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MODULI OF MATHEMATICAL INSTANTON VECTOR BUNDLES WITH
ODD ¢, ON PROJECTIVE SPACE

ALEXANDER S. TIKHOMIROV

ABSTRACT. We study the problem of irreducibility of the moduli space I,, of rank-2 mathe-
matical instanton vector bundles with second Chern class n > 1 on the projective space P3.
The irreducibility of I,, was known for small values of n: for n = 1 it was proved by Barth
(1977), for n = 2 by Hartshorne (1978), for n = 3 by Ellingsrud and Stregmme (1981), for n = 4
by Barth (1981), for n = 5 by Coanda, Tikhomirov and Trautmann (2003). In this paper we
prove the irreducibility of I,, for an arbitrary odd n > 1.
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1. INTRODUCTION

By a mathematical n-instanton vector bundle (shortly, a n-instanton) on 3-dimensional pro-
jective space P? we understand a rank-2 algebraic vector bundle £ on P? with Chern classes

(1) a(E)=0, c(E)=n n>1,
satisfying the vanishing conditions
(2) ho(E) = h'(E(-2)) = 0.

Denote by I, the set of isomorphism classes of n-instantons. This space is nonempty for any
n > 1 - see, eg., [BT], [NT]. The condition h°(E) = 0 for a n-instanton F implies that
E is stable in the sense of Gieseker-Maruyama. Hence I, is a subset of the moduli scheme
Mp3(2;0,2,0) of semistable rank-2 torsion-free sheaves on P? with Chern classes ¢; = 0, ¢ =
n, c¢3 = 0. The condition h'(E(—2)) = 0 for [E] € I,, (called the instanton condition) implies
by semicontinuity that I, is a Zariski open subset of Mps(2;0,2,0), i.e. I, is a quasiprojective
scheme. It is called the moduli scheme of mathematical n-instantons.

In this paper we study the problem of the irreducibility of the scheme I,,. This problem has
an affirmative solution for small values of n, up to n = 5. Namely, the cases n = 1,3, 3,4 and
5 were settled in papers [B1], [H|, [ES], [B3] and [CTT], respectively. The aim of this paper is
to prove the following result.

Theorem 1.1. For each n = 2m + 1, m > 0, the moduli scheme I, of mathematical n-
instantons is an integral scheme of dimension 8n — 3.

A guide to the paper is as follows. In section [B] we recall a well-known relation between
mathematical n-instantons and nets of quadrics in a fixed n-dimensional vector space H,, over
k. The nets of quadrics are considered as vectors of the space S, = S*HY @ A*V", where
V = H%Ops(1))", and those nets which correspond to n-instantons (we call them n-instanton
nets) satisfy the so-called Barth’s conditions - see definition (I4]). These nets constitute a locally
closed subset M1, C of S,, which has a structure of a GL(n)/{£1}-bundle over ,,. Thus the
irreducibility of the moduli space I,, of n-instantons reduces to the irreducibility of the space
M1, of n-instanton nets of quadrics.

Section Ml is a study of some linear algebra related to a direct sum decomposition £ : H,,11 @
H,, = Hs,,. giving the above embedding H,,; — Ha,,1. Using one result of section [1] we
obtain here the relation (30) which is a key instrument for our further considerations. Also, the
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decomposition £ enables us to relate (2m + 1)-instantons E to rank-(2m + 2) symplectic vector
bundles Fy,, 2 on P? satisfying the vanishing conditions h%(Fapy2) = h*(Eomi2(—2)) = 0.

In section [6] we introduce a new set X, as a locally closed subset of the vector space S,,, 11 &
Y41, where 3., = Hom(H,,, H, ., ® A*V"), defined by linear algebraic data somewhat
similar to Barth’s conditions. We prove that X,,, is isomorphic to a certain dense open subset
M I5,41(§) of M I, 11 determined by the choice of the direct sum decomposition £ above, where
both X, and MI5,,.1(£) are understood as reduced schemes. This reduces the problem of the
irreducibility of I5,,,1 to that of X,,.

The last ingredient in the proof of Theorem [l is a scheme Z,, introduced in section [7 as
a locally closed subscheme of the affine space SY, x Hom(H,,, HY, ® A>V") defined by explicit
equations (see ([76))). In section [7] we reduce the proof of Theorem [[T] to the fact that Z,, is an
integral locally complete intersection subscheme of the above mentioned affine space. This and
other properties of Z,, are formulated in Theorem [[.2l The rest of the paper is devoted to the
proof of Theorem

In section [§] we start the proof of this Theorem by induction on m and prove a part of the
induction step - see Proposition Bl The proof of it contains explicit computations in linear
algebra. These computations seem to be somewhat cumbersome, and Remark at the end
of this section gives an explanation why these computations could not be essentially simplified.

Proposition 8] enables us then in section @] to relate Z,, to the so-called t’Hooft instantons.
As a result, in section [I0l we finish the induction step in the proof of Theorem

In Appendix (section [IT]) we prove two results of general position for nets of quadrics, which
are used in the text.

Acknowledgement. The author acknowledges the support and hospitality of the Max
Planck Institute for Mathematics in Bonn where this paper was started during the author’s
stay there in Winter 2008.

2. NOTATION AND CONVENTIONS

Our notations are mostly standard. The base field k is assumed to be algebraically closed
of characteristic 0. We identify vector bundles with locally free sheaves. If F is a sheaf of
Ox-modules on an algebraic variety or scheme X, then nF denotes a direct sum of n copies
of the sheaf F, H'(F) denotes the i* cohomology group of F, h'(F) := dim H'(F), and F"
denotes the dual to F sheaf, i.e. the sheaf F¥ := Homo, (F,Ox). If Z is a subscheme of X, by
17 x we denote the ideal sheaf corresponding to a subscheme Z. If X =P" and ¢ is an integer,
then by F(t) we denote the sheaf F ® Opr(t). [F| will denote the isomorphism class of a sheaf
F. For any morphism of Ox-sheaves f : F — F’ and any k-vector space U (respectively, for
any homomorphism f : U — U’ of k-vector spaces) we will denote, for short, by the same
letter f the induced morphism of sheaves id ® f: U ®@ F — U ® F' (respectively, the induced
morphism f®id: U F —- U & F).

Everywhere in the paper V' will denote a fixed vector space of dimension 4 over k and we set
P? := P(V). Also everywhere below we will reserve the letters u and v for denoting the two
morphisms in the Euler exact sequence 0 — Ops(—1) = VY ® Ops — Tps(—1) — 0. For any
k-vector spaces U and W and any vector ¢ € Hom(U, W ® A?VY) C Hom(U @ V,W @ VV)
understood as a homomorphism ¢ : U®V — W ®V" or, equivalently, as a homomorphism #¢ :

U — WeA2VY, we will denote by ¢ the composition U@ Ops it WRAVVR0ps — WRps(2),

29V €
where € is the induced morphism in the exact triple 0 — A2Qps(2) "= A2VV®Ops 5 Qps(2) —
0 obtained by passing to the second wedge power in the dual Euler exact sequence. Also,
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shortening the notation, we will omit sometimes the subscript P? in the notation of sheaves on
P3, e.g., write O, Q etc., instead of Ops, Qps etc., respectively.

Next, as above, for any integer n > 1 by H, we understand a fixed n-dimensional vector
space over k. (E. g., one can take k™ for H,.)

Everywhere in the paper for m > 1 we denote by S,, the vector space S2H,’ @ AV respec-
tively, by 3,41 the vector space Hom(H,,, Hy, ., ® A*VY). For a given k-vector space U (re-
spectively, a direct sum U@ U’ of two k-vector spaces) we will, abusing notations, denote by the
same letter U (respectively, by U @ U’) the corresponding affine space V(U") = Spec(Sym*U")
(respectively, the direct product of affine spaces V(UY) x V(U"Y)).

All the schemes considered in the paper are Noetherian. By an irreducible scheme we un-
derstand a scheme whose underlying topological space is irreducible. By an integral scheme we
understand an irreducible reduced scheme. Also, by the dimension of a given scheme we un-
derstand below the maximum of dimensions of its irreducible components. By a general point
of an irreducible (but not necessarily reduced) scheme X we mean any closed point belonging
to some dense open subset of X. An irreducible scheme is called generically reduced if it is
reduced at a general point.

3. SOME GENERALITIES ON INSTANTONS. SET M1,

In this Section we recall some well known facts about mathematical instanton bundles - see,

e.g., [CTT].
For a given n-instanton F, the conditions (), (2]), Riemann-Roch and Serre duality imply
(3) RY(E(=1)) = h2(E(=3)) =n, hY(E® Qs) =h*(E® Q%) =2n + 2,

h'(E) = h*(E(—4)) = 2n — 2.

(4) BY(E) = h(E(-1)) = * " (BE(=3)) = h* " (E(-4)) =0, i#1, h'(E(-2))=0, i>0.

Furthermore, the condition ¢;(FE) = 0 yields an isomorphism A?E = Ops, hence a symplectic
isomorphism j : £ = EV defined uniquely up to a scalar. Consider a triple (E, f,j) where
E is an n-instanton, f is an isomorphism H, — H?*(E(—3)) and j : E = EY is a symplectic
structure on F. Note that, since E as a stable rank-2 bundle, it is a simple bundle, i. e. any
automorphism ¢ of E has the form ¢ = Aid for some A € k*. Imposing the condition that
¢ is compatible with the symplectic structure j, i. e. @Y o jo @ = j, we obtain A = +1.
This leads to the following definition of equivalence of triples (E, f, 7). We call two such triples
(E, f,7) and (E'f’, j') equivalent if there is an isomorphism g : E = E’ such that g, o f = Af’
with A € {1,—1} and j = g¥ o j' o g, where g, : H*(E(-3)) = H?(E'(-3)) is the induced
isomorphism. We denote by [F, f,j] the equivalence class of a triple (E, f,j). From this
definition one easily deduces that the set Fig of all equivalence classes [E, f, j] with given [£]
is a homogeneous space of the group GL(H,)/{xid}.

Each class [F, f, j] defines a point

(5) A=A(E, [,j]) € S*H,) @ NV
in the following way. Consider the exact sequences

(6) 0> Qs B VY ®Ops(—1) = Ops — 0,

0 Q% = AVYR0ps(—2) = Qb — 0,0 = A'VY@0ps(—4) = APVY R0 (—3) 3 02, — 0,
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induced by the Koszul complex of VY ® Ops(—1) 5 Ops. Twisting these sequences by E and
passing to cohomology in view of (2)-(#) gives the equalities 0 = h’(E @ Qps) = h*(E ® Q2;) =
h*(E @ Qps) and the diagram with exact rows

(1) 0—= H(E(-4) @ AMVY —= H2(E(-3)) @ A*VY 2> HAE ® Qf:) —0

| =[s

0 HY(E(-1) @ VY~ HY(E ® Qps) ~—— 0,

H'(E))

where A’ :=i; 0 97! 0iy. The Euler exact sequence (@] yields a canonical isomorphism wps i
AV @Ops(—4), and fixing an isomorphism 7 : k = A*V" induces isomorphisms 7 : V= A3V
and 7 : wps — Ops(—4). Now the point A in (5) is defined as the composition

! j
(8) A H, @V S H,® VY S HYE(-3) @ VY 5 HYE(-1) o VY S

PR

J SD 7 i
S HY(EV(-1)eVY S H(EQ)@uws)' @ VY S HY(E(-3)' VY S H VY,
where SD is the Serre duality isomorphism. One checks that A is a skew symmetric map

depending only on the class [E, f, j| and not depending on the choice of 7, and that this point
A€ N2(HY®VV) lies in the direct summand S,, = S?HY®@A2V" of the canonical decomposition

(9) AN (HY @VY)=SH! @ NV & N°H) @ S*VY.

Here S, is the space of nets of quadrics in H,,. Following [B3], [T'1] and [T2] we call A the
n-instanton net of quadrics corresponding to the data [E, f, j].

Denote W, := H, ® V/ker A. Using the above chain of isomorphisms we can rewrite the
diagram () as

CA

(10) 0——>kerA——=H, @V Wa 0

[+ w

0~—ker AV ~—— H' @ VYV —2 WY 0.

Here in view of @) dim W, = 2n + 2 and g4 : W4 — WY is the induced skew-symmetric
isomorphism. An important property of A = A([E, f,j]) is that the induced morphism of
sheaves

(11) Al WY @O0k B3H @VY® 0 3 H @ Ops(1)

is an epimorphism such that the composition H,, ® Ops(—1) MWL O0p B W) & Ops e
H) ® Ops(1) is zero, and E = ker(a} 0 qa)/Imays. Thus A defines a monad

(12) My 0= H,®Ops(—1) B W4 ® Ops 5 HY @ Opa(1) — 0
with the cohomology sheaf F|
(13) E = E(A) :=ker(a} o qa)/Imay.

Note that passing to cohomology in the monad M 4 twisted by Ops(—3) and using (I3)) yields
the isomorphism f : H, — H?(E(—3)). Furthermore, the simplecticity of the form g4 in the
monad M, implies that there is a canonical isomorphism of M, with its dual monad, and
this isomorphism induces the symplectic isomorphism j : £ — EY. Thus, the data E, f, ]
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are recovered from the net A. This leads to the following description of the moduli space I,,.
Consider the set of n-instanton nets of quadrics

( (1)) tk(A: H, @V - H'@VVY)=2n+2, )
(7) the morphism a) : W) ® Ops — H,! @ Ops(1)
defined by A in (IIJ) is surjective,
(iii) hO(Ey(A)) = 0, where Ey(A) := ker(a} 0 qa)/Imay
and qq : Wy = W) is a symplectic isomorphism
defined by A in ([I0)

-~

(14) MI,:=={ A€S,

\ Y

The conditions (i)-(iii) here are called Barth’s coditions. These conditions show that M]I,
is naturally endowed with a structure of a locally closed subscheme of the vector space S,,.
Moreover, the above description shows that there is a morphism 7, : M1, — I,, : A~ [E(A)],
and it is known that this morphism is a principal GL(H,)/{=£id}-bundle in the étale topology
- ¢f. [CTT]. Here by construction the fibre 7, '([E]) over an arbitrary point [E] € I,, coincides
with the homogeneous space Fig of the group GL(H,)/{%id} described above. Hence the
irreducibility of (1,,),eq is equivalent to the irreducibility of the scheme (M1I,),eq-
The definition (I4]) yields the following.

Theorem 3.1. For each n > 1, the space of n-instanton nets of quadrics M1, is a locally
closed subscheme of the vector space S,, given locally at any point A € M1, by

o — 2
(15) (n2 )=2n2—5n+3

equations obtained as the rank condition (i) in (1j).
Note that from (I3]) it follows that
(16) dimpy M1, > dimS,, — (2n* —5n +3) =n® +8n — 3

at any point A € M1,. On the other hand, by deformation theory for any n-instanton £ we have
dimg) I, > 8n —3. This agrees with (L6, since M I,, — I, is a principal GL(H,)/{+id}-bundle
in the étale topology.

Let S, = {[E] € I,,| there exists a line | € P? of maximal jump for E, i.e. such a line [ that
hY(E(—n)|;) # 0}. It is known [S] that S, is a closed subset of I,, of dimension 6n + 2, and I,
is smooth along S,,. Thus, since dimg I, > 8n — 3 at any [E] € I, it follows that

(17) I :=1,\8,

is an open subset of I,, and (I]),cq is dense open in (I,,),cq; respectively,
(18) MI,, = m, (1)

is an open subset of M, and we have a dense open embedding

dense open

(19> (M];)red(—) (Mln)red .

For technical reasons we will below restrict ourselves to M/, instead of M1,.

Remark 3.2. There exist smooth points of I,, - see, e.g., [NT]. Hence, there exist smooth
points in M1,.
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4. DECOMPOSITION Hy, 11 =~ Hy, i1 @ H,, AND RELATED CONSTRUCTIONS

4.1. One result of general position for (2m + 1)-instanton nets.
Fix a positive integer m > 3 and, for a given (2m + 1)-instanton vector bundle [E] € I5 .,

fix an isomorphism f : Hypyy — H?(E(—3)) and set
(20) Hyp = H*(E(—4)), Wipnsa = H(E ® Qps)”.
(Here we keep in mind the equalities ([B]) for n = 2m + 1.) In this notation, the lower exact
triple in ([7) can be rewritten as:
(21) 0= Wyhu — Hypo @VY Y 0
We formulate now the following result of general position for (2m + 1)-instanton nets of

quadrics which will be important for further study.

Theorem 4.1. Let m > 3 and let E be a (2m + 1)-instanton, [E] € I3, ., supplied with an
isomorphism f @ Homyy — H?*(E(=3)) and set Wiy = HY(E ® Qps)V, so that there is the
injection Wy ., — Hy, . @V defined in (21). Then for a generic m-dimensional subspace
Vin of Hy,, .1 one has

Winia N Vi @ VY = {0}

The proof of this Theorem has rather technical character, and we leave it to the end of the
paper - see Appendix (section [IT]).

4.2. Decomposition Hy,,1 1 ~ Hypi1 & Hy,.
Fix an isomorphism

(22) §:Hpp @ Hy, = Hopn
and let
(23) Hysr 8" Hypoy @ H,yy 4 H,,

be the injections of direct summands. For a given (2m + 1)-instanton vector bundle E, [E] €
I+ 1, fix an isomorphism f : Hy,,1 — H?(E(—3)) and a symplectic structure j : £ = EV.
The data [E, f, j| define a net of quadrics A € M1, ., (see section [3)), and the exact triple (2I))
is naturally identified with the dual to the triple 0 — ker A — Hy,,, 11 ® V. — Wy — 0 and fits
in diagram (I0) for n = 2m + 1

(24) 0——=ker A—— Hop1 @V = W, 0

[+ lw

CA

0<—ker AY ~— Hy, @V Wy 0.
Consider the composition
im 1 E, c
(25) JeA : Hpp1 @V S Hyy @ VO Hyy @V S Hopy @V 3 Wy

Under these notations Theorem [£1] can be reformulated in the following way:

(*) Assume m > 3 and let A be an arbitrary (2m + 1)-net from M1, . . Then for a generic
1somorphism & © Hopiq = H,,.1® H,, one has

(26) ker AN (€ 0tpi1)(Hpmir ® V) = {0}.

Equivalently, jea: Hpi1 @V — Wy is an isomorphism.
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Consider the direct sum decomposition corresponding to the isomorphism (22))

(27) £:Smi1 @ T B Sm = Samtn
and let
(28) SQm+1 —» Sm+1 A Al(g), SQm+1 —» Em+1 A Ag(g), SQm+1 —» Sm A A3(£)

be the projections onto direct summands. By definition, A;(§) considered as a skew-symmetric
homomorphism H,,11 ® V — H ., ® V" coincides with the composition

(29) AE): Hnp @V Wy B WS Y oV,

This means that assertion (*) can be reformulated as:

(**) Assume m > 3 and let A be an arbitrary (2m+1)-net from M1, . .. Then for a generic
isomorphism & in (22) the skew-symmetric homomorphism Ay(€§) : Hpp1 @V — HY @ VY
is tnvertible.

Now, using the notation (28)), we can represent the net A € So,,.1 considered as a homomor-
phism A: H, 1 V@ H,V = Hy VY& H) @V by the (8m +4) x (8m + 4)-matrix

of homomorphisms
Ao (A9, w0,
—A2(8)" As(§)
This matrix is of rank 4m + 4 according to Barth’s condition (i) in (I4]). On the other hand,

by (**) we have rkA;(§) = 4m + 4, i.e. ranks of A and of its submatrix A;(¢) coincide. This
yields, after multiplying the matrix A by the invertible matrix of homomorphisms

A9~ 0
A(§)Y 0 Ar() 7! idmyevy
from the left, the following relation between the matrices A;(&), Ay(€) and A3(§):

(30) A3(8) = —A2(€)" 0 A1(€) ™" 0 As(9),

Remark 4.2. This relation means that A3(§) is uniquely determined by A;(£) and Ay(€). We
will use this important observation systematically in the sequel.

For m > 1 let Isomy,, 1 be the set of all isomorphisms ¢ in (22)) and set
(31)  MIyuia(§) :={A e MI,, ., | the skew — symmetric homomorphism A;(§) in (29)

is invertible}, & € Isomogy,yq-
In these notations we have the following result.

Theorem 4.3. For m > 3 the following statements hold.

(i) There exists a dense subset Isomgerl of Isomy,, 11 such that the sets M1y, 1(E), € €
IsomgmH, constitute an open cover of M1, . .

(ii) There exists a dense open subset Isomg?mrl of Isomgy,4+1 contained in Isomngrl such that
the sets MIymi1(€), € € Isomd), , are dense open subsets of M I}, ..

(iii) For any € € Isomy, ., and any A € MIs,41(§) the relation (30) is true.
Proof. (i)-(ii) Let MI},,., = M; U ...U M, be a decomposition of MI} ., into irreducible
components. Consider the set U = {(A,&§) € M5, x Isomonyt | A1(§) : Hp1 @V —
Hy. , ® VY is invertible } with projections Mléml ﬁ U % Tsomgyyy, and let U; := U N
M; x Isomy,, 1 with the induced projections M; AR AN Isomoy, 1, ¢ =1,...,s. By definition,
U is open in M1, ., x Isomoyi1, hence each U; is open in M; x Isomgy4i. Moreover, the
property (**) implies that p;(U;) = M;, so that U; is nonempty, hence dense in M; X Isomay, 1
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since both M; and Isomg,, ;1 are irreducible. (Note that Isomg,,,; is irreducible as a principal
homogeneous space of the group GL(2m + 1).) Hence ¢;(U;) contains a dense open subset, say,
00

o ._ — :
W; of Isomopti1. Set Isom,,, | = 1§Lijgsqi(Ui> and Isomy,, | = 1§Q§3Wi' By construction, the

sets M Iy i1 (€) ~ g 1(€), € € Isomy,,,, ;, constitute an open cover of M1}, .. Respectively, for

any & € Isomgfn 41 and each i, 1 <1 < s, the set g; 1(¢) is nonempty open, hence dense subset

in M;. This yields that, for £ € Isom3), ., the set M1}, .. (€)) ~q¢ (&) = U ¢ '(€) is dense

1<i<s
open in M1, ...
(iii) This follows from (B0) and (**). O
We will need below the following lemma.
Lemma 4.4. For £ € Isomngrl and A € MI5,.1(€), set
(32) B :=A1(§), C:= Ay&).

Then the following statements hold.
(i) Consider a subbundle morphism

(33) Qg A = jgj oas0&: (Hpr1® Hp,) @ Ops(—1) = Hpy1 @V @ Ops.
Then there exists an epimorphism

(34) Ae,a s coker(Boaga) — HY oy ® Ops(1).

making commutative the diagram

(35) H’I’\){L—l—l X VV ® OIPS ﬂ> coker(B (0] Oég’A)

\ lAE’A
u

Hyjy © Ops(1),

where can is the canonical surjection.
(i) Consider the commutative diagram

(36) H,, ® Ops(—1)

!

Boa,
0 —> (Hpi1 @ Hyp) ® Ops(—1) —= HY, |, @ VY @ Ops — coker(B o ag,4) — 0

1im+1 H €A

voB~1

0 Hypo1 @ Ops(—1) =2 HY @ VY @ Ops 222 H,\ ) @ Tps(—1) — 0

Te, A

H,, ® Ops(—1),

where 7¢ 4 and €c 4 are the induced morphisms. Then the morphism ¢ o is a subbundle mor-
phism fitting in a commutative diagram

(37) HY  @VY®Op 220 Hyy @ Tps(—1)

TCou llTEA
Hyy @ Ops(—1) ——— H,, © Ops(—1).
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Proof. (i) Consider the commutative diagram

(38)
Hypi1 ® O(—1) Was® O z Wi®o S HY ® O(1)
:lgv
o A agv,A

gT: jg,AT: :lng
(Hm+1 @ Hm) ® O(_l) — m+1 ® Vv ® @ —z> H7\7/1+1 ® V\/ ® 0 — (Hm+1 ) Hm)v ® O(l)

. v
Tm+1 Y1

Hpi1 ® O(—1) Hy i ®0(1)

aA

Here the upper triple is the monad (I2)) for n = 2m + 1. Whence the statement (i) follows.
(ii) Standard diagram chasing using (30), (32]) and diagram (30]). O

4.3. Remarks on t’Hooft instantons.
Consider the set

Ly = {[E] € Lyny1 | B°(E(1)) # 0},
of t’Hooft instanton bundles and the corresponding set of t’Hooft instanton nets
Mfég,ﬂ = 7@:1([5%“)-
We collect some well-known facts about I£Z . | in the following Lemma - see [BT], [NT], [T2,
Prop. 2.2].

Lemma 4.5. Let m > 1. Then the following statements hold.
i) I | is an irreducible (10m + 9)-dimensional subvariety of Ioy,.,. Respectively, MILH
2m+1 2m~+1

is an irreducible (4m? + 14m + 10)-dimensional subvariety of Iym. 1.
(ii) I =T N IS, is a smooth dense open subset of It | and
(39) W(BEQ) =1, [E]€ Lk

(iti) MIH* | is a smooth dense open subset of the set
2m+-2
THymir :={A € Sopmi1|]A = Z h* ® w, where h € Hy,, . ;,w € N°VY, wAw=0}.
i=1
We are going to extend the statement of Theorem [4.3]to the cases m = 1 and 2. To this end,
for m = 1,2 and £ € Isomy,,,1 consider the sets M I, 1(£) defined in (31) and set

(40) Mlgm—l—l = U M12m+1(£), m = 1, 2.

Eelsomam+1

For m = 1,2, fix an isomorphism &° € Isomomi1, & @ Hppr @ Hy — Hopmyq and fix a
basis {h1, ..., homs1 } in Hy,, 4 such that {hq,..., hy} in Hy,, 1 and {hmqo, ..., homga b in Hyp g
respectively, let eq, ..., e, be some fixed basis in VV. Consider the nets A™ € THypq, m =
1, 2, defined as follows

(41) A(l) = h% ® (61 N ez +es A 64) + h% ® (61 N es3+eq N\ 62),

A(2) :h%®(61/\€2+63/\64)+h§®(61/\e3+€4/\62>+h§®<€1/\64+€2/\63),
It is an exercise to show that, in the notation of (2§)), the homomorphisms
A(E)  Hy @V — HY @V’ m=1,2,

are invertible. On the other hand, for a given £ € Isomgy,, 1, the condition that a homomorphism
Ai(§) : Hpy1 @V — HyY . ® VY is invertible is an open condition on the net A € T'Hop,y1,
respectively, on the net A € S,,,41. Since the sets M5, ., m = 1,2, are irreducible (see
[CTTY), this together with Lemma yields the following corollary.
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Corollary 4.6. (i) For m = 1,2 the set M1} ., is a dense open subset of M1, ., and of
Mo 11, and the statement of Theorem [[.3 extends to the cases m =1 and 2, if we substitute
MI, . by MIY, .\ and take for Isomy,, ., = Isomy), ., any nonempty open subset of Isoma,, 1
contained in the set {& € Isomay, 11 | MIopmi1(§) # 0}

(ii) Let m > 1. The set

M[tH** - Mlélm,—i-l N M[éﬁj_l, m = ]_,2,
B MIG,, m >3,

is a dense open subset of MILE* | respectively, of MIYE ..

(#ii) Form > 1 let
MI;Z—{—I(g) = Mlégikl N MI2m+1(€)> 5 S Isom2m+l-
The set

(42) Isomi,, 1 = {€ € Tsomam1 | Mgy 1 (€) # 0}

is a dense open subset of Isomon.q1 such that MIY™ s covered by dense open subsets

MI%%-H(&% § € Isomg{n_,_l.

Remark 4.7. From the definition of the sets Isom3,, . ,, M (&) and Isom%? | it follows
immediately that Isom4? ., C Isom3,, . and MI2_  (£) C MIyy1(€) for € € Tsomi? .

Now (I9), Theorem A3 and Corollary .6l yield

Corollary 4.8. Let m > 1. Then for any £ € Isomgerl (respectively, for any & € Isomg?mrl

the scheme (MIsy,41(§))rea is open (respectively, dense open) in (M Iyi1)req- In particular,

(43) dimg Ml 11(€) = dimg MIypy1, A€ Mgy (), € € Isomy), ;.

5. INVERTIBLE NETS OF QUADRICS FROM S,,;; AND SYMPLECTIC RANK-(2m + 2) BUNDLES

5.1. Construction of symplectic rank-(2m + 2) bundles from invertible nets of
quadrics from S, ;.

In this subsection we show that each invertible net of quadrics B € S,,11 naturally leads to
a construction of a symplectic rank-(2m + 2) vector bundle Fs,,,2(B) on P3. Let us introduce
more notation. Set

(44) SV . :={B€Sy1|B:Hyp1®V = Hy @V is an invertible homomorphism}.

The set S ., is a dense open subset of the vector space S,,+1, and it is easy to see that for any
B e S} ., the following conditions are satisfied.

(1) The morphism B : Hppiq @ Opa(—1) — HY ., ® Qps(1) induced by the homomorphism
B:Hp®V — HY ., ®V"Yis asubbundle morphism, i.e.

(45) Esmi2(B) = coker(B)
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is a vector bundle of rank 2m + 2 on P?. This follows from the diagram
(46)

Hpi1 ® Ops(—1) —— HY\; @ Qps(1) —— Eypp2(B) —=0

Hm+1®V®OP3—>H 1 ®VY® Ops

0 = Bomua(B)Y —= Hypyy @ Tpa(—1) —2= HY | @ Ops(1)

(2) The homomorphism *B : H,,+1 — HY, ., ® A*’VY induced by B: Hy,y1 @V = HY ., @ VY
is injective. This follows from the commutative diagram extending the upper horizontal triple

in (HE4)
(47) 0 0
Hv+1 ® Tps(—2) =— Hv+1 ® Tps(—2)
0 —_— Hm+1 ® Ops —> HV+1 ® /\2VV ® O —> H (E2m+2(B>(1)) ® OI[DS —— 0

H w ev

HY . ® Qps(2) - Eomi2(B)(1)

00— Hy 11 ® Ops

0 0,

where w is the morphism induced by the morphism v from the Euler exact sequence in ([44]).
From this diagram we obtain an isomorphism

(48) coker(*B) ~ H®(Ey42(B)(1)).
(3) Diagram (4€) and the Five-Lemma yield an isomorphism
(49) 0 : E2m+2(B) :> E2m+2(B)v

which is in fact symplectic,

6" = -0,
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since the homomorphism B : H,, 11 @V — HY ., ® V" is skew-symmetric. The isomorphism ¢
together with the upper triple from (46l and its dual fits in the commutative diagram

(50) 0 0

00— Hpy1 @ Ops(—1) —— H,ppy @ Qps(1) — Eomy2(B) 0

H vV eV o

00— Hypp1 @ Ops(—1) — Beu —H,; @ VY® Ops vl mt1 @ Tps(—1) —=0

Note that the upper horizontal triple in (46]) immediately implies

(51) h(Eamyia(B)) = B (Eymi2(B)(=2)) =0, i >0,

5.2. Relation between instantons and rank-(2m + 2) symplectic bundles.

Form > 11let £ € Isomgerl and A € M5, +1(€). In this subsection we relate an instanton
vector bundle E(A) to a symplectic rank-(2m + 2) vector bundle Fy,,.o(B) for B = A;(£). We
will show that F(A) is a cohomology sheaf of the monad (BH) defined by the data (£, A) with
FEsmi2(B) in the middle - see Lemma 5.1

In fact, since ¢ € Isomy,, ., the homomorphism B : H,,41 ® V — HY. ., ® V" by definition
lies in S?,. ;. Hence by Lemma .4 the diagram (37) holds. This diagram together with (50)
implies BY o 7¢ 4 = 0 (note that in [B7) im(C ou) C H,,;; ® Qps(1) since C' € 3,,11), so that
there exists a morphism

(52) et Hy @ O(=1) = Eapia(B)

such that 7e 4 = €Y 06 0 pe 4. Since 7¢ 4 is a subbundle morphism, pg 4 is also a subbundle
morphism. Moreover, diagrams (37) and (50) yield a commutative diagram

(53) HV_H ® Qps (1 Eomy2(B)

/ \

Hy@VVe0 web Hypg1 ® Tps(—1).

Diagrams (50) and (53) yield a commutative diagram
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(54) H,, ® O(—1) < o, Voo

PgA

1
D¢ Zlﬁ leVOGOG ~|pB-1
E2m+2(B)V>e—> mi1 @ Tps(—1)
P%/’A v
tov \
H%@O(l) = Hm+1 ®V®O,

C\/

where Do := —CY o B l1oC = —u"0o(CVoB™oC)ouis the zero map. In fact, by [B0) and
B2) we have D¢ = pa(A3(€)), where py : A2(HY @ VV) — A*H, ® S*VV is the projection onto
the second direct summand of the decomposition (). Since by ([28)) A3(§) lies in the first direct
summand of () it follows that Do = 0. We thus obtain a monad

Y 00
(55) 0= Hy ®O(=1) 24 Byo(B) 25 HY @ O(1) = 0
with cohomology sheaf
(56) Ey(&, A) = ker(p¢ 4 0 0)/ Im pe 4

which is a vector bundle since p¢ 4 is a subbundle morphism. Furthermore, by (5I)) it follows
from the monad (B3] that Fy(&, A) is a (2m + 1)-instanton,

(57) [Eo(E, A)] € Lo
Lemma 5.1. Ey(§, A) ~ E(A), where the sheaf E(A) is defined in (13).

Proof. Diagram chasing using (30), (36)-(38)), (46)- (@) and (G0). O

6. SCHEME Xm AN ISOMORPHISM BETWEEN Xm AND AN OPEN SUBSET OF THE SPACE
(M]2m+1)red

In this section we introduce a locally closed subset X,, of the vector space S,,11 ® 2,1 and
prove in Theorem below that this subset, considered as a reduced scheme, is isomorphic to
the reduced scheme (M 1s,,41(&))req for any € € Isomgm +1- The set X, is defined as follows:
(58)

( (i) (CY¥oB'oC:H,®@V = H,oVV)€S,,

(if) the map (Hypy & Hy) © 0 2K HY @ VY @ 0(1)
is a subbundle morphism,
Xy = (B,0) €%, X Spin (i1) the composition C' : H,, < HY, @AV S
HY @ ANVY/Im(*B) ~ HO(E2m+2(B)( )) yields
a subbundle morphism
Hy, ® Ops(—1) "5 Enpya(B),
i.e. pj ¢ is surjective and Ey(B, C) := Ker(*pp,c)/Im(pp,c)
L is locally free




14 TIKHOMIROV

By definition X, is a locally closed subset of S% .| x X,,;1. Hence it is naturally endowed with
the structure of a reduced scheme.
Note that in the condition (iii) of the definition of X, we set ‘ppc := pp o o 0, where

0 : Eynyi2(B) = EY,.o(B) is the natural symplectic structure on FEy,,42(B) defined in (49).

Theorem 6.1. Let m > 1 and let £ € Isom), ;.
(i) There is an isomorphism of reduced schemes

(59) fn o (MIy1(€))rea = X o A= (A1(€), A3(€)).
(i) The inverse isomorphism is given by the formula
(60) Gt X > (Mbmir(§))rea s (B,C) = &(B, C, =C¥ 0 B0 ()]l

Proof. (i) We first show that the image of the map f,,, : (MIop41(€))rea — SO, 41 X X0 mi1 lies
in X,,, i.e. satisfies the conditions (i)-(iii) in the definition of X,,. Indeed, the condition (i) is
automatically satisfied, since (28) and ([B0) give —C¥ o B~ 1o (C = —A2(§)V 0 A1(€) o Ay(€) =
A3(€) € S?H) @ A*VV. Next, the morphism pp ¢ defined in (58liii) above coincides by its
definition with the morphism pg 4 defined in (52). In fact, the upper triangle of the diagram
(B3) twisted by O(1) and the lower part of the diagram (47)) fit in the diagram

(61)

0= Hyp © O 2o HY,, @ N2VV O e HY(Eypya(B)(1)) © O —0

\} 6
w m X ev
/ pe,A

0= Hppy © 0 —2 5 HY, |, @Q(2) ¢ Eomsa(B)(1)

0,

where the composition C' = can o C is defined in the condition (iii) of the definition of X,.
Whence

(62) PB,C = Pg,A-

Since pe 4 is a subbundle morphism, the condition (iii) is satisfied and, moreover, C is a sub-
bundle morphism as well. Thus, the lower part of the diagram (6I]) shows that the morphism
(B,C) : (Hpi1 @ Hy) ® O — HY 1 @ §(2) is a subbundle morphism. Hence its composition
with the subbundle morphism v¥ : HY ., ® Q(2) — H, ., ® V ® O(1) is a subbundle morphism
as well. By definition, this composition coincides with (B, C') o u. Hence the condition (ii) in
the definition of X, is satisfied.

This shows that f,,((MIoms1(€))req) lies in X,,,. Finally, the equality g,, o f,, = id follows

directly from (28)) and (30).
(ii) We first prove that the image of the map

(63) gm:Xm_>S2m+l: (B>C)'_>(B, C, C\/OB_IOC)E

lies in (M I5,41(€))req- In fact, the subbundle morphism A := (B, C)ou : (Hyy1 @ Hp) @O —
Hy . , ®VY®O(1) and its dual extend to the right and left exact sequence

(64) 0= (Hppr ® Hn) @ O(-1) B HY VY 004"

(Hms1 ® Hp)' @ O(1) — 0
'Here we use the decomposition (27) fixed by the choice of .
2 We identify here the triple (B, C, C¥ o B~! o () with a point in S?Hy), 1 @ A’V via the decomposition

@D).
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Furthermore, by definition AY o B™' o A = uY o A o u, where A is the matrix
( _Lév v oCB—l o C ) Since the condition (i) of (58)) is satisfied, under the direct sum

decomposition (27) this matrix A can be treated as an element of Sy, 1. Hence u¥ o Aou =0,
i.e. (64)) is a monad. We will show that its cohomology bundle

E(B,C) :=ker(AY o B™")/Im A

is an (2m + 1)-instanton, and this will give the desired inclusion ¢(X,,) C (M Isp41(E))rea- For
this, consider the diagram (B]) in which we substitute B o ag 4 by A, denote G := coker A, and
change the notation for 7¢ 4 and e 4, respectively, to 75 ¢ and ep ¢:

(65) H,, ® Ops(—1)

|

O—>(Hm+1 @Hm) ®O]p>3(—]_) A—>H7\7/H_1 ®V\/®Op3 can g 0

41 H €B,C

0

i Ops(—1) =22~ HY . @ VY ® O 25 H Tps (—
mt+1 ® Ops(—1) a® ® Ops — Hypppq @ Tps(—1) —=0

m

TB,C

H,, ® Ops(—1).

In these notations the diagram (50)) becomes the display of the antiselfdual monad

(66) 0 Hoypy @0(-1) 2 B, o VVe0% HY.,, @ O(1) =0
with the symplectic cohomology sheaf Fs,,.2(B):

(67) FEopio(B) = ker(u")/Im(B o u).

Moreover, as in (52) and (53) we obtain a subbundle morphism

(68) pp.c: Hyp @ O(—1) = Eopia(B)

such that

(69) B,C = e'ofo PB,C>

where 6 : Eypio(B) = Eopio(B) is a symplectic structure on Es,, o(B). In addition, as in

(BI) we have
(70) h(Eamya(B)) = B (Eymi2(B)(=2)) =0, i >0.

Furthermore, the antiselfdual monads (64]) and (66]) recover the antiselfdual monad (55]) which
in view of (62)) becomes

(71) 0= Hy ® O(=1) 28 Eynas(B) 25" HY © O(1) — 0.

with the cohomology sheaf E(B, C),

(72) E(B,C) =ker(pg 0 0)/Im(ppc).

Now (0) and (7I)) yield 2°(E(B,C)) = h'(E(B,C)(=2)) =0, i >0, ie. F(B,C) is an

(2m + 1)-instanton.
Thus Im g,, C Iopy1(€). The fact that f,, o g, = id follows directly from (B9) and (G0). O
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Remark 6.2. Note that, since the morphism C in the diagram ([61)) is injective, it follows from
this diagram that, for any m > 1, ¢ € Isom9 41 and any A € MIpp41(§), the monomorphisms

14, tA
Hyr 2 1Y @ A2V 29 |, satisfy the condition Im(*A, (€)) N Im(*A(€)) = {0}, i. e.

dim Span(Im(*A;(£)), Im(*A5())) = 2m + 1.

7. SCHEME Z,,. REDUCTION OF THE IRREDUCIBILITY OF X,, TO THE IRREDUCIBILITY OF
Zm. PROOF OF MAIN THEOREM

7.1. Scheme Zm and its open subset Z,,. In this subsection we introduce a new set 7, as
a locally closed subset of a certain vector space (see ([[7)) and endow it with a natural scheme
structure. We then formulate Theorem on the irreducibility of Z,,. This Theorem plays a
key role in the proof of irreducibility of I5,,.1 which we give in subsection The proof of
Theorem will be given in the next section.

Set
(73) A, = NHY @ S*VY, &, :=Hom(H,, H @ N*V"),
and
(74) (SY):={DeSY | D:H' @V — H, ®V is invertible}.
Note that (SY )% is a dense open subset of SY, and there is a canonical isomorphism
(75) SO S (SY)0: A AT

Consider the sets
O(D,¢):=¢"oDo¢p:H,, RV —

(76) T 1= (D,¢) €S, x®, | = HY ® V" satisfies the condition
O(D, ¢) € S

and

(77) T = Zm N (SV)° x ®,,

(here we understand a point D € SY, as a homomorphism HY ® V¥ — H,, ® V) and let Z,,,
be the closure of Z,, in Sy X ®,,. By definition, Z,, is an open subset of Z,,, respectively, a
dense open subset of Z,,.
Note that there is a standard decomposition

N(HY@VY)=8,,® A,
with induced projection onto the second summand
(78) Gm @ N(H, @VY) = A,
and the morphism

h:Sy @ ®m — Ayt (D,¢) = ¢u(0(D, 9)).

By the definition of Zn we obtain
(79) Zom = hH(0).

~

Clearly, the point (0,0) belongs to Zm, i. e. Z,, is nonempty.
Convention: We endow Z,, with the structure of a scheme-theoretic fibre h='(0) of the
morphism h. Respectively, Z,, inherits the structure of an open subscheme of Z,,.
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Remark 7.1. From ([[9) it follows that Zn may be considered as the zero-scheme (h*Suut)o
of the section h*s;u,: of the trivial vector bundle A, ® Os, o®,,, where s, is the tautological
section of the trivial vector bundle A,, ® Oy, of rank dim A,,, = 5m(m — 1) over A,,. We thus

obtain the following estimate for the dimension of fm at each point z € Z,,,
(80)  dim, Z,, = dimA~1(0) > dim(SY, x ®,,) — dim A,,, = 3m(m + 1) + 6m> — 5m(m — 1)
= 4dm(m + 2).
In particular, if Z,, is nonempty, then
(81) dim, Z,, > dm(m +2), =z € Z,,.
In the next subsection we will use the following result about Z,,.

Theorem 7.2. (i) Z,, is an integral locally complete intersection scheme of dimension 4m(m+
2).
(1i) The natural morphism py, : Zy, — (S))°: (D, @) — D is surjective.

We begin the proof of this theorem in section [§ and finish in section 10l

7.2. Proof of the main theorem.
In this subsection we give the proof of Theorem [T Set
(82) X, :={(D,C) e (S )’ X1 | (CYoDoC:H,V = H.0V')eS,}.

The set )?m has a natural structure of a closed subscheme of (S, +1)0 X 3,11 defined by the
equations
(83) CYoDoC €S,,.

Since the conditions (ii) and (iii) in the definition (58) of X, are open and X, is nonempty
(see Theorem [6.1]), it follows immediately in view of (73] that X, is a nonempty open subset

of (Xm)reda
(84> @ % Xm O(E)n ()’Em)red-
Fix a direct sum decomposition

Under this isomorphism any homomorphism

(85) C e, =Hom(H,, H )@ AN°VY, C:H,V —=H, oV
can be represented as a homomorphism
(86) C:H,V —-H VY & k/eVY,

i.e. as a matrix of homomorphisms

(87) C:(i),

where
(88) ¢ € Hom(H,,, H) @ N*VY = ®,,, 1 € ¥,, ;== Hom(H,,, (k)*) @ A*V".

Respectively, any homomorphism D € (S),,,)* € Sy, = S*H,11 @ A’V C Hom(H) ; ®
VY, Hyp1 ®@ V) can be represented as a matrix of homomorphisms

(50) p=( 5 0).
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where
(90) D, €S Cc Hom(H @ VY H, @ V),

A € L, := Hom(k", H,,) ® A’V, p € M,, := Hom(k", k) ® A\*V.
From (87) and (89) it follows that the homomorphism

CYoDoC:H,®V = HyoVY —~ CYoDoCeAN(H,aV"),
can be represented as
(91) CVoDoC=¢"oDiogp+¢ oro) —9pY oA o+ 1Y oo
By (87)-([@0) we have

Syt X Xyt =S, X @, x ¥, x Ly, x My,

and there are well-defined morphisms

Pt Xon = Ly @ My, = (Dy, 6,0, M, 1) = (A, ).
and
P = Pm| Xom : Xon = Ly & M,
where X, is the closure of X,, in (SY, 1)° x £,,41. We now invoke the following proposition,
the proof of which is postponed to Section [Tl

Proposition 7.3. Let m > 1. Then, for any point D € (Sy,1)° and a general choice of the de-

composition H,,,1 — H,, ®k, the induced homomorphism D, in the matriz of homomorphisms
D in (89) is nondegenerate.

According to this proposition, we fix such a decomposition H,,.; — H,, ® k for which the
homomorphism D, : HY ® V¥ — H,, ® V in (89) is nondegenerate, i.e. D; € (S),)°.

Let X be any irreducible component of X,, and let X be its closure in X,,. Fix a point
z = (Dy,¢,9%, A\, 1) € X not lying in the components of X, different from X. Consider the

morphism
(92) f: A = X0t (D, 2ot t\ ),  f(1) =z

(This morphism is well-defined by (91)).) By definition, the point f(0) = (D1,0,0,0,0) lies in
the fibre p.-1(0,0). Hence, p;,'(0,0) N X # 0. In other words,

(93) p 10,0) £ 0, where pi=p,|X.
Now from (@) and the definition of X, it follows that
(94) B (0,0) = {(D1, ¢, 0) € (8;,)" x @y x Wy, [ §Y 0 D10 €Sy}

Comparing this with the definition (7TT) of Z,, we see that, set-theoretically, p,(0,0) = Z,, x
W, so that

(95) p1(0,0) " p=1(0,0) % 571(0,0) L Z, x W,
Respectively, scheme-theoretically we have embeddings of schemes

schemes schemes schemes
(96) p7(0,0) 7T p0,0) T 5,1 (0,0) T 2, x Wy,

From (@3 and Theorem it follows, in particular, that

(97)  dimp'(0,0) < dimp;'(0,0) < dim Z,, + dim ¥,,, = dm(m + 2) + 6m = 4m?* + 14m.
Hence in view of (93]

(98) dim X < dim p~*(0,0) + dim L,, + dim M,,, < 4m? + 14m + 6m + 6 = 4m> + 20m + 6.
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On the other hand, formula (I6) for n = 2m + 1, equality (43]) and Theorem [6.1(ii) show that,
for any point x € X’ such that A := g,,(z) € MIs11(£),

(99) 4m* +20m +6 = (2m + 1) +8(2m + 1) — 3 < dima M1y (€) = dim X
Comparing ([98) with ([@9) we see that all inequalities in ([@7)-(@9) are equalities. In particular,
(100) dim p=%(0,0) = dim(Z,, x ¥,,,) = dim X — dim(L,, x M,,,).

Since by Theorem [(.2 the scheme Z,, is integral and so Z,, x ¥, is integral as well, (06) and
(T00) yield isomorphisms of integral schemes

(101) p_l(O, 0) schgnes p,_nl(O, 0) schgnes ﬁ;nl (O, 0) schgnes Zm % \I’m
Now we formulate the following Lemma, the proof of which we leave to the reader.

Lemma 7.4. Let f : X — Y be a morphism of reduced schemes, where Y 1is a smooth integral
scheme. Assume that there exists a closed point y € Y such that for any irreducible component
X' of X the following conditions are satisfied:

(a) dim f~!(y) = dim X’ — dim Y,

(b) the scheme-theoretic embedding of fibres (f|x/)"*(y) C f~'(y) is an isomorphism of
integral schemes.
Then

(1) there exists an open subset U of Y containing the pointy such that the morphism f| -1y :
Y U) = U is flat,

(ii) X is integral and

(iii) X is smooth at any smooth point of f~(y).

Applying the assertions (i)-(ii) of this lemma to X = X,,,, X' =X, Y =L, x M,,,, y =
(0,0), f = pm, and using (I00) and (T01]), we obtain that X, is an integral scheme of dimension
4m? + 20m + 6.

It follows now from Corollary 1.8 and Theorem that (M Io;41)req 18 irreducible of dimen-
sion 4m? +20m + 6 = n®> + 8n — 3 for n = 2m + 1, i.e. the inequality (I6) becomes the strict
equality. This together with Theorem B.Ilimplies that M I, is a locally complete intersection
subscheme of the vector space Ss,,+1. We use now the following easy lemma, the proof of which
is left to the reader.

Lemma 7.5. Let X be an irreducible locally complete intersection subscheme of a smooth
integral scheme Y such that X is smooth at some point. Then X s integral.

Applying this Lemma to X = MlIy,1, Y = Soni1 and using Remark B.2] we obtain
that M Is, 41 is integral. Since w1 @ MIopmir — Iomi1r @ A — [E(A)] is a principal
GL(Hypy1)/{£id}-bundle in the étale topology (see section [), it follows that I, is in-
tegral of dimension 16m + 5 = 8n — 3 for n = 2m + 1. This finishs the proof of Theorem
L1l

Remark 7.6. Consider the natural projections p; : X,, — L,, x M,,, x ¥,,,, p;1 : X,, —
S X Ly X My, x W, ~ S0y x W oand p: X 28 Spq X U, 258 S0, From ([0D) it
follows that p;'(0,0,0) =~ Z,. On the other hand, Theorem shows that the projection

open

P Zp B (SY)? ~ 8% <5 S, is dominant, hence, for a general point D; € S,,, the fibre
p~Y(D;) is an integral scheme of dimension dim Z,, — dimS,, = m(m + 5). This fibre in
view of the equality p;*(0,0,0) =~ Z,, coincides with the fibre p;;'(D;,0,0,0), and we thus
have dim p;;'(D1,0,0,0) = 5m(m + 1) = 4m? + 20m + 6 — (3(m + 1)(m + 2)/2 + 6m) =
dim X,,, — dim(S,, x ¥,,). Thus, applying Lemma[l4lto X = X' =X,,, Y =L,, x M,,,, y =
(D1,0,0,0), f = prr, we obtain that p;; is a dominant morphism. A fortiori,

p:Xm_>Sm+1: (D>¢)_>D
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is a dominant morphism.

8. STUDY OF Z,,. BEGINNING OF THE PROOF OF THEOREM

In this section we begin proving Theorem on the irreducibility of Z,,. In subsection
R we first treat the case m = 1. Next, we obtain explicit equations of Z,, under a fixed
decompomposition of H,, into a direct sum of H,,_; and k. In subsection we formulate the
main result of this section - Proposition 8] - which is a part of the induction step in the proof
of Theorem (The rest of the proof of Theorem will be given in the last subsection of
Section [I0l) In subsections we study in detail the explicit equations of Z,, and as a
result obtain the proof of Proposition 8.1l

8.1. Explicit equations of Z,, in (SY)? x ®,,. We proceed to the proof of the irreducibility
of Z,, by increasing induction on m. For m = 1 clearly A,, = 0, so that the equations
{©1(D1, ¢1) € S1} of Z; in (A2(kY ® VV))? are empty, i.e. scheme-theoretically we have
Zy = (NKY @ V) x & LA
Thus Z; is integral as a dense open subset of A2,
Now fix an isomorphism

(102) Hyp 1@k = Hy ot ((ag, ooy @n1), @) = (ag, ey @)

Under this isomorphism any homomorphism

(103) ¢:H, @V = H' VY, ¢c®, =Hom(H,,H @ \V).

can be represented as a homomorphism

(104) ¢:Hp 1 @VOkeV s H! oV'eak! eV,

i.e. as a matrix of homomorphisms

(105) ¢ = ( %‘1 p ) :

where

(106) ¢m—1 € ®yno1 = Hom(Hp1, Hy, @ A°VY), ¢ € ¥,y := Hom(H,,,_1, k" @ A*VY),
x € Hom(k, HY , @ A*VY) =¥, ,, 0 € By := Hom(k, kY @ A?VY) = S,.

Respectively, a homomorphism

(107) DeS’ CcHom(H VY H,®V)

can be represented as a matrix of homomorphisms

(108) D:(Dm—l “),

—a’  «
where
(109) Dpr €8Y_, c Hom(HY_, @ VY, Hy 1 @ V),
a € Hom(k", H,,_1 @ A*V) =W®" a € B, := Hom(k", k ® A?V).
Note that the data (I06) and (I09) yield isomorphisms
(110) SY SByx ¥ xS |, ®,>5®, 1 x¥,_ x¥, ; xBy,

and hence an isomorphism

(111) SV Xx®, By xByx ¥ xS x®,  xU,  x¥, ,:
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(D, ) — (0,a,a, D1, 1,1, X)-
From (I05) and (I08)) it follows that the homomorphism
O(D,¢):=¢"oDo¢: H,V = H' @V, O(D, ¢) € N2(HY @ VVY),
can be represented as a matrix of homomorphisms
©,(D b(D
(12 0.0 = ( Syl K50,
where
(113)  ©4(D,¢) := qbv 1oDp 10¢n 1+ @) joaoty—1oa od, 1+ oaore
AN(HY  ®@VY)CHom(H ,@VY H,  1®V),
b(D, o) == asm_loDm_loxwm_loaoe W oa ox+¢Y eaoh e
€ Hom(H,,_, @ V,k @ V"),
B(D,p) :=x"0oDp 10x+x" 0aol—60"0a"ox+60"oaoh e By.
In these notations Z,,, can be described as
1(D,0) € Syt
(114) Ty = {(D,¢) € (S),)" x @, E)) (( ’qf;)e o }

(Note that the condition B(D, ¢) € Sy here is empty.)
We thus have the following explicit equations of Z,, in the open subset (SY)° x ®,, of the
variety S) x ®,,, where we consider S}, x ®,, as the direct product By x B, x ¥ | xS | X

(ﬁm—l X ‘I’m—l X ‘I’m—l via (m):
(115) ©1(D,¢) 1= ¢y © D10 Gm1 + Gy 0 a0t =9’ 0a’ 0 gy + ¢ 0vot) € Sy,

(116) b(D,¢):=¢), 10Dp 10X+ ¢, 10a00—1'oca’ox+1 oaoleW,, .
These equations will be used systematically in the next subsections.

8.2. Part of induction step in the proof of Theorem [7.2]
We first introduce some more notation. Set
(ANV):={a € A’V | a: VY — V is an isomorphism},
(NVYY i={a e A*VY | a:V — VY is an isomorphism}.
Consider the projective space P(A?VV) together with the Grassmannian G = G(1,3) C
P(A*VY) embedded by Pliicker. Take any two points a € (A?V)? and b € (A?VVY)? such
that the corresponding points < a™! > and < b > in P(A?VV) are distinct. The projective line
Pl(a,b) := Span(< a=! >, < b >) joining these points intersects the quadric G in two points,
say, {y1,y2}, not necessarily distinct, and let P%i)(a, b), i = 1,2, be the two disjoint lines in P?
corresponding to the points yy, ys. Set
(117) L(a,b) := IP’l y(a,0) I_IIP’ 2(a,b).

Next, note that there are natural isomorphisms Sy ~ /\2V and ®) ~ A?VV | and, for any m > 2,
the induced isomorphisms

(118) US = E% (S\ll)(z) ~ éné /\2 ‘/, Uq; = E% ((I)l)(z) =, én? /\2 VV,

1=

where (SY)() and (®1)(;) are copies of S} and @, respectlvely Furthermore any isomorphism

N———

induces embeddings Us — SY, and Ug < ®,,, hence an embedding
(120) Th - Us X Uq; — SXL X ‘I)m.
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Note also that the set
(121) WS@ = {((D(l), ...,D(m)), (¢(1), ceuy ¢(m))) S Us X U@ ‘ the subsets L(D(i), (ﬁ(@) of P3,

1 <i < m, are well defined, pairwise disjoint and not lying on a quadric}

is clearly a dense open subset of Ug x Usg.
The aim of the rest of this section is to prove the following proposition which is a part of the
induction step m — 1 ~» m in the proof of Theorem [7.2]

Proposition 8.1. Let m > 2 and let Z,,,—1 satisfy the statement of Theorem[7.3. Then there
exists an irreducible component Z of Z,, such that:

(i) let Z,, = ZUY be the decomposition of Z,, into components; then Z° := Z ~ (ZNY) is
an integral locally complete intersection subscheme of (SY,)? x ®,,;

(ii) dim Z = 4m(m + 2) and the natural projection py|z : Z — (SY,)° : (D,¢) — D is
dominant;

(i) there exists an isomorphism h in (II9) such that, in the notations (I20) and ([121),
Z N Th(qu;) 75 @

Before proving this proposition we need some preliminary remarks.

First, consider the case m = 2. In this case D,,_1 = D1 € A*V, ¢m_1 = ¢1 € A2V and
a,a € N*V, 1, x,0 € A’VV so that the equations (IT15) become empty, and the equations (16
become:

(122) (proDy —1proa)ox — (proa—1poa)od € N2VV.

Now one can easily check that, for a general point x = (D1, ¢1,%, a, ) € (A2V)?x (A2VV)*4, the
equations (I22) as a linear system on the pair (x, #)) € (A*VY)*? has maximal rank equal 10.
Thus the space F), of solutions of this system as a subspace of (A?V")*? has dimension 2. This
means that there exists a component Z of Z, with projection pz : Z — (A2V)? x (A2VV)*4 .
(D1, ¢1,9,a,, X, 0) = (Dy, ¢1, 1, a, a) with a smooth fibre F, = p,,'(x) of dimension 2. Hence,
in particular, Z is generically reduced and dim Z < dim((A*V)? x (A2VY)*4) 42 = 32. On
the other hand, since (I22) is a system of 10 equations of Z, in (Sy)% x ®,, it follows that
Z as irreducible component of Z, has dimension > dim((Sy)? x ®,) — 10 = 42 — 10 = 32.
Hence dim Z = 32 and pz is dominant. As a corollary, the projection po|Z : Z — (Sy)° :
(D1, 01,9, a,a, x,0) — (D1, a,) is also dominant. Moreover, since F, is smooth and pz(Z) is
smooth as a dense open subset of (A?V)% x (A2VV)*4 it follows that Z is generically reduced.
Now we use the following remark.

Remark 8.2. Let X be a locally closed subscheme of an affine space A defined locally by N
equations. Let X be an irreducible component of X and let X° be a complement in X of its
intersection with the union of other possible components of X. Let X be generically reduced
and let dimX = M — N. Then XY is an integral locally complete intersection subscheme of

AM,

Applying this remark to the case X = Zy, A2 = (A2V)? x (A2VV)*6) we obtain from the
above that the statements (i)-(ii) of Proposition 8] are true for Z. Now an explicit computation
shows that the statement (iii) of this Proposition is also true for Z. We thus have proved
Proposition 1] for m = 2.

We proceed now to the proof of Proposition Rl for m > 3. For this, note that, by the
assumption, Z,,_ is an integral subscheme of (SY,_,)° x ®,,_; such that

dim Z,,_y = 4(m?* — 1)
and the natural projection p,,_1 : Zno1 — (SY,_1)°: (Dpm—1, ¢m—1) > D,,_1 is surjective:

(123) Pm-1(Zm-1) = (S),1)".
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Hence, since dim(SY, ;) = 3m(m — 1) and so dim Z,,_; — dim(S),_;)° = (m — 1)(m + 4), it
follows that the set

(124)

(SY )™ :={Dy,_1 € (SY,_,)° | the fibre p, ' (D,,_1) is integral of dimension (m — 1)(m +4)}

is a dense open subset of (SY, ,)%; respectively,

(125) ZmLy = Dy ((Sp)™)
is a dense open subset of Z,,_;.
Next, using (II1]) and the embedding Z,, < S, x ®,, consider the projections

(126) prp, : S, X ®, > By x By x ¥ xS’ | : (D,¢)=(0,a,a, Dy, pm-1,9,X) —

Zo  Zm — By X By x WY | xSV .

— (0,a,a, D), T = Prm
We are going now to study the fibre

T (4°)
of the projection m,, over the point
(127) Y’ = (0",0°0,D,,_1) € By x By x ¥, x (SY,_,)°,
where
(128) a’ = (pij) e NVY ~ B., 6° = (qij) e NVY ~ By, Dij, Qij € k.

i

Note that, by the definition of m,,, the fibre 7, !(y°) naturally lies in ®,,_y X ¥,,,_; X ¥, ;:
(129) W_l(yo) C (ﬁm—l X ‘I’m—l X ‘I’m—l-

m

Thus, substituting (I27) into (II5]) and (II6), we obtain the equations of 7' (y°) as a subscheme
of ®,, 1 xW¥,, 1 x ¥, ; as equations in the variables ¢,, 1, x and :

(130) w10 Dm10¢m 1+ oo €8,
(131) ¢y 10D qox+1oa’od €W, ;.
For an arbitrary point y° in (I27), where D,, 1 € (SY,_;)°, consider the set
(132) F(0°,0", Dyyoy) =1, (4°) N {x = ¢ = 0}
It follows from (I30) that
(133) F(0°,0°, Dyyy) = {1 € @y | 6”0 Doy © bt € Spos ).
Hence, U F(0°,a° D,,_1) = {(6°,a%)} x Z,,_1. Moreover, the definition (I24)) implies

Dm71€(smil)0
that for D,, 1 € (SY,_;)™ the set F(6°,a° D,, 1) is irreducible of dimension (m — 1)(m + 4)
and, by (IL1), (25 ‘and (I32),
(134) U R,a® D) = (8,2, 0)} x 22, x {(0,0)}

Dmf 1 E(Smfl )int

8.3. Proof of Proposition 8.1k case m odd, first computations. In this subsection we
prove Proposition 81 for the case of odd m,

m=2p+1, p>1.
Fix decompositions
(135) Hm—l ZHQEB...EBHQ, HgﬁHl@Hl.
————

p

3Here and below we use a fixed basis e1, ..., e4 of V in order to understand points of A2V and A2V as skew
4 x 4- matrices.
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Under these decompositions consider the points D5 | € (SY, ;)% and ¢4 | € ®,,_; given by
the matrices [

(136) Dy 1 i=Dy&...®Dy, ¢ 1 =dn ((N.a,d, f,g) =& .8 ¢,
———— — —_——
p p
where
(137)
-1 1
Dy=DaD'esy, D'=]|" Clerv o= ey,
-1 -1
(138)
-1 1
_( o1 912 |1 _ N
¢2 - ( ¢21 ¢22 € (I.Qa ¢11 - N ) ¢22 - -1 ) N e k>
—N =\
f a f
_ g _ —g d 217V
P12 = g ;P = —a g eENVY, ad, f,gek
—f —f —d
One easily checks that
(139) (¢m_1) 0 Doy 0 ¢ 1 € Sy,

hence the point (D2_,,¢2_|) € SY._| x ®,,_ lies in Z,,_1. Moreover, since D2_, € (SY._,)°,

m—17 ¥Ym—1
it follows that
(140) (Diy 1, G 1) € Zn1.-

In addition, it follows from (I39) that the equations (I30) are automatically satisfied for any
1 € U,, 1. Now, substituting the data (#°,a°, D5 |, ¢~ ) into (I31)), we obtain the equations
on (x,v):

(141) (¢-1)'oDm jox+1¢Yoa0f €W, ;.
Set
(142) W(6°,a°, D5 1,05 ) i={(x,¥) € Wy x U,y | (x, %) satisfies (I41)}.

Note that, since the equations (IZ1)) on (x, ) are linear, it follows that W (D45 |, ¢% _,,a° 6°)
is a linear subspace of the vector space W,, 1 x ¥,  ~ ¥’ ¥, ;.

Find the dimension of the vector space W (6°,a°, D5 |, ¢2 ). For this, using the decompo-
sitions (I35]) we represent x and v as p-ples

(143) X=Xt Xp) V=1, P), Vkoxe € W2, k=1,..,p,
where

(144) e = (Xi,Y2), ¥n = (Ay,By), Xi Yi, A, B € N2V,
and

(145) X = (), Yi= (), Ax = (a))), Bi= (b))

“Here and everywhere below the empty entries of matrices mean zeroes. Besides, we use the standard notation
A=A1®..0A, for adirect sum A of matrices Ay, ..., A, which is a block matrix with diagonal blocks Ay, ..., A,
and the zero rest blocks.
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are skew-symmetric 4x4-matrices. Inserting D2, and ¢2_, from (I36)) into the system of
equations (I41]) we rewrite this system as

(146) oy oDyoxr+ U 0’0l c Wy, k=1,..p.

Substituting here Ds, ¢ and 90 from (I37), (I38) and (28) and denoting z{" = 2% 2 =
k) (k k k k) (k k) (k k) (k k) (k k
FRIEIRIR I ERER Y
?/1% ,3711 = ?/23 ’x12 = ?/24 ,9513 = a12 ,9514 :ka34 ak3715 = a13 >I16 = 9514 yLir = Tog, T1g =
lé4)a 19 = 612 y L b34 ) 21 b13 yLog = b§4), 53) = b23 y &L b , we rewrite the system

(I44)) as
(147) S myal? =0, i=1,.,20, k=1,...p,

where M := (m;;) is the 20 x 24-matrix with entries depending on N, a,d, f, g, pij, ¢ij-
Now a direct computation of the matrix M = (m;;) for

(148) N=101,a=4,d=6, f=2, g=5,

(149) Pi2 = =9, p13 = —2, pu= —4, pa3 =06, pyy = —3, p3y = — 7,
G2 =4, q13=—4,q1a = —2,q23 = 3,q24a = —7,q34 = 8,
shows that M is the upper left block submatrix

Mi;; My, Md} 0
150 M =
(150) (M a2

of the block matrix M given below in (IR)-(IRA). From (I50) and (I82)-(I0) it follows by an
explicit computation that

(151) rkM = 20.

Hence, since the matrix of the system (I47) is a direct sum of p copies of matrix M, it follows
that its rank equals

(152) p-rtkM = 20p = 10(m — 1).
Next, denote by
(153) ¢,, 1, resp., «, 0O

the matrices obtained by inserting the entries (I48) into the matrix ¢4 | in (I36), respec-
tively, the entries (I49) into the matrices o and #° in (I28). In this notation, denoting by
R(0°,a° D5 |, ¢2 ) the rank of the linear system (I41]) as a function of °, « 0 , DA 98
we rewrite (I52) as

(154) R(ea «, Dr%—l? ¢)m—1) = 1O(m - 1)

Note that (D2 |, @,,_1) € Zm_1 by [[40), and by [I25) Z" is irreducible and dense open
in Z,,_1. In addition, since the maximal value of R(0°,a®, D,,_1, ¢,,_1) equals 10(m — 1), the
condition R(6°,a°, D,,_1,¢pm_1) = 10(m — 1) imposed on the point (D, 1, ¢pm_1) € Zm_1 is
open. Hence it follows from (I54]) that

a) the set (2™ )0 := {(Dy_1,dm-1) € Z™, | R(O,,D,y_1, 1) = 10(m — 1)} is dense
open in Z“*, hence also in Z,,_ ;. By (123) thls implies that

b) there exists a dense open subset (SY,_|)* of (SY, ;)™ such that, for D,,_; € (SY,_,)*, the
set

FO,a,D,, 1)’ :=F(0,a,D,,_1)N(Z")°

where F(0°,a°, D,,_;) is defined in (I32), is an integral scheme of dimension (m — 1)(m + 4)
and it is a dense open subset of F(0, o, D,,—1).
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Now for D,,_1 € (S,,_)" set
F:=70,,0,D,, 1), F=F(D,_):=F®,a D, )=Fn{x=1v=0}
From a) and b) it follows similar to (I34)) that ” L(JS : F(D,,—1) is dense open in {(0, a)} x
m—1€ ,,\4171 *
Zimt % {(0,0)}, hence
(155) U F(Dp1) ={(8,,0)} x Zn_1 x {(0,0)},

l)mfle(sxlfl)”F

where the closure is taken in S, x ®,, and we use the isomorphism (I1I]).

Take an arbitrary point D,,—1 € (S),_;)*. By b) F' = F(D,,_) is integral of dimension (m —
1)(m~+4) and contains a dense open subset F° such that, for any point w = (0, ¢, D,,_1, ¢!, ;) €
F° one has R(w) := R(0,a, D,,_1, ¢, ;) = 10(m — 1). Fix such a point w which is smooth
on F. We are going now to compute the dimension of the tangent space T, F.

Note that by (I129) we consider F as lying in ®,, 1 x ¥,,, 1 x ¥, ;. Hence the equations of

the tangent space

T,F
are given by differentiating at w the equations (I30) and (I31):
(156) Ay 1ls 0 D10 G+ @'y, 1 © Doy 0 dymily | € St
(157) ¢ oDy iody|o+diplfoal o’ e W, 4.

Here the equations (I50) coincide with the equations obtained by differentiating at w the
equations ¢, 10D, _10¢,_1 € S,,—1 defining F' as a subscheme of ®,, ;1. Since w is a smooth
point of FY it follows that the equations (I56]) define the tangent space T,,F° = T,F as a
subspace of Ty Pm and

(158) dim7T,F =dim F = (m —1)(m —4).

On the other hand, the equations ([I57)) just coincide with (I31]) via identifying (x|o, d%|o)
with (x,%), i.e. they are the equations of the subspace W(w) = W(0,a, Dy—1,¢., ;) in

U, 1®V,,_1. Hence dim W(w) = dim(¥,,_1®V,,_1)—R(w) = 12(m—1)—10(m—1) = 2(m—1).
In view of (I58)) we have

(159) dim, F < dimT,,F = dim T}, F +dim W (w) = (m—1)(m+4)+2(m—1) = m?+5m—6.

Note that, since D,,_; € (S, ;)? and a € SY (see ([128)), it follows that D = D,,,_;da € (S),)°,
so that

(160) wE Zp,.

In addition, dim(Bg x B, x Y |, xSY ;) =dim(By x SY,) = 6+ 3m(m+1) = 3m? + 3m +6.
Counting the dimension of the fibres of 7, : Z,, = By x B, x ¥ | x Sy | ~ By x Sy, and
using (I59) we obtain

dim,, Z,,, < dim,, F + dim(Bg x S;)) < (m* + 5m — 6) + (3m* + 3m + 6) = 4m(m + 2).

Comparing this with (81]) we see that the above inequalities on dimensions are strict equalities.
In particular, dim,, Z,, = 4m(m+2) and dim,, F = dim T,,F = m?+5m —6 and dim 7,,,(Z,,) =
(3m? + 3m + 6) = dim(By x S)). This together with the assertion (iii) of Lemma [7.4] implies
that there exists a unique irreducible component, say, Z of Z,, passing through w such that:

(i) dimZ = 4m(m + 2) and Z,,, respectively, Z is smooth at w; hence, in notations of
Proposition B1I(i), Z° is an integral locally complete intersection subscheme of (SY,)° x ®,, (we
use here Remark B.2));

(i) mn(Z) is dense in By x SY; respectively, p,.(Z) = prs(m,(Z)) is dense in SY,, where
prs : By x SY — S is the projection. This gives proof of the statements (i) and (ii) of
Proposition R.1L
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Moreover, by a) and b) above, F' = F(D,,_1) C Z for D,,_1 € (S,,_;)", so that (53] implies
the existence of an embedding

(161) {(8,0,0)} x Zy_1 x {(0,0)} C Z,

where Z is the closure of Z in SY, x ®,,. In particular, similar to ([I60) we have in view of
(140):

(162) w’ = (8,,0,D5 |, ¢ 1,0,0) € Z.

m—1 ¥Ym—1»

8.4. Proof of Proposition 8.1k case m odd, last computations. In this subsection we

prove the last statement (iii) of Proposition 8 ]in case of odd m. For this, consider the following
modification of the data (I36)-(I38):

(163) Dﬁ—l(cv fv g) = D2(Cv flugl) D..0 D2(Cv fpvgp>7
7%—1(57 f> g) = ¢2(Ea fl>gl) D...D ¢2(5a fp?gp)a
where
D/ i Yi
(164) D2(C7 flugl) = ( (C’ f g) D// ) S S\2/7
/ N 1 cfi . "n_ 1 2
D(Cvflvgl>_ _Cfi 1 ) Z_la'"vpu D - _1 SIA V:
—CGi -1 —1
-1
b1 P12(¢, fi, 9i) 1
165 i Ji) = € Py, = )
( ) ¢2(5>f g) ( ¢21(5,fi,gz') ¢22 2 Cbll N
—N
1 efi
N €9;
¢ = _4 . (e, fingi) = _cq; g )
—N —efi
ea ef;
N —eg; &d 2 v o .
¢21(€7fl7gl>_ —ca Egi e/\ V ) C7€7N7a7d7f27g26k7 Z_lv"'apv
—ef; —ed

and where f = (fi,...,f,),8& = (g1,--,9,) € kP. One easily checks that (¢5_,(g))" o
D5 (e, f,g)o¢2 ,(g) € S,u_1, hence the point

(Dﬁ—l(g f> g)> 7%—1(5>f> g)) € SYn—l X ‘I)m—l

lies in Z,,_,. Moreover, since (D2_,(0,f,g) = D2 _, € (SY._,)° and (SY._,)° is open in SY,_,,

it follows that, for any f,g € k” there exists some dense open subset U(f,g) of k such that
Dr%—l(C’ f7 g) S (SXm—l)()’ cc Z/{(f, g) Hencev (Dﬁ_l(C, f7 g)u(bnAm—l(gufu g)) S Zm—l for ¢ S
U(f,g), so that, since Z,,_; is closed in S, | X ®,,_1,

(166) (Din-r(e.f,8), Oa (2. £,8)) € Zn, ce€k, fgek”
In particular, take ¢ = 1 and ¢ = 0 in ([I63)-(I65). It follows immediately that the point
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is the image of the point
((D/(17 .flagl)a sy D/(la fp?gp)a D//a cey D//a ao)a (¢11a ceey ¢1147?227 cey ¢2%a 90)) € US X U'~1>

~-
p p p

under the embedding 7, : UsxUs < SY, x®,, defined (up to a permutation of direct summands)
as in (I19)-(I20) via the isomorphism
(167) h:H @..0H = Hy,, m=2p+1,
—_—————
determined by the decompositions ([I35]).

On the other hand, by (ITI) and (IGG) we have w(f,g, 0, ) € {(6, @, 0)} x Zn,—1 x {(0,0)},

so that, in view of (I6]]), w(f, g, 0, ) € Z. Thus,

(168) w(t, g, 0,a) € ZNm(Us x Us), f,g €k

Note that D2 _,(1,0,0) = D2 _,, hence it follows from the definition of w(f, g, #°,a") that the
point w(0, 0, 0, ) lies in Z,, (cf. {I62)). Since the condition w(f, g, 6%, a°) € Z,, on the point
(f,g,0° ) € k? x A2VY x A?V is open, we obtain from (I68)) that there exists a dense open
subset U € k% x A2VY x A%V such that

(169) w(f,g,0°,a%) € Z, nm(Us x Us), (f,g,0°a") cl.

Next, one easily sees that, for general f;,g; # 0 the points D'(0, f;,9:), D'(1, fi, g;) lie in
(A2V)? and, moreover, the projective plane Span(< D'(0, fi,g;,)™* >, < D'(1, fi,9:)7 " >, <
¢11 >) in P(A?VY) intersects the Grassmannian G = G(1,3) in a smooth conic. This imme-
diately implies that, in the notation of (I17]), for a general choice of fi, g1, f2, g2 € k, the sets
L(D'(1, f1,91)7 % ¢11) and L(D'(1, fa,g2)", ¢11) are well defined and disjont. In other words,
using the notation of (II8]) and considering the projection onto the direct summand

prij : Us x Us = ((S{) ) @ (S1) () x ((B1)s) ® (1)) = (S] & SY) x (P18 1)
for any 1 <7 < j < m and taking the dense open subset W;; of Us x Ug defined as
Wij = p’f’i_jl({((Dl, Dg), (¢1, ¢2)) S (S\l/@SY)X(‘I)lEB‘I)l) | the subsets L(Dl_l, (]51) and L(Dz_l, (]52)

of P*are well defined and disjoint})

are well defined, pairwise disjoint we obtain in view of (I69) that
(170) Z N Th(W12) 7£ @

Now since the set Isom,, of all isomorphisms A in (I67) is a principal homogeneous space of
the group GL(H,,) which is connected, it follows from (I70) that Z,, N 7,(W;;) # 0 for a

general h € Isom,, and any pair (i,7), 1 <i < j < m. Hence, since Wgg = i W;; by the
<i1<gs<m

definition (I2I]) of Wss, we deduce that ZN7,(Wse) # (. This finishes the proof of Proposition
[B.1] for m odd.

8.5. Proof of Proposition 8.1 case m even.
The proof of Proposition B.1] for the case of even m,

m = 2p + 4, szE

is completely parallel to that given above for the case of odd m. Namely, similar to (I35]) fix
the decompositions

(171) Hm_lﬁHg@HQ@...EBHQ, HgﬁHl@Hl, HgﬁHl@Hl@Hl.
| -

p

"Note that we start with m = 4 since the case m = 2 has been already treated in subsection B2
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Under these decompositions, similar to (I36]) consider the points D5 |, € (SY, ) and ¢2 | €
@, given by the matrices with diagonal blocks

(172) Drél,—l = D3®D2®---@D27 TAYL—1:¢$L—1(N7a7d7f7g7)\> = ¢3®¢2@’"®¢27
—_———— —_—————

p p

¢11 ¢12 ¢13
(173) Ds=Dy® D', 3= | b ¢ A | €®3, A€k,
¢31 >\¢12 (bll

where D27 D/ and ¢27 ¢i,j7 7’7.] = 1727 are given by (m)_(m) and

(174) ¢35 = (ri5) € NVY, b = (s5) € NPV,
where 75, s;; € k satisfy the additional relations
(175) Tig + Tia = Sis + Si, 1 =1,2.

We now proceed along the same lines as before. In particular, it follows from (EBEI) and (I'72)-
([I75) that the relations (I39) and (I40) are satisfied for the point (D% _,, ¢4 ;). Hence, as
before, the equations (I30]) are automatically satisfied for any ¢ € ¥,, ;. Now, substituting

the data (6°,a° D5_1, ¢5_y) from (I28) and ([I72)-(I74) into (I3T)), we obtain the equations

n (x,1):
(176) (o5 )W oD ox+¢Voa’edc¥,, .

m—1

Next, using the decompositions (ITI]) we represent x and ¢ as (p + 1)-ples (cf. ([I43))

(177) X = (X07 "'7Xp)7 w = (w(]v "'7¢p)7 meO € \1137 w/ka S \1127 k= 17 e D,y

where x, = (X, Yi), ¥x = (Ag, Br), k =1, ..., p, are the same matrices of variables as in (I44]),
and xo = (XO,YO, Zo), tho = (Ao, B0>CO) Xo, Yo, Zo, Ao, Bo, Co € /\2Vv> Le.

(178) Xo= (2, Yo= W), Zo=(20), A= (a), By = (b)), Co = (i)

are skew-symmetric 4x4-matrices of variables. Using the same notation for variables

atgk),...,a:gfl),k = 1,...,p, as in ([I47) and introducing new variables :13(0) .. ZE:SOG) as follows:
0 0) (0 0) (0 0) (0 0) (0 0 0 0
Iéo; :<o>g:§2)’gié>) © I§’4)’%%’) ) Ig‘?’)’(g)g)(o? % )< :fé )<o>: 935326) (zm: I%i xg(g) _ y%’x% )> _
% y%gﬁ’x(lg) TR C TR Tt T Z%)’x(lé) B T
TR S IR B W B
Qoq , Tos = b12> 26 = b3y, To; = bi3,Tog = biy,Tog = b23, 30 = byy, Ty = Cig,Tyy =

cé?l), atgg) cgg), xé(i) cga), ZE:(35) = cég), xé%) = cgi), we rewrite the system (I'76) similar to (I47) as
(179) Zmijxg(” =0, Zmijxgk) =0, i=1,..,20, k=1,..,p.

A direct computation of the matrices M = (m;;) and M = (m;;) for the above chosen values

(148),([149) of N,a,d, f,g,pij,q;; in (I38) and (I72) and, respectively, for the following values
values of A, r;;, s;; in (I73) and (I74) satisfying (I75):

(180) )\ = —2, 19 = 3, T13 = 7, T4 = —2, T93 = 4, Toq = —6, T34 = —8,
S12 = —8,813 = —3,814 = 8,893 = —2, 894 = 0,834 = =5,
show that M is the block matrix (I50) and M is the block matrix

_ My My, My My 0 0
(181) M == M21 M22 M23 0 M¢ 0
M31 M32 M33 0 0 M¢
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with blocks

0

2 0 0 O

—2

-5

0 0 0

0

0
5 0 0 O
0

2
0

0
0
0
0

-5 0 0

0 0 0
-2 0 0

M12

0

0

0 0 100

0
100

100
0

Mll =

(182)

100

cCoocococococoo
o <t
S coocococoZ oo
cCooSTococooo
| <t <t
| | 9o ococococoo
coScococococo oo
S S ocoococococococo
cCcoocococococoo OOOOOOONA_;O
o
Soocoocoococoococo o
— cooYSocococoo
coocococococoo cootvSocococoo
I I
[\
I~ 1O 0 <t
OOOOOa_uOOQ | oo o | @ <2
NOoOOoOOoOoOOoOOoOoOO N
n/_~n/_~AUAUK_UU1_‘M.OO
JuOOOOOOOO
<t
. A__lA__anK_uOOOOlm
cCoocococo o _
NI qh_uﬁua_uAUUAUOoA_UA_;O
co | oococoo
N 0042%60000
co | foococoo
007_2%60000
I
S
S I
3]
~—~ —~ i
™ <t
%) o0 =
i i
N— S~—

(185)

10
-4 0

—10

0
0

—-10 0

10

M, =

—13

-8

—13

—13

16

Mz, =
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(186)
00 0 0 0 0 —20 0 20 66 -5 —47
00 0 0 0 0 0 3 40 —38 —37 —57
00100 0 0 0 57 —47 —82 —38 —22 0
00 0 100 0 0 37 5 7 =79 0 —22
M 00 0O 0 100 0 M -38 66 —28 0 —62 —38
B~100 0 0 0 100 | v 40 —20 0 —28 7 =59
00 0 0 0 0 —56 0 0 0 40 132
00 0 0 0 0 0 —-76 —76 0 —114 0
00 0 0 0 0 44 0 =10 =94 0 0
00 0 0 0 0 0 —14 0 80 0 —74

Now as in (I5I)) we have rkM = 20. Respectively, from (ISI])-(I80) we obtain by an explicit
computation that rkM = 30. Hence, since the matrix of the system (I79) is a direct sum of
matrix M and p copies of matrix M, it follows that its rank equals

(187) rkM + p - tkM = 30 + 20p = 10(m — 1).

Denote now by R(6°,a®, D2 |, ¢5 ) the rank of the linear system (I76]), equivalent to (79, as
a function of 0%, a°, D2 | ¢2 . Tt follows from (I8T) that, similar to (I53)), there exist values

m—1

@, 1,0 of o5 |, a® 6° respectively, such that, as in (I54),
(188) R(0,, Dp_y, ¢yy) = 10(m — 1).

Repeating now the arguments from subsection and using (I8§)), we obtain the inclusions
([I6T) and (I62) for the above chosen data 6, a, D5, ¢4

m—1 ¥m—1-
Finally, using (I72)-([I74), we modify appropriately the matrices (I63)-(I65), so that, arguing
as in subsection 8.4 and using the inclusions (I61]) and (I62), we deduce that Z N7, (Wsa) # 0.

This finishes the proof of Proposition [R.1] for m even.

Remark 8.3. In perfoming the above computations of the rank of the linear system (I31]) one
might try to simplify the shape of the matrices ¢, in (I38). E.g., in order to do computations
simultaneously for odd and even values of m, one might set ¢15 = ¢o; = 0. However, under these
constraints the experiments with computations for arbitrary values of parameters N, p;;, ¢;; give
at best the value 9(m — 1) for the rank of the system (I31]), which is insufficient for further
arguments. Respectively, in case of m even one might also try to simplify the shape of the matrix
¢3 in (I73)). E.g., one might set ¢13 = ¢33 = 0, and this would satisfy the equations (I30]).
However, experiments with computations in this case for arbitrary values of the parameters
N.pij, qij;a,d, f,g, A give at best the value 29 for the rank of the matrix M which is also
insufficient.

9. GEOMETRIC MEANING OF Z,,. ITS RELATION TO T’HOOFT INSTANTONS

9.1. One property of the component Z of the scheme Z,,. In this subsection we prove
one openness property of the component Z of Z,,, m > 3, introduced in Proposition 1] - see
Lemma, below.

Take an arbitrary point

D e (S))".
Then in the notation of (7)) we obtain a symplectic rank-2m vector bundle

Eom (D7)
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(see (@) and [@J) where we take 2m instead of 2m + 2 and put B = D™!) and a natural
epimorphism
cp: HY @ N2 VY = Wap, := HY, @ A2°VY /im(*(D™1)) ~ HY(Eyn(D7Y) (1)),  dim Wi, = 5m.
Now take an arbitrary point
z2=(D,¢) € Zp,.

Here the morphism ¢ understood as a homomorphism *¢ : H,, — HY ® A2V" defines the
diagram

(189) H,y,
%J/ 5(2)
(D1 c
0 H,y, . )H,Yq R N2VY 2> Wi, 0.
The lower horizontal triple in (I89) yields the diagram
t(p—1 c
(190) 0 —— Hyp © Op 2 HY @ A2VY © Ops — 2> Wiy @ Ops —— 0

00— Hyp @ Ops —2—> HY @ Qpa(2) —2—> Eop (D) (1) — 0.
Moreover, the diagrams (I89) and (I90]) define the composition

(191) 5.0 Hyp® Ops(—1) "3 Wa © Ops(—1) 5 By (D).

Note that the relation ¢V o D o ¢ € S,, following from the definition of Z can be easily
rewritten as

(192) ts,05, =0,

where 's, := sY 00 and 0 : Ey,,(D™') = Ey,,(D71)Y is the symplectic structure on Ey,, (D)
defined as in ([@9]). We have an antiselfdual complex

(193) 0 — Hy @ Ops(—1) 53 By (D7) 5 HY. @ Ops(1) — 0.
Now, according to statement (iii) of Proposition 8] take a point
(194) z = (D, ¢) e zZnN Th(WS@),

where h is a fixed decomposition (I19), and consider the induced decompositions
(195) D=D®..®Dpn, ¢:=ND...0bm, (Di ;)€ NV x(AV)°,
such that

(196) L:= UL(D;, ;) = ;IQLIL(DZ-,@).

is a disjoint union of 2m lines in P3. Moreover, for this point z we have
(197) Bom(D7Y) = & Eo(D;Y),
i=1

where Ey(D; '), i = 1,...,m, are rank-2 null-correlation bundles.
Under the decomposition (I19) the diagrams (I89) and (I90) decompose into the direct sums
of m diagrams

(198)
%T w0
‘(D)

0—> Kk —> A2)Y —> Wiy —= 0

Y
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t(p-1 cp.
(199) 0 Ops o )/\2VV ® Ops oy Wsiy @ Ops —=0, i=1,...,m,

‘ ie’l} iev
D71

0 — Ops —— Qs (2) —=— Ey(D; 1) (1) — 0

in which we substitute k for H; and set Wy := A?VY/im(*(D; ' : k — A2VY)), dim Wy =
5, 1=1,....,m.

Note that the decomposition (I19)) induces a decomposition of the complex (I93) into a direct
sum of m comlexes

(200) 0 — Ops(—1) 5 Eo(D7Y) % Opa(1) 5 0, i=1,..,m.

Here the sections 0 # s; € HO(Ey(D;')(1)) ~ Ws understood as homomorphisms k —
Wiy coincide by construction with homomorphisms s;(z) in the diagram (I98). Hence the

homomorphism s(z) in the diagram (I89) is also injective as the direct sum of s;(z)’s. This
means that im(*¢) Nim(*(D~1)) = {0} i.e.

(201) z € ((SYV)°x®,,)* :={(D, ¢) € (SY,)°x®,, | the homomorphism *¢ : H,, — HY NV
is injective and im(*¢) Nim(*(D~1)) = {0} }.

Next, from the definition of L and the construction of the morphisms s,,s;,i = 1,...,m, (see
(I89)—(199), (I91) and (200)) it follows that these complexes are exact except in their righthand

terms and
(202)  coker(’s,) = OL(1), coker('s;) = Opp,60(1), (si)o=L(Ds, ), i=1,...m,

Remark 9.1. An arbitrary point D € (SY,)° defines a point
For an arbitrary embedding

jIHm_l ‘-)Hm

and an arbitrary point z € (SY,)? x ®,, there is defined an induced morphism of sheaves

(203) $:(j) : Hope1 ® Ops(=1) L Hy, @ Ops(—1) 33 By (D).

Let ey, ..., e, be the basis of H,, related to the decomposition (I19) and set
H,,—1 := Span(ey, ..., €_1).
Consider the monomorphism
(204) Jo:Hp1—Hpy: eg—e+eq, 1=1,...,m—1

Since L is a disjoint union of pairs of lines L(D;, ¢;), i = 1,...,m, it follows from (202]) and
(204) that s.(jo) is a subbbundle morphism, i.e.

(205) coker(“s.(jo)) = 0.

Now for a given monomorphism j : H,,_; < H,, consider the following conditions on a point
z=(D,¢) € Z:

(I) the composition s.(j) = 5,05 : Hy,—1 @ Ops(—1) — FEy,,(D™') is a subbbundle morphism;

(I1) s, : H,,®Ops(—1) — FEs,,(D™1) is an injective morphism of sheaves (but not a subbundle
morphism).

Note that the conditions (I) and (IT) are open conditions on the point z € Z,,. The condition
(I) is satisfied for the point z from (I94]) and the embedding jo by (205). The condition (II) is
satisfied for this point z in view of (202). Thus, since the set ((SY,)? x ®,,)* defined in (207)) is
dense open in (SY)° x ®,,, we obtain the following result.
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Lemma 9.2. (i) There exists a monomorphism j : Hy,_1 < H,, such that the sets
Z(j) :=={2=(D,¢) € ZN((S),)" x ®,,)* | = satisfies the conditions (i) and (II) above},

Z(5,1) :={z=(D,¢) € Zn ((S),)° x ®,,)* | » satisfies the condition (I) above}

are dense open subsets of Z, and we have open embeddings Z(j) — Z(j,1) — Z. The same is
true for a generic monomorphism j : H,,_1 — H,,.
(i) Fiz a monomorphism j : H,,_1 < H,,. Then the sets

Zm(j) :={2=(D,¢) € Z,,N((S))° x ®,,)* | 2 satisfies the conditions (I) and (II) above}
Zm(, 1) :={2=(D,¢) € Z,, N ((S),)° x ®,,)* | z satisfies the conditions (I) and (II) above}

are open subsets of Z,,. Respectively, let Z be an arbitrary irreducible component of Z,,. Then
the sets

(206) Z(j) = Z N0 Zn(j), ZG.1):=Z0 Zn(j,1)

are open subsets of Z.

9.2. Relation between Z and t’Hooft instantons. Morphism A : Z,, — So,,_;1.

In this subsection we relate the open subset Z(j) of Z,, introduced in Lemma B2(ii) to
t’Hooft instantons - see Lemma [0.3] _
In the notation of Lemma [0.2] assume that Z(j) # 0 and take an arbitrary point z =

(D,¢) € Z(j), so that the symplectic vector bundle Es,,(D™') satisfies the diagrams (I83)-
(I90)). Respectively, the morphism of sheaves s, defined in ([I91]) is injective - see the definition
of condition (ii) above. In addition, s, satisfies the relation (I92) which clearly implies the
relation

(207) tSz(.]) © Sz( ) =0

for the subbundle morphism s,(7), i.e. we obtain a monad

(208) 0= Hyp1 @ Oss(—1) " B, (D7) Y HY 0 Ops(1) 0,

From the diagram (I90) we deduce the equalities hZ(Egm(D_ )(—=2)) =0, 4 >0, hence the
cohomology sheaf of the monad (208]) is an instanton bundle

(209) By(z,j) = Ker("s-(j))/ Im(s:(f)),  [E2(2, )] € Tom-1.
Now consider the subvariety It | C I5,,_; of t’"Hooft instanton bundles (see subsection £3)),
Ly = {[E] € L1 | h°(E(1)) # 0}.

Lemma 9.3. (i) In notations of Lemma[92(i) let Z(j) # 0 and let z = (D, ¢) be an arbitrary
point of Z(j). Then the bundle Ey(z,7) is a t’Hooft instanton bundle, i.e. [Ey(z,7)] € I} _;

(ii) In notations of Lemma [T3(iii) let Z(j) # 0. Take an arbitrary point =z € Z'(j). Then
the monad (208) is well defined and its cohomology bundle F5(z,7) is a t’Hooft bundle;
(#i) Fiz an isomorphism
(210) §:Hy ® Hypy — Hoppq, & € Isomay,_1.
Then there is a well defined morphism
(211) Ay Zm = Some1: 2= (D,¢) = A= g(D_l,qﬁ 0j,—(¢poj)oDo(¢oj)).
such that

(212) o) (Zm(5)) € MIGTE ().
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Proof. (i) Consider the complexes (I93) and (208)) and set
Hino1 = Hypo1 @ Ops(—1), Hy = Hpy @ Ops(—1), Kpp1 := coker s,(7), K, := cokers,.

The complexes (I93]) and (208]) are antiselfdual, hence they extend to a commutative diagram
(213)

Uz

Es(z,§) <" Ops(—1)

Hm—l ) E2m(D_1) ICm—l—l
J / %
Hp——> By (D7) Ko
/ ts.(i) 5
Ops(—1)
ts, Y
\Y vV
m—1 m—1
ez
HY HY

Ops (1 0P3(1/

in which «, 8,7,6 and 7 are the induced morphisms. In this diagram we have § o« = 0 and
jYo~vyo B =4. Hence 6 o = 0. This implies that « factors through the morphism 7, i.e. there
exists an injection u, : Ops(—1) — Ey(z, 7) such that & = 7 ou,. This injection w, is a nonzero
section u, € H°(Ey(z,)(1)). Hence Ey(z,7) is a t’Hooft bundle.

(ii) Repeat the above argument.

(iii) This immediately follows from Lemma [5.1] since (208))-(209) coincides with (55])-(56)
after sustituting m — 1 for m and putting B = DL O

Remark 9.4. From the diagram (0.3]) it follows that the point z € Z(j) (respectively, the point
z € Z(j)) defines not only a t’'Hooft bundle [Es(z, j)], but also a proportionality class < u, >
of a section 0 # u, € H°(Ey(z,j)). Moreover, the pointwise constructions (over z € Z(j)) of

Lemma clearly globalize to P® x Z(j). In particular, the morphism AG) © Z(3) = Som—1
defines a subbundle morphism of sheaves

(214) Az: 0z, = Sam1 @0y,
i.e., equivalently, a family of instanton nets of quadrics
(215) Az Hyp 1 @V @Oz, — Hy,  @V'® Oz6)-

Let 7z : P3x Z(j) — Z(j) be the projection. By construction we have a rank 4m bundle W :=
imA 7 on Z(j) and the correspondig monad 0 — Ha,, 1 ® Ops(—1) ® (’)5(].) — Opp XW, —
Hyp1 ® Ops(1) ® Og;) — 0 with the cohomology rank 2 bundle E; such that Ez|psy () =

Es(z,j), z € Z(j). This monad, together with relative Serre duality for the projection 7,
defines in a standard way an isomorphism of locally free (92( j)-sheaves

(216) .fZ . Hgm_l ® OZ(]) i) GZ = (EXt}rZ(Ez(—B),wﬂZ))V
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relativizing the pointwise isomorphisms f : Hop 1 — H?(Esy(2,5)(—3)) (cf. Section B) and
Serre duality H?(Fy(z,7)(—3)) = (Ext'(Ey(z,)(=3),wps))". (Here we set Ez(k) == Ez @
Ops(—1) K Op;), k € Z.) In addition, the sections u. € H°(Fy(z,7)), z € Z(j), glue up to a
section

(217) w: Opa g — Ez(l).

9.3. Description of the fibers of the morphism A\ : Z,,(j) — Sam—1-

In this subsection we will give a description of the fibres of the morphism A(;) : Z, (J) = Sam_1
and of its restriction onto Z, \; := A(j)|z : Z = Sam—1. The precise statement is given in Lemma,
below.

To formulate the result on the fibres, note that the point z = (D, ¢) € Z,,(j) defines the
monad (208)) with the cohomology bundle Es(z,j) with [Ey(z,7)] € It | (see Lemma [0.3).
The display of this monad twisted by Ops(1) is

(218) Ez(z[j)(l)

52(7)

Hp1 @ Ops = Ey,, (D71 (1) —— coker(s.(j))

ts2(9) i

HY | ® Op(2).

m

Note that from (39) and the definition of MILE | it follows that h°(E(z,5)(1)) < 2. Hence,
passing to sections in the diagram (2I8) we obtain a well defined epimorphism

(219) bz, ) 1= WO(1s.(7)) : HO(Ean(D~1)(1)) "~ HO(coker(s. (7))~

 Hfeolen(s. D)/ B D) = {55 ol o 2 b e s

(Note that h°(Ey(1)) < 2 for any [Fs] € It ) In addition, as in Remark [6.2, where we take
m — 1 instead of m, it follows that
(220) im(*DY) Nim(* 0 j) = {0}, dimSpan(im(*D7"), im(*¢ 0 j)) = 2m — 1.

Consider the epimorphism cp : HY ® A*VY — H°(E,,(D71)(1)) in this triple (see the
diagram (I90)) and set
(221) V(z,7) = cp'(ker b(z, 7)).

From (2I9) it follows immediately that
4 k2™ if hO(Ey(z,5)(1)) = 1,
(222) Vi(z,j) = { K2+ if BO(Ey(z, 5)(1)) = 2.

Now observe that the complex (208)) is well defined for any z € Z,,, and any j : H,,_1 < H,,
since the condition (207) is a closed condition satisfied for any z € Z,, (this complex now
might be apriori not left- and right-exact). Hence the homomorphisms b(z, j) = h°(*s.(j)) :
H°(Es,(D™Y(1)) = HY, ;®5*VY and cp : HY @ A*°VV — H°(Ey,,(D71)(1)) are well defined,
and we define the set V(z,j) by the same formula ([22I]). Since Z is irreducible, from (221 it
follows by semicontinuity that

(223) dimV(z,j) >2m, ze€Z.



MODULI OF MATHEMATICAL INSTANTON VECTOR BUNDLES WITH ODD ¢ ON PROJECTIVE SPACEr

Lemma 9.5. Let j be as in Lemma 2.2
(1) For any point z € Z, the fibre of the morphism Ay : Zp, — Som—1 through the point z is
a reduced scheme naturally identified with V(z, 7):

(224) A Qo (2) = V(z, 7).

where V(z, j) is defined in (221). Hence, in particular, for any z € Z, dim A(; ()\ y(2)) = 2m.

(ii) Let Zy be the union of all possible irreducible components of Z,, dzstmct from Z and let
Zo(j) == Z(j) ~ Z1. Consider the morphism A\; := Aj)|z : Z — Sop—1. Then for any z € Zy(j)
one has a natural isomorphism

(225) A (2) = V(z,9),
where the dimension of V(z,j) is given by (223), and, for an arbitrary z € Z,
(226) AT (2) €A = Vi), dmAT () 2 2m.

If z € Z(5,1), then the dimension of V(z,j) in (228) is given by (222).

(i) Let Z be an arbitrary irreducible component of Zy,, let Zy be the union of all possible ir-
reduczble components of Z, distinct from Z and let Zo(j) := Z(j)~Z1. Consider the morphism
)\ 3z : 7 - Som—1. Then for any z € ZO( ') one has the natural isomorphism

(227) AN (2) 2 V(= ),

J

where the dimension of V(z,7) is given by (228), and, for an arbitrary z € Z,
(229) 5 €A = Vieg), dim ) (3 (2) > 2m.

Proof. (i) Consider the spaces A, = A?H), @ S*VY and A,,,_1 = A’H,\,_, @ 5%V together with
projections ¢, : A2(HY @ VV) — A, and ¢,,_1 : A2(HY _, @ VV) — A,,_1, respectively (cf.
([[3) and ([[8)). Fix a monomorphism jy : k — H,, such that J(Hpm—1) Nk = {0}, i. e. we have
a direct sum decomposition of H,, together with embeddings of summands

(229) Hy=Hpo @k, Hyy <o H, 2k

This decomposition induces a direct sum decomposition of A together with projections
(230) Ay = Ay ®Hom(k, H. , @ S2VY), Ap & A" Hom(k, HY | ® S*VVY).
Now the equations of Z,, in (SY)° x ®,, are

(231) A= gn(¢" o Do g¢)=0.

Next, consider the diagram (54]) twisted by Ops(1), in which we substitute m — 1 for m, set

B = D! and put s.(j) instead of p¢ 4 and ¢ o j instead of 5’, respectively. Proceeding to
sections in this diagram and, respectively, to sections in the diagram (2I8) we see that the
condition

(232) 0= pr'(A) := gm-1((¢ 0 j)" 0 Do (¢ o)) = b(z,j) o e(2)

is automatically satisfied, where e(z) is a homomorphism e(z) = h(s,(j)) : Hnp1 —
H°(Es,(B)(1)). (Clearly, the vanishing of pr/(A) can be equivalently rewritten as the con-
dition that ¢ o j embeds H,,_; in V(z,5).) Hence the equations (231)) are equivalent to the
equations

(233) pr”(A) = b(z,5) oc(z) o *po ji = 0,
which in view of the definition ([22I]) mean that
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Thus, since the point A¢;)(2) is given, so that the points D and ¢ o j are determined by A(;)(2)
(see (2I1))), it follows that the point (D, ¢) € A;)(2) " (Ay)(2)) is determined by the data *@|y.
Hence, the above inclusion implies that A (2) "1 (A (2)) = V(z, j).

(ii)-(iii) follow from (i).

Note that the above argument can be illustrateded by the diagram

(234) Hp Hp,

J Jk

H,, 1€ H,, 0 k tB
& /
fpoj foli
0 V(z,7) HY @ NV HY |, ®S*VY

Hyy €D
% e(2)
I )

0 — ker b(z, j) HO (B (DY) (1)) 22 HY | @ S2VV.

O

Remark 9.6. Note here that, as it follows from the proof of this Lemma, for z = (D, ¢) € Z
the fiber V(z,j) = )\(_];(A(j)(z)) C H), ® A’V of the morphism A naturally lies in {D} x ®,,
via the embedding j;i : HY @ A*VY < Hom(H,,, HY) @ A*°VV = &, = {D} x ®,, induced by
the embedding jyx : k — H,,.

Lemma 9.7. Consider the set Ry = {z = (D,¢) € Z | rank s(z) < m — 2} where the
homomorphism s(z) = cp o *¢ : H,, — Wi, is defined for z = (D, ¢) in ([I89). Then

codimz R, > 2.

Proof. Fix a monomorphism j : H,,_ < H,, satisfying the conditions of Lemma [0.2] so
that Z(j) is nonempty, hence dense in Z. and take any point z = (D,¢) € Z. From the
definition of the set V(z,j) (see ([22I])) it follows that, for z € Rz, one has a natural inclusion
¢p'(im s(z)) € A71(Aj(2)) € V(z,j) (cf. the diagram (234), so that the diagram (I89) and
the definition of Ry imply dimcp'(im s(2)) < rank s(z) +m < 2m — 2. Hence by Lemma
[9.5((ii) codim)\;1()\j(z))cf)1(im s(z)) > 2. Thus we have an inclusion Ry =~ ZLGJZcBl(im s(z)) C

EJZ)\;l()\j(z)) = Z, which together with the last inequality yields the Lemma. O

10. COMPLETE FAMILY OF T'HOOFT SHEAVES WITH ¢ = 2m — 1. END OF THE PROOF OF
THEOREM

In this section we construct a complete (10m — 1)-dimensional family 7" of t’"Hooft (2m — 1)-
instsantons and their degenerations (we call these degenerations t’Hooft sheaves). The family
T will be used to prove that the variety Z studied in the previous two sections coincides with
Zm. This finishes the proof of Theorem [7.2

10.1. Construction of a complete family E — T of (2m — 1)-t’Hooft sheaves.
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Consider the subvariety I | C I, of t'Hooft (2m — 1)-instantons. We first recall the

following two properties of an arbitrary t’Hooft instanton [E] € IX£ | m > 1, - see [BT] and

INT:

(i) K(E(1)) < 2;

(ii) for any section 0 # s € HY(E(1)) the zero scheme Z, = (s), is locally contained in a
smooth surface;

(iil) (Zs) req is a disjoint union of lines [y, ..., [, 1 <r < 2m, and Oy, = é Oy, , where for each
i=1

1, 1 <1 <r, the scheme Z; has a filtration by subschemes [, = Z;; C Zy; Cc..C L, i = 4; for
some m; > 1, with Supp(Zj;) = [; such that, if m; > 2, then

(235) Oiju = OZji/Oli? 227 2=my;

For a given integer d > 1 consider the Hilbert scheme H, := Hilb?G of 0-dimensional
subschemes of length d of the Grassmannian G = G(1,3) of lines in P?, and let 'y, C G X Hy

be the universal family with projections G €% I'y, 4 4 9,. For a given point = € H, we denote
by Y, the corresponding 0-dimensional subscheme pq(q;"'(z)) of G. We call a point x € Hy
curvilinear if there exists an integer b > 1, a partition d = dy + ... + dp, d; > 1, and points
x; € Ha,, 1 <17 < b, such that

(a) for each i, 1 < i < b, the subscheme Y, C G is isomorphic to Spec(k[t]/(t%*1)), and

(b) Y, is a disjoint union Y, =Y, U...UY,,.

Set HG := {x € Hy | x is curvilinear}. It is well known (and easily seen) that HG*" is an
open smooth 4d-dimensional subscheme of H,. Next, let I' C P2 x G be the graph of incidence,
together with projections P? & T' % @. From the above properties (i)-(iii) we deduce now the
following lemma.

Lemma 10.1. For each [E] € Iif_| and 0 # s € H°(E(1)), there exists a curvilinear point
z = z([E], s) € HS such that Z, °E p(q~1(Y,)) and the scheme structure of Z, coincides with

2m

that given by formula
(236) Oz, = p«q Oy,

Proof. Since by (ii) the support of Z; is a disjoint union of lines; hence from the definition of
curviliear schemes we deduce that it is enough to consider the case when Z; is a single line,
say, [ with a nonreduced structure, i.e. there is a filtration of Z, by subschemes

(237) l=72,CZyC...C Loy =2y, m>2,
such that the following triples are exact (see (23H)):
(238) 020, =07 -0, —-0,..., 0=-0,—= 0z, =0z, ,—0.

From the first triple in ([238)), (ii) and the Ferrand construction [BF| §1] it follows that O, is
a factor-sheaf of the conormal sheaf N;ps ~ 20ps and that the surjection N;ps — O; gives
a double structure on [ coinciding with the scheme structure of Z,. This surjection implies
that Zs lies as a scheme on a smooth quadric, say, ) passing through /. Choose homogeneous
coordinates (zg : 1 : x5 : x3) on P? such that

(1) I = {22 =23 =0}, Q= {xoz2 — 123 = 0}, and

(2) let P3 = Uy U U; be the open cover of P? by the sets U; = {z; # 0}, ¢ = 0,1; then the ideal
of ZyNU; in k[U;] is generated by zo/z¢ and (x3/x0)* for i = 0 and, respectively, by z3/z; and
(y/x1)% for i = 1.

Let Sy, .., S. be quasiprojective smooth surfaces in P? such that the sets Zyy := Z; NSy, k =
1,...,c, constitute an open cover of Z,. (Such surfaces exist because of (ii).) Set Zy) :=
ZyNU, i=0,1, k=1,..,c. From (1)-(iii) and (1)-(2) follows the property
(3) for k = 1,...,c the ideal Iz, of Zu in O[U; N Sk is generated by (x3/x0)*"*" for i = 0
and, respectively, by (zy/x1)?™"! for i = 1.
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Since by (1) the elements x3/xg € O[Z )] and x2/x1 € O[Zy)] coincide in O[Z o N Zaw ], k =
1,..,c, it follows that there are well defined homomorphisms k[t]/(#*") — O[Zu)]

Imod(t*™*) + 1modly,,, and tmod(t*"*') w (x3/x0)modly, for i = 0, respectively,
tmod(t*"*') = (x2/x1)modly,,, for i = 1, which are compatible on Zg) N Z1y). This de-
fines a morphism 7z : Z, — Spec(k[t]/(#*™)). Set 7; := Spec(k[t]/(t1)), i =0, ..., 2m. From
the definition of the morphism 7 and exact triples (238) it follows that, for i = 2, .., 2m, the
(nilpotent) ideal sheaf Z; :=Z,, | ., C O,, satisfies the isomorphism mult : Z; ®o,, Oz = Iy, :
a® 1+ 75(a). Hence, by [HL, Lemma 2.13] the morphism 7 is a flat family of lines over
Tom, SO that it defines an embedding 75, = Spec(k[t]/(t*™!)) < G, i.e. a curvilinear point
x € Hay such that p: ¢~ 1(Y,) = Z, is an isomorphism. Lemma is proved. O

Remark 10.2. One easily sees that Hi~™ .= {x € HSWY | v = 2([E], s) for some [E] €
I and 0 # s € H°(E(1))} is a dense open subset of H5%™. We thus consider its closure
”HtH curv. — Feurv in Hilb*™@. Fix a desingularization H of H4=<“"* 4 is a smooth integral

scheme, and there is thea graph of incidence I'yy C G x H with projections G & Ty, 28 .
Consider the subcheme EH =Ty Xgxu I' x H of I' X H and set
Ly = prl(f;q.[),

where pry : I' x H — P3 x H is the projection. We endow Ly, with the structure of a subscheme
of P? x H via setting

OLH = pTl*(OEH).
Since the sheaf prl*(OiH) is clearly flat over H, in order to prove that the above definition is
consistent, one has to check it fibrewise with respect to the projection p; : Ly — H. Thus,
taking any point y € H and the corresponding 0-dimensional scheme Z = Z, of G, respectively,
the subscheme Ey = ¢ '(Z,) of P? x G, we have to check that the sheaf p.Or, is the structure
sheaf of a certain subscheme L, of P* supported at p(z ). Take any closed point z € Z, and set
[= q (2), respectively, | = (l) Also, take an arbitrary point & € [, respectively, z = p( ) €L
Applying the functor p, to the composition of surjections Or —» OLy — O - k; we obtain
a surjection Ops = p,Opr — p.k; = k, as the composition Ops — p*OLy — k,. Hence, by

Nakayama’s lemma € is an epimorphism, as stated. Note that, by construction, the scheme L,
has a filtration by subschemes as in (237)-(238)):

(239) ®:L0:L1CL2C...CL2m:L, O, :OL./Ol., 1 <1< 2m,
Y i—1 i i

where 14, ..., lo,, are lines in P2, not necessarily distinct, corresponding to closed points of the
scheme Z,,.

Remark 10.3. Consider the set H, := {x € HEI=™ | x = z([F], s) for some [E] € It | with
RY(E(1)) > 2}. H, is a closed subset of HEZ=eu and it is well known (see, e.g., [BT]) that
the condition z([E], s) € Hs is equivalent to the condition that the scheme Z; = (s), lies on a
smooth quadric in P3. This is, in turn, equivalent to saying that the 0-dimensional subscheme
Y, of G lies one a projective plane P? in P° = Span(G) intersecting G in a smooth conic (i.e.
a general plane in P°. Whence it follows that dim H, = length(Y,) + dim G(2,P%) = 2m + 9.
Respectively,

(240) codimyHs; =8m — (2m+9)=6m—9>2, m>2.

Now let pry : P® x H be the projection and consider the flat over H sheaf Zy,(1) := Ty, psyy ®
Ops (1) K Oy and the relative Ext-sheaf

F = Eth ( L(l),OPS(—l)&OH)

pr2
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A standard computation using (239) shows that the sheaf F satisfies the base change isomor-
phism

(241) b, : F @k, > Ext'(Z;, ps(1), Ops(—1)) k", ye M.

Hence F is a locally free Oy-sheaf of rank 2m. We thus have a smooth integral (10m — 1)-
dimensional scheme T = Proj(F") with structure morphism pr : T — H and the Grothendieck
sheaf Op/y(1). In particular, T is a smooth variety of dimension

(242) dimT =dimH +1kF¥ —1=8m+2m —1=10m — 1.

Moreover, let pp = idps X pp : P2 x T — P3 x H be the projection and set Ly := pr~*(L). On
P2 x T there is a universal family of (classes of) extensions of sheaves - see, e.g., [Ll Cor. 4.5]:

(243) 0= Ops(—1) X Opyp(l) = E = Iy (1) = 0,

where Ty, := Iy, psxr. By construction, for any closed point ¢ € T the sheaf F; = E|ps, g is
a nontrivial extension of the form

(244) 0— Ops(—1) = E, = I, (1) = 0, y = pr(t),

hence

(i) E; is a stable rank-2 sheaf (i.e. [E;] € Mps(2;0,2,0)), which satisfies the condition
hO(E,(1)) > 0; furthermore, from (244) and (239) it follows easily that

(i) 10(Eu(-2)) = 0

(i) there exists a dense open subset T’ of py'(H5=*“")  hence also of T such that, for
t € T, E, is locally free, i.e. E; is a t’"Hooft bundle;

(iv) there exists a dense open subset T” of T' such that, for t € T”, h°(E;(1)) = 1; further-
more, for any two distinct points ¢, € T” one has E; % Ey.

The properties (i)-(iv) mean that there is a well defined modular morphism f : T —
Mp3(2;0,2,0) : t — [E};] such that

(245) £(T) = I,

is the closure of It2 | in Mps(2;0,2,0). Moreover, f|po is injective. We thus call the family
E — T the complete (10m — 1)-dimensional family of t’Hooft sheaves.
Note also that the property (iii) above implies that

(246) Suppgxt}gwa(E, Opsyr) CP3 x0T, 0T :=T\T.

Remark 10.4. Assume that we are given a vector bundle Eg on P? x B such that, (i) for each
b € B, E, = Eplpsx 3y is a t’Hooft bundle, (ii) there is given a morphism up : Ops(—1) @ Ng —
Ep nonvanishing for any b € B, where Np is some invertible sheaf on B. Then cokerup =
Ops (1)ROp®T4,, psxp where Lp = bgBZb is a union of subschemes 7, of P? described in Lemma

M0.I We thus have an extension 0 — Ops(—1) X O “8 Ep — Ops(1) K Op ® I, p3xp — 0.
It follows in a standard way from [L] that there exists a morphism r : B — T’ such that the
last extension is obtained via applying the functor (idps X r)* to the triple ([243). In particular,
applying this remark to the bundle Ez on P? x Z(j) and the morphism v in ([2I7), i.e. taking
B = Z(j) and up = u, we obtain the morphism r = rr : Z(j) — T’ such that

(247) (idps x ro)’E =Ez,  rpOrm(l) = Oz,

10.2. A family of nets of quadrics A associated to the family E — T.

In this subsection we construct associated to E — T a family of nets of quadrics which will
be used below. For this we first note that, by (239) and (244]), we obtain the following equalities
for a sheaf E; in (244):
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dim Ext!(Ey(—4),wps) = dimExt*(Ey,wps) = 4m — 4, dim Ext' (E,(—3), wps)
dim Ext?(Ey(—1),wps) = 2m — 1, Ext'(E;, wps) = Ext’(Ey(—1),wps) = Ext® " (Ey(—3), wps) =
Ext® " (Ey(—4),wps) = 0, i # 2, and Ext’(E,(—2),wps) =0, i >0,

where ¢ € T is an arbitrary point and wps = Ops(—4). Therefore, applying the functor
Ext’ (—,wy,) to the sheaves E(—j) :== E® Ops(—7) X Op, 0 < j <4, where 7 : P> x T — T is
the projection, the sheaf E is defined in (243) and w, = wps X Or, and using base change for
relative Ext-sheaves we obtain that the sheaves

(248) F; = Ext?(E(—i),ws), G;:=Ext:(E(i —4),w,), i=0,1,
are locally free Or-sheaves of ranks, respectively,

(249) tkFy = rtkGy = 4m — 4, 1kF; = rkG; = 2m — 1,

and

(250) Ext’ (E,w;) = Ext! (E(—1),w;) = Ext}  (E(-3),w,) = Ext> " (E(—4),w,) = 0, i # 2,
Ext! (BE(=2),w,) =0, i >0,

Similarly, we obtain that H := R'm,(E(—1)) is a locally free Ox-sheaf of rank

(251) rkH = 2m — 1.

Using (244]) we also see that the sheaf H duality commutes with the base change. Hence, there
is a relative Serre-Grothendieck duality isomorphism (see, e.g., [K])

(252) SD:F, = H".

Next, the local-to-relative spectral sequence EY? = Rpw*gxt‘éma JEE3) wn) =
Ext?™(E(—3),w,) gives an exact sequence 0 — R'm (EY(-1) — G —
mlaty,, . (E(=3),w), where by (240) Suppm.Eaty,  (E(-3),w:) C IT. Since codimrdT >
1, dualizing this sequence we obtain an injective morphism of Op-sheaves

(253) 0= Gy 3 (R, (EY(-1)))Y

Next, dualizing the triple (243]) and using the fact that codimps,tLy = 2 we obtain an exact
sequence

(254) 0= Ops(~=1) ¥ Op = EY = Ops(1) M Oqypy(—1) = Eatyy . (Oryp(1), Opsur) —

— Exty, (B, Opsyr) — 0,

so that det EY = m*Or/y(—1). Hence, as T is a smooth integral scheme, it follows by [H1l,
Prop. 1.10] that
EVV ~ EV ® (det EV)_l = EV ® W*OT/H(]-)-

Dualizing (243)) twice we see that the canonical morphism can : E — EYY ~ EY @ 7*Orp /(1) is
injective, and we obtain an exact sequence 0 — E(—1) =¥ E(—1)V®7*Or/3(1) — coker(can) —
0, where Supp coker(can) C P2 x 9T. Applying to this triple the functor Rim, and using the
fact that H is locally free on T, we thus obtain an exact sequence 0 — H % Rz, (EV(—1)) ®
Or/u(1) — coker(g) — 0, where Supp coker(g) C OT. Dualizing this sequence we obtain an
injective morphism of Op-sheaves 3 : (R'm(EY(—1)))" — HY ® Or/3(1). Composing it with
the morphism « from (253)) and the inverse of the relative duality isomorphism SD from (252])
we obtain an injective morphism of locally free Op-sheaves

(255) v=SD"ofoa:G) = F ®Opm(l).

In view of the property (iii) above (245]) one easily sees that + is an isomorphism when restricted
onto T":

YN 2 GY | = F1 ® Opyp(1)| 1.
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(In fact, the restriction of v onto an arbitrary point ¢ € T is just the Serre duality isomorphism
H*(E,(—3)) = HY(F,(—1))" for a t'Hooft instanton £;.)
Next, the resolution of the diagonal A on P? x P? extends to a diagram of sheaves
(256)
0 0

0—— Ops(—?)) X Ops(l) — Ops(-?)) XAV ® Ops — Ops(-?)) X TpS(-l) —0

0—— Ops(—l) X st(l) I OPS(—]_) X V\/ ® O]ps

Ops(—l) X O]ps(l) —0

0

IA,]P’3 xP3 O]p.‘i X O]}DB OA 0

0 0 0

Let p: PPx T xP? — P3xP3 and m = 7 X idps : P2 x T x P2 — T x P? be the projections and
denote w, = w; X Ops. Applying the functor Ext’ (—, w,) to the diagram p*([Z56)QE X Ops
and using (248)), ([250) and base change we obtain the commutative diagram of sheaves on
P?x T~ T x P

(257)
0 0
0 Ops X Gy M EV 0
0~—Op(1) KNG, ="— 0 RVY® G, ~— Qps(1) NG,y 0
ido XA’ a
0=~— T]p‘i(—]_) X Fl <~ Ops XV ® Fl <1— O]p‘i(—l) X Fl ~—0
0 EY K Ops X Fy 0

0 0

where we denote K = Ext2 (P Zapsxps QEXR Ops, wr ), M = coker a and where A’ is a morphism
V®F; = VY ® Gy given by this diagram.
Now set W := imA’ and let 5y : VRF, » W, iy : W VVRGy, g: Ops XW Zd@fv

ido™e,/

O BVY® G = Op(1) R Gy and £ : Ops(—1) BF, — O KV @F, 5 Ops BW be
the induced morphisms. From (249) and the middle vertical sequence in (257)) it follows that
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W is a locally free Op-sheaf of rank 4m:
(258) kW = 4m.
Moreover, the diagram (257)) gives the monad with the cohomology sheaf EV:

(259) 0 — Op(—1)KF, 5 Ops W -2 Ops(1) K G, — 0, EY = ker g/imf.

Remark 10.5. One can, of course, obtain the monad (259) from the Beilinson spectral sequence
with Ej-term EP? = Ext? 9(E ® Qp7 (—p) ® Orp,wy) (cf. [OSS, Ch. II, 3.1.4]). However, we
use here the diagram (257) because it will be also used below in producing the monad (266])
and Lemma [10.6

Next, from the definition of the morphisms f, g and v follows the diagram

(260) Opa(~1) B GY ® Opy(—1) > 0p BV @ GY ® Opyu(~1) .
'Yl/ Fyl
Ops(—1) K F, ! O KV @F,

is commutative. Thus, the composition A : V @ Gy @ Op/u(—1) >V @ F 5 VY @G, fits in
the (left- and right-exact) complex of sheaves

(261) 0= Ops(—1) KGY @ Opjp(—1) & 02 RV @ GY ® Oppy(—1) "S5

—>O]P>3®V\/®G1 i)Ops(l)&Gl —0

and imA C W. In addition, by construction for any ¢t € T' the homomorphism A ® k; in view
of Serre duality H := H?*(E,(-3)) = H'(E,(—1)) coincides with the skew-symmetric middle
vertical homomorphism A : V® H — VY@ HY in (I0) for F = E; and n = 2m — 1. Hence, A is
skew-symmetric, A € H'(A*(VY®G;)®@0Or,%(1)). We thus obtain the induced skew-symmetric
morphism q : WY ® Og/(—1)) — W which yields a decomposition of A as A = iy oqoiy,.
This decomposition, being restricted onto an arbitrary point ¢t € T’, gives the rightmost square
in ([I0). In particular, it follows that

(262) A€ H(NVY ® S*Gy) ® Or (1)),

and that q|p/ is an isomorphism. We thus consider the dense open subset T of T containing
T’ which is defined as

(263) To:={t €T |qlpsx : W @ Op/u(—1) @ ky = WKk, is an isomorphism},
Ty D T
Denote
(264) W = WV, WQ = W|To> Qo ‘= q|TO> L= OT/H(_l)a £0 = ‘C|TO’ EQ = E|Toa
8o ‘= gv‘Tov G:= G\l/v GO = G‘To-
In this notation the complex (261]) induces the following right- and left-exact complex
(265) 0= On(-1)HGRLE OpRWR LS OpRWY S 0n(1)RGY - 0,

Standard diagram chasing with (257)-(261]) shows that the restriction of the monad (259) onto
P? x Ty coincides with the restriction onto P* x Ty of the complex (265]) and is isomorphic to
a (antiselfdual) monad

(266) 0 — Ops(—1) MGy ® Ly = Ops KW @ Lo = Ops I W & Ops(1) R GY — 0,

E; = ker gy /im(qq o go).
From this monad and (263]) immediately follows
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Lemma 10.6. E is a locally free Opsyr,-sheaf, i.e. Ty ="T".

Consider the variety Y := Proj(Hom(G, Ha,,—1 ® Or)) with the projection py : Y — T and
set Gy == py G, Ly :=py L ® Oy r(—1). The universal morphism

(267) T: Hoypo @ Oy ® Oyyr(—1) = Gy

on Y together with the family py A : Gy @ V ® Ly — Gy ® V'V yields a family of nets of
quadrics A : Hop 1 @V Q@ Ly — Hy, 1 @ VY ® Oy, i.e., equivalently, the morphism

(268) A: Ly — S*H) @ ANVY®0Oy =Sy, 1 ®Oy.

We call A the family of nets of quadrics associated to the family E — T.

Now consider the principal PG L(Hay,—1)-bundle py, : Yo := P(Zsom(Ham-1 @ Ot,, Go)) —
Ty together with the natural open embedding Y, <% Y such that Py, = Py © iy and set
AO = A‘YO, EYO = Ey|yo, WYO = p*YOWO‘ The monad pQO(DBED:

(269)
0 = Ops(—1) X Hopo1 @ Ly, = Ops MWy @ Ly, = 0ps KWy — Ops (1)K Hy,, ;@ Oy, — 0,

Now pick a monomorphism j : H,,_; — H,, and let 7 be any irreducible component of Z,,.
Assume that Z (j) is nonempty, hence dense in Z according to Lemma (in particular, such
j exists for Z = Z by the same Lemma). Consider the morphism rp : Z(j) — T’ defined in
([247). Note that from the definition (248)) of the locally free Op-sheaf G; = Ext!(E(—3),w,) it
follows that the formation of G} commutes with the base change. In particular, the definition
([247) of the morphism rz and the definition (2I6) of the sheaf G, imply that Gz = r;Gy.

Hence the isomorphism (210) gives a subbundle morphism
(270) iy Og(j) — Hom(Hypm-1 ® Of*(i)’ Gy) = riHom(Hyy—y @ O1, GY),

imiy C ISOm(HQm_l ® OTO, Go)
Now the well known universal property of Proj isee [H, Ch. III, Prop. 7.12]) and the last

inclusion in (270) show that the morphism r¢ : Z(j) — T = Tq (here we use Lemma [T0.6])
lifts to the morphism ry : Z(j) — Y, giving the factorization of r:

(271) re Z(5) 5 Yo 2 T
such that
(272) Ay =r5A,

where A : OZ(j) — Som-1 ® OZ(j) is the family of nets of quadrics ([2I4]) and A is the net

(Z68). Moreover, consider the total space V = Spec(S,, Ly') of the vector bundle Ly and let
Vo = V ~{0-section} be the complement of the 0-section in V, with the projection p : Vo — Y.

The morphism ry : Z(j) — Y naturally lifts to a morphism rv : Z(j) — V), i.e. ry factorizes
as 'y = pory:

(273) Z(j) =V,
~| L
Y, ——Y.

so that, by (272),
(274) Ay =1p A

Next, there is a well defined morphism g : Vo — Sgy-1 @ v = (p*A)(s(v)) where s is the
canonical section of p*Ly ~ Oy,. Now ([274) means that A\; = porv:

(275) N Z(5) ¥V Sy
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where the morphism S\j 7 — Som_1 is defined in Lemma [0.5(ii).

Remark 10.7. By definition, the morphism rv considered in the diagram above is well defined
as the morphism rv : Z,,(j) — V.

10.3. Irreducibility of Z,,.

Take an arbitrary point zg = (Dy, ¢g) € Z with ¢ # 0. According to Lemma [0.2(i) there
exists a monomorphism j : H,,_; < H,, such that Z(j) is a dense open subset of Z. Hence
there exists a smooth affine curve C' with a marked point 0 € C' and a morphism ¢ : C' — Z such
that g(0) = zp and ¢g(C*) C Z(j) where C* := C ~\ {0}. For any = € C set (D,, ¢,) := g(x).
Here, for all 2 € C, by definition A;(z) := D; ' is an isomorphism H,,®V = HY ®V" and also
Ay(z) := ¢ 0 j is a homomorphism H,,_; @ V = HY ® VY. Hence, picking an isomorphism

. ~ . . . Al (ZL’) AQ(ZL’) .
§: H, ®Hy,_1— Hspyu_q, we may consider the matrix A(z) = ( “Ay(@)Y Ay(z) with
Az(z) = —As(x)Y 0 Ay(z)7! o Ay(x) as a homomorhism (net of quadrics) A(z) : Hopy @V —
Hy,, @ VY of rank
(276) rkA(z) =rkA;(z) =4m, z€C.

We thus have a family of nets of quadrics Ac = {A(2)}.ec and its restriction A =
{A@)}seclC”. B

Consider the composition ry o g : C* — Y3 — Y. Since Y is projective, this morphism
extends to the morphism ¢y : C — Y such that Ac = Y3 A. As A(0) # 0, it follows that
Yy lifts to the morphism ¢y : C' — V{ such that ¢y = p o yy. We also have the composition
Y1 = py o Yy : C'— T and the commutative diagram

Ac

(277) Hyp 1 @V ®Oc —>Hy,, VY ®Oc

TC l/ T'rg
Yy A

Ge®V GL®RVY

where G¢ = Y3 Gy, 7¢ := 37 and 7 is the universal morphism (267). Consider the O¢-
sheaves W¢o = Hyy 1 @ V @ O/ ker Ag and W = Go ® V/ker A¢ and the morphisms
€c Hgm_1®V®OC —»Wc, ec - Gc®v—»WC, qc ZWC%WX«, qC:WC —)Wé and
€ : We — We induced by the diagram (277), so that

(278) qc =€’ oqo ok,

(279) €Eocec = €c O T¢.

The condition (276) means that W is a locally free rank-4m Oc-sheaf and q¢ is an iso-
morphism. Hence (278)) implies that W is a locally free rank-4m Oc-sheaf and ¢¢ is an
isomorphism. This together with Lemma [10.6] precisely means that

(280) Yy (C) C Yy, resp., ¢p(C)CTy.
Consider the compositions a¢ : Ops(—1)X Hyp1 @ Oc = V @ Ops ] Hopy 1 @ O 55 Ops KW
and a¢ : Ops(—1)RGe — V@ Ops KRG S Ops KW and the diagram of induced complexes

(281) 00— Ops(—1)X Hy,, 1 ® O St Ops X We g Ops(1)XHY,, ; ® Oc —=0

- T

0 Ops(—1) R G —— Ops KW —— Ops(1) K G

SEquivalently, using Lemma [0.3(iii), one can define A(x) as \j(g(z)), = € C.



MODULI OF MATHEMATICAL INSTANTON VECTOR BUNDLES WITH ODD ¢z ON PROJECTIVE SPACHE?

From (280 it follows now that the lower complex in this diagram is a genuine monad which is by
construction obtained by applying the functor (idps X ¥1)* to the monad (266]). In particular,
its cohomology sheaf Eo is a rank-2 bundle. Also, by construction, these two complexes are
isomorphic over C*. However, the upper complex is apriori not right- and left-exact when
restricted to P2 x {0}. We are going to show that, in fact, it is isomorphic to the lower monad,
hence it is left- and right-exact, i.e. it is a monad.

For this, consider the monomorphism 1i,, : H,, — Ha,,_1 given by the isomorphism £ above,
let o : Hyp, @V ® O — Hoppo1 @V @ O — We, 1 Hy @ O¢ — Hopmq @ Oc 2§ Ge
be the induced morphisms and set G,, := imf, G,,_1 := G¢/G,,. From (76 it follows
that « is an isomorphism and, respectively, the induced morphism « : G,, ® V — W¢ is an
isomorphism. Hence by 277)-279) 5 is injective, G,, is a locally free rank-m Oc-sheaf, the
morphism G, — G¢ is a subbundle morphism, hence G,,_; is a locally free rank-(m — 1)
Oc-sheaf. We now have the induced diagram of isomorphic monads obtained similar to (281)):

(282) 0— Ops(—1)X H,, ® O¢ e Ops &WC o Ops(1) X Hy,, 1 @ Oc —=0

:lﬁc :le :Tﬁg
ac tac

0 OPJ(—l) & Gm OI[DS & WC OpB(l) & G;;

0.

with the isomorphism § : Eo,, — Eo,, of the rank-2m cohomology sheaves of these monads.
(Note that, by construction, E,,, = UCEgm(D; 1).) In addition, the diagram of natural mor-
S

phisms
00— Hp @V & O~ Hypp 1 @V @ Op — Hpp1 @V ® O — ()

:J/B lfc l'y
Gm ® V o G2m—1 ® V Gm—l ® V

satisfying the relations o = e¢ 0i,,, @ = e¢c 0i,,, a0 [ = € o «, together with the diagrams
(281)-(282), yields a diagram of factor-complexes

0

0.

ac

(283) 0—>OP3(—1)®Hm_1®OC Egm O]IDS( )&HV 1®Oc—>0

T

Ops(—1) B Gy Eo, Owm(1)BGY._,

0 0

where a¢ is the induced morphism. By the above, this diagram becomes an isomorphism of
monads when restricted onto P? x C*. To show that it is an isomorphism everywhere, it is
enough to show that vo @ k(0) : H,,,—1 — G,,,—1 ® k(0) is an isomorphism. Passing to sections
in the left square of the diagram (283)®0Ops(—1) X O¢, we see that this condition is equivalent
to the injectivity of homomorphism of sections h°(ac ® k(0)) : Hyoy — HO(Egm(Dyt)(1)).
But this homomorphism exactly coincides with the composition

j s(z0)="
5:0(j) : Hypoy & H,, "5 1B,y (DFY) (1),

Now from the definition of the subset Rz of Z defined in Lemma[@.7it follows that the injectivity
of the map s,,(j) is true for any point zg € Z \ Rz and a generic monomorphism j : H,, 1 <
H,,. Hence, for such point zy = (Dy, ¢) the restriction of the upper complex in (283)) onto

P? x {0} is a monad: 0 — H,,_; ® Ops(—1) = ") Eom(Dyt) ) HY | ® Ops(1) — 0, which
by definition coincides with the monad (208) for z = z. (As a corollary we obtain that the
diagrams (281)) and (283) are the diagrams of isomorphisms of monads for this zp.) In other

words, z € Z(j) where the set Z(j) was defined in Lemma @.2(i).
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We thus have proved the following statement.

Proposition 10.8. For any point z € Z ~ Rz there exists a monomorphism j : H,,_1 — H,,
such that z € Z(3,1).

Consider the morphism ry : Z(j) — V; defined in diagram ([273)). By (278) we have
(284) 5‘j|2(j) =HOTv.
We now prove the following proposition.

Proposition 10.9. Take any irreducible component Z of Z,, and any monomorphism j :
H,_1 <= H,, such that Z(j) is nonempty. Then the morphism rv : Z(j,I) — Vo [l is domi-
nating and, for a general point z € Z(j, I), the fibre vy (rv(2)) coincides with V(z,7) where
V(z,j) is defined in (2Z1). Moreover, dim Z(j,I) = 4m(m + 2), and there exists a dense open
subset Z' of Z(j,1) such that

(285) dimV(z,j) =2m, z€Z,

(286) v (rv(2) = A7 (N (2) = A5 () = V(=) 2 €7,

(287) codimp; 1 (Z(j, 1)\ Z) > 2.

Proof. First, since by definition Z (j,I) is an open subset of Z,,, we have by (&I dim Z =
dim Z(5,1) > 4m(m + 2).

Next, set Voo := p~1(Yy). According to the diagram [Z73) we have rv(Z(j,I)) C Voo.
Consider the composition of projections

PYy

p: Voo = Yo = Ty =5 HO 1= HEL ™,
pj . Z(],I) 3 VO() 2) 7‘[0.
Since the projections p, py, and pr are smooth fibrations with fibers of dimensions, respectively,
1, (2m —1)*> =1 and (2m — 1), and dim H° = dim H = 8m (cf. ([242))), it follows that

(288) dim Vo = dim(fibre of p) + dim H® = 2m(2m — 1) + 8m = 4m? + 6m.
Whence,
(289) dim{generic fibre of rv : Z(j,I) = Vgo} > dim Z(j, 1) — dim Vo >

> dm(m + 2) — (4m? 4 6m) = 2m.

Now take an arbitrary point z € Z(j,1) and set v := ry(z), A := \;(z). From 284 it follows
that A = p(v) and so by Lemma [0.5(ii)

(290) rv'(v) C AN (A) = V(z, 4),

where V(z,j) is described in (22I]). Using Remark [0.3], we rewrite ([221I]) as:
. N 2m, if p(z) € H*,

(291 V) ={ ot b < e

where we set

H* = H H,.
As p : Voo — H° is a smooth fibration with fibres of dimension 2m(2m — 1) (see (288)),
formulas (240), (288), (290) and (291)) yield

(292) dimp; ! (Hy) < 4m® +6m — 3+ (2m + 1) = dm(m +2) — 2 < dim Z(j, I).

"See the definition of the sets Z(j,T) in (2006).
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Thus, pj(Z(j, I)) ¢ H,, ie. there is a dense open subset Z’ of Z(j,1) such that p;(Z") C H .
In particular, (290) and (291]) imply
(293) dimry' (rv(2)) < dimV(z,5) =2m, z¢€Z.

On the other hand, since Z’ is dense in Z(j,I), (289) yields dimry!(ry(2)) > 2m, 2 € Z'.
Comparing this with (293]), (288) and the inequality dim Z’ > 4m(m + 2), we obtain that

(294) dimry(Z') = dim Voo = 4m?* + 6m,

(295) ry (rv(2)) =V(z,5), dimV(z,j)=2m, ze€Z'
Moreover, (287) follows from (292]). Now since the minimal possible dimension of V'(z, j) is 2m,

dimension of fibres of a morphism of irreducible varieties. This together with (294 and (295)
yields Proposition. O

Now we are ready to finish the proof of Theorem

End of the proof of Theorem[7.3

(i) We prove the irreducibility of Z,,, and the surjectivity of the projection p,, : Z —
(SY)? : (D,¢) — D will be a by-product of this proof. First, Z,, contains an irreducible
component Z introduced in Proposition Bl Assume that there exists another irreducible
component 2’ of Z,,. Let b: ®,, ~ {0} — P(®,,) be the canonical projection and b :=id x b :
(SY)? x (®,, ~ {0}) — (SV)° x P(®,,) be the induced projection. The equations of Z,, in
(SY)? x @®,, (see (T6)-(7T)) are homogeneous with respect to affine coordinates in ®,,, hence
there exist irreducible closed subsets Z and Z' and the closed subset Z,, in (S),)? x P(®,,) such
that Z = b™(Z) U {0}, respectively, Z’ = b=}(Z") U {0}, respectively, Z,, = b=(Z,,) U {0}.
Moreover, by construction Z and Z’ are irreducible components of Z, .

Take any point

(296) y=(Do,<9>)ezZ'~\ZnZ

and consider the projective space P = {Dy} x P(®,,), dimP = 6m? — 1. By definition, the sets
Z,.(Do) = Z'N Pp and Z'(Dy) = Z' N Pp are closed subsets of P such that

(297) y € Z'(Dy) C Z,,(Dy)
and by RemarkZ.1] we have codimpZ'(Dy) < 5m(m — 1)
(298) dimp Z,,(Do) > m* +5m—1>1, m> 1.

By definition, Z,,(Dy) is given in P by 5m(m — 1) global equations of the form ¢¥o Dyo¢ € S,,,.
Hence, in view of (298) Z,, (Dy) is connected.

Next, by Proposition BII(ii) the morphism pr; : Z — (SY,)° : (D, ¢) + D is dominant, so
that the induced projective morphism Z — (SY,)° : (D, < ¢ >) — D is also dominant, hence
surjective since Z is closed in (SY)? x P(®,,). In particular, the set Z(Dy) = ZNPis a
nonempty closed subset of Z, (Dp). In addition, by [296) y € Z,,(Do) ~ Z(Dy). Hence, since
Z,,(Dy) is connected, it contains an irreducible component, say, Z”(Dy) distinct from Z(Dy)

and intersecting Z(Dy). Let Z” be an irreducible component of Z,, containing Z"(Dy), hence
distinct from Z(Dg). We thus have

(299) ZnZz"+0.

Let Z” =b~1(Z")U{0}. By construction Z” is an irreducible component of Z,, such that, in
view of (299), there exists a point

(300) z=(D,¢)eZNZ", ¢+0.

8This clearly implies the surjectivity of projection p,, = pry : Z — (SY,)°.
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Since Z,, is given in (SY,)° x ®,, by 5m(m — 1) equations (see ([9)) and Z has dimension
4m(m + 2) (Proposition B]). Hence, outside of its intersection with other irreducible compo-
nents of Z,,, Z is a locally complete intersection of codimension 5m(m — 1) in (SY,)? x ®,,.
Now it follows easily from the connectedness in codimension 1 of locally complete intersec-
tions (see [H2]) that through any point of intersection of Z with other components of Z,, (e.g.,
through the point z in (B00])) there passes a component, say, Z of Z,,, distinct from Z, such
that codimz~Z N 7 =1. B

Take any irreducible component F' of Z N Z having codimension 1 in Z. From Lemma it
follows now that the set I’ := F' ~. (Rz N {union of all possible components of Z N Z distinct
from F'}) is dense open in F. Take any point z € F’. By Proposition [[0.8 there exists a
monomorphism j : H,, 1 < H,, such that z € Z(j,I). Then by Proposition [0.9] in which we
take Z for Z , it follows that:

1) there exists a dense open subset Z’ of Z(j,I) such that F* := F' N Z" is dense open in F
(see (287)),

2) for any point z € F*, A\;'(\;(z)) = 5\;1(5\)(2)) = V(z,7) =~ k*". (In fact, apply formula
@286) to Z(j,1) and to Z(j,1), respectively). The last equality means that
(301) z=(D,¢)eV(zj)CcZnZ, dimV(zj)=2m.

Now we obtain from (B0I) and diagram (234]) that there exists a monomorphism j; : k <
V(z, ) for which the induced homomorphism *¢' := (*¢0 5,51 ) : Hy = Hypoy Dk — V(2,5) <

HY ® A?VY is such that, in notations of (I89), the point 2’ = (D,¢') € V(z,j) satisfies the
condition:

the composition s(2') : Hy — HY. @ A2VY B HO( By (D1)(1)) is injective.
Az z € Z(j,1), the composition s(z') o j : Hy_ 1 — H°(Ea,(D71)(1)) is also injective. This
together with the above condition and exactly means that the point 2’ € V(z,j) C satisfies
both conditions (I) and (II) in the definition of Z(j) in Lemma It follows now from (B01))
that Z(j) is nonempty.

We are now in conditions of Proposition [[0.9] which we apply to the irreducible sets Z(j)
and Z(j). Consider the morphism ry : Z,(j) — V° and its restrictions r := rv|z(;) and
T =ry| Z(;)- Then according to Proposition [[0.9] there exist dense open subsets Z "of Z(j) and,
respectively, Z' of Z(j), such that V' := r(Z') = f(Z’). Now, for a general point v € V' and
an arbitrary point z € r~*(v) N Z', one has by (286):

o) = V(z,4) = AGl(v) = 7 (0).
This is clearly a contradiction, since, by assumption, Z(j) and Z(j) are distinct varieties. Hence
Z.m 1s irreducible.
The surjectivity of the morphism p,, : Z,, — (S),)? was already mentioned in the footnote 7
above. Theorem is proved.

11. APPENDIX: TWO RESULTS OF GENERAL POSITION

In this Appendix we prove Theorem E.1] and Proposition [7.3]

11.1. Proof of Theorem (4.1l
We first need to recall some definitions and standard facts from theory of determinantal
varieties.
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Definition 11.1. Let U and U’ be two vector spaces of dimensions respectively m and n, where
m > n. Consider the projective space P(U ® U’). We say that a point z € P(U ® U’) has rank
r (and denote this as rk(z) = r), if

(i) there exist unique subspaces U,(x) C U and U/(x) C U’ of dimensions dimU,(z) =
dim U/ (x) = r such that x € P(U,(z) ® U/(x)), and

(ii) there do not exist subspaces U C U and U' C U’ of dimension dim U = dim U’ < r such
that v € P(U @ U’).

The following Lemma is a well known fact from the theory of determinantal varieties (see, e.
g [RI).

Lemma 11.2. Fach point x € P(U ® U’) has a uniquely defined rank rk(x), 1 < rk(z) < n.
Moreover, for a given point x € P(U @ U’) of rank rk(x) = r such that x € W @ W' for
some subspaces W C U and W' C U’, the subspaces U.(x) C U and Ul(x) C U’ of dimensions
dim Ug(z) = dim U, (z) = r defined in (i) above are such that U,.(x) C W and Ul(x) C W'.

Proof. According to Definition [Tl in which we put U = Hy, ., U = VYV, each point = €
P(Hy, .1 ®VV) has rank 1 < rk(z) < dim VY = 40 . Thus
4
(302) P(Wipea) = U Z,,
where
Z,={x e PWy,4) | rk(z) =71}, 1<r<A4,

are locally closed subsets of P(W,/,,,). Consider the Grassmannian

G = G(m7 H2vm+1)
and its locally closed subsets
(303) Y, ={V, € G|V, D U.(x) for some point x € Z,}, 1<r <4

In view of Lemma the condition x € Z, N P(V,, ® V) means that x € Z, N P(U, @ V)
for some r-dimensional subspace U, = U,(z) C V,,. This together with (302) and (B03]) shows
that

4
{(Vie G| P(V,,@ V)N PWy,.4) # 0} = U2
4
Now the theorem says that L_Jer g G. Thus, to prove the theorem, it is enough to show that

(304) dimY, <dimG, 1<r <4

We are starting now the proof of 304 for r = 4, 3,2, 1.

(i) Case r =4. Set I'y := {(z,U) € P(Wy,,4) x G(4,Hy,, 1) | tk(z) = 4 and U = Uy(x)}
and let P(Wy,. ) & Ty & G(4, Hy,, ;) be the projections. By construction, ps(T's) = Z4, and
by the definition [T.IKi) the projection p, : I'y — Z, is a bijection. Hence

dim ¢4(T'y) < dim Ty = dim Z; < dim P(W,,,,.,) = 4m + 3.
By construction we have the graph of incidence
Iy ={(U,V;n) € qa(T4) x Ey | U C Vi }
with surjective projections g4(I'y) 11, 28 2, and a fibre
(305) pri (U) ~ G(m — 4, Hy,, ,/U)

9Everywhere in this proof by the rank of a point z of a given subspace of P(Hy,,,; ® V) we understand its
rank as of a point in P(Hy,,,.; ® V).
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over an arbitrary point U € ¢4(I'y). (In fact, the condition U C V,, C H,,, ; means that
Vi /U € G(m —4,Hy,,.,/U).) Hence

dim ¥, < dim Iy = dim ¢4 (T4)+dim G(m—4, Hy,, 1 /U) < 4m+3+(m—4)(m+1) = m(m+1)—1 =

=dimG — 1 < dim G, i.e. (B04) is true for r = 4.

(ii) Case r = 3. Consider the projection f3 : Z3 — P(VV)V = P? : z > V3(z), where the
pair of 3-dimensional spaces (Us(x), V3(x)), Us(x) C Hy,,, and V3(x) C V'V, is determined
uniquely by the point x via the condition x € P(Us(x) ® V3(x)), since rk(z) = 3 (see Definition
IT.1 and Lemma [IT.2). Now for a given 3-dimensional subspace V3 C V'V set

(306) Y3(V3) = {V,, € G | V,,, D Us(x) for some point x € f3(V3)}.
Comparing this with (303]) for » = 3 we obtain

(307) S5= U, Ss(Vs)

Note that a priori f3 is not necessarily surjective. Hence,
(308) dim X3 < dim 33(V3) + 3.

We are going to obtain an estimate for the dimension of ¥3(V3) for an arbitrary 3-dimensional
subspace V3 of VV. This subspace defines a commutative diagram

(309) 0 0 0

0 0 0,

where 2 = P(ker : V — V') is a point in P? and the sheaf F' has an Ops-resolution 0 —
Ops(—3) — 30ps(—2) — F — 0. Twisting this resolution by the vector bundle E and passing
to cohomology we obtain the equalities HY(F @ E) ~ H*(E(-3)) = Hopi1, H*(F @ E) =
0. Respectively, passing to cohomology in diagram (B09) twisted by E and using the above
equalities and evident relations H*(F ® k,) ~ k?, H'(F ® k.) = 0 implies the diagram
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(310) 0 0 k?

V
W4m+4

Hopio HY(E®ZL.(-1) —=0

0——Hy,  ®Vs—=Hy, @V

mult
K2—— HY (E®TI,) Hy 0
0 0.

In this diagram the composition € := mult o A is surjective. Hence, setting Wa,,13(V3) := kere,
where dim Wy,,13(V3) = 2m + 3, we obtain a commutative diagram

0 0

€ mult
Hip, Hiy,
0 0

which yields the relation
(311) Wam3(Va) = Haypyy @ Va N Wi s,
where the intersection is taken in Hy,, , ® VY. Set

Z3(Vs) := {x € P(Wam43(V3)) | rk(z) = 3}.
The relation (311]) and Lemma imply the bijection
(312) Zs(Va) = f5'(VA).

Consider the graph of incidence I's(V3) := {(z,U) € Z35(V5) x G(3, Hy,,,1) |U = Us(x)} with

projections Z3(V3) & T3(V3) & G(3, Hy,,,,). By Lemma [12, ps(T'3(V3)) = Z3(V3) and the
projection ps : I's(V3) — Z3(V3) is a bijection. Hence

(313) dim g3(I'3(V3)) < dim I'3(V3) = dim Z3(V3) < dim P(Way43(V3)) = 2m + 2.
Consider the graph of incidence
I5(V3) = {(U, Vin) € q3(I'3(V3)) x Z3(V3) | U C Vi }
with projections ¢s(I's(V3)) €= H5(Vs) 28 B5(V3) and a fibre
(314) pri'(U) = G(m = 3, Hy, 11 /U)

m
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over an arbitrary point U € g3(I's(V3)) (cf. 805)). The projection I5(Vs) =3 ¥5(V3) is surjective
in view of (812). Hence, using (BI3)), we obtain

dim ¥3(V3) < dim II3(V3) = dim g3(T3(V3))+dim G(m—3, Hy,, 1 /U) < 2m~+2-+(m—3)(m+1) =

m

= m? — 1. This together with (308) and the assumption m > 3 yields dim X3 < m? + 2 =
dim G +2 —m < dim @G, i.e. ([B04) holds for r = 3.

Before proceeding to the case r = 2 we need to make a small digression on jumping lines of
E. Introduce some more notation. For a given line | C P? we have E|l ~ Opi(d) & Op1(—d)
for a well-defined nonnegative integer d called the jump of E|l and denoted also by dg(l);
respectively, the line [ is called a jumping line of jump d of E. Set Go4 = G(2,VV) and
Je(E) = {l € Gay | dg(l) > k}, JH(E) = Jp(E) \ Jgr1(E), 0 < k. From the semicontinuity
of E|l, | € Gy, it follows that Ji(E) (resp., Ji(E)) is a closed (resp., locally closed) subset
of G4, k> 0. Moreover, by a well-known theorem of Grauert-Miilich, Jj(E) is a dense open
subset of G 4. Next, since £ € I, it follows that

(315) J2m+1(E) - ®a
so that
(316) Jom-1(E) = I3, 1 (E) U I3, (E).

We will use below the following lemma.

Lemma 11.3. Let E € I, . ,. Then

(1) dim J2m—1(E) S 1.

(2) dim J}(E) <3 for1 <k <2m—2.
Proof. (1) Suppose the contrary, i.e. dim Jon,—1(E) > 2. Take any irreducible surface S C
Jom—1(£) and let D be the degree of S with respect to the sheaf Og, ,(1). Fix an integer » > 5
and take any irreducible curve C' belonging to the linear series |Og,,(r)|s|. Then the degree
degC' w.r.t. Og,,(1) equals to Dr, hence degC' > 5. Hence by [Cl Lemma 6] there exist two
distinct lines, say, 1,1y € C, which intersect in P3. Let the plane P? be the span of [; and I, in
P3. Now the exact triple 0 — E(—2)|pz — E|p2 — El;,u1, — 0 implies
(317) HO(E|p2) — HYE|,u,) — HY(E(—2)|p2).
Next, as [E] € Iypny1, we have h°(E(—1)) = h'(E(—2)) = 0, hence the exact triple 0 —
E(-2) —» E(—1) = E(—1)|pz — 0 implies
(318) HY(E(—1)|p) = 0.
Now assume h°(E|p2) > 0. Then a section 0 # s € HO(E|p2) defines an injection Opz <> E|p2.
This injection and (BI8) show that the zero-set Z of the section s is 0-dimensional and the
injection s extends to a triple 0 — Op2 5 E lp2 = Zzp2 — 0. Whence

(319) RO(E|p2) < 1.

Furthermore, equality (BI8)) together with Riemann-Roch and Serre duality for the vector
bundle E(—1)|p2 shows that h'(E(—2)[pz) = 2m + 1. Whence in view of (BI7) and (BI8) we
obtain

(320) R (E|yu,) < 2m + 2.

On the other hand, let = := [y Nls. Since by construction ly,ly € Jo,—1(FE), it follows from
BI6) that either E|;, ~ Opz(2m — 1) @ Op2(1 — 2m), or E|;, ~ Op2(2m) & Opz2(—2m), hence
(K ®Z,,;) > 2m—1, i = 1,2. This clearly implies h°(E|;, 1) > h°(E ® L, 1,01,) > h°(E @
Z.1,) + W (E®Z,,,) = 4m — 2. Comparing this with (320) we obtain the inequality 2m + 2 >
4m—2,i.e. m < 2. This contradicts to the assumption m > 3. Hence, the assertion (1) follows.
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(2) This is an immediate corollary of the theorem of Grauert-Miilich. The lemma is proved.
O

(iii) Case r = 2. Here our notation and argument are completely parallel to those in the case
r = 3 above. Consider a morphism fy : Zo — G4 : x — Vi(x), where the pair of 2-dimensional
spaces (Us(x), Va(z)), Us(z) C Hy,,,q and Va(x) C VY, is determined uniquely by the point
x via the condition x € P(Uy(z) ® Va(x)), since rk(x) = 2 (see Lemma [I1.2)).

According to (BI5) we may assume that [ € J}(E) for some 0 < k < 2m, i.e.

RO(E|l) =2, RYE|l)=0, if [ J(E),

respectively,
(321) R(ED)=k+1, R E|)=k—1, if 1€ J(E), 1<k<2m.
Now, for 1 < k < 2m and a given subspace V, € J}, set

(322) Yor(Va) = {Vin € G | V,, D Us(z) for some point = € £ *(Va)}.

Then similarly to ([B07) we have

2m
Yo=U U X5.(Va).

k=0 VQEJZ;
Hence, in view of Lemma [11.3]
(323) dim ¥y < max (dim 3y, (V2) + dim J}).
Va€e gy
0<k<2m

We are going to obtain an estimate for the dimension of ¥, 5 (V5) for an arbitrary 2-dimensional
subspace V5 in J}, 0 < k < 2m. This subspace defines a commutative diagram

(324) 0 0 0

0

0 0 0,

where Vj := VV/V,, I = P((V3)Y) is a line in P3, and F := coker s. Passing to cohomology in
the diagram (324)) twisted by F, we obtain the diagram
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(325) 0 HO(E)
Wéz/m+4 Hl(E ® F)
0 Hypy ® Vo ——> Hypy @ VY —— Hyp oy @ Vg ——0
mult €2
HY(E\)— H(E®TL) Hip, ~—— H'(E|l) —=0
0 0.

Assume first that 1 < k < 2m. (The case k = 0 is treated below.) In this case (32I]) and the
diagram (B325) lead to the diagram

0 0 0

00— Wi (V2)

\
Winta ker €, 0

00— Hypiy @ Vo —>Hy\py @V —— Hy © Vg — 0

mult €2
0 ——kere HY 2~ HY(E|l) —0
0 0 0,

where we set Wy, 1(Va) := H(E|l). Here according to ([B2I) we have dim W 1(V5) = k +
1, dimkere; = 4m —k+ 1, dimkere; = 4m — k + 3. This diagram yields the relation (cf.

(3110)
(326) Wit (Va) = Hypy @ Va N Wiy,
where the intersection is taken in Hy,  , ® V. Set

Zyk(Va) = A{x € P(Wia(V2)) | rk(z) = 2}.
The relation (326) and Lemma imply the bijection
(327) Zyk(Va) = f5 ' (Va).

Consider the graph of incidence I'y(V2) == {(z,U) € Zyx(Va2) x G(2,Hy,, 1) | U = Us(2)}
with projections Zs 5 (V2) tick Lo (Vo) KLY G(2,Hy,,1). By construction, pa(Iyx(V2)) = Zok(Va)
and the projection py : I'e 1 (V2) = Zox(V2) is a bijection. Hence

(328) dim go (T3 £ (V2)) < dim 'y (V2) = dim Zy ,(V2) < dim P(Wy44(V2)) = k.
Consider the graph of incidence

o, (Vo) = {(U, Vin) € q2a(T2x(V2)) x 3o (Vo) | U C Vy }
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with projections ¢a2(I'y x(V2)) gk Iy 5 (V2) e Yo (Vo) and a fibre
prit(U) ~ G(m — 2, H), +1/U)

m

over an arbitrary point U € ¢a(T9.(V2)) (cf. (B05) and BId)). The projection ITy;(V5) %
Y5 1 (V2) is surjective in view of (B27). Hence using (B28)) we obtain

(329) dim 3 (V2) < dim 1T, (Va) = dim g2(T2x(V2)) + dim G(m — 2, Hy,, ., /U) <
<k+m—-2)(m+1)=m?>-m—-2+k=dmG - 2m—k+2), 1<k<2m.
Now consider the case & = 0. 1In this case one has h°(E|l) = 2 and, respectively,

dim g2 (T'20(V2)) < dimT'9o(V2) = dim Z5o(V2) < dim P(Wy(V2)) = 1, instead of (B28). Hence,
similar to the above we obtain for k£ = 0:
dimYe (Vo) <1+ (m—2)(m+1)=m?>—m—1=dimG — (2m+1).

The last inequality together with (329]), (823]), Lemma 1.3 and the assumption m > 3 yields
dim ¥y < dim G, i.e. ([B04) is true for r = 2.

(iv) Case r = 1. Again the notation and argument goes along the same lines as in cases
r = 4,3 and 2 above. Consider the projection f : Z; — P(VV) = (P3)¥ : z + Vj(x), where the
pair of 1-dimensional spaces (Ui(x), Vi(z)), Ui(x) C Hy,,, and Vi(z) C V'V, is determined
uniquely by the point z via the condition x € P(Ui(x) ® Vi(x)), since rk(x) = 1 (see Lemma
M1.2). Now for a given subspace V; € (IP?)V set

Y1 (V1) :== {Vin € G | V;y D Uy(w) for some point = € f7(V1)}.
Then similar to (307) we have

330 Y= U (V).
(330) =, 0, B
Hence,

(331) dim ¥; < dim X;(V;) + 3.

We are going to obtain an estimate for the dimension of 3;(V}) for an arbitrary 1-dimensional
subspace V; of VV. This subspace V; defines a commutative diagram

(332) 0 0

QPS QPS

0—=V1®0ps(—1) —=VYQOps(—1) —= V3@ Ops(—1) —=0

Ops ( —1 ) Ops Op2 0

0

0 0.

Note that to the point V; € (P?)V there corresponds a projective plane P(V;) in P? and set
B(E) :={Vi € (P*)Y | h°(E|p(v,)) # 0}. Tt is known that, for m > 1, dim B(E) < 2 (see [BI]).
Moreover, in view of (319),

(333) W(Elpony) =1, Vi€ B(E).

Passing to cohomology in diagram (B32)) twisted by E and using the equality h°(E) = 0 for
[E] € Iy 41 we obtain the diagram
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(334) 0 HY(E|psy)
WZI/m+4 E— Wél/m+4
0 Hy @ V3 2 Hy,\,@VY —Hy @ Vs —0
‘ mult
H°(E|pwy)) Hypoi Hy, H'Y(E|pw1)) —=0
0 0.

Let V) € B(E). Setting W1 (V1) := ker(multoX) = H°(E|p()), where by B833) dim W;(V;) =1,
we obtain from (B34]) a commutative diagram

0 0 0

O—>W1(V1)

W4vm+4 - WIm+4/Wl(Vl) —0

0—>H§/m+1®%—A>H¥m+1®vv—>H¥m+1®%—>0

€ mult
O—>H§/m+l/W1(V1) Hi/m Hl(E|P2(V1)> —0
0 0 0,

hence a relation

(335) Wi(Vi) = Hapn @ Vi N W4

where the intersection is taken in Hy,  , ® V. Set
Zu(Vi) =0 if Vi # B(E), respectively, Zi(V3):= P(Wi(Vi)) = {pt} if Vi € B(E).
The relation (335) and Lemma imply the bijection

(336) Zi(Vi) = fi' (), Vie (PP,

Consider the graph of incidence I't(Vi) := {(z,U) € Z;(Vi) x P(Hy,,,1) | U = Ur(x)} with

projections Z;(V;) & Ty (Vi) & P(H),.,,). By construction, p,(T1(V1)) = Zi(V3) and the
projection py : I'y(Vy) — Z1(V1) is a bijection. Hence

(337) dim ¢;(T'1(V1)) < dim Iy (V4) = dim Z;(V4) < 0.
Consider the graph of incidence
I (V1) = {(U, Vi) € (11 (V1)) x (V1) [ U C Vi }
with projections ¢, (I'1 (V1)) & I (Vi) &8 3, (V4) and a fibre
pri'(U) =~ G(m —1,Hy, ., /U)

m
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over an arbitrary point U € ¢;(I'1(V1)). The projection I1; (V) = 3;(V}) is surjective in view
of (336]). Hence using (337) we have

dim 3 (V1) < dimII; (V4) = dim ¢ (T4 (V4)) + dim G(m — 1, Hy,, 1 /JU) <0+ (m —1)(m + 1) =

= m? — 1. This together with (33I)) and the assumption m > 3 yields dim¥; < m? + 2 =
dimG + 2 —m < dim G, i.e. (304) holds for r = 1. Theorem is proved. O

11.2. Proof of Proposition [7.3l

Before giving the proof of this Proposition, we need some preliminary arguments. For any
point B € S,,41 let B : S?H,,11 — A2VY denote the induced homomorphism. We have a
morphism of affine varieties

(338) b: Hyiy X Spar — A2V 2 (h,B) — B(h®h).

Fix a basis ey, es,e3,e4 in V. Then the point B € S,,,; considered as a homomorphism
B:Hpy®V — HY ., ®VY can be represented by a skew-symmetric block matrix

0 A Ay Ay
A 0 Agy Ay
Az —Ay 0 Ay
Ay —Ay Ay 0

(339) B=

where A;; € S?HY, .|, 1 <i < j <4. Here we consider A;; as the quadratic forms
(340) Hypo —m koo Ay(x), 1<i<j<A4,
on H,, 1. Respectively, in the projective space P(H,,11) ~ P™ there are defined quadrics
(341) Qij(B) :={< 2 >€ P(Hpnt1) | Aij(z) =0}, 1<i<j<A4

Let K C A%V be the cone of decomposable vectors, K = {w € A?VV|rk(w : V — VV) < 2},
and, for m > 1, set
(342) M1 :={B € S;i1| b(Hp1 X {B}) C K}.

By construction, M,,; is a closed subset of S,, 1, and we consider it as a reduced subscheme
of Sm+1.

Consider first the cases m = 0,1 and 2. An explicit computation shows that

(i) My, My and Mj are irreducible and, moreover,

(343) M, = K, Mm+1 C Sm+1 AN (Sm+1)0, COdimsm+1Mm+1 = 2, m = 1,27

(il) My :={B € M3| Y3(B) := Q13(B) N Q23(B) is a 4-ple of distinct points in the projective
plane P(H3)} is a dense open subset of Ms.
Now proceed to the case m > 3. In this case, set

(344) Sy = 1B € Spq1| Vg1 (B) := Q13(B) N Q23(B) is an integral codimension 2
subscheme of the projective space P(H,,+1)}-

Since m > 3, Sy ., is a dense open subset of S, ;.
Lemma 11.4. Form >3 let B € S¥ .y N My,41. Then B¢ S ;.

Proof. We represent a given point B € S ., N M, by matrix (339). Then, under the notation
(3400, for x € H,,,1, we obtain a skew-symmetric (4 x 4)-matrix with entries in k

0 Alg(l') Alg(l') A14(l’>
—A12 (l’) 0 A23 (I‘) A24 (l’)
—Alg(l’) —A23(l’) 0 A34(l’>
—Au(z) —Au(r) —As(z) 0

(345) B(z) =
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The condition B € M,,1 by definition means that the matrix B(z) is degenerate, i.e. its
Pfaffian vanishes identically as a polynomial function on H,,:

(346) Alg(l')A34(l’) — Alg(l')A24(l’) + A14(£L')A23(ZL') =0, =zxe€ Hm+1.

Since B € S;,.,, from (341]) and (B44) it follows that the quadrics Qi3(B) and Q3(B) are
integral and their intersection Y := Y}, 1(B) is integral of codimension 2 in P(H,,.1). In this
case ([B346]) implies that either Q12(B) DY, or Q34(B) D Y. Let, say, Q34(B) D Y;,,11(B). This
means that Ass(z) € H*(Zypn(2)). Now, passing to sections of the exact triple

0 = Opn(—2) = 20pm Ars(@)Ags(@) Zypn(2) — 0, we obtain that Azs(z) = adis(x) + Axy(2)
for some «, § € k. Substituting this relation into (846) we obtain a relation Aj3(z)(aAa(z) —
Aoy () + Agz(z)(BA12(x) + A14(x)) = 0. Since Q13 and Q23 are integral, the last relation implies
that either

(1) A23 = )\A13, A24 — OéAlg = )\(ﬁAlg + A14) for some A\ S k, or

(11) ﬁAlg —+ A14 = MA13, A24 — OéAlg = MA23 for some n e k.

Substituting the relations (i) into (339) and denoting v = a + A3, we obtain

0 A12 A13 A14
—Ajo 0 Mg A+ Al
347 B =
( ) —Aj3 —AAgs 0 71413
—Ayy —7yA12 — AN —vAss 0

Adding the multiplied by A first block column of this matrix to its fourth block column, and
then performing a similar operation with block rows, we obtain the matrix

0 A12 A13 A14
—Alg 0 )\Alg )\A14
Az =Mz 0 0
—Ayy =M 0 0

which is degenerate. Hence B is also degenerate. A similar computation with relations (ii) also
gives the degenerateness of B. Lemma is proved. 0

(348) B =

From Lemma [IT.4]it follows that, for any irreducible component M; ., of M, 1,
(349) 1 <codimsg,, M, ., <2, m>3.

Indeed, from this Lemma we obtain that S, , N'S% ., N M, = 0. Since S}, NSY ., is
a dense open subset of S, 1, it follows that M,,;; # S,,11, i.e. 1 < codimg,,,, M;,41. On
the other hand, K is a nonempty divisor in A2VV, hence b,;lH(K ) is a nonempty divisor of
Hyi1 X Spug1. Since M4 is nonempty (in fact, {0} € M,,.1), counting of dimensions of the
fibres of the natural projection by ;(K) — S,,+1 shows that, for any irreducible component
M}, of My, 41, codimg,, M/ ., <2, and (349) follows.

m—+1 m

Lemma 11.5. For m > 3 let M), be any irreducible component of My, 1. Then Sy ., N
M), . #0. Hence S}, ., "M, ., is a dense open subset of M, ;.

Proof. 1) Consider first the case m = 3. Choose coordinates z1, ..., z4 in Hy and let H; and Hj
be the subspaces of H, given by the equations r; = x5 = x3 = 0 and x4 = 0, respectively. The
direct sum decomposition H, = H;@® Hz induces the iclusion of a direct summand S; &S3 < S,.
Considering this inclusion as an embedding of an affine subspace S; X S35 < Sy, we obtain from

(343) and from the definition (342) that
(350) Mz = ({0} xS3) N My, K = (S; x{0})N M,.

This together with (849) and the irreducibility of Mj (see property (i) above) implies that, for
an arbitrary irreducible component M) of My,

(351) Ms = ({0} x S3) N M), K =(S; x {0})n M,
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Note that ([343) and (349) imply that
(352) codimg, M = 2.

Take any point B’ € M, and let A;3(B’)(xy1, 22, x3) be the quadratic forms on Hj corre-
sponding to the entries A;3(B’), i = 1,2, of the matrix B’. Then the set Y3(B') is given in
the projective space P(Hj) by the equations {A;3(B’)(x1, 22, 23) = 0, i = 1,2}. Now take an
arbitrary point B” € S; ~ A?V" and, according to (339), consider B” as a skew-symmetric
matrix (a;;(B")). Then the point B := (B’, B”) € S; x S3 determines the scheme Y,(B) (see
(344)) which is given in the projective space P(Hy4) by the equations

(353) Aig(B/)(Il, Ta, .]73) - CLig(B//)LUZ = 0, 1= 1, 2.

Consider the sets U' = {(B’, B"”) € S; x S3|Y5(B’) = Q13(B’') N Qa3(B’) is a 4-ple of distinct
points in the plane P(H3)} and U” = {(B',B") € S; x Ssla;z(B") # 0, ¢ = 1,2}. These
sets dense open subsets of S; x Ss3, and from (B51]) and the property (ii) above it follows that
M} := M;nU " NU" is a dense open subset of M;. Now for any point B = (B', B”) € M} the
equations (B53) can be rewritten as follows
(354) A(l’l, Ta, 1’3) = Alg(B/)(Zlfl, T2, 1’3)&23(3//) — Agg(B/) (1’1, T, Zﬁg)alg(B//) = 0,
A13<B/)<Jf1, T, .]73) — CL13(B//>LUL21 =0.
Consider the conic C'(B) = {A(x1, 22, 3) = 0} in P2. Then M} = {B € M} | C(B) is integral }
is a dense open subset of M. By construction, the set { A13(B’)(x1, 22, x3) = 0}NC(B) coincides
with the set Y3(B') which by definition is a 4-ple of distinct points in P2. Therefore the equations
(B54)) defining Y4(B) show that Yy(B) is a double cover of C'(B) ramified in Y3(B’), hence it
is an integral elliptic quartic curve in P3. In other words, B € S; N Mj. This means that
M}’ C S; N Mj, so that S; N Mj is dense open in Mj.

2) The argument in the case m > 4 is similar to the above. Choose coordinates z1, ..., Ty, 41 in
H,, .1 and let H,,_3 and H, be the subspaces of H,,,; given by the equations z; = ... =24 =0
and x5 = ... = xyu1 = 0, respectively. The direct sum decomposition H,,.1 = H,_3 &
H, induces the iclusion of a direct summand S; — S,,,,;. Considering this inclusion as an
embedding of an affine subspace Sy < S,,.1, we obtain from the definition (342]) that, similar

to (351,
(355) My =Sy My

Now let M, ., be any irreducible component of M,, ;. From (349), (352) and (353)) it follows
that, for any irreducible component Mj; of S, N M, ., the set M;* = S} N M is a dense open
subset of Mj. By definition, an arbitrary point B € Mj* is such that Y,(B) is an integral
quartic curve in P3. From the construction of the embedding S; < S,,4; it follows now that,
for this point B considered as a point in M, ., the scheme Y,,1(B) is a cone in P(H,,1) over
Yy(B). Hence Y;,41(B) is an integral codimension 2 subscheme of P(H,1), i.e. B € S}, ;.
This means that S¥ , N M), ., is a dense open subset of M, .. O

Corollary 11.6. For any m >0, M1 C Spp1 N Sh 4.

Proof. For m < 2 this statement follows from (343)). Let m > 3 and let M), be any irreducible
component of M,,;1. By Lemma IT4 S}, ; N M), C Spyr NS94 Since S;p1 N SY s a
closed subset of S,,+1 and by Lemma the set S¥ ., N M), ., is a dense open subset of an
irreducible set M/ ., it follows that M, ., C Syq1 NSV 5. O

We are now ready to prove Proposition [7.3

Proof of Proposition [7.3 Let D € (S),,,)% ie. D is a nondegenerate homomorphism
D:H) ., VY = Hyy ®V. Assume that, for any monomorphism j : HY — H ., the
composition jp :=jYoDoj: H' @ VY — H, ®V is degenerate. We will show that this leads
to a contradiction. For this, represent j dually as a monomorphism jy : k — H,,.1. Consider
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the nondegenerate homomorphism B := D™' : H, ;1 @ V. — HY., ® V¥ and the induced
skew-symmetric homomorphism jp := jy o Boji : V ~k®V — k¥ ®@ VY ~ VY. Then the
degenerateness of jp is equivalent to the degenerateness of jg. As above, the homomorphism
B can be represented by a skew-symmetric matrix (339). In this notation, the degenerateness
of the homomorphism jg for any jx : k < H,,,1 just means that, for any vector z € H,,,1,
the skew-symmetric (4 x 4)-matrix B(z) in (345]) is degenerate, i.e., by definition, B € M,, 1.
Then by Corollary B is degenerate. This contradiction proves Proposition.
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