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COMMUTING INVOLUTIONS OF LIE ALGEBRAS, COMMUTING VARIETIES,
AND SIMPLE JORDAN ALGEBRAS

DMITRI I. PANYUSHEV

ABSTRACT. Let σ1 and σ2 be commuting involutions of a connected reductive algebraic

group G with g = Lie(G). Let g =
⊕

i,j=0,1 gij be the corresponding Z2 × Z2-grading. If

{α, β, γ} = {01, 10, 11}, then [ , ] : gα×gβ → gγ , and the zero-fibre of this bracket is called a

~σ-commuting variety. The commuting variety of g and commuting varieties related to one

involution are particular cases of this construction. We develop a general theory of such

varieties and point out some cases, when they have especially good properties. If G/Gσ1

is a Hermitian symmetric space of tube type, then one can find three conjugate pairwise

commuting involutions σ1, σ2, and σ3 = σ1σ2. In this case, any ~σ-commuting variety is

isomorphic to the commuting variety of the simple Jordan algebra associated with σ1. As

an application, we show that if J is the Jordan algebra of symmetric matrices, then the

product map J × J → J is equidimensional; while for all other simple Jordan algebras

equidimensionality fails.
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2 D. PANYUSHEV

INTRODUCTION

The ground field k is algebraically closed and char k = 0. Let G be a connected reductive

algebraic group with Lie(G) = g. In 1979, Richardson proved that any pair of commut-

ing elements of g can be approximated by pairs of commuting semisimple elements [19].

More precisely, if t ⊂ g is a Cartan subalgebra (CSA for short), then

(0·1) {(x, y) ∈ g× g | [x, y] = 0} = G·(t× t),

where ‘bar’ means the Zariski closure. The LHS is called the commuting variety of g, de-

noted E(g). That is, E(g) is the zero-fibre of the multiplication map g× g
[ , ]
−→ g. It follows

from (0·1) that E(g) is irreducible and dimE(g) = dim g + rk g. For arbitrary Lie algebras,

e.g. for Borel subalgebras of g, the commuting variety can be reducible [24, p. 237].

There are several directions for generalising Richardson’s work.

First, for given subvarieties U, V ⊂ g, one can consider the restriction of [ , ] to U × V and

study properties of E(g) ∩ (U × V ). For instance:

– Let σ be an involution of g with the corresponding Z2-grading g = g0 ⊕ g1. Taking

U = V = g1 yields the commuting variety E(g1) := E(g)∩ (g1×g1), which was considered

first in [14]. Here the structure of E(g1) heavily depends on σ. If g1 contains a CSA of g,

then E(g1) is an irreducible normal complete intersection [14]. At the other extreme, if the

symmetric space G/G0 is of rank 1, then E(g1) is often reducible. In [17], the question of

irreducibility of E(g1) is resolved for all but three involutions of simple Lie algebras, and

the remaining cases are settled in [3]. It seems, however, that there is no simple rule to

distinguish the involutions for which E(g1) is irreducible.

– Another natural possibility is to take U = V = N , where N is the set of nilpotent

elements of g. This leads to the nilpotent commuting variety of g, E(N ), which is often

reducible. However, E(N ) is equidimensional, dimE(N ) = dim g, and the structure of

irreducible components is well understood [18].

– An interesting situation with U 6= V occurs if g = ⊕i∈Zg(i) is Z-graded, U = g(i), and

V = g(−i), see [15, Sect. 3].

Second, one may look at commuting varieties related to other types of algebras. If A is

any algebra, then E(A) is defined to be the zero fibre of the multiplication map A×A → A.

It is a natural task to study the commuting variety of a simple Jordan algebra. As far as I

know, this problem has not been addressed before.

In this article, we elaborate on both directions outlined above. We study certain “com-

muting varieties” associated with Z2 × Z2-gradings of g (the first direction). It turns out

that, for some gradings, these new commuting varieties are isomorphic to the commut-

ing variety of simple Jordan algebras (the second direction). To describe our results more

precisely, we need some notation. Let σ1 and σ2 be different commuting involutions of a
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connected reductive algebraic group G. This yields a Z2 × Z2-grading of g:

(0·2) g =
⊕

i,j=0,1

gij , where gij = {x ∈ g | σ1(x) = (−1)ix & σ2(x) = (−1)jx}.

Then σ1, σ2, and σ3 = σ1σ2 are pairwise commuting involutions, and following [25] we

say that (0·2) is a quaternionic decomposition of g. For, if (α, β, γ) is any permutation of the

set of indices {01, 10, 11}, then [g00, gα] ⊂ gα and [gα, gβ] ⊂ gγ . The conjugacy classes of

pairs of commuting involutions are classified, see [10] and references therein. Therefore,

it is not difficult to write down explicitly all the quaternionic decompositions of simple

Lie algebras. This article is a continuation of [16], where we developed some theory on

Cartan subspaces related to (0·2) and studied invariants of degenerations of isotropy rep-

resentations involved.

Set ~σ = (σ1, σ2, σ3), and letG00 denote the connected subgroup ofGwith Lie algebra g00.

A ~σ-commuting variety is the zero-fibre of the bracket [ , ] : gα×gβ −→ gγ . Associated with

(0·2), one has three essentially different such varieties that are parameterised by the choice

of γ ∈ {01, 10, 11}. All these mappings areG00-equivariant, and all ~σ-commuting varieties

are G00-varieties. The above-mentioned varieties E(g1) can be obtained as a special case

of this construction, see Example 3.1. We usually stick to one particular choice of the

commutator, ϕ : g10 × g11 → g01, and try to realise what assumptions on ~σ imply good

properties of E := ϕ−1(0) and other fibres of ϕ. Clearly, ϕ can be regarded as a quadratic

map from g1⋆ := g10 ⊕ g11 to g01. Let c1⋆ be a Cartan subspace (=CSS) in g1⋆. Say that

c1⋆ is homogeneous if it is σ2-stable (or, equivalently, σ3-stable), i.e., if c1⋆ = a10 ⊕ a11 with

a1j ⊂ g1j . We prove that

• if c1⋆ is a homogeneous CSS, then the closure of G00·c1⋆ is an irreducible component

of E (Theorem 3.4). (Such irreducible components are said to be standard). However, there

can be several standard component, of different dimension; and there can also exist some

“non-standard” irreducible components.

• All homogeneous CSS in g1⋆ are G00-conjugate (i.e., E has only one standard compo-

nent) if and only if dim c1⋆ = dim c10 + dim c11, where c1j are CSS in g1j (Theorem 3.7).

• ϕ is dominant if and only if there exist x ∈ g10, y ∈ g11 such that zg(x)01∩zg(y)01 = {0}.

However, one cannot expect really good properties for ϕ and E without extra assump-

tions. One natural assumption is that some of involutions in ~σ are conjugate. Another

possibility is that some of the σi’s possess prescribed properties. Our more specific results

are:

(1) If σ1, σ2 are conjugate, then ϕ is surjective and dimϕ−1(ξ) > dim g11 for all ξ ∈

g01 (Proposition 3.8). We also provide a method for detecting subvarieties of E whose

dimension is larger than dim g11. This exploits certain restricted root systems related to

decomposition (0·2), see Section 5.
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(2) If σ1, σ2 are involutions of maximal rank (hence they are conjugate), then ϕ is surjec-

tive and equidimensional, each irreducible component of E is standard, and the scheme

ϕ−1(0) is a reduced complete intersection (Theorem 4.1).

(3) Let g be simple and σ a Hermitian involution (i.e., gσ is not semisimple). If the

Hermitian symmetric space G/Gσ is of tube type, then there exists a commuting triple

~σ such that each σi is conjugate to σ, and in this case E is isomorphic to the commuting

variety of the corresponding simple Jordan algebra, see Section 6.

(4) The relationship with ~σ-commuting varieties implies that the multiplication map

J× J
◦
→ J is equidimensional if and only if J is the Jordan algebra of symmetric matrices.

The commuting variety of a simple Jordan algebra J is reducible, since J×{0} and {0}×J

are always irreducible components; and there are certainly some other components.

(5) Results stated in (2) rely on an interesting property of Z2-gradings. For any e ∈ g0,

its centraliser in g is also Z2-graded: ge = ge0 ⊕ ge1. Then we prove that

dim ge0 + rk g > dim ge1
and the equality occurs only if e = 0 and σ is of maximal rank. However, the proof of this

inequality (Theorem 4.4) is not quite uniform, and a better proof is welcome! The required

case-by-case calculations are lengthy and tedious, so that not all of them are actually

presented, and a part of them is placed in Appendix A. We hope that an a priori proof

of this inequality might be related to a geometric property of centralisers of nilpotent

elements in g0, see Conjecture 4.6.

– Throughout, G is a connected reductive algebraic group and g = Lie(G). Then zg(a)

is the centraliser of a subspace a ⊂ g, and the centraliser of x ∈ g is denoted by zg(x) or gx.

– R(λ) is a simple finite-dimensional G-module with highest weight λ.

– Algebraic groups are denoted by capital Roman letters and their Lie algebras are

denoted by the corresponding lower-case gothic letters.

1. PRELIMINARIES ON INVOLUTIONS AND COMMUTING VARIETIES

The set of all involutions of g is denoted by Inv(g). The group of inner automorphisms

Int(G) ≃ G/Z(G) acts on Inv(g) by conjugation. Two involutions are said to be conjugate,

if they lie in the same Int(G)-orbit. If σ ∈ Inv(g), then g = g0 ⊕ g1 is the corresponding

Z2-grading of g, where gi = {x ∈ g | σ(x) = (−1)ix}. We also say that (g, g0) is a symmetric

pair. Whenever we wish to stress that g0 and g1 are determined by σ, we write gσ and g
(σ)
1

for them. We assume that σ is induced by an involution of G, which is denoted by the

same letter. The connected subgroup of G with Lie algebra g0 is denoted by G0. Hence G0

is the identity component of Gσ = {g ∈ G | σ(g) = g}. The representation of G0 in g1 is

the isotropy representation of the symmetric space G/G0.
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We freely use invariant-theoretic results on the G0-action on g1 obtained in [11]. A

Cartan subspace (=CSS) is a maximal subspace of g1 consisting of pairwise commuting

semisimple elements. The Cartan subspaces are characterised by the following property:

(1·1) Suppose that a subspace a ⊂ g1 consists of pairwise commuting semisimple elements.

Then a is a CSS if and only if zg(a) ∩ g1 = a [11, Ch. I].

An element x ∈ g1 is called G0-regular if the orbit G0·x is of maximal dimension. Let c

be a CSS of g1. Below, we summarise some basic properties of the Cartan subspaces and

isotropy representations:

– All CSS of g1 are G0-conjugate and G0·c is dense in g1;

– Every semisimple element of g1 is G0-conjugate to an element of c;

– A semisimple element x ∈ g1 is G0-regular ⇔ zg(x) ∩ g1 is a CSS;

– The orbit G0·x is closed if and only if x is semisimple;

– The closure of G0·x contains the origin if and only if x is nilpotent;

– The number of nilpotent G0-orbits in g1 is finite.

• We say that σ ∈ Inv(g) is of maximal rank if g1 contains a Cartan subalgebra of g.

As is well known, (1) dim g1 − dim g0 6 rk g for any σ, and the equality holds if and

only if σ is of maximal rank; (2) all involutions of maximal rank are conjugate; (3) the

involutions of maximal rank are inner if and only if all exponents of g are odd.

Lemma 1.1 ([11, Prop. 5]). For any x ∈ g1, one has dim g0 − dim gx0 = dim g1 − dim gx1 .

Equivalently, dimG·x = 2dimG0·x for all x ∈ g1.

Consequently, if σ is of maximal rank, then

(1·2) dim gx1 = dim gx0 + rk g.

The property of having maximal rank is inheritable in the following sense.

Lemma 1.2. Let σ be of maximal rank and x ∈ g1 semisimple. Then the restriction of σ to gx and

[gx, gx] is also of maximal rank.

The commuting variety associated with σ is

(1·3) E(g1) = {(x, y) ∈ g1 × g1 | [x, y] = 0}.

That is, E(g1) is the zero-fibre of the commutator map [ , ]1 : g1×g1 → g0. It is known that

• G0·(c× c) is always an irreducible component of E(g1) [14, Prop. 3.7];

• if σ is of maximal rank, then G0·(c× c) = E(g1) and g1 × g1 → g0 is equidimen-

sional [14, Theorem 3.2]; moreover, all the fibres of [ , ]1 are irreducible and nor-

mal [14, Cor. 4.4].

• E(g1) can be reducible [14, Example 3.5].
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Example 1.3. Suppose that g̃ = g ⊕ g and σ(x, y) = (y, x). Then g̃0 = ∆(g) and g̃1 =

{(x,−x) | x ∈ g}. Here the commutator g̃1× g̃1 → g̃0 coincides with the usual commutator

g × g → g and E(g̃1) is isomorphic to the usual commuting variety of a semisimple Lie

algebra g. By a result of Richardson [19], E(g) is irreducible and dimE(g) = dim g+ rkg.

A torus S of G is called σ-anisotropic, if σ(s) = s−1 for all s ∈ S. All maximal σ-

anisotropic tori are G0-conjugate, and if C ⊂ G is a maximal σ-anisotropic torus, then

Lie(C) is a CSS in g1. Recall that a restricted root of C is any non-trivial weight in the de-

composition of g into the sum of weight spaces of C. Write ΨC(G/G0) or just Ψ(G/G0) for

the set of all restricted roots. Then

(1·4) g = gC ⊕
(

⊕

γ∈Ψ(G/G0)

gγ
)

.

We use the additive notation for the operation in X(C), the character group of C, and

regard Ψ(G/G0) as a subset of the vector space X(C) ⊗Z R. The set Ψ(G/G0) satisfies the

usual axioms of finite root systems [6]. The notable difference from the structure theory

of split semisimple Lie algebras is that the root system Ψ(G/G0) can be non-reduced and

that multiplicities mγ = dim gγ (γ ∈ Ψ(G/G0)) can be greater than 1.

For all involutions of simple Lie algebras, the restricted root systems and the respective

multiplicities are known, see [6, Ch. X, Table VI].

2. COMMUTING INVOLUTIONS AND QUATERNIONIC DECOMPOSITIONS

Let σ1 and σ2 be different commuting involutions of g. The corresponding Z2 × Z2-

grading of g is:

(2·1) g =
⊕

i,j=0,1

gij , where gij = {x ∈ g | σ1(x) = (−1)ix & σ2(x) = (−1)jx}.

We also say that it is a quaternionic decomposition of g (determined by σ1 and σ2). Set

σ3 := σ1σ2 and ~σ = (σ1, σ2, σ3). The pairwise commuting involutions σ1, σ2, and σ3 are

said to be big. The induced involutions on the fixed-point subalgebras gσ1 , gσ2 , gσ3 are

said to be little. The same terminology applies to the corresponding Z2-gradings, isotropy

representations, and CSS. Thus, associated with (2·1), one has three big and three little

Z2-gradings. It is convenient for us to organise the summands of (2·1) in a 2× 2 “matrix”:

(2·2) g =
g00 g01

g10 g11
⊕

σ2

σ1

Here the horizontal (resp. vertical) dotted line separates the eigenspaces of σ1 (resp. σ2),

whereas two diagonals of this matrix represent the eigenspaces of σ3. Hence the first row,



COMMUTING INVOLUTIONS, COMMUTING VARIETIES, AND SIMPLE JORDAN ALGEBRAS 7

first column, and the main diagonal represent the three little Z2-gradings (of gσ1 , gσ2 , and

gσ3 , respectively).

We repeatedly use the following notation for the eigenspaces of σ1 and σ2:

gσ1 = g0⋆ := g00 ⊕ g01, g1⋆ := g10 ⊕ g11, gσ2 = g⋆0 := g00 ⊕ g10, g⋆1 := g01 ⊕ g11.

Likewise, G0⋆ (resp. G⋆0) is the connected subgroup of G corresponding to g0⋆ (resp. g⋆0),

G00 is the connected subgroup of G corresponding to g00, etc. If q is a ~σ-stable subalgebra

of g, then q =
⊕

i,j qij is the induced quaternionic decomposition of q, and Q,Q00 are the

corresponding connected subgroups.

Following Vinberg [28, 0.3], we say that a triple {σ1, σ2, σ3} ⊂ Inv(g) is a triad if all three

involutions are conjugate and σ1σ2 = σ3. A complete classification of triads is obtained

in [28, Sect. 3]. The triads lead to the “most symmetric” quaternionic decompositions. In

[16], we considered less restrictive conditions on the σi’s. We say that {σ1, σ2} ⊂ Inv(g) is

a dyad if σ1, σ2 are conjugate and σ1σ2 = σ2σ1 (no conditions on σ3!).

The product of two conjugate involutions (not necessarily commuting) is always an

inner automorphism of g. For, if σ2 = Int(g)·σ1·Int(g−1), then σ1σ2 = Int(σ1(g)g
−1). There-

fore, any triad consists of inner involutions (but not any inner involution gives rise to a

triad!). However, any involution can be a member of a dyad [16, Prop. 2.4]. But the third

involution, σ3, is then necessarily inner.

Proposition 2.1 (see [16, Prop. 2.2(1)]). Suppose that µ ∈ Inv(g) is inner. Then there are com-

muting involutions of maximal rank, σ1 and σ2, such that µ = σ1σ2. Moreover, σ1 and σ2 induce

an involution of maximal rank of gµ.

For (ij) 6= (00), let cij be a CSS of gij ; that is, a little CSS related to the little Z2-grading

g00 ⊕ gij . There are also big CSS in the (−1)-eigenspaces of three big involutions:

c1⋆ ⊂ g1⋆, c⋆1 ⊂ g⋆1, c⋆,1−⋆ ⊂ g⋆,1−⋆ := g01 ⊕ g10.

Each little CSS can be included in two big CSS. E.g., because g10 ⊂ g1⋆ and g10 ⊂ g⋆,1−⋆, one

can choose Cartan subspaces c1⋆ and c⋆,1−⋆ such that c10 ⊂ c1⋆ and c10 ⊂ c⋆,1−⋆. If at least

one equality occurs among all such inclusions, then this will be referred to as a coincidence

of CSS (for a given quaternionic decomposition).

In [16], we obtained two sufficient conditions for a coincidence of CSS:

Theorem 2.2 (see [16, Thm. 3.3 & 3.7]).

(1) Suppose that σ1 is of maximal rank. Then

• any little CSS c11 ⊂ g11 is also a CSS in g⋆1, i.e., for σ2;

• any little CSS c10 ⊂ g10 is also a CSS in g10 ⊕ g01, i.e., for σ3.

(2) Suppose that {σ1, σ2} is a dyad. Then any little CSS c11 ⊂ g11 is also a CSS in g1⋆ or

g⋆1, i.e., for σ1 or σ2.
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The coincidences of CSS in Theorem 2.2(2) can formally be expressed as c11 = c1⋆ or

c11 = c⋆1, and likewise in all other possible cases. In view of (1·1), any coincidence of

CSS can be restated as certain property of the little CSS in question. For instance, the first

coincidence in Theorem 2.2(1) means that if x ∈ g11 is a generic semisimple element (i.e.,

x belong to a unique little CSS), then zg(x)⋆1 = zg(x)11 = c11, and hence zg(x)01 = 0.

3. COMMUTING VARIETIES AND HOMOGENEOUS CARTAN SUBSPACES

Consider a quaternionic decomposition (2·2). For any permutation (α, β, γ) of the set

{01, 10, 11}, there is the commutator mapping ϕγ
α,β : gα × gβ → gγ . Clearly, ϕγ

α,β is G00-

equivariant. As our main interest is in fibres of this mapping, we do not distinguish ϕγ
α,β

and ϕγ
β,α. We concentrate on the following problems:

• When is ϕγ
α,β dominant?

• What is the dimension of (ϕγ
α,β)

−1(0) ?

• How to describe the irreducible components of (ϕγ
α,β)

−1(0) ?

• When is ϕγ
α,β equidimensional?

The variety E
γ
α,β = (ϕγ

α,β)
−1(0) is said to be a ~σ-commuting variety. For general quaternionic

decompositions, one has three such varieties, and their properties can be rather different.

We mainly restrict ourselves with considering the test case:

(3·1) ϕ = ϕ01
10,11 : g10 × g11 → g01.

and also write E in place of E01
10,11. Note that we can regard ϕ as a quadratic map from

g1⋆ to g01, and E as subvariety of g1⋆. The following example shows that the commuting

variety in (1·3) is a particular case of this construction.

Example 3.1. Let g be a reductive Lie algebra and σ an involution of g with the corre-

sponding Z2-grading g = g0 ⊕ g1. Set g̃ = g ⊕ g and define three involutions of g̃ as

follows:

σ1(x1, x2) = (σ(x1), σ(x2)), σ2(x1, x2) = (x2, x1), σ3 = σ1σ2.

Then g̃σ1 = g0 ⊕ g0; g̃σ2 = ∆(g), the diagonal in g⊕ g; g̃σ3 = {(x, σ(x)) | x ∈ g}.

Set ∆−(M) := {(m,−m) | m ∈ M} for any subspace M ⊂ g. Then the corresponding

quaternionic decomposition is:

g̃ =
∆(g0) ∆−(g0)

∆(g1) ∆−(g1)
⊕

σ2

σ1

Upon the obvious identifications ∆(g1) ≃ ∆−(g1) ≃ g1, etc., our test commutator map

g̃10 × g̃11 → g̃01 becomes the commutator g1 × g1 → g0 associated with σ ∈ Inv(g); whereas

two other commutator maps are identified with the bracket g0 × g1 → g1. Therefore, the
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concept of a ~σ-commuting variety provides a uniform setting for studying the fibres of

both g1 × g1 → g0 and g0 × g1 → g1.

Lemma 3.2. Commutator map (3·1) is dominant if and only if there exist x ∈ g10 and y ∈ g11

such that zg(x)01 ∩ zg(y)01 = {0}.

Proof. A morphism of irreducible varieties is dominant if and only if its differential at

some point is onto. As ϕ is bilinear, an easy computation shows that dϕ(x,y)(ξ, η) = [x, η]+

[ξ, y], ξ ∈ g10, η ∈ g11. Hence Imdϕ(x,y) = [g11, x] + [g10, y], and taking the orthogonal

complement with respect to the restriction of the Killing form to g01 yields (Imdϕ(x,y))
⊥ =

zg(x)01 ∩ zg(y)01. �

As we see below, certain CSS in g1⋆ play an important role in describing irreducible

components of E.

Definition 1. A big Cartan subspace c1⋆ ⊂ g1⋆ is said to be homogeneous if it is σ2-stable

(or, equivalently, σ3-stable). In other words, if one has c1⋆ = a10 ⊕ a11 with a1j ⊂ g1j .

Remark. A coincidence of CSS means that there is a homogeneous CSS of special form.

For instance, if c11 = c1⋆, then c11 is a homogeneous CSS in g1⋆, with trivial g10-component.

Lemma 3.3. (1) Homogeneous CSS always exist.

(2) Moreover, if x ∈ g10, y ∈ g11 are commuting semisimple elements, then there exists a homo-

geneous CSS in g1⋆ containing both of them.

Proof. 1) Take a little CSS c10 and consider the ~σ-stable reductive subalgebra zg(c10). If ã11
is a little CSS in zg(c10)11, then c10 ⊕ ã11 is a homogeneous CSS in g1⋆.

2) Consider the ~σ-stable reductive subalgebra l = zg(x)∩ zg(y). By the previous part, there

exists a homogeneous CSS in l1⋆, say c̃1⋆. Since x, y are central in l, we have x, y ∈ c̃1⋆. It is

also clear that c̃1⋆ is a CSS in g1⋆. �

If c1⋆ = a10 ⊕ a11 is a homogeneous CSS, then [a01, a11] = 0 and hence G00·c1⋆ ⊂ E.

However, a stronger result is true.

Theorem 3.4.

(i) Let c1⋆ be a homogeneous CSS in g1⋆. Then G00·c1⋆ ⊂ E is an irreducible component of E.

(ii) If two homogeneous CSS in g1⋆ are not G00-conjugate, then the corresponding irreducible

components are different.

Proof. (i) The centraliser of c1⋆ is ~σ-stable. Hence zg(c1⋆) =
⊕

i,j=0,1

aij , and here c1⋆ = a10⊕a11.

Recall that G0⋆·c1⋆ = g1⋆. Therefore, dim c1⋆ + dimG0⋆ − dim a00 − dim a01 = dim g1⋆. It

follows that

(3·2) dimG00·c1⋆ = dim c1⋆ + dimG00 − dim a00 = dim g1⋆ − dim g01 + dim a01.
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On the other hand, let x + y ∈ c1⋆ (x ∈ g10, y ∈ g11). The proof of Lemma 3.2 shows

that dim(Imdϕ(x,y)) = dim g01 − dim(zg(x)01 ∩ zg(y)01). Now, if x + y ∈ c1⋆ is generic, then

zg(x) ∩ zg(y) = zg(x+ y) = zg(c1⋆). Hence dim(Imdϕ(x,y)) = dim g01 − dim a01. This means

that any irreducible component of E containing (x, y) has dimension at most

dim g1⋆ − dim(Imdϕ(x,y)) = dim g1⋆ − dim g01 + dim a01.

Comparing with (3·2) shows that G00·c1⋆ is an irreducible component of E containing

(x, y), and (x, y) is a smooth point of G00·c1⋆.

(ii) As we have just shown, if (x, y) ∈ c1⋆ is generic, then it belongs to a unique irre-

ducible component of E (and to a unique CSS in g1⋆). �

Claim 3.5. The number of G00-orbits of homogeneous CSS in g1⋆ is finite.

First proof. Since the number of irreducible components is finite, this readily follows from

Theorem 3.4. However, this can also be proved in a different way. As the second proof

has its own merits, we provide it below.

Second proof. Recall that G00 ⊂ G0⋆ are connected reductive groups and all big CSS in g1⋆

form a single G0⋆-orbit. Let c1⋆ be a homogeneous CSS. Set

N = {g ∈ G0⋆ | g·c1⋆ = c1⋆},

M = {g ∈ G0⋆ | g·c1⋆ is homogeneous }.

Note thatN is reductive, but not connected, since N is mapped onto the (finite) little Weyl

group associated with c1⋆. If g ∈ M, s ∈ G00, and z ∈ N , then sgz ∈ M. Therefore, M is a

union of (G00, N)-cosets, and our task is to prove that G00\M/N is finite.

If g ∈ M, then g·c1⋆ = σ2(g)c1⋆. Hence g−1σ2(g) ∈ N . Since G00 ⊂ Gσ2 , the map

ψM : G00\M → N, G00g 7→ g−1σ2(g)

is well-defined. Note that N is σ2-stable and the range of ψM belongs to the closed subset

Q = Q(N) = {g ∈ N | σ2(g) = g−1}.

The twisted N-action on N is defined by z ⋆ x = zxσ2(z)
−1. Obviously, Q is stable under

the twisted action of N . Moreover, ψM(gz) = z−1ψM(g)σ2(z). Hence Im (ϕM) ⊂ Q is the

union of twisted N-orbits, and each twisted N-orbit gives rise to a G00-orbit of homoge-

neous CSS. It follows from [21, Sect. 9] that Q is a finite union of twisted N-orbits, which

is sufficient for our purpose. (See also remark below.) �

Remark 3.6. Richardson’s results on twisted orbits [21, Sect. 9], specifically Proposition 9.1,

are stated for a connected reductive group G, whereas we apply them to the reductive

non-connected group N (in place of G). But his argument can easily be adjusted to cover

the case ofvnon-connected reductive groups. That is, one can give a version of Richard-

son’s Proposition 9.1 for non-connected groups G.
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Definition 2. For a homogeneous CSS c1⋆ ⊂ g1⋆, the irreducible component G00·c1⋆ ⊂ E is

said to be standard.

Since all big CSS in g1⋆ are G0⋆-conjugate, their centralisers in g0⋆ are essentially “the

same”. The centraliser in g0⋆ of a homogeneous CSS splits, and these splittings can be

quite different. That is, dim zg(c1⋆)01 can be different for different homogeneous CSS, and

this leads to a new phenomenon that standard irreducible components of E may have dif-

ferent dimensions, cf. (3·2). Moreover, there can also be some “non-standard” irreducible

components of E that contain no semisimple elements at all.

By Theorem 3.4, a necessary condition for E to be irreducible is that all homogeneous

CSS in g1⋆ are G00-conjugate, i.e., there is only one standard component. If c1⋆ = a10 ⊕ a11

is a homogeneous CSS with dim a1i = di, then (d0, d1) is called the dimension vector. Obvi-

ously, two homogeneous CSS with different dimension vectors are not G00-conjugate.

Theorem 3.7. 1) If c1⋆ = a10 ⊕ a11 is a homogeneous CSS with dimension vector (d0, d1), then

d0 6 dim c10 and d1 6 dim c11; hence dim c1⋆ 6 dim c10 + dim c11.

2) All homogeneous CSS in g1⋆ are G00-conjugate if and only if dim c1⋆ = dim c10 + dim c11.

Proof. 1) Being a toral subalgebra of g1j , a1j is contained in a little CSS in g1j .

2) “if” part: Let c1⋆ and c̃1⋆ = ã10 ⊕ ã11 be two homogeneous CSS. By part 1), dim a01 =

dim ã01 = dim c10. Therefore, both a01 and ã01 are little CSS, they are G00-conjugate, and

we may assume that a01 = ã01. Consider then the ~σ-stable reductive algebra zg(a10). As

a10 is a central toral subalgebra, zg(a10) = a10 ⊕ s, where s is reductive and ~σ-stable. By

construction, s10 = {0} and a11, ã11 ⊂ s11. Moreover, these are little CSS in s11 (otherwise,

c1⋆ or c̃1⋆ wouldn’t be maximal). Therefore, a01 and ã01 are S00-conjugate, which implies

that c1⋆ or c̃1⋆ are G00-conjugate.

“only if” part: Assuming that dim c1⋆ < dim c10 + dim c11, we construct two homoge-

neous CSS with different dimension vectors. First, let us take a little CSS c10 and choose

a little CSS in zg(c10)11, say ã11. This yields a homogeneous CSS with dimension vector

(dim c10, dim c1⋆ − dim c10). On the other hand, one can start with a little CSS c11, etc.,

which yields a homogeneous CSS with dimension vector (dim c1⋆ − dim c11, dim c11). �

Note that dim cij > 0 whenever gij 6= {0}. Therefore, a coincidence of CSS of the form

c11 = c1⋆ or c10 = c1⋆ certainly excludes the possibility to have a unique standard com-

ponent of E. For our test commutator (3·1), one may envisage several samples of good

behaviour (not necessarily altogether):

(1) All irreducible components of E are standard (possibly of different dimension);

(2) ϕ is surjective and equidimensional; hence, flat;

(3) E has a unique standard component, but also may be some other components.

Property (3) always holds in the setting of Example 3.1, with any σ; and for σ of maximal
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rank, one gets a rare situation, where all three properties are satisfied. All quaternionic

decompositions of simple Lie algebras can be written out explicitly, and then the presence

of (3) amounts to a routine verification of the equality in Theorem 3.7(2).

Proposition 3.8. Let {σ1, σ2} be a dyad. Then dim g10 = dim g01 and ϕ : g10×g11 → g01 is onto.

(Therefore, dimϕ−1(ξ) > dim g11 for all ξ ∈ g01.) Moreover, {0} × g11 is a standard irreducible

component of E of minimal dimension.

Proof. Since dim gσ1 = dim gσ2 , we have dim g10 = dim g01. By Theorem 2.2(2), any little

CSS c11 ⊂ g11 is also a bigCSS in g1⋆. Therefore, c11 is a homogeneous CSS andG00·c11 = g11

is an irreducible component of E. Furthermore, if x ∈ c11 is generic, then zg(x) ∩ g1⋆ = c11,

i.e., zg(x) ∩ g10 = {0}. Therefore, dim[g10, x] = dim g10, i.e., [g10, x] = g01. �

4. DYADS OF MAXIMAL RANK AND COMMUTING VARIETIES

Let {σ1, σ2} be a dyad of maximal rank, i.e., both σ1, σ2 are of maximal rank. Recall that

this implies that σ3 = σ1σ2 is inner, dim g01 = dim g10, and, by Prop. 2.1, gσ3 = g00 ⊕ g11 is

a Z2-grading of maximal rank. In particular, g11 contains a CSA of g and any CSS in g1⋆ or

g⋆1 is a CSA. The main result of this section is

Theorem 4.1. Let {σ1, σ2} be a dyad of maximal rank. Then

(i) the commutator mapping ϕ : g10 × g11 → g01 is surjective and equidimensional;

(ii) each irreducible component of E = ϕ−1(0) is standard, i.e., is the closure of the G00-

saturation of a homogeneous CSS in g1⋆;

(iii) the ideal of E is generated by quadrics ϕ#(g∗01), where ϕ# : k[g01] → k[g10]⊗k[g11] is the

comorphism. (That is, the scheme ϕ−1(0) is a reduced complete intersection).

Proof. If q is a ~σ-stable reductive subalgebra of g, then Eq stands for the zero-fibre of the

commutator q10 × q11 → q01. Clearly, Eq ⊂ E = Eg. Since σ1 and σ2 are of maximal rank,

the centre of g, z(g), is contained in g11. Consequently, Eg ≃ E[g,g] × z(g) and without loss

of generality, we may assume that g is semisimple.

By Proposition 3.8, ϕ is onto and dimE > dim g11. In this situation, ϕ is equidimensional

if and only if dimE = dim g11. If c1⋆ is a homogeneous CSS, then it is necessarily a CSA

of g. That is, zg(c1⋆)01 = 0 for all homogeneous CSS and dimG00·c1⋆ = dim g11. Hence all

the standard components of E have the same (expected) dimension, and for (i) and (ii) it

suffices to prove that there is no other irreducible components.

To this end, we argue by induction on rk g = dim c11.

– If dim c11 = 1, then g = sl2 and the assertion is true.

– Suppose that rk g > 1 and the assertion holds for all dyads of maximal rank for

semisimple algebras of rank smaller than rk g.
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1) Take (x, y) ∈ E, y ∈ g11, and let y = ys + yn be the Jordan decomposition. Then

[x, ys] = 0. If ys 6= 0, then yn ∈ s := [zg(ys), zg(ys)] and rk s < rk g. By Lemma 1.2, σi|s,

i = 1, 2, are again involutions of maximal rank. Let z denote the centre of zg(ys), so that

zg(ys) = z⊕s and ys ∈ z. Since both σ1 and σ2 are of maximal rank, z ⊂ g11 and hence x ∈ s.

By the induction assumption, (x, yn) ∈ s10 ⊕ s11 lies in a standard irreducible component

of Es. Obviously, adding a central summand does not affect this property, hence (x, y) lies

in a standard component of Ezg(ys). As rk zg(ys) = rk g, this also means that (x, y) lies in a

standard component of E.

2) Hence it suffices to consider the case in which y = yn. Write N11 for the closed set

of all nilpotent elements in g11. Let K be an irreducible component of E, hence dimK >

dim g11. Then K1 := K ∩ (g10 × N11) is a closed subvariety of K. If K1 6= K, then, by part

1), all the points in K \ K1 belong to standard irreducible components. Consequently, K

must be one of the standard components.

3) The next possibility is that K = K1. Let p : g10 × g11 → g11 be the projection. Then

p(K) ⊂ N11, and therefore p(K) = G00·y is the closure of a nilpotent G00-orbit.

If y = 0, then K = g10×{0}. Let c10 be a little CSS. The fact thatG00·(c10 × {0}) = g10×{0}

is an irreducible component of E implies that zg(c10)11 = {0}, whence c10 is also a CSS in

g1⋆. That is, c10 is a CSA of g. (Incidentally, this means that the (-1)-eigenspace of σ3
contains a CSA, i.e., {σ1, σ2, σ3} is actually a triad.) Anyway, we see that if y = 0, then

such K appears to be a standard component.

4) Finally, we prove that the case in which K = K1 and y 6= 0 is impossible. Assuming

the contrary, we would have

dim g11 6 dimK 6 dimG00·y + dim p−1(y)

= dim g00 − dim zg(y)00 + dim zg(y)10 = dim g11 − dim zg(y)11 + dim zg(y)10.

The last equality uses Lemma 1.1. Hence, the existence of such a component K would

imply that dim zg(y)11 6 dim zg(y)10 for some nonzero y ∈ N11 ⊂ g11. One can rewrite

the last condition so that it will only depend on the (inner) involution σ3. Since {σ1, σ2}

is a dyad, we have dim zg(y)10 = dim zg(y)01; and since σ3 is inner and gσ3 = g00 ⊕ g11 is a

Z2-grading of maximal rank, we have dim zg(y)11 = dim zg(y)00+ rk gσ3 = dim zg(y)00+ rk g,

cf. (1·2). Then

dim zg(y)11 + dim zg(y)00 + rk g = 2dim zg(y)11 6 2 dim zg(y)10 = dim zg(y)10 + dim zg(y)01.

In other words, if the assumption were true, we would have

(4·1) dim(zg(y) ∩ gσ3) + rk g 6 dim(zg(y) ∩ g
(σ3)
1 ).

for some nonzero nilpotent y ∈ g11. (Note that since gσ3 = g00 ⊕ g11 is a Z2-grading of

maximal rank, g11 meets all nilpotent orbits in gσ3 [1]. Therefore, a priori, y can be any
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nonzero nilpotent element of gσ3 .) However, Theorem 4.4 below shows that (4·1) is never

satisfied if y 6= 0. This completes the proof of parts (i) and (ii).

For (iii), it suffices to prove that each irreducible component of E contains a point (x, y)

such that dϕ(x,y) is onto, i.e., Imdϕ(x,y) = g01, cf. [20, Lemma 2.3]. Since each irreducible

component of E is the closure of the G00-saturation of a homogeneous CSA , it contains a

point (x, y) such that zg(x)01 ∩ zg(y)01 = {0} and then dϕ(x,y) is onto, as shown in the proof

of Lemma 3.2. �

Remark 4.2. 1) For any inner σ ∈ Inv(g), there exist commuting involutions of maximal

rank σ1 and σ2 such that σ = σ1σ2, see Prop. 2.1. Therefore, there are sufficiently many

quaternionic decompositions, where Theorem 4.1 applies.

2) For an arbitrary dyad {σ1, σ2}, it can happen that all irreducible components of E are

standard, but they have different dimensions. That is, ϕ : g10 × g11 → g01 is not equidi-

mensional, but still any pair of commuting elements in g10 × g11 can be approximated by

a pair of commuting semisimple elements.

Example 4.3. Let σ1 be an involution of g = son such that gσ1 = son−1. This can be in-

cluded in a dyad {σ1, σ2} such that gσ3 = son−2 × so2. The quaternionic decomposition is

g =
son−2 R(̟1)

R(̟1) R(0)
⊕

σ2

σ1 ,

where the trivial son−2-module R(0) is just the central torus so2 in gσ3 . Here dim c10 =

dim c11 = 1 and the zero-fibre of multiplication g10 × g11 → g01 consists of two irreducible

components, g10 × {0} ≃ kn−2 and {0} × g11 ≃ k. Both components are standard.

The following auxiliary result does not refer to quaternionic decompositions; it con-

cerns the case of a sole involution.

Theorem 4.4. Let σ be an arbitrary involution of g and g = g0⊕g1 the corresponding Z2-grading.

For any nonzero x ∈ g0, we have

(4·2) dim gx0 + rk g− dim gx1 > 0.

More precisely, one always has dim gx0 + rk g − dim gx1 > 0 and the equality only occurs if x = 0

and σ is of maximal rank.

Remark 4.5. For application to Theorem 4.1, we only need the case when x is nilpotent and

σ is inner. But, surprisingly, the assertion appears to be absolutely general. Unfortunately,

our proof is not conceptual, after all. Having successfully reduced the problem to non-

even nilpotent elements of g0, we then resort to case-by-case considerations. Certainly,

there must be a better proof!
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Proof. Note that dimG·x is even and, therefore, the LHS in (4·2) is always even; hence the

more accurate assertion is that dim gx0 + rk g− dim gx1 > 2 for all nonzero x ∈ g0.

1o. If x = 0, then we have dim g0 + rk g− dim g1 > 0, and the equality holds if and only

if σ is of maximal rank.

2o. If x is nonzero semisimple, then gx is a σ-stable reductive subalgebra and x is a

central element of gx that belongs to gx0 . Write gx = z ⊕ s, where s = [gx, gx] and z is the

centre. Then dim z0 > 0 and

dim gx0 + rk g− dim gx1 = (dim s0 + rk s− dim s1) + 2 dim z0 > 2.

3o. If x is non-nilpotent, then using the Jordan decomposition x = xs + xn, we reduce

the problem to the same property for the nilpotent element xn in the σ-stable reductive

subalgebra zg(xs).

4o. From now on, we assume that x = e ∈ g0 is nonzero and nilpotent. Choose an

sl2-triple {e, h, f} ⊂ g0. Suppose that e is even in g, i.e., the eigenvalues of ad h in g are

even. Then dim gh = dim ge and dim gh0 = dim ge0. Thus, the assertion is reduced to the

same assertion for h ∈ g0 and we are again in the setting of part 2o.

5o. Suppose that e is even in g0, but not in g. That is, the eigenvalues of ad h in g0 are

even, but adh has also some odd eigenvalues in g1. Decomposing g into the sum of σ-

stable ideals, we may assume that either g is simple or g = s⊕ s, where s is simple and σ

is the permutation involution. In the second case, if e is even in g0 = ∆(s), then e is also

even in g. Therefore, without loss of generality, we may assume that g is simple.

Let us decompose g1 according to the parity of adh-eigenvalues: g1 = godd1 ⊕ geven1 . By

assumption, godd1 6= 0. Then g̃ := [godd1 , godd1 ] ⊕ godd1 is an ideal of g that does not meet

geven1 . Therefore, g̃ = g and geven1 = 0. Hence ge0 = (ge)even and ge1 = (ge)odd. Consider

the Z-grading of g determined by the eigenvalues of h, g =
⊕

i∈Z g(i). The sl2-theory

shows that dim(ge)even = dim g(0) and dim(ge)odd = dim g(1). Hence dim ge0 = dim g(0)

and dim ge1 = dim g(1). Finally, it follows from Vinberg’s lemma [26, § 2.3] that the group

G(0) has finitely many orbits in g(1), whence dim g(1) 6 dim g(0). Thus, in this case the

stronger inequality dim ge0 > dim ge1 holds.

6o. Thus, it remains to handle the case in which a nilpotent element e ∈ g0 is not even.

Here we do not know an a priori argument and resort to the case-by-case considerations.

7o. If g is a classical Lie algebra, then the nilpotent orbits in g and g0 are parameterised

by partitions, and we use the explicit formulae for dim ge and dim ge0 in terms of partitions.

Some of these calculations are presented in Appendix A.

8o. If g is an exceptional simple Lie algebra, then, for any non-even nilpotent element

e ∈ g0, we determine the corresponding nilpotent orbit in g and then compare the dimen-

sions of ge0 and dim ge. Being rather boring, the verification is, however, not very difficult.
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For σ inner, we use the seminal work of Dynkin [4, Tables 16–20], where he computed,

for all simple 3-dimensional subalgebras in exceptional Lie algebras, the “minimal includ-

ing regular semisimple subalgebras” and the corresponding weighted Dynkin diagrams.

See also comments on this article in [5, p. 309–312], where a few errors occurring in [4] are

corrected.

To convey the idea, consider some examples related to an (inner) involution of g = E8

with g0 = D8 = so16. There are 33 non-even nilpotent orbits in g0. (Recall that e ∈ so16 is

non-even if and only if the partition of e contains both odd and even parts.)

a) Let e ∈ so16 be a nilpotent element corresponding to the partition (11, 2, 2, 1). Using

[7, Cor. 3.8(a)] or [12, Prop. 2.4], we obtain dim ge0 = 16. This partition also shows that a

“minimal including regular semisimple subalgebra” of D8 containing e is of type D6+A1.

(Here (11, 1) is the partition of the regular nilpotent element of D6 and any pair of equal

parts (n, n) gives rise to the simple summand An−1.) Then using [4, Table 20], we detect

the simple 3-dimensional subalgebra in E8 with “minimal including regular semisimple

subalgebra” of type D6 + A1. The corresponding nilpotent orbit has the modern label

E7(a3) and here dim ge = 28. Hence dim ge1 = 12 and Eq. (4·2) holds.

b) Let e ∈ so16 correspond to the partition (7, 5, 2, 2). By [7, Cor. 3.8(a)], dim ge0 = 22.

Here a “minimal including regular semisimple subalgebra” is of type D6(a2)+A1, because

the partition (7, 5) determines the distinguished nilpotent orbit in D6, which is denoted

by D6(a2). Using [4, Table 20], we detect the corresponding nilpotent orbit in g. This orbit

is denoted nowadays by E7(a5) and here dim ge = 42.

c) Let e ∈ so16 correspond to the partition (7, 4, 4, 1). By [7, Cor. 3.8(a)], dim ge0 = 22.

Here a “minimal including regular semisimple subalgebra” is of type D4 + A3. Using [4,

Table 20], we detect the corresponding nilpotent orbit in g. This orbit is denoted nowa-

days by D6(a2) and here dim ge = 44.

If σ is outer, then g is of type E6. In the respective two cases, we use the information on

e ∈ g0 for decomposing g1 as 〈e, h, f〉-module, which allows to compute dim ge1. �

A case-free proof of Theorem 4.4 might be derived from the following conjectural

invariant-theoretic property of centralisers. Recall that g = g0 ⊕ g1 and e ∈ g0. Let Ge
0

be the connected subgroup of G0 with Lie algebra ge0. Then Ge
0 acts on (ge1)

∗ and we write

k((ge1)
∗)G

e

0 for the field of Ge
0-invariant rational functions on (ge1)

∗.

Conjecture 4.6. For any e ∈ g0 ∩ N , we have trdeg k((ge1)
∗)G

e

0 6 rk g.

By Rosenlicht’s theorem [2, Ch. I.6], trdeg k((ge1)
∗)G

e

0 = dim ge1 − max
ξ∈(ge

1
)∗
dimGe

0·ξ. If e 6= 0,

then the one-dimensional unipotent group exp(te), t ∈ k, acts trivially on ge1 and hence

maxξ∈(ge
1
)∗ dimGe

0·ξ 6 dim ge0 − 1. Therefore, if the conjecture were true, we would ob-

tain dim ge1 − dim ge0 + 1 6 rk g, as required. Perhaps, this can be related to the Elashvili

conjecture, which asserts that trdeg k((ge)∗)G
e

= rk g for all e ∈ N .
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Remark 4.7. Inequality (4·2) can be written as dim gx0 > dimBx, where Bx is the variety

of Borel subalgebras of g containing x (the Springer fibre of x). [Recall that dimBx =

(dim gx − rk g)/2.]

5. COMMUTING VARIETIES AND RESTRICTED ROOT SYSTEMS

Here we assume that {σ1, σ2} is a dyad. As above, we consider the commutator map

ϕ : g10 × g11 → g01 and the ~σ-commuting variety E = ϕ−1(0). Then dimE > dim g11 and E

have a standard irreducible component of expected dimension dim g11; namely, {0}× g11,

see Proposition 3.8.

In this section, we describe a method for detecting subvarieties of E of large dimension.

This method is based on comparing restricted root systems for little and big symmetric

spaces related to the quaternionic decomposition in question.

Take a little CSS c11 ⊂ g11. Then, by Theorem 2.2(2), c11 is also a CSS in g1⋆ and g⋆1,

which is equivalent to that zg(c11)10 = zg(c11)01 = {0} and zg(c11)11 = c11. Our idea is to

replace c11 with a proper subspace c̃ such that:

(5·1) c̃ still contains G00-regular elements.

Then we consider ĉ := zg(c̃)10× c̃ ⊂ E and compute the dimension ofG00 ·̂c. Since G00·c11 =

g11, we have

dimG00 + dim c11 − dim zg(c11)00 = dim g11.

Set T00(ĉ) = {g ∈ G00 | g·y ∈ ĉ for generic y ∈ ĉ}, and likewise for c11. In view of (5·1),

we have dimT00(ĉ) = dimT00(c11) = dim zg(c11)00. Then

(5·2) dimG00 ·̂c = dimG00 + dim ĉ− dimT00(ĉ)

=
(

dimG00 + dim c11 − dim zg(c11)00
)

+
(

dim zg(c̃)10 − dim c11 + dim c̃
)

= dim g11 +
(

dim ĉ− dim c11
)

Thus, we obtain a subvariety of larger dimension, if dim zg(c̃)10 + dim c̃ > dim c11. Of

course, it is not always possible to construct such a c̃. Our sufficient condition exploits

restricted root systems. Set h = gσ3 , and let H denote the corresponding connected (re-

ductive) subgroup of G. Write σ̄ for the restriction to H of σ1 or σ2.

Let C11 = exp(c11) ⊂ H ⊂ G be the corresponding torus. The coincidence of CSS means

that C11 is a maximal σ1-anisotropic torus in G and a maximal σ̄-anisotropic torus in H .

Accordingly, one obtains the inclusion of two restricted root systems relative to C11:

Ψ(H/G00) ⊂ Ψ(G/G0⋆).
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Identifying restricted roots and their differentials, one may consider restricted roots as

linear forms on c11. Then the set of G00-regular elements of c11 is {x ∈ c11 | µ(x) 6=0 ∀µ ∈

Ψ(H/G00)} and the set of G0⋆-regular elements is {x ∈ c11 | µ(x) 6=0 ∀µ ∈ Ψ(G/G0⋆)}.

Proposition 5.1. Assume that µ ∈ Ψ(G/G0⋆) and rµ 6∈ Ψ(H/G00) for any r ∈ Q. If mµ > 1,

then dimE > dim g11 +mµ − 1 > dim g11.

Proof. Under this assumption, c̃ := Ker (µ) ⊂ c11 still contains G00-regular elements, and

dim c̃ = dim c11 − 1. Furthermore, zg(c̃) is ~σ-stable and zg(c̃) = zg(c11) ⊕ gµ ⊕ g−µ. Recall

that zg(c11) is contained in g00 ⊕ g11. Clearly, gµ ⊕ g−µ is also ~σ-stable and is contained in

g01 ⊕ g10.

Since {σ1, σ2} is a dyad, dim(gµ ⊕ g−µ) ∩ g10 = dim(gµ ⊕ g−µ) ∩ g01 = mµ. Hence

dim zg(c̃)10 = mµ, and the assertion follows from Eq. (5·2). �

Remark 5.2. 1) Such a construction gives nothing, if all root multiplicities in Ψ(G/G0⋆) are

equal to 1. For instance, if σ1 is of maximal rank.

2) The procedure described in the previous proof admits obvious modifications.

Roughly speaking, if there are linearly independent roots µ1, µ2, . . . in Ψ(G/G0⋆), with

large multiplicities, such that Q-span{µ1, µ2, . . . } ∩ Ψ(H/G00) = ∅, then one can take

c̃ = Ker (µ1, µ2, . . . ), see Proposition 6.5 below.

Although it is convenient to stick to one specific ~σ-commuting variety in theoretical

considerations, it may happen that in concrete examples different ~σ-commuting varieties

exhibit different good (or bad) properties.

Example 5.3. Let σ1 be an outer involution of g = sl2n with gσ1 = sp2n. In [16, Sect. 2],

we gave a method for describing all the dyads including σ1, which exploits the restricted

root system Ψ(G/Gσ1). This implies that one can find σ2 conjugated σ1 such that the inner

involution σ3 = σ1σ2 has the fixed-point subalgebra h = sl2m ⊕ sl2n−2m ⊕ t1. The corre-

sponding quaternionic decomposition is

sl2n =
sp2m ⊕ sp2n−2m R(̟1)R(̟

′
1)

R(̟1)R(̟
′
1) R(̟2)+R(̟′

2)+R(0)
⊕

σ2

σ1

where ̟i (resp. ̟′
i) are fundamental weights of sp2m (resp. sp2n−2m), and R(λ) is a simple

module of the respective simple Lie algebra with highest weight λ.

• Here G = SL2n, G0⋆ = Sp2n, H = SL2m × SL2(n−m) × T1, and G00 = Sp2m × Sp2(n−m).

According to Table VI in [6, Ch. X], we have Ψ(G/G0⋆) = An−1, Ψ(H/G00) = Am−1 +

An−m−1, and all root multiplicities in Ψ(G/G0⋆) equals 4. Since Ψ(H/G00) has fewer roots,

Proposition 5.1 implies that E has an irreducible component of dimension> dim g11+(4−

1) and our test map ϕ : g10 × g11 → g01 is not equidimensional.
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• Here dim c01 = dim c10 = min{m,n−m} and any big CSS in g10 ⊕ g01 is of dimension

2min{m,n − m}. By Theorem 3.7(2), this means that all homogeneous CSS in g10 ⊕ g01

are G00-conjugate, and therefore, the ~σ-commuting variety related to the commutator

g10 ⊕ g01 → g11 has a unique standard component.

Example 5.4. Let σ be an involution of g = E7 with gσ = D6 × A1. It can be included in

two non-conjugate triads [10]. One of them has g00 = D4 × A3
1, with quaternionic decom-

position

E7 =
D4 × A3

1 R(̟4)R(̟)R(̟′′)

R(̟3)R(̟)R(̟′) R(̟1)R(̟
′)R(̟′′)

⊕

σ2

σ1

where ̟,̟′, ̟′′ are the fundamental weights of the simple factors of A3
1, and ̟i’s are

fundamental weights of D4. Here dim gij = 32 for (ij) 6= (00) and our test commutator

map is

ϕ : R(̟3)R(̟)R(̟′)× R(̟1)R(̟
′)R(̟′′) → R(̟4)R(̟)R(̟′′).

Using Table VI in [6, Ch. X], we find that rk(E7/D6×A1) = 4 and the restricted root system

Ψ(E7/D6 ×A1) is of type F4; whereas rk(D6 ×A1/D4 × A3
1) = rk(D6/D4 ×A2

1) = 4 and the

corresponding root system is of type B4. The long (resp. short) roots of B4 are also long

(resp. short) roots of F4, and the multiplicities are mlong = 1, mshort = 4. However, the root

system B4 has fewer short roots than F4. Therefore, Proposition 5.1 applies here, and E

has an irreducible component of dimension at least mshort − 1 + dim g11 = 35.

Example 5.5. Let σ be an involution of g = F4 with gσ = B4 = so9. Up to conjugacy, this

involution can be included in a unique triad [10], with quaternionic decomposition

F4 =
D4 R(̟4)

R(̟3) R(̟1)
⊕

σ2

σ1 ,

where dimR(̟i) = 8 and the main diagonal represent the little involution of gσ3 = B4 =

so9. Our test commutator is the bilinear D4-equivariant mapping R(̟3)×R(̟1) → R(̟4).

Here rk(F4/B4) = 1 and the restricted root system Ψ(F4/B4) is of type BC1. The restricted

root system Ψ(B4/D4) is of type C1. Since all little and big CSS are one-dimensional,

Proposition 5.1 does not help here. Actually, the only standard components of E are

g10 × {0} and {0} × g11, both of dimension 8. Below, we describe an “intermediate” non-

standard irreducible component of dimension 11.

Let x ∈ g11 ≃ R(̟1) be a nonzero nilpotent element. All such elements form a sole

7-dimensional SO8-orbit. By Lemma 1.1, dimSO9·x = 2·7 = 14 and hence dim(so9)
x = 22.

The only nilpotent SO9-orbit of dimension 14 in so9 is the orbit of short root vectors. The
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short roots of gσ3 = B4 are also short roots of g = F4. Therefore, a “minimal including

regular semisimple subalgebra” is Ã1 in Dynkin’s notation. This implies that dim zg(x) =

30 and completely determines the dimension matrix of the spaces zg(x)ij :
21 4

4 1
. Here

the 1-dimensional space g11 is just the line kx. Then dimG00·(zg(x)10 ⊕ kx) = 4 + 7 =

11. Using the projection E → g11, one can prove that G00·(zg(x)10 ⊕ kx) is the only new

irreducible component of E. It is contained in N10 × N11. Thus, E has three irreducible

components.

6. TRIADS OF HERMITIAN INVOLUTIONS AND SIMPLE JORDAN ALGEBRAS

In this section, g is assumed to be simple. We say that σ ∈ Inv(g) is Hermitian if g0 is

not semisimple. All these involutions are associated with Z-gradings of g with only three

nonzero terms (short gradings), i.e., with parabolic subalgebras with abelian nilpotent rad-

ical. Let g = g(−1) ⊕ g(0) ⊕ g(1) be a short grading. Then p = g(0) ⊕ g(1) is a (maximal)

parabolic subalgebra with abelian nilpotent radical, and one defines a Hermitian involu-

tion σ by letting gσ = g(0), g
(σ)
1 = g(−1)⊕ g(1).

Since g is simple, the centre of g(0) is one-dimensional and there is a unique h ∈ g(0)

such that g(i) = {x ∈ g | [h, x] = 2ix}. By [26, § 2.3], the reductive group G(0) has finitely

many orbits in g(1). Let O be the dense G(0)-orbit in g(1) and e ∈ O. Set g(i)e = g(i) ∩ ge.

For future reference, we provide a proof of the following well-known assertion.

Lemma 6.1. h ∈ [g, e] ⇐⇒ g(0)e is reductive.

Proof. 1) If h ∈ [g, e], then h = [e, f ] for some f ∈ g(−1) and therefore, {e, h, f} is an

sl2-triple. Then g(0)e = zg(e, h, f), which is reductive.

2) For e ∈ O, we have dim g(0)e = dim g(0) − dim g(1). Using the Kirillov–Kostant

form associated with e, we see that dim g(−1)− dim g(−1)e = dim g(0)− dim g(0)e. Hence

g(−1)e = 0 and ge = g(0)e ⊕ g(1). Set k = g(0)e, and let ( )⊥ denote the orthocomplement

with respect the Killing form. Then [g, e] = (ge)⊥ = g(1)⊕(k⊥∩g(0)). Now, if k is reductive,

then the restriction of the Killing form to k is non-degenerate and m := k⊥ ∩ g(0) is a k-

stable complement to k in g(0). Since dim[g(−1), e] = dim g(1) = dim g(0) − dim k, we

conclude that m = [g(−1), e]. Thus, e acts on g as follows:

(6·1)

{

g(−1)
∼

−→ m
∼

−→ g(1) → 0

k → 0

Let {e, h̃, f} be an sl2-triple with h̃ ∈ g(0) and f ∈ g(−1). Such a triple always exists,

see [27, § 2]. Then Eq. (6·1) shows that g is a sum of 3-dimensional and 1-dimensional

sl2-modules, and that gh̃ = k ⊕ m. Since g(0) has one-dimensional centre, one must have

h̃ = h. Thus, h ∈ [g, e]. �
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Theorem 6.2. Suppose that a Hermitian involution σ = σ1 has the property that g(0)e is reduc-

tive. Then σ1 can be included in a triad.

Proof. Using the notation of the previous proof, we set k = g(0)e and take (the unique) f ∈

g(−1) such that h = [e, f ]. Then {e, h, f} is an sl2-triple, [e, g(−1)] =: m is a complementary

k-submodule to k in g(0), and [e, [e, g(−1)]] = g(1). This also shows that g(−1), m, and g(1)

are isomorphic k-modules.

In this case, k is the fixed-point subalgebra of an involution of g(0) and the (−1)-

eigenspace of this involution is m (see Proof of Prop. 3.3 in [13]). Let σ2 denote this invo-

lution of g(0). Then σ2(h) = −h. We extend σ2 to the whole of g by letting σ2(e) = f . Then

σ2([x, e]) = [−x, f ] for all x ∈ m, which defines σ2 on g(1) and shows that σ2(g(1)) ⊂ g(−1).

Clearly, σ1 and σ2 commute. Furthermore, σ1 and σ2 are different involutions of the 3-

dimensional simple subalgebra 〈e, h, f〉. This implies that σ1, σ2, and σ3 = σ1σ2 are already

conjugate with respect to PSL2 = Aut〈e, h, f〉. In particular, {σ1, σ2, σ3} is a triad. �

This theorem can be derived from the classification of triads, but our direct construction

allows to visualise the resulting quaternionic decomposition rather explicitly. We have

(6·2)
g =

k m

[m, e− f ] [m, e + f ]
⊕

σ2

σ1

Here h ∈ m = g01, e + f ∈ [m, e − f ] = g10, and e − f ∈ [m, e + f ] = g11. Note also that

k⊕m = g(0) and [m, e− f ]⊕ [m, e + f ] = g(1)⊕ g(−1).

Remark. If g(0)e is not reductive, then such a triad may not exist. For instance, if

g = sl2n and g0 = slm×sl2n−m×t1 with n 6= m and m odd, then there is no respective triad,

see [28, 3.2].

As is well known, if g(0)e is reductive, then g(−1) has a structure of a simple Jordan

algebra. Namely, for x, y ∈ g(−1), we set

x ◦ y = [x, [e, y]] ∈ g(−1).

Then {g(−1), ◦} is a simple Jordan algebra [23, 9]. (See also [8, Sect. 4] for possible general-

isations). Here k = g00 is the Lie algebra of derivations of {g(−1), ◦}. The triad constructed

in Theorem 6.2 is called a Jordan triad.

Definition 3. The commuting variety of a Jordan algebra {J, ◦} is

E(J) = {(x, y) | x ◦ y = 0} ⊂ J× J.

The Jordan triad (6·2) provides a link between the commutator mapping ϕ : g10×g11 →

g01 and the commuting variety of the simple Jordan algebra g(−1).
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Theorem 6.3. The commuting variety of the Jordan algebra {g(−1), ◦} is isomorphic to the zero

fibre of the commutator mapping ϕ : g10 × g11 = [m, e− f ]× [m, e+ f ] → m = g01.

Proof. Any element of m can uniquely be written as [x, e] with x ∈ g(−1). So, if

[x, e], [y, e] ∈ m are arbitrary, then [[x, e], e − f ] ∈ g10 and [[y, e], e + f ] ∈ g11 are arbi-

trary and ϕ takes the corresponding pair to
[

[[x, e], e − f ], [[y, e], e + f ]
]

∈ m = g01. It is a

good exercise in the Jacobi identity to check that

[

[[x, e], e− f ], [[y, e], e+ f ]
]

= 2
[

[[x, e], y], e
]

.

(One should use the fact that h = [e, f ] is the defining element of the short grading. Hence

[[x, e], f ] = 2x, etc.) Since a = [[x, e], y] ∈ g(−1) and ge ∩ g(−1) = 0, we have [a, e] = 0 if

and only if a = 0. Therefore,

([[x, e], e− f ], [[y, e], e+ f ]) ∈ ϕ−1(0) ⇔ [[x, e], y] = 0 ⇔ (x, y) ∈ E(g(−1)). �

If J is a simple Jordan algebra, then the operator Lx : J → J, Lx(y) = x ◦ y, is invert-

ible for almost all x. Therefore, J × {0} and {0} × J are two irreducible components of

E(J). Clearly, there are some other irreducible components. It is an interesting problem

to determine all the components of E(J) and their dimensions.

The list of Hermitian involutions leading to Jordan triads and simple Jordan algebras

is given below. We point out the semisimple subalgebra s = [g(0), g(0)] and the structure

of g(1) as s-module. Here the ̟i’s are the fundamental weights of s.

g s g(1) k J

1 sl2n sln⊕sln R(̟1)⊗R(̟′
1) sln n×n-matrices n > 1

2 sp2n sln R(2̟1) son symmetric n×n-matrices n > 2

3 so4n sl2n R(̟2) sp2n skew-symm. 2n×2n-matrices n > 2

4 son+2 son R(̟1) son−1 spin-factor n > 4

5 E7 E6 R(̟1) F4 the Albert algebra

Remark. The Jordan multiplication in the space Skew2n of usual skew-symmetric matrices

is defined as follows. If A,B, J ∈ Skew2n and J is non-degenerate, then A ◦B = 1
2
(AJB +

BJA).

There are some coincidences for small n. Namely,

Item 1 (n = 1) ≃ Item 2 (n = 1) , Item 1 (n = 2) ≃ Item 4 (n = 3) .

Furthermore, if n = 1 in Item 3, then g is not simple. This explains the conditions on

n given in the last column. For Item 2, the Hermitian involution (of sp2n) is of maximal

rank and the respective Jordan algebra is the algebra Symn of symmetric n × n-matrices.

Therefore, by Theorems 4.1 and 6.3, the multiplication morphism ◦ : Symn×Symn → Symn

is equidimensional, i.e., dimE(Symn) = dim Symn = (n2 + n)/2.
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In all other cases, the multiplication morphism J × J → J is not equidimensional, see

Proposition 6.5. Before checking this, we give an ”elementary” explanation for the Jordan

algebra of all matrices (Item 1).

Example 6.4. Let M be the associative (also Lie and Jordan) algebra of all n× n-matrices.

That is, we exploit the usual matrix product, the Lie bracket [A,B] = AB − BA, and the

Jordan product A ◦ B = (AB + BA)/2. Let χ(B) = det(λI − B) =
∑

i χn−i(B)λi be the

characteristic polynomial of a matrix B. Let zJ(B) and zLie(B) denote the Jordan and Lie

centraliser of B, respectively. Consider the subvariety

M〈2〉 = {B ∈ M | χ2i+1(B) = 0 ∀i}.

It is an irreducible complete intersection and codimM〈2〉 = [n + 1/2] (cf. [22, Lemma 5.3]).

We also need the dense open subset Mreg of regular elements (in the Lie algebra sense)

and the subvariety

Mev = {B ∈ M | B is conjugate to −B}.

If B ∈ Mev and ABA−1 = −B, then A ∈ zJ(B) and the mapping C ∈ zLie(B) 7→ AC ∈

zJ(B) is a linear isomorphism. In particular, dim zJ(B) = dim zLie(B). The following is

clear:

• M〈2〉 ∩Mreg 6= ∅ (it contains a regular nilpotent element);

• Mev ⊂ M〈2〉 and Mev ∩Mreg 6= ∅;

Claim. We have M〈2〉 ∩Mreg ⊂ Mev. In particular, dim zJ(B) = n for almost all B ∈ M〈2〉.

Proof. IfB ∈ M〈2〉∩Mreg, thenB and −B are both regular and have the same Jordan blocks

and the same eigenvalues. Hence B and −B are conjugate. �

Let EJ(M) denote the Jordan commuting variety and p : EJ(M) → M the projection to

the first factor. The previous analysis implies that

dim p−1(M〈2〉 ∩Mreg) = dimM 〈2〉 + n = n2 + [n/2].

Thus, dimEJ(M) > n2 + [n/2] > dimM. One can prove that this yields an irreducible

component of maximal dimension; that is, dimEJ(M) = n2 + [n/2].

The next table contains information on the restricted root systems associated with Jor-

dan triads. For a Hermitian involution σ, we point out Lie algebras g, h = gσ, g00 = k,

the restricted root systems Ψ(G/H) and Ψ(H/G00), and the multiplicity of the short roots

in Ψ(G/H), denoted mshort. For all items in the table, the multiplicity of long roots in

Ψ(G/H) equals 1 and Ψ(H/G00) is embedded in Ψ(G/H) as a subset of short roots.
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g h g00 Ψ(G/H) mshort Ψ(H/G00)

1 sl2n sln ⊕ sln ⊕ t1 sln Cn 2 An−1

2 sp2n gln son Cn 1 An−1

3 so4n gl2n sp2n Cn 4 An−1

4 son+2 son ⊕ so2 son−1 C2 n− 2 A1

5 E7 E6 ⊕ t1 F4 C3 8 A2

The root system of type Cn has some short roots that are not roots of An−1. Therefore,

Proposition 5.1 guarantees the existence of a subvariety in E(J) of dimension dim J +

mshort − 1, which is larger than the dimension of a generic fibre if mshort > 1. However, a

clever choice of c̃ ⊂ c11 (cf. Remark 5.2(2)) allows to get a better lower bound on dimE(J):

Proposition 6.5. For all items in the table, we have dimE(J) > dim J+(mshort− 1)[r/2], where

r is the rank of Ψ(G/H).

Proof. Using Theorem 6.3, we identify E(J) with the zero fibre of the quadratic covariant

g10 × g11 → g10 and work in the setting of Section 5. Let ε1, . . . , εr be the usual basis of

X(C11) ⊗ Q such that the roots of Ψ(G/H) are ±εi ± εj (i 6= j) and ±2εi. The roots in

Ψ(H/G00) are ±(εi − εj). Therefore, g10 ⊕ g01 is the sum of root spaces corresponding to

±(εi + εj) and ±2εi. Set

c̃ = {x ∈ c11 | (εi + εr+1−i)(x) = 0, i = 1, 2, . . . ,
[

r+1
2

]

}.

Then dim c̃ = [r/2], and we have 2[r/2] short roots of g10 ⊕ g01 vanishing on c̃. Moreover,

if r is odd, then the long roots ±2ε[r+1/2] also vanish on c̃. Therefore,

dim zg(c̃)10 =
1

2
dim

(

zg(c̃) ∩ (g10 ⊕ g01)
)

=







mshort·
r
2

if r is even,

mshort·
[

r
2

]

+ 1 if r is odd.

In both cases, this yields dimG00·(zg(c̃)10 ⊕ c̃) = dim g11 + (mshort − 1)[r/2]. �

For the Jordan algebra of all matrices (related to a Hermitian involution of sl2n), the

above construction of c̃ gives exactly the subvariety of Example 6.4. It is plausible that the

lower bound of Proposition 6.5 provides the exact value of dim(E(J)).

Remark 6.6. It is curious to observe that, for all Hermitian involutions leading to Jor-

dan triads, the restricted root system is of type Cn; whereas, for all other Hermitian

involutions, the restricted root system Ψ is of type BCn. Namely, the symmetric pairs

gln+m ⊃ gln × glm × t1 (n < m) and so4n+2 ⊃ gl2n+1 lead to Ψ ≃ BCn; and E6 ⊃ D5 × t1

leads to Ψ ≃ BC2.
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APPENDIX A. COMPUTATIONS IN CLASSICAL LIE ALGEBRAS

Here we provide some computations related to the proof of Theorem 4.4 for nilpotent

elements in classical Lie algebras.

Let λ = (λ1, . . . , λs) be a partition and e ∈ gln a nilpotent element corresponding to λ,

also denoted by e ∼ λ. Then
∑

λi = n and

(A·1) dim(gln)
e = n + 2

∑

i<j

min{λi, λj}, dim(sln)
e = dim(gln)

e − 1.

If e is a nilpotent element in son or sp2n, with respective parity conditions on λ, then

dim(sp2n)
e =

dim(gl2n)
e +#{i | λi is odd}

2
,(A·2)

dim(son)
e =

dim(gln)
e −#{i | λi is odd}

2
.(A·3)

See [7, (3.8)] and [12, 2.4]. Below, we consider several symmetric pairs with classical g

and check that (4·2) is satisfied for all nonzero nilpotent elements of g0. There is no need

in considering only non-even nilpotent element in g0, since the computations go through

without this assumption.

A.1. (g, g0) = (sln, son). If e ∈ son and e ∼ λ, then using (A·1) and (A·3) yields

dim ge0 =
dim(gln)

e −#{i | λi is odd}

2
, dim ge1 =

dim(gln)
e +#{i | λi is odd}

2
− 1.

Therefore, dim ge0−dim ge1+(n−1) = n−#{i | λi is odd}. Here the parity condition means

that each even part of λ occurs an even number of times. Since e 6= 0, i.e., λ 6= (1, . . . , 1),

the minimal value is 2, and it is attained for λ = (3, 1n−3).

A.2. (g, g0) = (sp2n, gln). If e ∈ gln and e ∼ λ, then the partition of e as element of sp2n is

obtained by doubling λ, i.e., each part λi is replaced with (λi, λi). Then dim ge0 = dim(gln)
e

is given by (A·1), and using (A·2) yields dim ge1 = 2
[

λi+1
2

]

+ 2
∑

i<j min{λi, λj}. Hence

dim ge0 − dim ge1 + n = 2n− 2

[

λi + 1

2

]

= n−#{i | λi is odd}.

For e 6= 0, the minimal value 2 is attained for λ = (2, 1n−2) or (3, 1n−3).

A.3. (g, g0) = (so2n, gln). If e ∈ gln and e ∼ λ, then dim ge0 = dim(gln)
e is again given by

(A·1), while using this time (A·3), we obtain dim ge1 = 2
[

λi

2

]

+2
∑

i<j min{λi, λj}. Hence the

result is even better than in the previous case. Indeed, we have here dim ge0 − dim ge1 > 0.
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A.4. (g, g0) = (sln+m, sln × slm × t1). Here n,m > 1. A nilpotent element e ∈ g0 is deter-

mined by two partitions, e ∼ (λ;µ) = ((λ1, . . . , λk); (µ1, . . . , µs)). Using (A·1), we obtain

dim ge0 = n+m− 1 + 2
∑

i<j

min{λi, λj}+ 2
∑

i<j

min{µi, µj},

dim ge1 = 2
∑

i,j

min{λi, µj}.

Therefore, dim ge0 − dim ge1 + (n+m− 1) =

2
(

n+m− 1 +
∑

i<j

min{λi, λj}+
∑

i<j

min{µi, µj} −
∑

i,j

min{λi, µj}
)

.

Since n =
∑

i λi, m =
∑

j µj , and
∑

i<j min{λi, λj} =
∑

i>2(i− 1)λi, half of the RHS equals

F(λ;µ) :=

k
∑

i=1

iλi +

s
∑

j=1

jµj − 1−
k

∑

i=1

s
∑

j=1

min{λi, µj}.

Arguing by induction, we prove that F(λ;µ) > 0 for all λ and µ, and if n +m > 3, then

F(λ;µ) > 0.

1o. First, F(1n; 1m) = (n−m)2/2 + (n +m)/2− 1, which is positive if (n,m) 6= (1, 1).

2o. The inequality is easily verified, if λ or µ consists of only one part.

3o. Suppose that k > 2 and s > 2. Write λ = (λ1,λ
′) and µ = (µ1,µ

′). Then

F(λ;µ) = F(λ′;µ′) + max{λ1, µ1}+
∑

i>2

(λi −min{λi, µ1}) +
∑

j>2

(µj −min{λ1, µj})

> F(λ′;µ′) + max{λ1, µ1} > max{λ1, µ1}.

Here max{λ1, µ1} arises as λ1 + µ1 −min{λ1, µ1}.

We omit computations related to the remaining classical symmetric pairs (sl2n, sp2n),

(sp2n+2m, sp2n × sp2m), and (son+m, son × som).
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530–535.

[24] W. VASCONCELOS. “Arithmetic of blowup Algebras”, (LMS Lect. Notes Series, 195), Cambridge

University Press, 1994.

[25] M. VERGNE. Instantons et correspondance de Kostant-Sekiguchi, C. R. Acad. Sci., Paris Sér. I, t.320,

no. 8 (1995), 901–906.



28 D. PANYUSHEV

[26] З.B. Vinberg. Gruppa Veil� graduirovannoi algebry Li, Izv. AN SSSR. Ser. Matem.

40, } 3 (1976), 488–526 (Russian). English translation: E.B. VINBERG. The Weyl group of a graded

Lie algebra, Math. USSR-Izv. 10 (1976), 463–495.

[27] З.B. Vinberg. Klassifikaci� odnorodnyh nilьpotentnyh зlementov poluprostoi gradu-

irovannoi algebry Li, V sb.: ”Trudy seminara po vekt. i tenz. analizu”, t. 19, str. 155–

177. Moskva: MGU 1979 (Russian). English translation: E.B. VINBERG. Classification of homoge-

neous nilpotent elements of a semisimple graded Lie algebra, Selecta Math. Sov., 6 (1987), 15–35.

[28] E.B. VINBERG. Short SO3-structures on simple Lie algebras and associated quasielliptic planes. In:

E. Vinberg (ed.), “Lie groups and invariant theory”, AMS Translations, Series 2, 213 (2005), 243–270.

INSTITUTE FOR INFORMATION TRANSMISSION PROBLEMS OF THE R.A.S.,

B. KARETNYI PER. 19, MOSCOW 127994, RUSSIA

E-mail address: panyushev@iitp.ru


	Introduction
	1. Preliminaries on involutions and commuting varieties
	2. Commuting involutions and quaternionic decompositions
	3. Commuting varieties and homogeneous Cartan subspaces
	4. Dyads of maximal rank and commuting varieties
	5. Commuting varieties and restricted root systems
	6. Triads of Hermitian involutions and simple Jordan algebras
	Appendix A. Computations in classical Lie algebras
	References

