, the Proposition follows. �
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4. Hermitian pairings

If E is a complete locally convex vector space, then its Hermitian dual Eh is given

by

Eh = {Λ : E → C continuous :

Λ(av + bw) = aΛ(v) + bΛ(w) for a, b ∈ C and v,w ∈ E}.

The space Eh is conjugate linearly isomorphic to E∗. Using this identification Eh

can be endowed with the strong topology; see ([18], Section 8.3). A Hermitian

pairing between two complete locally convex vector spaces E and F is a separately

continuous map

〈 , 〉 : E × F → C

that is linear in the first variable and conjugate linear in the second variable. This

space is in bijection with the space of continuous linear maps L(E,F h); see for

example ([18], Section 9).

4.1. Hermitian pairings on H0,n−s
c (GR/LR,L

∗
λ).

Theorem 4.1. [18] Let q = l ⊕ u be a θ-stable parabolic subalgebra. Let Q be the

analytic subgroup of G with Lie algebra q. Endow GR/LR with the complex structure

induced by the open embedding GR/LR ⊂ G/Q. Let (GR/LR)
opp be the manifold

GR/LR endowed with the opposite complex structure.

(1) The Hermitian dual of H0,n−s
c (GR/LR,L−λ) is H

n,s((GR/LR)
opp,L−λ).

(2) The space of separately continuous Hermitian pairings on H0,n−s
c (GR/LR,L−λ)

is isomorphic to H(n,n)(s,s)(GR/LR × (GR/LR)
opp,Lλ ⊗L−λ).

(3) The space of GR-invariant Hermitian forms on H0,n−s
c (GR/LR,L−λ) is the

space of diag(GR ×GR)- invariant real cohomology classes in

H(n,n)(s,s)(GR/LR × (GR/LR)opp,Lλ ⊗ L−λ).

Remark 4.2. (1) For a definition of real cohomology class, see ([18], page 339).

(2) When H0,n−s
c (GR/LR,L−λ) is computed by the complex of compactly sup-

ported smooth forms, the isomorphism in part (1) of Theorem 4.1 assigns to

a compactly supported form φ the functional Λφ on Hn,s((GR/LR)
opp,L−λ)

given by

ω ∈ Hn,s((GR/LR)
opp,L−λ) → Λφ(ω) ∈ C

Λφ(ω) =

∫

GR/LR

φ ∧ σ(ω).

Here σ is the complex conjugation in cohomology induced by the map

C∞((GR/LR)
opp,∧su⊗ ∧nu⊗C−λ) → C∞(GR/LR,∧

su⊗ ∧nu⊗Cλ). (4.3)
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(3) When H0,n−s
c (GR/LR,L−λ) is computed by the complex of compactly sup-

ported smooth forms, and w(·, ·) represents a smooth cohomology class in

H(n,n)(s,s)(GR/LR × (GR/LR)
opp,Lλ ⊗ L−λ), the hermitian pairing in part

(2) of Theorem 4.1 assigns to a compactly supported form φ the smooth

Dolbeault cohomolgy class represented by η(y) =
∫

GR/LR
φ(x) ∧w(x, y).

(4) When H0,n−s
c (GR/LR,L−λ) is identified with the space of conjugate linear

continuous maps on Hn,s((GR/LR)
opp,L−λ), the Hermitian pairing (2) in

Theorem (4.1) assigns to a functional Λ, the Dolbeault cohomology class

η(y) = Λ
(

σ ⊗ 1)(w(·, y)
)

. Here σ ⊗ 1 is the conjugation in (4.3) applied to

the “first variable”.

(5) The space H(n,n)(s,s)(GR/LR × (GR/LR)opp,Lλ ⊗L−λ) is topologically iso-

morphic to the projective tensor

H(n,s(GR/LR,Lλ)⊗̂πH
(n,s((GR/LR)opp,L−λ). See ([18], page 72) and ([14],

Definition 43.2 and 43.5).

4.2. Hermitian pairings in the GR\KR-picture. Write (τ∨µ , V
∨
µ ) for the rep-

resentation of KR contragredient to (τµ, Vµ). Let Tσ denote the conjugate linear

isomorphism from Vµ to V ∨
µ .

Definition 4.4. For F a smooth section of the vector bundle

(GR ×GR)×KR×KR
(V ∨
µ ⊗ Vµ),

and g ∈ GR write (R(1, g)F )(x, y) = F (x, yg) and use the same notation for the

differential of the right action. Similarly defineR(g, 1). Choose {Xi} an orthonormal

basis of p with respect to (U, V ) = −B(U, θV ). Let P be the projection operator in

Definition (2.6) and define the differential operator

1⊗D : C∞(GR×GR/(KR×KR), V
∨
µ ⊗Vµ) → C∞(GR×GR/(KR×KR), V

∨
µ ⊗V −

µ )

by means of

[1⊗DF ](x, y) =
∑

i

1⊗ P
[

(R(1,Xi)F )(x, y) ⊗X i

]

.

Similarly, define the operator D ⊗ 1.

Definition 4.5. Let C∞
D×D

(GR×GR/(KR×KR), V
∨
µ ⊗Vµ) be the space of smooth

sections of the vector bundle GR × GR ×KR×KR
(V ∨
µ ⊗ Vµ) that are annihilated

by both differential operators 1 ⊗ D and D ⊗ 1. Endow the space C∞
D×D

(GR ×

GR/(KR×KR), V
∨
µ ⊗Vµ) with the strong topology relative to the smooth topology

on the space of sections.

Proposition 4.6. H(n,n)(s,s)(GR/LR × GR/L
opp

R
,Lλ ⊗ L−λ) is homeomorphic to

C∞
D×D

(GR ×GR/(KR ×KR), V
∨
µ ⊗ Vµ).
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Proof. We first prove that

C∞
D (GR/KR, V

∨
µ )⊗̂πC

∞
D (GR/KR, Vµ) is homeomorphic to (4.7)

C∞
D×D(GR ×GR/(KR ×KR), V

∨
µ ⊗ Vµ).

It is not difficult to show, using ([14], Prop 44.1), that C∞(GR/KR, Vµ) ≃
C∞(GR/KR)⊗̂πVµ. Using this observation and arguing as in ([14], Thm 51.6)

we show that C∞(GR × GR/(KR × KR), V ∨
µ ⊗ Vµ) is canonically isomorphic to

C∞(GR/KR, V
∨
µ )⊗̂πC

∞(GR/KR, Vµ). C∞(GR × GR/(KR × KR), V
∨
µ ⊗ Vµ) has

the structure of Souslin space, see ([14], page 556). As Ker(1⊗D) and Ker(D ⊗ 1)

are closed in C∞(GR × GR/(KR × KR), V
∨
µ ⊗ Vµ), we conclude that the space

C∞
D×D

(GR×GR/(KR ×KR), V
∨
µ ⊗Vµ) is Souslin. By ([14], Appendix Corollary 1),

the surjective continuous map

C∞
D×D(GR ×GR/(KR ×KR), V ∨

µ ⊗ Vµ),→ Ker(D)⊗̂πKer(D) (4.8)

is open. This proves our claim.

Next, we recall (Remark (4.2), part 5) that the spaces

H(n,n)(s,s)(GR/LR × (GR/LR)
opp,Lλ ⊗ L−λ), and (4.9)

Hn,s(GR/LR,Lλ)⊗̂πH
n,s((GR/LR)opp,L−λ).

are homeomorphic.

To complete the proof of the Proposition it is enough to argue that the tensor

products in displays (4.9) and (4.7) are homeomorphic. In order to prove so, recall

that under our assumptions on λ, the Penrose transforms maps of Theorem (2.9),

P : Hn,s(GR/LR,Lλ) → C∞
D (GR/KR, Vµ) and

Popp : Hn,s((GR/LR)
opp,L−λ) → C∞

D (GR/KR, V
∨
µ )

are homeomorphism of topological spaces. Since the spaces under consideration

are Fréchet, by ([14], Prop 43.9), P⊗̂Popp implements the desired homeomorphism.

(For a definition of P⊗̂Popp see ([14], Definition 43.6).)

�

Definition 4.10. Write P ⊗ Popp for the map that implements the homeomor-

phism from H(n,n)(s,s)(GR/LR×(GR/LR)
opp,Lλ⊗L−λ) to C

∞
D×D

(GR×GR/(KR×

KR), V
∨
µ ⊗ Vµ).

(1) Let Ph
opp be the Hermitian transpose to the Penrose transform

Popp : H
n,s((GR/LR)

opp,L−λ) → C∞
D (GR/KR, V

∨
µ ).
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That is,

Ph
opp :

(

C∞
D (GR/KR, V

∨
µ )

)h
→ Hn,s((GR/LR)

opp,L−λ)
h

f → Ph
opp(f) where

Ph
opp(f)(ω) = f(Popp(ω)) for each cohomology class [ω].

(2) Similarly, let
(

P−1
opp

)h
be the Hermitian transpose of P−1

opp. By definition, if

η ∈ Hn,s(GR/L
opp
R
,L−λ)

h and F ∈ C∞
D
(GR/KR, V

∨
µ ), then

(

P−1
opp

)h
(η)(F ) =

η(P−1
oppF ).

Lemma 4.11. The composition

(

P−1
opp

)h
◦ Ph

opp
:
(

C∞
D (GR/KR, V

∨
µ )

)h
→

(

C∞
D (GR/KR, V

∨
µ )

)h

is the identity map on
(

C∞
D
(GR/KR, V

∨
µ )

)h
. Similarly Ph

opp
◦
(

P−1
opp

)h
is the identity

map on Hn,s(
(

GR/LR

)

opp
,L−λ)

h.

Proof. It is clear from the definitions. �

Remark 4.12.

Using the explicit formula 2.12 one can show that

TσP(w)(x) = Popp(σw)(x)

where σ is the conjugation described in part (2) of Remark 4.2 and Tσ is the conju-

gate linear isomorphism from Vµ to V ∨
µ .

Theorem 4.13. The space of separately continuous Hermitian pairings on
(

C∞
D
(GR/KR, V

∨
µ )

)h
is C∞

D×D
(GR ×GR/(KR ×KR), Vµ ⊗ V ∨

µ ).

Proof. An element φ ∈ C∞
D×D

(GR ×GR/(KR ×KR), Vµ⊗V ∨
µ ) defines a linear map

Tφ :
(

C∞
D (GR/KR, V

∨
µ ))

)h
→ C∞

D (GR/KR, V
∨
µ )

f → f(Tσ ⊗ 1 φ).

We must show that the Tφ is continuous. Let ω be a representative of the cohomology

class in [
(

P ⊗Popp

)−1
(φ)] ∈ H(n,n)(s,s)(GR/LR× (GR/LR)

opp,Lλ⊗L−λ). By ([18],

Thm 8), ω defines a continuous linear map

Tω : H0,n−s
c (GR/LR,L−λ) → Hn,s((GR/LR)opp,L−λ).
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We argue that the continuous composition Popp ◦ Tω ◦
(

Popp

)h
is Tφ. Indeed, if

f ∈
(

C∞
D
(GR/KR, V

∨
µ )

)h
, then

Tω ◦
(

Popp

)h
(f)(x) =

(

Popp

)h
(f)(σ ⊗ 1 ω(x, ·)) (4.14)

by (2) in Remark 4.2

= f
(

σ ⊗ 1 ◦ Popp ω(x, ·))

by definition of
(

Popp

)h
.

Hence,

Popp ◦ Tω ◦
(

Popp

)h
(f) = f

(

Popp ◦ σ ⊗ 1⊗ Popp ω(·, ·))

= f
(

Tσ ⊗ 1 ◦ P ⊗ Popp ω(·, ·))

by Remark 4.12

= f
(

Tσ ⊗ 1 φ) = Tφ(f).

This shows that Tφ is continuous.

To complete the proof we show that every continuous linear map

T :
(

C∞
D
(GR/KR, V

∨
µ )

)h
→ C∞

D
(GR/KR, V

∨
µ ) is of the form Tφ for some section

φ in C∞
D×D

(GR × GR/(KR × KR), Vµ ⊗ V ∨
µ ). Given such a map T , the compo-

sition P−1
opp ◦ T ◦

(

P−1
opp

)h
is a continuous linear map from H0,n−s

c (GR/LR,L−λ)

to Hn,s((GR/LR)
opp,L−λ). By ([18], Thm 8), there exists a cohomology class

[ω] ∈ H(n,n)(s,s)(GR/LR × (GR/LR)
opp,Lλ⊗L−λ) so that P−1

opp ◦ T ◦
(

P−1
opp

)h
= Tω.

Hence, T = Popp ◦Tω ◦
(

Popp

)h
. Now, the computation in (4.14) shows that T = Tφ

for φ =
(

P ⊗ Popp

)

(ω). �

4.3. Hermitian forms on H0,n−s
c (GR/LR,L−λ) in terms of Hermitian forms

on
(

KerD
)h
.

Lemma 4.15. Let [ω] ∈ H(n,n)(s,s)(GR/LR × (GR/LR)
opp,Lλ ⊗ L−λ) and let φ =

P ⊗Popp(ω). Then,

(1) 〈 , 〉ω is diag(GR × GR)-invariant if and only if 〈 , 〉φ is diag(GR × GR)-

invariant.

(2) 〈 , 〉ω is positive definite if and only if 〈 , 〉φ is positive definite.
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Proof. If f1, f2 ∈
(

Ker(D)
)h

=
(

C∞
D
(GR/KR, V

∨
µ )

)h
, then

〈f1, f2〉φ = f1[Tφ(f2)] = f1[Popp ◦ Tω ◦
(

Popp

)h
(f2)]

by the argument in the proof of Theorem (4.13)

= (Ph
oppf1)[Tω(

(

Popp

)h
(f2))]

by the definition of Ph
opp

= 〈Ph
opp(f1),P

h
opp(f2)〉ω.

�

5. A description of the unitary globalization of Aq(λ)

The aim of this section is to describe the unitary globalization of Aq(λ). Our

assumption on λ (2.3), guarantee that Aq(λ) is irreducible and unitarizable [17]. It

follows that the space of diag(GR × GR)-invariant Hermitian forms on the coho-

mology space H0,n−s
c (GR/LR,L−λ) = Hn,s((GR/LR)opp,L−λ)

h is one-dimensional.

By the results in sections 4.2 and 4.3, in order to identify the unitary globaliza-

tion of Aq(λ) it is enough to identify a diag (GR × GR)-invariant section F in

C∞
D×D

(GR ×GR/(KR ×KR), Vµ ⊗ V ∨
µ ).

It is well known, see [8], that each admissible (g,K)-module may be realized as

the space of K-finite vectors of some Hilbert space globalization. Let (πλ,Hλ) be a

Hilbert space globalization of the admissible (g,K)-module Ker(D)K−finite. Write

(π∨λ ,H
∨
λ ) with π

∨
λ (g) = πtλ(g

−1), the contragredient representation. LetHλ(µ) be the

K-isotypic subspace of Hλ for the minimal K-type τµ. Write Eµ for the orthogonal

K-equivariant projection of Hλ onto Hλ(µ). By Theorem 2.4 the multiplicity of

Hλ(µ) in Hλ is one. Choose a basis {vi} of H(µ), orthonormal with respect to the

Hilbert space inner product 〈 , 〉. Let {v∗i } be the dual basis. We show that the

generalized spherical function

(x, y) 7→ =
( 1

dim(H(µ))

)

∑

i

v∗i
[

πλ(x
−1y) · vi

]

(5.1)

=
( 1

dim(H(µ))

)

∑

i

π∨λ (x)v
∗
i

[

πλ(y) · vi
]

when suitably interpreted, determines the diag(GR×GR)-invariant Hermitian forms

on
(

C∞
D
(GR/KR, V

∨
µ )

)h
.

5.1. A diag (GR×GR)-invariant section of (GR×GR/(KR×KR), Vµ⊗V
∨
µ ). We

interpret the function in (5.1) as a smooth section of the bundle (GR×GR)×(KR×KR)

(Vµ ⊗ V ∨
µ ). To accomplish this, we (a) identify Vµ with H(µ) and (b) realize

H(µ)⊗H∨(µ), via Peter-Weyl Theorem, as a submodule of
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spanC{KR × KR matrix coefficients of H(µ) ⊗ H∨(µ)}. Indeed, the KR × KR-

module H(µ)⊗H∨(µ) is equivalent to the KR ×KR representation acting on

spanC{(k1, k2) →
〈

(k1 × k2) ·
∑

i

(vi ⊗ vi
∗), vj ⊗ v∗k

〉

| j, k ∈ {1, . . . ,dim(H(µ))}}.

Observe that for (x, y) ∈ GR ×GR fixed and (k1, k2) ∈ KR ×KR,

Trace
(

Eµ ◦ πλ(k
−1
1 x−1yk2) ◦ Eµ

)

=

=
∑

i

(k1 · v
∗
i )
[

πλ(x
−1y)k2 · vi

]

=
∑

i

∑

j,k

〈k2 · vi, vj〉 〈k1v
∗
i , v

∗
k〉 v

∗
k

[

πλ(x
−1y)vj

]

=
∑

j,k

〈k1 × k2 ·
∑

i

(vi ⊗ v∗i ), vj ,⊗v
∗
k〉 v

∗
k(
[

πλ(x
−1y)vj

]

⊂ spanC{〈k1 × k2 ·
∑

i

(vi ⊗ v∗i ), vj ⊗ v∗k〉

j, k ∈ {1, . . . ,dim(H(µ))}}.

We summarize the above observation in the following Lemma.

Lemma 5.2. The function

F : GR ×GR → Vµ ⊗ V ∨
µ ⊂ spanC{matrix coefficients of Vµ ⊗ V ∨

µ }

given by

F (x, y)(k1, k2) =
1

dim(H(µ)
Trace

(

Eµ ◦ πλ(k
−1
1 x−1yk2) ◦ Eµ

)

,

defines a smooth section of the vector bundle

(GR ×GR)×(KR×KR) (Vµ ⊗ V ∨
µ ).

Theorem 5.3. The section F of the vector bundle (GR ×GR)×KR×KR
(Vµ ⊗ V ∨

µ )

given in Lemma (5.2) is annihilated by the differential operators D ⊗ 1 and 1⊗D.

Proof. We show that (1 ⊗ D)(F ) = 0 . The proof of the identity (D ⊗ 1)(F ) = 0

is similar. According to Definition (4.4), given {Xβ} an orthonormal basis of p

consisting of root vectors, we must show that

(1⊗ P)
[

∑

β∈∆(p)

(R(1 ⊗Xβ)F )(x, y) ⊗X−β

]

= 0

where P is the canonical projection P : Vµ ⊗ p → V −
µ . Thus, it is enough to show

that for each δ ∈ ∆(u ∩ p),
∫

KR

τ∨µ ⊗ τµ(1× k)⊗Ad(k)
{

∑

β∈∆(p)

(

R(1⊗Xβ)F
)

(x, y)⊗X−β

}

χµ−δ(k)dk = 0,
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where χµ−δ is the character of the irreducible KR module with highest weight µ−δ.
We observe, as the definition of D is independent of the basis, that

∫

K

∑

β∈∆(p)

{(

R
(

1⊗Ad(k)Xβ)F
)

(x, yk)⊗Ad(k)X−β

}

χµ−δ(k)dk (5.4)

=

∫

K

∑

β∈∆(p)

{(

R
(

1⊗Xβ)F
)

(x, yk)⊗X−β

}

χµ−δ(k)dk.

On the other hand,

R(1⊗Xβ) F (x, yk) =
∑

i

v∗i
[

πλ(x
−1yk) Xβ · vi

]

.

As the vectors vi are K-finite and Xβ ∈ g, the vector Xβ ·vi is K-finite. Thus, there

exists a finite set S ⊂ K̂ so that

Xβ · vi =
∑

τ∈S

Pτ [Xβ · vi]. (5.5)

Replacing identity (5.5) in the displayed formula (5.4) we get
∫

K

∑

β∈∆(p)

{(

R(1⊗Xβ)F
)

(x, yk) ⊗X−β

}

χµ−δ(k)dk = (5.6)

=
∑

β∈∆(p)

∑

i,τ∈S

∫

K
v∗i
[

πλ(x
−1y)πλ(k) Pτ [Xβvi]

]

⊗X−β χµ−δ(k)dk.

By Theorem 2.4 the K-type τµ−δ does not occur in πλ|K . Hence, the right hand

side in equation (5.6) is zero. �

Theorem 5.7. The generalized spherical function

F (x, y) =
1

dim(H(µ)
Trace

(

Eµ ◦ πλ(x
−1y) ◦ Eµ

)

determines the unique (up to a scalar) invariant Hermitian form on Ker (D)h. The

cohomology class [ω] ∈ H(n,n)(s,s)(GR/LR×(GR/LR)opp,Lλ⊗L−λ) that corresponds

to F via the Penrose transform determines the unique (up to scalar) Hermitian form

on H0,n−s
c (GR/LR,L−λ).

Proof. The Theorem follows from combining Theorem 4.1, Theorem 4.13, Theorem

5.3 and Proposition 4.6. �

When πλ is a representation in the discrete series, F (x, y) = ψλ(x
−1y), the func-

tion introduced by Flensted-Jensen in ([6], (7.11)). The image of the intertwining

map Tψλ
is the space of square-integrable sections in Ker D.
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