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GROUPOID SYMMETRY AND CONSTRAINTS

IN GENERAL RELATIVITY

CHRISTIAN BLOHMANN, MARCO CEZAR BARBOSA FERNANDES,
AND ALAN WEINSTEIN

To Darryl Holm, for his 64th birthday

Abstract. When the vacuum Einstein equations are cast in the form of hamil-
tonian evolution equations, the initial data lie in the cotangent bundle of the
manifold MΣ of riemannian metrics on a Cauchy hypersurface Σ. As in every
lagrangian field theory with symmetries, the initial data must satisfy constraints.
But, unlike those of gauge theories, the constraints of general relativity do not
arise as momenta of any hamiltonian group action. In this paper, we show that
the bracket relations among the constraints of general relativity are identical to the
bracket relations in the Lie algebroid of a groupoid consisting of diffeomorphisms
between space-like hypersurfaces in spacetimes.

A direct connection is still missing between the constraints themselves, whose
definition is closely related to the Einstein equations, and our groupoid, in which
the Einstein equations play no role at all. We discuss some of the difficulties
involved in making such a connection.

1. Introduction

The vacuum Einstein equations state that the Ricci curvature Ric(g) of a lorentzian
metric g is identically zero. Recast as evolution equations, they become a hamil-
tonian system on the cotangent bundle of the manifold1MΣ of smooth riemannian
metrics on a manifold Σ which represents the typical Cauchy hypersurface2. Each
element of T ∗MΣ may be identified with a pair (γ, π), where γ is a riemannian
metric and π is a symmetric covariant 2-tensor field.3
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1In this paper, we will actually treat spaces of smooth functions as diffeological spaces rather
than as Fréchet manifolds. In Appendix A, we review the theory of diffeology, concentrating on
the aspects which are relevant to our work.

2In general relativity, Σ has dimension 3, but that assumption is not necessary for anything we
do in this paper.

3 Strictly speaking, a cotangent vector π toMΣ should be a contravariant symmetric 2-tensor
density, but we may use the metric γ and its associated volume element to identify covariant and
contravariant tensors, and to identify scalar functions with densities. In addition, we consider π

as an endomorphism of the tangent bundle TΣ when we form π2 and take traces.
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It has long been known4 that, for a given γ and π to be admissible as initial
conditions for the Einstein equations, they must satisfy a system of constraint equa-
tions. These equations may be derived either geometrically from the Gauss-Codazzi
equations relating the intrinsic and extrinsic curvatures of a hypersurface, or from
a lagrangian formulation of the Einstein equations in terms of the Einstein-Hilbert
action. The equations are:

Cmo(γ, π) := −2 divγ π = 0 ,(1)

Cen(γ, π) := −R(γ) + Trγ(π
2)− 1

dimΣ−1
(Trγ π)

2 = 0 .(2)

The momentum constraint, Cmo, maps T ∗MΣ to the space XΣ of vector fields on
Σ, while the energy constraint, Cen, takes values in the space FΣ of scalar functions
on Σ. The constraints may be viewed as those components of the Einstein tensor
which involve directions normal to the Cauchy hypersurface. (See Appendix E of
[46] for details.)
The constraint set C ⊂ T ∗MΣ, where the constraints are all equal to zero, has

two properties which always hold for the zero sets of momentum5 maps of proper
hamiltonian group actions.

• The constraint set is coisotropic; i.e., for any two functions vanishing on C,
their Poisson bracket vanishes there as well. (This follows from the bracket
formulas (4) below.) Consequently, on its regular part, namely those pairs
(γ, π) with no common infinitesimal symmetries, C is foliated by charac-
teristic submanifolds whose tangent spaces are spanned by the hamiltonian
vector fields whose hamiltonians vanish on C. In the group action setting,
these would be the orbits of the symmetry group.
• As shown by Arms, Marsden, and Moncrief [1], the constraint set has qua-
dratic singularities at the points which do admit infinitesimal symmetries. In
the group action setting, this would follow from the linearizability of proper
actions and the equivariant Darboux theorem.

The aim of the research described in this paper has been to identify the symmetry
structure responsible for the constraints and their Poisson bracket relations. What
we have found is that the bracket relations, rather than coming from the Lie algebra
of a symmetry group, are those of a Lie algebroid which is derived from a groupoid6

of diffeomorphisms between space-like hypersurfaces in Lorentz manifolds. Unfor-
tunately, this groupoid, which encodes the arbitrariness in the choice of initial value
hypersurface for the Einstein equations as well as of coordinates on this hypersur-
face, lives over a much larger space than the one where the constraints are defined.
It remains to be seen what the relevant structure is which connects our groupoid
with the constraints themselves.
Since the constraints Cmo and Cen are vector valued, we break them into scalar-

valued components to form their Poisson brackets. Following DeWitt [14], we get
these components by pairing the constraints by integration against vector fields

4See Section 4 below for historical remarks and references.
5Note that we are using two meanings of “momentum” in this discussion, first in a slightly

extended version of the usual “mass times velocity”, and second in the sense used in the theory
of hamiltonian actions. In the latter sense, the term “moment” is often used instead. (See the
footnote on p. 133 of [33]) for some remarks on the two nomenclatures.)

6The definition of groupoid is reviewed briefly in Section A.2. We refer to [32] for a full treatment
of Lie algebroids and Lie groupoids.
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and functions on Σ, obtaining for each vector field X and function φ the following
real-valued constraint function on T ∗MΣ:

(3) C(X,φ)(γ, π) =

∫

Σ

{

γ(X,Cmo(γ, π)) + φCen(γ, π)
}

volγ .

Since C(X,φ) is the sum of CX
def
= C(X,0) and Cφ

def
= C(0,φ), it suffices to write down

the Poisson bracket relations among these terms. These were found by DeWitt to
be:

{CX , CY } = C[X,Y ]

{CX , Cφ} = CX·φ(4)

{Cφ, Cψ} = Cφ gradγ ψ−ψ gradγ φ
= Cγ−1(φdψ−ψdφ) ,

where the metric γ is here considered as a bundle map from TΣ to T ∗Σ, so that its
inverse takes the differentials of functions to their gradients.
The coisotropic property of the constraint set follows immediately from (4) above:

the bracket of any two constraint functions vanishes on the constraint set. On the
other hand, the dependence of {Cφ, Cψ} on the metric γ means that the brackets are
not those of a fixed Lie algebra structure on XΣ⊕FΣ. Of course, we may freeze the
metric γ to some value γ, but then the resulting bracket { , }γ will not satisfy the
Jacobi identity. The anomaly appears in the jacobiator of a momentum constraint
and two energy constraints, namely:

{CX , {Cφ, Cψ}γ}γ + circ.perm. = CLX(γ−1)(φdψ−ψdφ) ,

which vanishes only in special cases, such as when X is a Killing vector field for γ.
We must therefore renounce the idea that the constraints should be the momentum

map of a symmetry group (such as the group of diffeomorphisms of spacetime).
Instead, we use a groupoid.
The objects of our groupoid will be the isometry classes of embeddings of Σ as

a cooriented, space-like hypersurface in a lorentzian manifold. We call these Σ-
universes. The morphisms of the groupoid, which we call Σ-evolutions, will be the
isometry classes of pairs of such embeddings into the same target lorentzian mani-
fold; they can be identified with diffeomorphisms between the image hypersurfaces.
Remarkably, the Lie algebroid of this groupoid is naturally a trivial bundle, and the
bracket relations among its constant sections turn out to reproduce precisely the
bracket relations (4) among the constraints.
To facilitate computations with the rather abstractly defined spaces of isometry

classes, we will use the fact that each Σ-universe has near the image of Σ a unique
gaussian representative, i.e. a metric near (in the appropriate sense) Σ×{0} on Σ×R
for which the paths t 7→ (x, t) for each x ∈ Σ are time-like geodesics parametrized
by (negative) arc-length and normal to Σ× {0}.
As an aside, we will show that the groupoid of Σ-evolutions is equivalent in a

precise sense to the groupoid of isometries between those Lorentz manifolds which
admit a cooriented, space-like hypersurface diffeomorphic to Σ.
There remains a significant gap between our results and a satisfactory geometric

explanation of the relations (4) among the constraints, since our Lie algebroid lies
over a space much bigger than the phase space T ∗MΣ on which the constraints
live. The latter space may be identified, via a natural riemannian metric on MΣ,
with the tangent bundle TMΣ, and this tangent bundle may be in turn identified
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with the space of 1-jets around Σ of Σ-universes. Differentiation by tangent vectors
based along Σ gives a natural projection from the Σ-universes to the 1-jets. Unfor-
tunately, it does not seem to be possible to make our Lie algebroid descend along
this projection.
To end this introduction, we note that Teitelboim [45] already gave an argument

leading to the Poisson bracket relations among the constraints using pure geometry,
without any appeal to Einstein’s equations. In some sense, the accomplishment of
our paper is to put Teitelboim’s argument in its proper mathematical context, that
of groupoids and Lie algebroids.
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2. Universes

We turn now to the construction of a groupoid whose Lie algebroid is a trivial
bundle with fibre XΣ ⊕ FΣ, such that the bracket of constant sections is given by
(4).

2.1. Σ-universes. A connected lorentzian manifoldM will be called a spacetime7

(whether or not its dimension is 4). M will be called Σ-adapted if it admits a
cooriented (i.e. with an orientation of the normal bundle), proper embedding of Σ
as a space-like hypersurface; such an embedding will be called a Σ-space in M , and
a pair consisting of a spacetime and a Σ-space in it will be called a Σ-spacetime.

Since the identity of specific points in the ambient spacetime is irrelevant8 to the
evolution of metrics on a manifold Σ, it is natural to make Definition 2.2 below.

Notation 2.1. For better compatibility with composition, we will often represent
mappings by arrows going from right to left; hence we write C∞(X, Y ) for the
smooth mappings to X from Y .

Definition 2.2. A Σ-universe is an equivalence class of Σ-spacetimes, whereM
i
←֓

Σ and M ′
i′

←֓ Σ are equivalent if there is an isometry M ′
ψ
← M which is consistent

7Note that any such manifold satisfies an Einstein equation of the form Ric(g) = T if the
energy-momentum tensor T is simply defined by that equation.

8Dirac [16] wrote, “I am inclined to believe . . . that four-dimensional symmetry is not a funda-
mental property of the physical world.” Pirani [36], reviewing Dirac’s paper, “finds it difficult to
concur”.
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with the coorientations and which satisfies ψ ◦ i = i′ . We will denote the set9 of all
Σ-universes by UΣ.

To define a diffeology on UΣ, since different Σ-universes may be represented by
different lorentzian manifolds, we follow the pattern described in Appendix A for
functional diffeologies on spaces of mappings with varying domains. Namely, we

stipulate that a parametrization UΣ
φ
← P is smooth if:

(1) each point of P has a neighborhood U for which there is a fixed manifold
M such that the Σ-universes φ(p), p ∈ U , are represented by Σ-spacetimes

Mp

ip
←֓ Σ, where all the Mp are open subsets of M ;

(2) ip 7→p is a smooth map C∞(M,Σ)← P .
(3) Mtot = {(x, p)|p ∈ P and x ∈Mp} is open in M × P ;
(4) the lorentzian structures on the fibres are the restrictions of a smooth section

over Mtot of the bundle of symmetric fibrewise 2-forms;

The following proposition gives a first description of the tangent bundle of UΣ.
A more explicit description will follow the introduction of gaussian splittings.

Proposition 2.3. The tangent cone to UΣ at a Σ-universe [(M, g)
i
←֓ Σ] is a

vector space which may be identified with the quotient of the space Γ(S2(T ∗M)) of

symmetric 2-forms on M by the image of the map Γ(S2(T ∗M))
Lg
← Xi(Σ)M taking

each vector field Z defined on M and vanishing on i(Σ) to the Lie derivative LZg.

Proof. A tangent vector to UΣ is represented by a 1-parameter family (Ms, gs)
is
←֓ Σ

of embeddings, where M0 =M , Ms are open subsets of a fixed manifold M , and gs
are lorentzian metrics depending smoothly upon s.
We will simplify the representative by fixing Ms and the embeddings, so that it is

only g which varies. To do this, let ξs be the vector field dis/ds = ξs along is. Since
is is a proper embedding for each s, we may “extend” the family ξs over M , i.e. we
may choose a smooth family σs of vector fields on M such that ξs = σs ◦ is for all s.
This family may not be complete, but we may integrate it as far as is possible. The

result is a family of open sets M ′

s ⊂ M and a family of open embeddings Ms
ψs
←M ′

s

defining a smooth path in C∞(M, [M ])open such that M ′

0 = M0, ψ0 is the identity
on M0, and dψs/ds = σs ◦ ψs. Since ξs = σs ◦ is, ψs ◦ i0 = is. (In particular, M ′

s

contains i0(Σ) for all s.) We obtain a new family (M ′
s, g

′
s)

i′s
←֓ Σ of embeddings by

setting g′s = ψ∗

s (gs) and i′s = is ◦ ψ
−1
s = i0. This family is not quite equivalent

to the original one, since the domains M ′

s are not mapped by ψs to all of Ms, but
they do agree at s = 0. According to the observation in Appendix A that tangent
vectors are insensitive to variations of domain, this insures that the paths in UΣ

represented by (Ms, gs)
is
←֓ Σ and (M ′

s, g
′

s)
i′s
←֓ Σ represent the same tangent vector to

UΣ at [(M, g)
i0
←֓ Σ], where the latter path has constant embedding i0. We may keep

M ′

s constant as well, in which case the only object varying with s is the lorentzian
metric gs. Its derivative with respect to s at s = 0 is the required smooth section of
S2(T ∗M).

9The collection of all Σ-spacetimes is, like the collection of all sets, a “class” in the set-theoretic
sense rather than a set. But the Σ-universes UΣ do form a set because every connected manifold
is diffeomorphic to a submanifold of some R

n.
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Our representative of the tangent vector is not unique, since we may apply an
arbitrary family of diffeomorphisms of M which fix i(Σ) and the normal orientation
there. (This freedom corresponds, essentially, to the freedom which we had in ex-
tending ξs to σs.) The only such diffeomorphism which can preserve a lorentzian
metric on (connected) M is the identity. The infinitesimal action of these diffeomor-
phisms, i.e. the map Lξg 7→ξ, is therefore injective, and the tangent space to UΣ at
[i] is the quotient of S2(T ∗M) by the image of that map. �

2.2. Σ-evolutions. The relative positions of pairs of Σ-spaces in the same space-
time, up to equivalence, form a groupoid over UΣ which will be our fundamental
symmetry structure.

Definition 2.4. A Σ-evolution is an equivalence class of pairs (i1, i0) of Σ-spaces
in the same spacetime, where a pair (i1, i0) inM is equivalent to (i′1, i

′

0) inM
′ if there

is a single isometry M ′ ψ
←M which is consistent with the coorientations and which

satisfies both ψ ◦ i1 = i′1 and ψ ◦ i0 = i′0. We will denote the set of all Σ-evolutions
by EΣ.

The Σ-evolutions form a diffeological groupoid over the Σ-universes with the dif-
feology on EΣ, like that on UΣ, defined in terms of representatives. The groupoid

structure has as target and source the projections [i1, i0]
l
← [i1] and [i1, i0]

r
← [i0]

(square brackets denoting equivalence classes); the composition law is [i2, i1][i1, i0] =
[i2, i0]; and the inversion rule [i1, i0]

−1 = [i0, i1].
We will show in Section 2.7 that EΣ is Morita equivalent to the isometry groupoid
IΣ of Σ-adapted spacetimes. This implies that the orbits of EΣ are in bijection with
the orbits of IΣ, which are the isometry classes of Σ-adapted spacetimes.
The isotropy group of [i] consists of all pairs ([i1, i0]) such that [i1] = [i0] = [i].

For such a pair, M
i1
←֓ Σ and M

i0
←֓ Σ are equivalent, which means that there is an

isometry ψ from M to itself such that i1 = ψ ◦ i0. Such an isometry is unique, if
it exists, which implies that the isotropy group of [i] is isomorphic to the isometry
group of its target spacetime.

Remark 2.5. Each (i1, i0) corresponds to a diffeomorphism i1 ◦ i
−1
0 between Σ-

spaces in the same spacetime, and composition in EΣ corresponds to composition
of diffeomorphisms.

Elements of the Lie algebroid of EΣ are infinitesimal Σ-evolutions and may be
parametrized by triples consisting of Σ-universes, “shift” vector fields on Σ, and
“lapse” functions on Σ, per the following proposition.

Proposition 2.6. The Lie algebroid AEΣ → UΣ is isomorphic as a vector bundle
to the trivial bundle UΣ× (XΣ⊕ FΣ).

Proof. An element of AEΣ at the base point [i0] ∈ UΣ is a tangent vector to a
smooth path in EΣ whose image is contained in the r-fibre of [i0] starting at the
unit [i0, i0]. Such a path is represented by a smooth family (is, i0) defined on an
interval containing s = 0, and its tangent vector at s = 0 corresponds to a vector
field along i0. (Note that the is may all be chosen to have the same target; the Lie
algebroid fibres are thus simpler to analyze than the tangent spaces to UΣ to which
the anchor projects them.) Using the lorentzian metric on the target manifold to
decompose this vector field into its tangential and normal components, and dividing
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the latter by the unit future normal field n, we obtain a vector field X and smooth
function φ on Σ which correspond to the Lie algebroid element given by the path.
Each fibre of AEΣ is now identified with the fixed space XΣ ⊕ FΣ. We omit

here the verification that this identification depends smoothly on the base point in
UΣ. �

2.3. Gaussian normal form. To compute the bracket and anchor of the Lie alge-
broid AEΣ→ UΣ, we may work in a neighborhood of the units [i, i]. There, we may
use the simplified representation of each Σ-universe [i] near S = i(Σ) given by the
following gaussian normal form. Using the metric g on the target of the cooriented

embedding M
i
←֓ Σ, we first extend the unit future normal field along S by parallel

translation along the geodesics normal to S to obtain a time-like vector field n on a
neighborhood U of S in M ; this extension will satisfy the equations g(n, TS) = 0,
g(n,n) = −1, and ∇

n
n = 0, where ∇ is the Levi-Civita connection of g. Transport-

ing S along the flow Φn

s of n produces a codimension-1 foliation on a neighborhood
of S with space-like leaves which are everywhere orthogonal to n. We call the leaves
of this foliation the gaussian time slices. This construction induces a canonical
isometry to a neighborhood of S in M from a neighborhood of Σ×{0} in Σ×R on
which the metric has the gaussian form

(5)
1

2
(γij(x, t)dx

idxj − dt2) ,

where xi are coordinates on Σ. Replacing the former neighborhood by the latter,
we have established the following normal form result.

Proposition 2.7. Every Σ-universe has a representative M
i
←֓ Σ in which a neigh-

borhood U of i(Σ) in M is equal to a neighborhood of Σ×{0} in Σ×R, i(x) = (x, 0),
and the metric on U has the gaussian form (5). This gaussian metric is uniquely
determined by [i].

Similarly, any tangent vector to UΣ has a unique representation in the form

(6)
1

2
αij(x, t)dx

idxj .

When Σ is compact (and sometimes when it is not), one can take U to be a
product Σ×I for some open interval I containing zero. We will call such a Σ-universe
cylindrical. The “spatial” component 1

2
γij(x, t)dx

idxj of the gaussian metric is then
a 1-parameter family of riemannian metrics on Σ. Thus we may parametrize the
cylindrical Σ-universes by paths of metrics, and the tangent vectors to them by
paths of symmetric covariant 2-tensors (not necessarily positive definite) on Σ.
For noncompact Σ, we may have to take U to consist of pairs (x, t) with |t| < ǫ(x)

for a smooth positive function ǫ on Σ. In any case, on a neighborhood of any
compact subset of Σ, a Σ-universe is defined by a path of metrics and a tangent
vector to the Σ-universes by a path of symmetric covariant 2-tensors.

2.4. Gaussian vector fields. To use the gaussian normal form in our computa-
tions, we must deal with the fact that a slicing which is gaussian for one embedding
of Σ is not gaussian for most others. The following lemma about diffeomorphisms
will lead us to its infinitesimal version about vector fields, which is all we need to
use.
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Lemma 2.8. Every diffeomorphism S → S ′ between space-like, cooriented hyper-
surfaces in spacetimes (M, g) and (M ′, g′) extends to a diffeomorphism ψ : U → U ′

between neighborhoods of S and S ′ respectively which respects the gaussian time-
splittings, i.e. which intertwines the (local) gaussian time flows:

(7) ψ ◦ Φn

t = Φn
′

t ◦ ψ .

The diffeomorphism is unique up to the choice of (connected relative to S) U .

We note that (7) holds if and only if ψ preserves inner products with the unit
normal, i.e. g(n, w) = (ψ∗g′)(n, w) for all vector fields w. By letting (M, g) =
(M ′, g′) and defining ψ in the domain of a flow Φvs generated by some vector field
v on M , and differentiating with respect to s, we obtain the following infinitesimal
version of Eq. (7).

Definition 2.9. Let U be a neighborhood of a hypersurface S as in Lemma 2.8. A
vector field v on U is called g-gaussian if it satisfies

(8) (Lvg)(n, w) = 0

for all vector fields w.

The following infinitesimal version of Lemma 2.8 will be proven by a purely infin-
itesimal computation.

Proposition 2.10. Every vector field v0 with values in TM defined on a hypersur-
face S as in Lemma 2.8 extends to a g-gaussian vector field v defined on a neigh-
borhood of S.

Proof. Condition (8) can be rewritten as

0 = i
n
Lvg = (Lvin + i[n,v])g = (div + ivd)ing + i[n,v]g

= d(iving) + i[n,v]g ,

where we have used the fact that i
n
g = −dt so that di

n
g = 0. Equivalently,

(9) [n, v] = − gradg(g(n, v)) ,

where gradg is the gradient with respect to g.
Splitting the vector field v = X + φn into components orthogonal and parallel to

n and observing that [n, v] = ∇
n
v−∇vn = ∇

n
v−∇Xn because ∇

n
n = 0, and that

g(n, v) = −φ because g(n,n) = −1, we obtain the equivalent condition

∇
n
v = ∇Xn+ gradg φ .

If we now take the inner product with n, use the facts that g(∇
n
X,n) = 0 and

g(∇
n
φn,n) = −n · φ, then we obtain the condition n · φ = 0. In in other words, the

gradient gradg φ does not have a normal component, i.e. gradg φ = gradγ φ, where
the “spatial gradient” gradγ φ is defined as gradg φ+(n ·φ)n. (Note the sign again.)
This implies that that Eq. (9) splits into components orthogonal and parallel to

n as

(10) [n, X ] = gradγ φ , n · φ = 0 .
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In local coordinates these equations read

∂X

∂t
= gradγ φ(11)

∂φ

∂t
= 0.(12)

Using the boundary conditions Xt=0 = X0 and φt=0 = φ0, we see that the g-gaussian
extension v = X + φn of the vector field v0 = X0 + φ0n exists and is uniquely
determined in a very simple way by the initial values of X and φ. �

We will denote the g-gaussian extension of X0+φ0n by Gg(X0, φ0). Furthermore,
we will abuse notation by omitting the zero subscripts for the initial values when
the context distinguishes them from their extensions.
For future reference, we write below an explicit formula for the gaussian extension,

to first order in t.

(13) Gg(X0, φ0) = X0 + t gradγ0 φ0 + φ0n+O(t2).

2.5. The action of g-gaussian vector fields on symmetric 2-forms. To com-
pute the anchor AEΣ→ TUΣ of our Lie algebroid, we need to express, in terms of
the space/time splitting on the ambient manifold, the Lie derivative of a symmetric
2-form of the type

α =
1

2
αij(x, t)dx

idxj

by a g-gaussian vector field v = X + φn.
The pull-back of the Lie derivative on the ambient manifold to the gaussian time

slices is

L⊤

v α := Lvα− (i
n
Lvα)dt = Lvα− (i[n,v]α)dt .

If v = X + φn is g-gaussian we have [n, v] = gradγ φ. Writing L
n
α = L⊤

n
α =

1
2
φ α̇ijdx

idxj =: α̇, we obtain

Lvα = L⊤

Xα + φ α̇+ (igradγ φα)dt ,

where L⊤

Xα = L⊤

X(t)α(t) is the Lie derivative on the time slice at t. We will drop the

superscript of L⊤

X if it is clear from the context what LX denotes.
Using the last equation, we can compute the action of v on the metric,

Lvg = Lv(γ −
1
2
dt2) = LXγ + φ γ̇ + (igradγ φ

γ)dt− dφ dt

= LXγ + φ γ̇ .

Note that the terms containing derivatives of φ cancel. Furthermore, we have

L
n
g = −2K ,

whereK(X, Y ) = g(∇XY,n) is the second fundamental form with respect to n of the
time slice at t. (See Section 9.3 of [46], but note that Wald’s “extrinsic curvature”
is the negative of the second fundamental form.) Thus, the Lie derivative of the
metric with respect to a g-gaussian vector field is given by

(14) LX+φng = LXγ + φγ̇ = LXγ − 2φK .



10 C. BLOHMANN, M.C.B. FERNANDES, AND A. WEINSTEIN

2.6. The bracket and the anchor. We can now make explicit the Lie algebroid
structure on AEΣ → UΣ in terms of the trivialization AEΣ ≈ UΣ × (XΣ ⊕ FΣ)
given by gaussian extension.
Using (10), we find the Lie bracket of two g-gaussian vector fields to be:

(15) [X + φn, Y + ψn] = [X, Y ] + φ gradγ ψ − ψ gradγ φ+ (X · ψ − Y · φ)n ,

which corresponds exactly to (4).
As for any bracket of vector fields, the jacobiator [u, [v, w]] + [v, [w, u]] + [w, [u, v]]

of three g-gaussian vector fields u, v, and w vanishes. However, the bracket of two
g-gaussian vector fields is in general not g-gaussian, as the following proposition
shows.

Proposition 2.11. The bracket (15) of two g-gaussian vector fields is not always
g-gaussian.

Proof. We have

i
n
L[v,w]g = L[v,w]ing + i[n,[v,w]]g

= d(g([v, w],n)) + i[v,[n,w]]g + i[[n,v],w]g

= −d(X · ψ − Y · φ) + i[v,gradγ ψ]g − i[w,gradγ φ]g

= −d(X · ψ − Y · φ) + (Lvigradγ ψ
− igradγ ψ

Lv)g − (Lwigradγ φ − igradγ φLw)g

= −d(X · ψ − Y · φ) + Lvdψ − Lwdφ+ igradγ φLwg − igradγ ψ
Lvg

= igradγ φ
(LY γ − 2ψK)− igradγ ψ

(LXγ − 2φK)

= igradγ φ
LY γ − igradγ ψLXγ + 2i(φ gradγ ψ−ψ gradγ φ)K .

In the second step, we have used that i
n
g = −dt. On the hypersurface Σ× {0}, we

may choose X , φ, Y , and ψ arbitrarily. For X = Y = 0 there, the right hand side
of the last equation is the second fundamental form contracted with ψ gradγ φ −
φ gradγ ψ, which is generally not zero. �

The anchor AEΣ
ρ
→ TUΣ of our Lie algebroid is given, up to a sign by the action

computed in the previous section:

(16) ρ(X, φ, g) := −LX(t)+φng = −LGg(X,φ)γ − φ γ̇ ,

where g = γ(t) − 1
2
dt2 is a gaussian metric on Σ × R and Gg(X, φ) = X(t) + φn

is the g-gaussian extension of X + φn. This Lie derivative represents the change
in the “appearance” of the metric on the ambient manifold as the “viewpoint”
changes according to a vector field X + φn along a space-like embedding. Note
that the anchors of two constant sections are applied consecutively to a metric as
ρ(X, φ)ρ(Y, ψ)(g) = LGg(Y,ψ)LGg(X,φ)g, that is, by applying the Lie derivatives of the
gaussian extensions in reverse order. This takes care of the negative signs in Eq.
(16).
The kernel of ρ consists of those (X, φ) whose g-gaussian extension is a Killing

vector field. It follows that the dimension of this kernel is zero10 over an open dense
subset of UΣ, since any Σ-universe is contained in a 1-parameter family whose
generic members have no isometries. (Local perturbations of the lorentzian metric
suffice to achieve this; deeper results in the riemannian case go back at least as far

10The dimension of the kernel of ρ is always finite; it is at most 1

2
(n + 1)n + n + 1, where

n = dimΣ, with equality only when g has constant sectional curvature.
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as [17].) It follows immediately that the bracket on sections of the Lie algebroid
AEΣ is determined by that on their images under the anchor (16). In particular,
the bracket of constant sections (X, φ) and (Y, ψ) of the trivial bundle must be that
given by given by Eq. (15):

(17) [(X, φ), (Y, ψ)] = ([X, Y ] + φ gradγ ψ − ψ gradγ φ,X · ψ − Y · φ) ,

where we now evaluate X and φ at t = 0. Together with the anchor (16), this
bracket determines the Lie algebroid structure on AUΣ. To summarize, we have:

Theorem 2.12. The Σ-evolutions EΣ form a groupoid over the Σ-universes UΣ.
Each orbit of this groupoid consists of all Σ-universes which are represented by Σ-
spaces in a fixed spacetime (M, g). The Lie algebroid AEΣ has a natural identifi-
cation with the trivial bundle UΣ × (XΣ ⊕ FΣ). Under this identification, in the
gaussian representation of ambient metrics, the anchor is the Lie derivative by gauss-
ian extensions: ρ(X, φ, g) = LGg(X,φ)g. The bracket of constant sections is given by
(17).

2.7. An equivalent groupoid and the moduli stack of spacetimes. This sec-
tion is peripheral to the main argument of this paper, but it suggests another point
of view toward the groupoid EΣ of Σ-evolutions.
We have just seen that the orbits of EΣ are in one-to-one correspondence with

isometry classes of Σ-adapted spacetimes, while the isotropy groups in EΣ are just
the isometry groups of those spacetimes. It turns out that EΣ is equivalent to
another groupoid in which Σ plays a much less central role. We only require that
the spacetimes be Σ-adapted, without ever specifying the placement of Σ. For the
notion of equivalence of groupoids, we refer to [10] and [34].

Definition 2.13. The groupoid IΣ is defined to be that in which the objects are
Σ-adapted spacetimes, and the morphisms are isometries between these spacetimes.

Remark 2.14. Strictly speaking, IΣ is not a groupoid, since the spacetimes do
not form a set. But it is equivalent to its wide subgroupoid consisting of isometries
between those spacetimes whose underlying manifolds are submanifolds of euclidean
spaces.

IΣ may be identified with an action groupoid whose objects are the elements
of the collection SΣ of all Σ-adapted spacetimes (or, alternatively, a set as in the
remark above). The groupoid acting on SΣ consists of the diffeomorphisms between
these objects. If (M1, g1) is a Σ-adapted spacetime and Φ is a diffeomorphism to a
manifoldM0 fromM1, then the result of acting on (M1, g1) by Φ is defined to be the
spacetime (M0, (Φ

−1)∗g1). Φ then becomes an isometry and so may be considered
as a morphism in IΣ.

Proposition 2.15. The groupoids IΣ and EΣ are equivalent.

Proof. An equivalence between groupoids is given by a biprincipal bundle, i.e. a
space on which the groupoids have commuting free actions, with the fibres of the
moment map11 of each one being the orbits of the other. Such a bibundle induces

11An action of a groupoid G over G0 on a space X includes as part of its data a map G0 ← X

which determines which groupoid elements act on which elements of X . This map is sometimes
called the moment map of the action.
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bijections between the orbit spaces of the two groupoids and between the isotropy
groups of corresponding objects.
To get an equivalence between IΣ and EΣ, we take as total space of our bundle

the collection HΣ of all Σ-spaces in all possible spacetimes.
The moment map for the left action of IΣ forgets the embedding and remembers

only the target. The typical morphism in IΣ is an isometry M ′
ψ
← M between

spacetimes. It acts on any Σ-space M
i
←֓ Σ to give the (equivalent) embedding

M ′
ψ◦i
←֓ M . This action is free because an isometry of a connected manifold which

fixes a hypersurface and its normal bundle must be the identity.

The moment map for the right action of EΣ takes eachM ′
ψ
←֓ M to its equivalence

class [i]. If i ∈ HL and [i1, i0] are such that [i] = [i1], then we define the right action

of [i1, i0] on i as follows. The equivalence between M
i
←֓ Σ and M ′

i′

←֓ Σ is realized

by a unique isometry M ′ ψ
← M such that ψ ◦ i1 = i. Then i · [i1, i0] is defined to be

the embedding M ′
ψ◦i0
←֓ Σ. To see that this action is free, suppose that i · [i1, i0] = i.

Then M =M ′ and ψ ◦ i0 = i = ψ ◦ i1, so i1 = i0, and [i1, i0] is an identity morphism.
The transitivity of the left action on the right moment fibres is just a restatement

of the definition of equivalence used in defining the Σ-universes. Transitivity of the
right action on the left moment fibres is obvious, since the morphisms in EΣ are
(equivalence classes) of pairs of embeddings into the same target. �

Remark 2.16. The notion of stack was introduced in algebraic geometry and has
recently migrated to differential geometry [6]; the purpose of the notion is to provide
a description of spaces of equivalence classes when it is important to keep track of the
multiple ways in which objects can be equivalent and thereby to overcome difficulties
related to singular behavior of quotient spaces. One way to understand stacks is to
see them as presented by groupoids, where equivalent groupoids determine “the
same” stack in the same sense that a given manifold may be described in different
ways by overlapping families of coordinate charts.
The equivalence between EΣ and IΣ which we have just proven shows that we

may consider EΣ as a presentation of the moduli stack of Σ-adapted spacetimes,
i.e. the isometry classes (including information about self-isometries) of spacetimes
admitting Σ as an “instantaneous space”, or “initial condition”. (Note that this is a
purely “kinematic” construction, as we have not imposed any dynamical condition
such as the vacuum Einstein equations.)

3. Discussion: the descent problem

We have constructed a groupoid over UΣ whose Lie algebroid bracket, for constant
sections in a natural local trivialization, exactly matches the bracket relations on
the constraints for Einstein’s equations. To establish a more direct relation with the
constraints themselves, we would need to find similar structures on the phase space
T ∗MΣ.
There is a natural projection P to TMΣ from UΣ, assigning to every Σ-universe

the 1-jet with respect to t at t = 0 of its gaussian representation as a path inMΣ.
(Note that this is well defined even if the Σ-universe is not cylindrical.) But there is
no way to push our Lie algebroid forward under this projection, essentially because
the value of the anchor at a given 1-jet would have to depend on the 2-jet.
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To surmount this difficulty, we tried to use a second-order evolution equation
on MΣ, i.e. a rule which expresses 2-jets in terms of 1-jets, such as the Einstein
evolution equations themselves. But the resulting anchor was not consistent with
the bracket relations.
We also tried “reverse engineering”, defining the anchor so that it would take

constant sections to the hamiltonian vector fields of the constraint functions. But
the anchor so-defined, when applied to two constant sections associated to functions
φ and ψ on M , generally takes their bracket as defined by the metric-dependent
relations (4) to a vector field which is not even hamiltonian.

4. Some history

A hamiltonian formulation of general relativity can be found in the work of Pirani
and Schild [37], aimed at the quantization of Einstein’s gravitational field equations.
These authors, as well as Bergmann, Penfield, Schiller, and Zatzkis [9] consider a
physical state at a certain time to be given by data on a space-like hypersurface,
which must in some sense be arbitrary in order to maintain four-dimensional covari-
ance.
Bergmann [7] had by then already begun a systematic study of covariant field

theories of general type, addressing the problem of bringing general relativity into the
canonical form as a preliminary step to quantization. While canonical quantization
of field theories was being developed, it soon became clear that general relativity
posed additional difficulties connected with the degeneracy of the lagrangian which
was a consequence of four-dimensional diffeomorphism invariance. In fact, Dirac’s
original work [15] on constrained dynamics was inspired in large part by this problem.
It was noted by Pirani, Schild, and Skinner [38] and not long after by Dirac [16] and

Arnowitt, Deser, and Misner (ADM) [3] that great simplifications could be made at
the expense of giving up four-dimensional symmetry. Such simplifications became
possible by fixing a foliation of spacetime by space-like hypersurfaces, with the
physical states living on these surfaces. Such a spacetime decomposition leads to the
decomposition of vectors along each hypersurface into their normal and tangential
components, and the metric tensor itself may be presented in the form

g(4)µν =

(

N2 +NsN
s Nn

Nm gmn

)

,

where the lapse function N and the shift 3-vector Nn describe the variation of the
time and space coordinates on infinitesimally close space-like hypersurfaces. The
lapse and shift can be chosen arbitrarily but enter in the constraint equations, which
arise from the degeneracy of the lagrangian and are given by time components of
the Einstein field equations G0µ = 0. It had already been realized by Dirac and
many others that the shift functions Nn generated coordinate transformations on
the hypersurfaces, whereas the lapse N was related to time translation. In this sense,
lapse and shift could be viewed as gauge potentials that had to be fixed in order to
solve the initial value problem. The lapse and shift functions were first introduced
in [2]. Their geometrical meaning was explained in [47] and in more global terms by
Fischer and Marsden [18], who were perhaps the first authors to suggest that the
constraints should be seen as something like a momentum map.
Still in search of avoiding the shortcomings of coordinate-dependent language,

Kuchař [28] argued that field dynamics does not take place in spacetime, or along
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a single foliation of hypersurfaces but in what he called hyperspace, an infinite-
dimensional manifold consisting of all the spacelike hypersurfaces in a given space-
time.
After the appearance of [16], Katz [26] found the formulas for the Poisson brackets

of the constraint functions. In their space-integrated form, the brackets were first
computed by DeWitt [14]. While the computation of the brackets was straightfor-
ward, their geometric interpretation was not satisfactory. A number of authors have
tried to give a more conceptual derivation, e.g., by studying hypersurface deforma-
tions [45], as a method to guarantee the path-independence of geometrodynamical
evolution [27], or by generalizing the concept of transformation groups [8] [47]. In
particular, Teitelboim [45] was perhaps the first to show that the Poisson bracket
relations are purely a consequence of the geometry of hypersurfaces in a riemann-
ian or lorentzian manifold, independent of any particular field theory. In a sense,
our paper may be seen as setting Teitelboim’s argument in its proper mathematical
setting, that of groupoids and Lie algebroids.
The most ambitious approaches aimed at recovering diffeomorphism covariance of

the initial value problem [21] [24] [25] [29]. Parallel developments were also made by
Wheeler [47]. Inspired by the dynamical description of the electromagnetic field in
terms of the vector potential, he proposed to describe the dynamics of three-space
metrics through the propagation of the intrinsic metric of space-like hypersurfaces
with respect to a time coordinate. Such a time parameter would label the leaves the
dynamically produced spacetime. In this approach the extrinsic curvature of these
hypersurfaces corresponds to the canonical momenta. The configuration space of
this theory is known as Wheeler’s superspace. Trajectories of metrics in this space
produce four-dimensional spacetime geometries.
Since the bracket of constraint functions is metric dependent, this suggested to

Bergmann and Komar [8] that the associated symmetries could be metric-dependent
as well. Their paper contains many ideas which are very close to ours, although the
language is somewhat different. In particular, we would say that their “Q-type
transformations” are precisely the bisections of the action groupoid (essentially our
IΣ, but without a specific choice of Σ), associated to the diffeomorphisms of a 4-
manifoldM acting on the function space of lorentzian metrics onM . Their infinites-
imal transformations are the sections of the action Lie algebroid; their equation (3.1)
is precisely the formula for the bracket of sections in this Lie algebroid! Bergmann
and Komar also observe that the orbits are isometry classes and that the action fails
to be faithful in the presence of isometries.
Bergmann and Komar even make the tantalizing statement, “That these trans-

formations form a group, or at least a groupoid, is seen from their definition.”
Unfortunately, groupoids do not reappear anywhere in the paper, and it is not clear
what notion of groupoid the authors had in mind. In particular, although [8] in-
cludes a discussion of the set of diffeomorphisms between hypersurfaces in spacetime
(the infinitesimal transformations being 4-vector fields along these hypersurfaces),
there is no suggestion that these form a groupoid.
The idea of associating the Q-type transformations with diffeomorphism invari-

ance of general relativity appeared also in [11] where these transformations arise from
“field dependent” gauge generators. These field dependent generators appeared also
in [39], [40], [41], and [42], and more recently in [35].
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Hojman, Kuchař, and Teitelboim [21] look at space-like embeddings into a fixed
lorentzian manifold and find what is more or less the Lie algebroid bracket for the
Lie algebroid of the groupoid of diffeomorphisms between hypersurfaces.
Finally, we should at least mention the immense analysis literature on existence

theory, both local and global, for the Einstein initial value problem, beginning with
fundamental work of Lichnerowicz [31] and Fourès-Bruhat (= Choquet-Bruhat) [19]
and continuing to this day. (See [13] for a fairly recent survey.) We hope that
our work provides new geometric understanding which may contribute to both the
analysis and the quantization of the Einstein field equations.

Appendix A. Diffeology

Although some of the infinite-dimensional spaces of smooth mappings in this paper
may be considered as Fréchet manifolds, this analytical structure is not necessary
for formal computations. Instead, we work in the framework of diffeological spaces.
These objects were introduced12 by Souriau [43] and developed extensively by Iglesias
[22] and others. We give a brief introduction to diffeology here and refer to [20], [30],
and the work-in-progress [23] for further details. Similar notions in the topological
setting are discussed in [4].
Roughly speaking, we can do a great deal of differential geometry on a set X

once we know what it means for a family of elements of X to depend smoothly on
parameters.

Definition A.1. A parameter space is an open subset of Rn for some n, and
a parametrization of a set X is a map to X from some parameter space P . A
diffeology on X is a set D of parametrizations of X which contains all constant
maps, which is closed under composition on the right with smooth (in the usual
sense) maps between parameter spaces, and which is locally defined in the sense that
a parametrization is in D if and only if its restrictions to all the sets in some open
covering are. The elements of D are called plots, or smooth parametrizations.
(X,D) is called a diffeological space; we denote it simply by X when it is clear

what diffeology is being used. A plot X
φ
← P with x = φ(0) is called a plot at x.

Remark A.2. In the language of sheaf theory, a diffeological space is a concrete
sheaf on the site of open subsets of euclidean spaces [5]. This point of view is
particularly well suited to show that the category of diffeological spaces has small
limits (taken point-wise), small colimits (first taken point-wise, then sheafified), and
exponential objects (given by the universal property), thus allowing for constructions
such as quotient spaces, pull-backs, mapping spaces, etc. that generally fail to exist
for smooth manifolds. For our purposes, however, we will need to give the explicit
descriptions of these constructions.

Just as in topology, every set X carries the discrete diffeology, for which only
the locally constant maps are plots, and the coarse diffeology, for which every
parametrization is smooth. If X is a (finite-dimensional) manifold, the usual smooth
maps to X from parameter spaces form the “standard” diffeology.
Diffeological spaces are the objects of a category in which the morphisms are the

smooth maps, defined as follows.

12A very similar notion was introduced by Chen [12], and different notions of “smootheology”
are compared in [44]
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Definition A.3. A map X
f
← Y between diffeological spaces is a smooth map if

f ◦ φ is a plot for X whenever φ is a plot for Y . We denote the set of all such
smooth maps by C∞(X, Y ). (Note that many authors denote it by C∞(Y,X).) A
smooth map with a smooth inverse is a diffeomorphism.

A smooth map between manifolds with the standard diffeologies is just a smooth
map in the usual sense. The parametrizations of any diffeological space which are
smooth are just the plots, so the term “smooth parametrization” has an unambigu-
ous meaning.
Any diffeological space (X,D) carries the D-topology, defined as the finest topol-

ogy for which all plots are continuous; i.e., a subset U ⊆ X is open [closed] if and only
if φ−1(U) is open [closed] for every plot φ. Smooth maps are always D-continuous.
A product X×Y of diffeological spaces carries a product diffeology, whose plots

are the parametrizations whose compositions with the projections to X and Y are
smooth. Each subset of a diffeological space has a natural subspace diffeology in
which the plots are those parametrizations whose composition with the inclusion is
smooth. The restriction of a smooth map to any subset with the subspace diffeology
is again smooth.
Any set D0 of maps to X from diffeological spaces generates the diffeology D0

consisting of all those parametrizations which are locally compositions of the form
φ ◦ s, where φ is in D0 and s is a parametrization of the domain of φ, together with
all constant maps from parameter spaces. (The latter are already included if the
images of the elements of D0 cover X .)
If D0 consists of a single surjective map X ← Y from a diffeological space Y , the

diffeology which it generates is called the quotient diffeology. Conversely, any
diffeology is the quotient diffeology for the union of all its plots, considered as a
single map defined on the disjoint union of the domains of the plots.
If X and Y are diffeological spaces, the functional diffeology on C∞(X, Y )

is that for which a parametrization C∞(X, Y )
φ
← P is a plot if and only if the

corresponding evaluation map X ← Y × P is smooth. The “exponential law”
C∞(C∞(X, Y ), Z)) ∼= C∞(X, Y × Z) then holds for all X , Y , and Z, not just in
the defining case where Z is a parameter space, and the composition operations
C∞(X,Z)← C∞(X, Y )× C∞(Y, Z) are smooth.
The subspace diffeology construction produces diffeologies on spaces of mappings

satisfying extra conditions, such as spaces of diffeomorphisms or embeddings, spaces
of sections of smooth bundles (e.g. tensors), and solution spaces of ordinary or
partial differential equations.
We can also define diffeologies on spaces of mappings with variable domains.

For simplicity, we let these domains be subsets of a fixed space. Let [Y ] be some
collection of subsets of a diffeological space Y (for instance the open subsets, if
Y carries a topology), and let C∞(X, [Y ]) be the set of all mappings to X whose
domains belong to [Y ]. Thinking of a parametrization C∞(X, [Y ])← P as a family

X
fp
← Yp of maps parametrized by p ∈ P , we call it a plot when the evaluation map

X ← D ⊆ Y × P is smooth, where the domain D = {(y, p)|y ∈ Yp)} carries the
subspace diffeology. When Y is a manifold and [Y ] consists of the open subsets, it
may be appropriate to restrict the diffeology to consist of those families for which
the domain D is open in Y × P , so that we are always dealing with maps defined
on manifolds. In this case, we denote the space of mappings by C∞(X, Yopen). In
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particular, if X is a single point, we obtain a diffeology on the set of open subsets
of Y .

Example A.4. If Σ is any manifold, the space MΣ of riemannian metrics on Σ
carries a functional diffeology. So doesMΣopen, the metrics defined on open subsets
of Σ.

If the diffeological space Y carries a topology (not necessarily the D-topology),
C∞(X, Y ) also carries the “finer” compact functional diffeology in which the

plots C∞(X, Y )
φ
← P are required to satisfy the additional condition that each

p ∈ P has a neighborhood V for which all the maps in φ(V) agree outside some
compact subset of Y . C∞(X, Y ) with this diffeology is denoted by C∞

c (X, Y ).

A.1. Jets and tangent vectors. To define jets in diffeology, we start with the
basic case of parameter spaces. For k = 0, 1, 2, . . . ,∞, and smooth maps s and t to
R
n from a parameter space P containing 0, s and t are defined to have the same

k-jet at 0 if s(0) = t(0) and if their partial derivatives through order k match at 0.
Plots f and g to a diffeological space X from P will be said to have the same k-jet

at 0 if there is a plot X
h
← Q such that f = h ◦ s and g = h ◦ t, where s and t are

plots for Q the same k-jet at 0. Finally, for any diffeological spaces X and Y , two
maps X ← Y have the same k-jet at y ∈ Y if their compositions with any plot at y
have the same k-jet at 0. (It is easy to see that, if X and Y are parameter spaces,
this coincides with the original definition.)
Having the same k-jet at y is an equivalence relation ∼ky , and two maps with the

same germ at y have the same k-jet there for any k. We thus obtain an equivalence
relation on germs, and we define the space Jk(X, Y ) of k-jets of maps to X from
Y to be the set of pairs (jkyf, y), where f is the germ of a map to X from some

neighborhood of y in y, and jkyf is the equivalence class of f for ∼ky .

If K ⊂ Y , we say that f ∼kK g if f and g have the same k-jet at all points of
K, and we call the equivalence classes for this relation k-jets along k. If X is a
bundle over Y , we may refer to the k-jets of those maps Y ← X which happen to
be sections of the bundle as k-jets of sections.
We define diffeological structures on jet bundles by considering them as quotients

of spaecs of mappings, using the functional diffeology. When k = ∞ and X and
Y are manifolds, the sheaf diffeology is also interesting, since the smooth maps are
maps into the leaves of a foliation.
Since constant maps are always smooth, and the 0-jets of maps are just their val-

ues, there is a natural identification of J0(X, Y ) with X×Y . There are also natural
maps Jk(X, Y ) ← J l(X, Y ) for k ≤ l. For k = 0, this gives natural projections of
the jet spaces to X and Y . That the infinite jet space J∞(X, Y ) is the inverse limit
of the jet spaces for finite k.
Jets of mappings into mapping spaces are mappings into jet bundles. If X , Y ,

and Z are manifolds, smooth maps C∞(X, Y )
f
← Z correspond to smooth maps

X
F
← Y × Z. It follows that Jk(C∞(X, Y ), Z) = C∞(Jk(X,Z), Y ).
Of special importance are the 1-jets at 0 of maps to X from neighborhoods of 0 in

R; these are the tangent vectors. We denote the set of all tangent vectors to X by
TX and call it the tangent cone bundle of X . It is the disjoint union of tangent
cones TxX at the points of X , which are cones because reparametrization of curves
by the action of the multiplicative group R\{0} on R leads to a natural action of
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this group on the tangent spaces. TX has a diffeological structure and projection
to X inherited from those on J1(X,R).
For mapping spaces between manifolds, the general result above on jet bundles

gives, with Z = R and k = 1, TC∞(X, Y ) = C∞(TX, Y ). The tangent bundle
projection C∞(X, Y ) ← TC∞(X, Y ) is just composition with the projection X ←
TX .
Two warnings are in order. First of all, the action of R\{0} on the tangent cone

may not be faithful. For instance, ifX is the half-line [0,∞) viewed as R/Z2 with the
quotient diffeology, its tangent cone at 0 is also a half-line on which multiplication
by −1 is the identity. Second, it is generally not possible to add 1-jets of curves. If
it were, we would find that adding a vector v at 0 in R/Z2 to itself would give both
2v and 0. Another example where addition is not possible is the tangent cone at 0
to the union of the coordinate axes in R

2 with the subspace diffeology.
An example where all the tangent cones are zero is the space [Y ]open = C∞({p}, [Y ])open

of open subsets of a manifold Y . A path in [Y ]open is just an open subset of I×Y for
some interval I of real numbers. If Us is any such path defined around s = 0, it has
the same tangent vector as the constant path through U0. In fact, they factor via
curves tangent at 0 through the plot on I × R defined by U(s,0) = Us, U(s,s2) = U0,
and U(s,s′) = Y elsewhere. Similarly, tangent vectors to spaces C∞(X, [Y ])open are
insensitive to the variation of domain with s and may all be represented by families
of functions with unchanging domains. The same arguments apply to jets of any
order.

Example A.5. For the spaceMΣopen of riemannian metrics defined on open subsets
of Σ, the tangent space at a metric g defined on all of Σ consists of the smooth
symmetric covariant 2-forms on Σ, even though the domain of a path through g
may shrink as the path parameter varies.

It is possible to define a tangent vector space at each point of a diffeological space
by taking formal linear combinations of 1-jets of curves, as in [20], but it is then
necessary to introduce further relations, so that, for instance, the tangent space at
the conical singular point 0 of the space R/Z2 reduces to zero, while the tangent
cone does not. (On the other hand, the tangent space at the intersection point in
the union of the coordinate axes in the plane is two-dimensional.)
For a diffeological group, group multiplication induces a a vector space structure

on each tangent cone [30].
Cotangent spaces to diffeological spaces may be defined as spaces of 1-jets of

smooth mappings to R; these all have vector space structures derived from that on
R. The composition of real-valued functions with curves defines a natural pairing
(which can be degenerate) between tangent and cotangent spaces.
If N and E are manifolds and p is a submersion, then the finite jet spaces Jk(Y,E)

are also smooth manifolds with submersions to Y , and the infinite jet space J∞(Y,E)
carries the projective limit diffeology in which a map into it is smooth if all of the
compositions with projections into finite jet spaces are smooth.

A.2. Diffeological groupoids. Diffeological groupoids are defined like topological
groupoids [22][23]. Recall that a category C consists of a collection C0 of objects and
a collection C1 of morphisms, with target and source maps l and r to C0 from C1,
a unit inclusion map C1

ǫ
← C0, and a composition map to C1 from C2 = {(f, g) ∈
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C1 × C1|r(f) = l(g)}, satisfying the usual axioms for associativity and units. A
groupoid is a category13 in which every morphism is invertible.
If C0 and C1 are diffeological spaces, we give C2 ⊆ C1×C1 the subspace diffeology.

If all of the structure maps are smooth, we say that C is a diffeological category. If C
is, in addition, a groupoid, and the map ι which takes each morphism to its inverse
is smooth, then C is a diffeological groupoid. Note that we do not require l and r
to be submersions; in fact, this notion is better replaced with that of “subduction”
[23] in the diffeological case. But if a diffeological groupoid C is a manifold and l
and r are submersions, then C is a Lie groupoid in the usual sense.
Defining the Lie algebroid of a Lie groupoid is not so simple, even when C0 is

a single point, in which case C1 is a diffeological group. A “Lie algebra” bracket
for such a group G is defined in [20] using the conjugation operation of G on itself.
It is a bilinear operation on the tangent (vector) space TeG at the identity, but
antisymmetry and the Jacobi identity have been established in [30] under some
extra assumptions on TeG, holding for example in the case where G is the group of
diffeomorphisms of a manifold M with the functional diffeology. In this case, TeG
is, as expected, the space XM of vector fields on M , and the bracket is the usual
Lie algebra bracket.
If we replace M above by a diffeological space X , it is no longer even clear that

inversion is smooth in the group of diffeomorphisms, though this is the case for
many X . We can always define a stronger diffeology by admitting as plots only
those whose composition with inversion is a plot in the functional diffeology. The
tangent space at the identity may be identified with those vector fields which are
tangent to paths of diffeomorphisms.
Let G be a diffeological groupoid, and let B(G) be its group of bisections, i.e.

smooth sections γ of r for which l ◦ γ is a diffeomorphism. We give B(G) the
diffeology in which the plots are those plots for the subspace-functional diffeology
for which composition with inversion is also a plot. The tangent space to the identity
then consists of smooth maps TG1

a
← G0 lifting the unit section ǫ which are tangent

to smooth paths through the identity in B(G). The values of a are tangent to the
r-fibres, so it is natural to consider them as sections of the “bundle” A(G) over G0

which is the pullback by ǫ of ker Tr. Without further assumptions, A(G) is not a
vector bundle, but it should still play the role of the Lie algebroid. To get a bracket
operation, we follow [20] and [30] and use the natural action of the group B(G) on
A(G). Its derivative at the identity with respect to the first variable gives a binary
operation [a, b] on sections of A(G), defined a priori only when a is admissible in
the sense of being tangent to a path in B(G). In addition, there is an anchor which
takes admissible sections of A(G) to admissible vector fields, i.e. admissible sections
of TG0.
Since the action of B(G) preserves all the structures in sight, the operation of

bracketing on the left by an admissible section is a derivation with respect to both
the bracket itself and multiplication by functions. In other words, we have: [a, fb] =
f [a, b] + (ρ(a)f)b for admissible a, functions f , and all sections b, and [a, [b, c]] =
[[a, b], c] + [b, [a, c]] for admissible a, b, and c.

13Many authors require a groupoid to be a small category, in the sense the morphisms and ob-
jects form sets rather than just collections. We will not make this assumption, but will occasionally
point out how to replace “large” groupoids by small ones.
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[34] Moerdijk I., Mrčun J.: Lie groupoids, sheaves and cohomology. In: Poisson geometry, defor-
mation quantisation and group representations, London Math. Soc. Lecture Note Ser., vol.
323, pp. 145–272. Cambridge Univ. Press, Cambridge (2005)

[35] Mukherjee P., Saha A.: Gauge invariances vis-á-vis Diffeomorphisms in second order metric
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