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HOMOCLINIC POINTS, ATORAL POLYNOMIALS,

AND PERIODIC POINTS OF ALGEBRAIC Zd-ACTIONS

DOUGLAS LIND, KLAUS SCHMIDT, AND EVGENY VERBITSKIY

Abstract. Cyclic algebraic Zd-actions are defined by ideals of Laurent polyno-
mials in d commuting variables. Such an action is expansive precisely when the
complex variety of the ideal is disjoint from the multiplicative d-torus. For such
expansive actions it is known that the limit for the growth rate of periodic points
exists and is equal to the entropy of the action. In an earlier paper the authors
extended this result to ideals whose variety intersects the d-torus in a finite set.
Here we further extend it to the case when the dimension of intersection of the
variety with the d-torus is at most d − 2. The main tool is the construction of
homoclinic points which decay rapidly enough to be summable.

1. Introduction

An algebraic Zd-action on a compact abelian groupX is a homomorphism α : Zd →
aut(X) from Zd to the group of (continuous) automorphisms of X. We denote the
image of n ∈ Zd under α by αn, so that αm+n = αm ◦ αn and α0 = IdX .

We will consider here cyclic algebraic Zd-actions, described as follows, using no-
tation and terminology from [13]. Let Rd = Z[u±1

1 , . . . , u±1
d ] denote the ring of Lau-

rent polynomials with integer coefficients in the commuting variables u1, . . . , ud. We
write f ∈ Rd as f =

∑
m∈Zd fmum, where u = (u1, . . . , ud), m = (m1, . . . ,md) ∈ Zd,

um = um1
1 . . . umd

d , and fm ∈ Z with fm = 0 for all but finitely many m.

Let T = R/Z, and define the shift Zd-action σ on TZd

by

(σmx)n = xm+n

for m ∈ Zd and x = (xn) ∈ TZd

. For f =
∑
fmum ∈ Rd we put

f(σ) =
∑

m∈Zd

fmσ
m : TZd → TZd

.

We identify Rd with the dual group of TZd

by setting

〈f, x〉 = e2πif(σ)(x)0 = e2πi
∑

m
fmxm

for f ∈ Rd and x ∈ TZd
. In this identification the shift σm is dual to multiplication

by um on Rd. A closed subgroup X ⊂ TZd
is shift-invariant if and only if its
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annihilator
X⊥ = {h ∈ Rd : 〈h, x〉 = 1 for every x ∈ X}

is an ideal in Rd. In view of this we write, for every ideal a in Rd,

XRd/a = a
⊥ = {x ∈ TZd

: 〈h, x〉 = 1 for every h ∈ a}
for the closed, shift-invariant subgroup of TZd

annihilated by a. Here the dual group

of XRd/a is Rd/a. Denote by αRd/a the restriction of the shift-action σ on TZd
to

XRd/a. A cyclic algebraic Zd-action is one of this form, corresponding to the cyclic
Rd-module Rd/a.

According to [14, Eqn. (1-1)] or [18, Thm. 18.1], the topological entropy of αRd/a,
which coincides with its entropy with respect to Haar measure on XRd/a, is given
by

(1.1) h(αRd/a) =





∞ if a = {0},
m(f) if a = 〈f〉 = f · Rd for some nonzero f ∈ Rd,

0 if a is nonprincipal,

where

m(f) =

∫ 1

0
. . .

∫ 1

0
log |f(e2πit1 , . . . , e2πitd)| dt1 . . . dtd

is the logarithmic Mahler measure of f .
An algebraic Zd-action α on a compact abelian group X is expansive if there is

a neighborhood U of 0X such that
⋂

m∈Zd αm(U) = {0X}. To characterize expan-
siveness for cyclic actions αRd/a, let C× denote Cr {0} and let

V(a) = {(z1, . . . , zd) ∈ (C×)d : g(z1, . . . , zd) = 0 for all g ∈ a}
denote the complex variety of the ideal a. Put S = {z ∈ C : |z| = 1}, so that Sd is
the unit multiplicative d-torus in (C×)d. Define the unitary variety of a as

U(a) = V(a) ∩ Sd = {(z1, . . . , zd) ∈ V(a) : |z1| = · · · = |zd| = 1}.
According to [18, Thm. 6.5], αRd/a is expansive if and only if U(a) = ∅.

In order to describe periodic points for αRd/〈f〉, let F denote the collection of

finite-index subgroups of Zd, and let Γ be an arbitrary element of F . Define

〈Γ〉 = min{‖m‖ : 0 6= m ∈ Γ},
where ‖m‖ = max{|m1|, . . . , |md|}. A point x ∈ X has period Γ if αmx = x for all
m ∈ Γ. Let

FixΓ(αRd/a) = {x ∈ XRd/a : x has period Γ}
be the closed subgroup of XRd/a consisting of all Γ-periodic points. Since FixΓ(αRd/a)
may be infinite (examples are given in the next section), we reduce it to a finite object
by forming the quotient of FixΓ(αRd/a) by its connected component Fix◦Γ(αRd/a) of
the identity. We therefore define

PΓ(αRd/a) = |FixΓ(αRd/a)/Fix
◦
Γ(αRd/a)|,

where | · | denotes cardinality.
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Define the upper logarithmic growth rate of the number of periodic components
of αRd/a as

(1.2) p+(αRd/a) := lim sup
〈Γ〉→∞

1

|Zd/Γ| log PΓ(αRd/a).

For an arbitrary nonzero ideal a it was proved in [18, Thm. 21.1] that p+(αRd/a) =
h(αRd/a). For expansive actions much more is known.

Theorem 1.1. Let a be an ideal for which αRd/a is expansive, or equivalently for
which U(a) = ∅. The the lim sup in (1.2) is actually a limit, i.e.,

(1.3) lim
〈Γ〉→∞

1

|Zd/Γ| logPΓ(αRd/a) = h(αRd/a).

It is not known whether (1.3) holds for all cyclic actions with nonzero a (when
a = 0 the left side is 0 and the right side is ∞). Even when d = 1 the existence of
this limit involves a deep diophantine estimate due to Gelfond [9] (see Section 7, or
[11, Sec. 4] for details). In [13] we proved the following partial result.

Theorem 1.2. Let d > 2 and a be an ideal in Rd whose unitary variety U(a) is a
finite set. Then (1.3) holds.

The proof of Theorem 1.2 in [13] depends on the crucial fact that if U(a) is finite,
then all of its points have coordinates which are algebraic numbers. With this infor-
mation Theorem 1.2 can be deduced from Gelfond’s estimate. However, the route
taken in [13] is different, and bypasses the diophantine issue: the algebraicity of the
points in U(a) allows the construction of certain well-behaved (so-called summable)
homoclinic points of αRd/a, which are then used to prove not only Theorem 1.2
but also a strong specification property of the action αRd/a which is of independent
interest. We remark in passing that this approach involving summable homoclinic
points first appeared in [19] in the construction of symbolic covers for a special class
of cyclic Zd-actions, the harmonic actions.

In order to state our main result, we need to recall some notions from real al-
gebraic geometry. Let zj = xj + iyj, and consider Cd as R2d with coordinates

(x1, y1, . . . , xd, yd). Then Sd as a subset of R2d is the real algebraic set defined by
the equations x2j + y2j − 1 = 0 for 1 6 j 6 d. For f(z1, . . . , zd) ∈ C[z1, . . . , zd], we
can expand f into its real an imaginary polynomial parts, so that

(1.4) f(x1 + iy1, . . . , xd + iyd) = f1(x1, y1, . . . , xd, yd) + if2(x1, y1, . . . , xd, yd),

where f1, f2 ∈ R[x1, y1, . . . , xd, yd] have real coefficients. Then U(f) is the real
algebraic set defined by the equations x2j + y2j − 1 = 0 for 1 6 j 6 d together with

two further equations f1(x1, y1, . . . , xd, yd) = 0 and f2(x1, y1, . . . , xd, yd) = 0. This
discussion extends to Laurent polynomials f ∈ Rd by observing that there is a m ∈
Zd with umf(u) ∈ Z[u1, . . . , ud] and that U(umf) = U(f). Every ideal a is finitely
generated, say by g1, . . . , gr. Hence its unitary variety U(a) = U(g1) ∩ · · · ∩ U(gr) is
again a real algebraic subset of R2d.
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The cell decomposition theorem for real semialgebraic sets [7, Thm. 2.11] therefore
applies, and so U(a) can be written as a finite disjoint union of open cells of various
dimensions. The dimension of U(a) is defined to be the maximum dimension of
these cells, and this number is the same for all possible cell decompositions. By
convention we define dim∅ = −∞. There is a finite algorithm [3, Algorithm 14.10]
for computing the dimension of a real semialgebraic set defined by polynomials with
rational coefficients.

Our main result is the following extension of Theorem 1.2.

Theorem 1.3. Let d > 2 and let a be an ideal in Rd. If the dimension of U(a) is
at most d− 2, then

lim
〈Γ〉→∞

1

|Zd/Γ| log PΓ(αRd/a) = h(αRd/a).

In [13] it is explained how to use the algebraic machinery in [18, Sec. 21] to reduce
the proof of Theorem 1.3 to the case when a is prime and principal. In view of this
we assume from now on that a = (f) = fRd for some nonzero irreducible Laurent
polynomial f ∈ Rd. In this case we call the shift-action αf := αRd/〈f〉 on the group

Xf := XRd/(f) a principal algebraic Zd-action.

Let Ω denote the set of torsion points in Sd, so the coordinates of points in Ω are
roots of unity. For Γ ∈ F let

ΩΓ := {ω ∈ Ω : ωm = ωm1
1 · · ·ωmd

d = 1 for every m ∈ Γ}.
Basic duality shows that ΩΓ is the dual group of Zd/Γ, and so |ΩΓ| = |Zd/Γ|.

As mentioned above, according to [18, Thm. 21.1],

p+(αf ) := lim sup
〈Γ〉→∞

1

|Zd/Γ| logPΓ(αf ) = h(αf ) = m(f) =

∫

Sd
log |f(s)| dλ(s),

where λ is normalized Lebesgue measure on Sd. In [13, Lemma 2.1] we claimed that

(1.5) PΓ(αf ) =
∏

ω∈ΩΓrU(f)

|f(ω)|.

However, using the notation from the proof there, we in fact need to divide the
right-hand side of (1.5) by

cΓ(f) = |f(σ̃)(VΓ(Z))/f(σ̃)(V ′
Γ(Z))|.

The proofs of the main results in both [13] and here do not depend on (1.5), and
show that

1

|Zd/Γ| log cΓ(f) → 0 as 〈Γ〉 → ∞,

so that (1.5) is asymptotically correct.
Observe that since |Zd/Γ| = |ΩΓ|, we are dealing with sums of the form

(1.6)
1

|ΩΓ|
∑

ω∈ΩΓrU(f)

log |f(ω)|,
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which are Riemann sum approximations to
∫
Sd

log |f | dλ = m(f). Hence proving
the existence of the limit in Theorem 1.3 is exactly the same as proving that these
Riemann sums for log |f | converge to its integral over Sd as 〈Γ〉 → ∞. In trying to
prove convergence of these Riemann sums one encounters two problems.

The first problem involves the omission of summands in (1.6) with ω ∈ ΩΓ∩U(f).
As we will see, each such ω contributes one dimension to Fix◦Γ(αf ), so that Fix◦Γ(αf )
is a torus of dimension |ΩΓ ∩ U(f)|. This omission is necessary, of course, since any
summand with f(ω) = 0 would contribute −∞ to the Riemann sum. This situation
was easily dealt with in the case U(f) is finite [13] by observing that the dimension
of this torus is then bounded, so there is an easy bound on the number of points
in any separated set of any closed subgroup. However, here the dimension of this
torus can be unbounded (see Example 4.6). We control this by invoking a result of
Mann [15] that implies that all torsion points in U(f) lie in a finite union of cosets
of rational subtori, and this provides a sufficiently uniform estimate for separated
sets.

The second problem involves those ω ∈ ΩΓ r U(f) which may be very close to
U(f), and is much more serious. For these points the value |f(ω)| will be extremely
small, but nonzero, and so log |f(ω)| could conceivably take such a large negative
value that the average value in (1.6) is significantly less than m(f). Can this happen
for a sequence of Γn with 〈Γn〉 → ∞? This problem is essentially a multidimensional
version of the diophantine problem mentioned earlier.

Unfortunately this diophantine problem is unsolved in the generality required
here, which forces us to impose the additional hypothesis that U(f) has dimension at
most d−2. This hypothesis turns out to be equivalent to the existence of summable
homoclinic points (Theorem 3.2), and allows us to extend the approach developed
in [19] and [13] to this more general situation, thereby proving Theorem 1.3. As
a side benefit of this approach, we obtain in Corollary 7.3 a diophantine estimate
concerning the proximity of torsion points to the variety U(f) under the hypothesis
that dimU(f) 6 d − 2. This result is completely analogous to Gelfond’s estimate.
In the case when dimU(f) = d − 1 (which when d = 1 reduces to the setting of
Gelfond’s estimate), our approach yields a slightly weaker estimate (Corollary 7.5).

The question of whether entropy coincides with the logarithmic growth rate of the
number of connected components in FixΓ(αf ) as 〈Γ〉 → ∞ irrespective of whether
the principal action is expansive or not is a special case of a much more general
problem. For a principal algebraic Zd-action αf the entropy was proved in [14] to
be equal to the logarithmic Mahler measure of the Laurent polynomial f ∈ Rd, and
to the upper logarithmic growth rate of PΓ(αf ) in [18]. For an expansive principal
algebraic action αf of an arbitrary residually finite countable amenable group G,
the entropy h(αf ) was identified in [6] with an appropriately defined logarithmic
growth rate of the number of points with finite orbits of αf and, as a consequence,
with the Fuglede-Kadison determinant associated with the element f in the integral
group ring Z[G], acting on the group von Neumann algebra N [G]. Without the
hypothesis of expansiveness, the relationship between entropy, logarithmic growth
rate of periodic points (or periodic components), and Fuglede-Kadison determinants
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is still completely open. In this sense, the equality of p+(αf ) and h(αf ), and the more
precise version in Theorem 1.3 are of interest, since they provide links between these
objects without the hypothesis of expansiveness (but obviously under very special
circumstances).

The authors are grateful to the Erwin Schrödinger International Institute for
Mathematical Physics, the Max Planck Institute for Mathematics, FWF Grant
S9613, the University of Washington Mathematics Department, the Lorentz Center
in Leiden, and Microsoft Research for their generous support of this work.

2. Atoral polynomials

Here we characterize those polynomials for which our techniques apply. Recall
that the units of Rd are ±un, where n is an arbitrary element of Zd. We say
that a Laurent polynomial in Rd is irreducible if it is not a unit and if it has no
factorizations apart from units.

The basic notion of atorality is motivated by the paper of Agler, McCarthy, and
Stankus [1].

Definition 2.1. An irreducible Laurent polynomial f ∈ Rd is called toral if h is in
the ideal (f) whenever h is in Rd with U(h) ⊇ U(f). Otherwise f is called atoral. A
general Laurent polynomial is called atoral if each of its irreducible factors is atoral;
otherwise it is called toral.

In [1] the notion of atorality of polynomials with complex coefficients is introduced
and studied. One main result there is that such a polynomial is atoral if and only
if its unitary variety is contained in an algebraic set of (complex) dimension d − 2.
Our setting, involving polynomials with rational coefficients and a corresponding
notion of irreducibility, is somewhat different. However, we obtain a similar result,
whose proof follows closely the spirit of [1].

Proposition 2.2. Let f ∈ Rd be irreducible. Then f is atoral if and only if
dimU(f) 6 d− 2.

Symmetry plays a crucial role in the proof.

Definition 2.3. Let f(u) =
∑
fnu

n ∈ Rd. The adjoint of f is f∗(u) = f(u−1) =∑
f−nu

n. We say that f is symmetric if f∗(u) = f(u), and that f is essentially
symmetric if there is an m ∈ Zd such that f∗(u) = ±umf(u).

Thus f is symmetric if its array of coefficients is symmetric with respect to the
origin, and is essentially symmetric if this array is symmetric (or skew-symmetric)
with respect to the point 1

2m ∈ Rd.

Lemma 2.4. Let f ∈ Rd. Then f is essentially symmetric if and only if f∗ ∈ (f).

Proof. If f is essentially symmetric, then obviously f∗(u) = ±umf(u) ∈ (f). For
the opposite implication we may assume that f 6= 0. Suppose that f∗ = hf for some
h ∈ Rd. Then f = h∗f∗ = h∗hf , so that (h∗h − 1)f = 0. Since f 6= 0, we obtain
that h∗h = 1. But the only units in Rd are ±um. �
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Lemma 2.5. Let f ∈ Rd. Then U(f∗) = U(f).

Proof. Since f has real coefficients, for every s ∈ Sd we have that f∗(s) = f(s). �

Lemma 2.6. Let r > 2 and suppose that g1, . . . , gr ∈ Q[u1, . . . , ud] have no common
factor. Let g be the ideal in Q[u1, . . . , ud] they generate. Then dimU(g) 6 d− 2.

Proof. We use induction on d. First suppose that d = 1, and that g1, . . . , gr ∈ Q[u1]
have no common factor. Then their greatest common divisor is 1, so there are
Aj(u1) ∈ Q[u1] such that

∑r
j=1Aj(u1)gj(u1) = 1. Hence U(g) =

⋂r
j=1U(gj) = ∅,

and dim∅ = −∞ 6 −1.
To complete the induction argument, assume that the result is true for d−1, and

let g1, . . . , gr ∈ Q[u1, . . . , ud] have no common factor. Put K = Q(u1, . . . , ud−1) and
consider

gj(u1, . . . , ud) =
∑

k

gjk(u1, . . . , ud−1)ukd ∈ K[ud].

By Gauss’s Lemma, the greatest common divisor of the gj as elements in K[ud] is 1,
so there are

aj(u1, . . . , ud) =
∑

k

ajk(u1, . . . , ud−1)ukd

with ajk(u1, . . . , ud−1) ∈ Q(u1, . . . , ud−1) such that
r∑

j=1

aj(u1, . . . , ud)gj(u1, . . . , ud) = 1.

Clearing denominators, we obtain

Aj(u1, . . . , ud) ∈ Q[u1, . . . , ud] and 0 6= B(u1, . . . , ud−1) ∈ Q[u1, . . . , ud−1]

such that

(2.1)

r∑

j=1

Aj(u1, . . . , ud)gj(u1, . . . , ud) = B(u1, . . . , ud−1).

Define π : Sd → Sd−1 by π(s1, . . . , sd) = (s1, . . . , sd−1). Since B 6= 0, it follows that
dimU(B) 6 d−2 as a subset of Sd−1. Let Y = {s ∈ U(B) : gjk(s) 6= 0 for some j, k}
and Z = {s ∈ U(B) : gjk(s) = 0 for all j, k}. If s ∈ Y then some gj(s, ud) 6= 0, so
that π−1(s) ∩ Y is finite. Hence dim(π−1(Y ) ∩ U(g)) 6 dimU(B) 6 d− 2. Observe
that the gjk(u1, . . . , ud−1) cannot have a common factor in Q[u1, . . . , ud−1], since
this would contradict our assumption on the gj ’s. Hence by the inductive hypothesis
applied to the gjk’s, we find that Z, being the unitary variety of the ideal generated
by the gjk, has dimension at most d−3. Hence dimπ−1(Z)∩U(g) 6 d−2. Thus U(g)
is the union of the two semialgebraic sets π−1(Y ) ∩ U(g) and π−1(Z) ∩ U(g), each
of which has dimension 6 d− 2, completing the induction step, and the proof. �

Proof of Proposition 2.2. First suppose that f ∈ Rd is irreducible and atoral. Thus
there is a g ∈ Rd r (f) with U(g) ⊇ U(f). Now f and g cannot have a common
factor since f does not divide g, so that by Lemma 2.6 applied to g1 = f and g2 = g,
we obtain that U(f) = U(f) ∩ U(g) has dimension 6 d− 2.



8 DOUGLAS LIND, KLAUS SCHMIDT, AND EVGENY VERBITSKIY

For the reverse implication, suppose that f ∈ Rd is irreducible and that dimU(f) 6
d− 2.

If f is not essentially symmetric, then g = f∗ /∈ (f) by Lemma 2.4, and U(g) =
U(f) by Lemma 2.5, hence f is atoral.

Suppose now that f is essentially symmetric, and that f∗(u) = umf(u). Observe
that if f2(u1, . . . , ud) = f(u21, . . . , u

2
d), then U(f2) is the union of 2d smaller copies

of U(f) and that f∗2 (u) = u2mf2(u). Hence by replacing f with f2 we may assume
that m = 2n ∈ 2Zd. Furthermore, replacing f(u) with unf(u) (which preserves
unitary varieties), we may assume that f∗ = f is exactly symmetric.

We next show that the partial derivatives of f must also vanish on U(f). Sym-
metry of f means that f is real-valued on Sd. Let e : Td → Sd be the isomorphism
e(t1, . . . , td) = (e2πit1 , . . . , e2πitd). Then f ◦ e : Td → Sd vanishes on e−1(U(f)). Let
s ∈ U(f) and suppose that there is a j for which ∂f/∂uj(s) 6= 0. By the chain
rule, ∂(f ◦ e)/∂tj(e−1(s)) 6= 0, hence the gradient of f ◦ e does not vanish at e−1(s).
The Implicit Function Theorem shows that near e−1(s) the vanishing set of f ◦ e
is (d − 1)-dimensional, and hence U(f) is (d − 1)-dimensional, contradicting our
assumption.

Hence all partials ∂f/∂uj vanish on U(f). The case of constant f is trivial, so
we may assume that at least one ∂f/∂uj 6= 0. But the uj degree of this partial is
strictly less than the uj-degree of f , and so cannot have a factor in common with f
by irreducibility of f . Hence using g = ∂f/∂uj shows that f is atoral.

Finally, if f is essentially symmetric with f∗(u) = −umf(u), our previous simpli-
fications show that we may assume that f∗ = −f . But then f is purely imaginary
on Sd, so we can apply the preceding argument to f/i and again obtain that f is
atoral. �

Remark 2.7. Since U(f1 · · · fr) = U(f1)∪· · ·∪U(fr), and since the dimension of the
union of a finite number of semialgebraic sets equals the largest of the dimensions
of those sets, it follows that Proposition 2.2 remains true for all f ∈ Rd.

3. Summable homoclinic points

Let α be an algebraic Zd-action on a compact abelian group X. We recall from
[12] that a point x ∈ X is homoclinic for α if αn(x) → 0 as ‖n‖ → ∞. The
set of all homoclinic points in X is a subgroup that we denote by ∆α(X). If α is
expansive then the homoclinic group ∆α(X) is countable, and additionally αn(x) →
0 exponentially fast as ‖n‖ → ∞ for every x ∈ ∆α(X). If α is nonexpansive then
∆α(X) may be uncountable, countable, or trivial, and α-homoclinic points may
decay very slowly (see [12] for details, examples, and connections with entropy).

For the proof of Theorem 1.3 we need homoclinic points which decay sufficiently
rapidly. To describe our requirements more precisely, we write ||t|| for the distance
from a point t ∈ T to 0. A point x ∈ Xf is called a summable homoclinic point
for αf if

∑
n∈Zd ||xn|| <∞. Denote the subgroup of summable homoclinic points by

∆1
αf

(Xf ), which is obviously a subgroup of ∆αf
(Xf ).
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If αf is expansive then U(f) = ∅, and so 1/f∗ is analytic on Sd. As shown in
[12], the Fourier coefficients of 1/f∗ provide a nonzero homoclinic point for αf that
decays exponentially fast, hence is summable. When U(f) 6= ∅, the same approach
will work provided there is a g ∈ Rdr (f) for which g/f∗ is smooth enough to have
absolutely convergent Fourier series. The existence of such a g exactly depends on
whether or not f is atoral.

We begin with some Fourier machinery. For a = (an) ∈ ℓ1(Zd,C) define its Fourier
transform â : Sd → C by â(s) =

∑
n∈Zd ans

n, where sn = sn1
1 · · · snd

d . If φ : Sd → C is

integrable with respect to Haar measure λ on Sd, we define its Fourier coefficients

by φ̂n =
∫
φ(s)s−ndλ(s). A polynomial g =

∑
gnu

n ∈ Rd can be considered as an

element in ℓ1(Zd,C), and as such ĝ corresponds to the polynomial function on Sd.
We return to our given nonzero irreducible polynomial f ∈ Rd ⊂ ℓ1(Zd,C). Define

ideals nf and mf of Rd by

nf = {h ∈ Rd : h|U(f) ≡ 0},
mf = {h ∈ Rd : ĥ/f̂ has absolutely convergent Fourier series}.

Clearly (f) ⊆ mf ⊆ nf . By definition, f is toral if and only if these ideals coincide.

Lemma 3.1. Let
√

mf denote the radical ideal of mf . Then
√

mf = nf .

Proof. If g ∈
√

mf , then g (or, more precisely, the Fourier transform ĝ : Sd → C)

must vanish on U(f). Hence
√

mf ⊆ nf .
For the reverse inclusion we use the  Lojasiewicz inequality from real algebraic

geometry. Recall that we can consider Cd = R2d with coordinates x1, y1, . . . , xd, yd.
We may assume that f ∈ Rd is a polynomial, and expand f = f1 + if2 as in (1.4),
where f1, f2 ∈ R[x1, y1, . . . , xd, yd]. Let F = f21 + f22 . The zero set of F in Sd is just
U(f). The classical  Lojasiewicz inequality applied to F implies there are constants
C, β such that

|f̂(s)|2 = |F (s)| > C dist(s,U(f))β ,

where dist denotes the usual distance between points of Sd. Since ĝ vanishes on U(f)
and is Lipschitz, it follow that there is a k > 1 such that the function Gk : Sd → C

defined by

Gk(s) =





ĝ(s)k

f̂(s)
if s /∈ U(f),

0 if s ∈ U(f)

is continuous on Sd. The standard formula for derivatives of quotients then shows
that we can arrange for GK to have as many partial derivatives as we need by making
K large enough. Since sufficiently smooth functions have absolutely convergent
Fourier series, gK ∈ mf for large enough K, and so g ∈

√
mf . �

We now state the main result of this section.

Theorem 3.2. Let f ∈ Rd be a nonzero irreducible Laurent polynomial. Let αf
be the algebraic Zd-action on Xf defined above, and ∆1

αf
(Xf ) be the subgroup of

summable homoclinic points of αf . Then the following are equivalent:
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(1) ∆1
αf

(Xf ) 6= {0};
(2) ∆1

αf
(Xf ) is dense in Xf ;

(3) f is atoral (or, equivalently, (f) ( nf );
(4) dimU(f) 6 d− 2.

Proof. The case d = 1 is easily handled using the observations that f ∈ R1 is atoral if
and only if U(f) = ∅, and this occurs if and only if αf has nonzero homoclinic points
which decay exponentially fast, in which case all homoclinic points are summable
and the homoclinic group is dense (see [12] for details).

We may therefore assume that d > 2. The equivalence of (3) and (4) is contained
in Proposition 2.2. Clearly (2) implies (1) since f is not a unit and so Xf 6= {0}.

To prove the remaining implications, we first linearize the action αf . Consider

the surjective map η : ℓ∞(Zd,R) → TZd

given by η(w)n = wn(mod 1).We define the
covering shift-action σ̃ of Zd on ℓ∞(Zd,R) by (σ̃mw)n = wm+n. Set

f(σ̃) =
∑

n

fnσ̃
n : ℓ∞(Zd,R) → ℓ∞(Zd,R),

and put

Wf := η−1(Xf ) = {w ∈ ℓ∞(Zd,R) : η(w) ∈ Xf}
= {w ∈ ℓ∞(Zd,R) : f(σ̃)(w) ∈ ℓ∞(Zd,Z)}.

We view Wf as the linearization of Xf . Also, viewing f∗ as an element of ℓ1(Zd,R),

the point f(σ̃)(w) is the convolution product f∗ ∗ w ∈ ℓ∞(Zd,R).
Now suppose (3) holds, so that f is atoral. Hence there is a g ∈ Rd r (f) with

U(g) ⊇ U(f) = U(f∗). By Lemma 3.1, there is a k for which ĝk/f̂ : Sd → C has
absolutely convergent Fourier transform v = (vn) ∈ ℓ1(Zd,C). Taking the Fourier

transform of ĝk/f̂ = v̂ shows that f ∗ v = gk ∈ ℓ∞(Zd,Z), and so f∗ ∗ v∗ = (g∗)k

has integral coordinates, so that v∗ ∈Wf . Hence the images under η of the real and
imaginary parts of v∗ give nonzero points in ∆1

αf
(Xf ), proving (1).

Finally, suppose (1) holds, and let 0 6= x ∈ ∆1
αf

(Xf ). Lift x to v ∈Wf ∩ ℓ1(Zd,R)

with η(v) = x. Since vn → 0 as ‖n‖ → ∞, it follows that f∗ ∗ v ∈ ℓ∞(Zd,Z) can
have only finitely many nonzero coordinates, so represents a Laurent polynomial,

say h ∈ Rd. Thus ĥ = f̂∗ · v̂. This shows that ĥ vanishes on U(f∗) = U(f), and so

h∗ ∈ nf . If h∗ = g ·f for some g ∈ Rd, we would have h = g∗ ·f∗, and so v̂f̂∗ = ĝ∗ · f̂∗,
and a continuity argument shows that v = g∗ ∈ ℓ∞(Zd,Z). But then x = η(v) = 0,
a contradiction. Thus h∗ ∈ nf r (f), and so f is atoral, proving (3). Furthermore h
is relatively prime to f , so that multiplication by h is injective on Rd/(f). It follows
that h(αf ) : Xf → Xf is surjective. The proof of [13, Lemma 6.3] shows that the
subgroup of ∆1

αf
(Xf ) generated by the shifts of x is dense in h(αf )(Xf ) = Xf ,

proving (2) and completing the proof. �

We extract one consequence of the preceding proof as a corollary.
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Corollary 3.3. Let f ∈ Rd be an irreducible atoral polynomial, and let αf be the

algebraic Zd-action on Xf as described above. Then every x ∈ ∆1
αf

(Xf ) has the

form xh = η(vh), where h∗ ∈ mf and vh ∈ ℓ1(Zd,R) is the Fourier transform of

ĥ/f̂∗. Furthermore, xh is nonzero if and only if h∗ ∈ mf r (f), so that ∆1
αf

(Xf ) is

isomorphic as an abelian group to mf/(f).

In [12, Thm. 4.2] it is shown that, for expansive algebraic Zd-actions, the homo-
clinic group is dense if and only if the action has completely positive entropy. Using
Theorem 3.2, these properties also hold for αf when f is atoral.

Corollary 3.4. Let f ∈ Rd be a (possibly reducible) atoral Laurent polynomial that
is not a unit in Rd. Then αf has completely positive entropy and ∆1

αf
(Xf ) is dense

in Xf .

Proof. First recall from [4, Thm. 1] that an irreducible Laurent polynomial g ∈ Rd
has h(αg) = 0 if and only if there is a one-variable cyclotomic polynomial c(t) and

m,n ∈ Zd such that g(u) = ±nmc(un). For such g clearly dimU(g) = d− 1, and so
g is toral.

Let f = fk11 · · · fkrr be the factorization of f into irreducible Laurent polynomials.
The prime ideals associated with (f) are just (f1), . . . , (fr), and h(αRd/(fj)) > 0 for

1 6 j 6 r since each fj is atoral. Hence by [14, Thm. 6.5], it follows that αf has
completely positive entropy.

Suppose that g and h are relatively prime Laurent polynomials. Then

(3.1) Xgh = (gh)⊥ = [(g) ∩ (h)]⊥ = (g)⊥ + (h)⊥ = Xg +Xh.

Now by definition each fj is atoral, and so by the proof of Theorem 3.2 there is

a gj for which gj/fj has absolutely convergent Fourier series. Hence g
kj
j /f

kj
j also

has absolutely convergent Fourier series. If we denote α
f
kj
j

by αj and X
f
kj
j

by Xj ,

the proof of Theorem 3.2 shows that ∆1
αj

(Xj) is dense in Xj for 1 6 j 6 r. Then

∆1
α1

(X1) + · · · + ∆1
αr

(Xr) is contained in ∆1
αf

(Xf ), and is dense in X1 + · · · + Xr,

which is equal to X by (3.1). �

4. Examples

We give here examples to illustrate various phenomena. For clarity, we use vari-
ables u, v, w instead of u1, u2, u3.

Example 4.1. Let d = 1 and f(u) = u2−u−1. Then f(u) has roots λ = (1+
√

5)/2

and µ = (1−
√

5)/2, so that U(f) = ∅ and f is atoral. As discussed in [12, Example
6.7], we can compute the Fourier series of 1/f∗(u) = 1/(u−1−λ)(u−1−µ) by partial
fractions and obtain the coefficients

w∆
n =





− 1√
5
µn−1 if n > 1,

− 1√
5
λn−1 if n 6 0.
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Then x∆ = η(w∆) ∈ ∆1
αf

(Xf ), and ∆αf
(Xf ) = ∆1

αf
(Xf ) is the group generated by

all translates of x∆.
Geometrically, αf is a hyperbolic automorphism of the 2-dimensional torus Xf ,

and ∆1
αf

(Xf ) is the dense intersection of the 1-dimensional stable and unstable

eigenlines of αf .

Example 4.2. Let d = 1 and f(u) = u4 − u3 − u2 − u + 1. Then U(f) = {ξ, ξ},
where

ξ =
1 −

√
13

3
+

1

4

√
2 + 2

√
13 i ∈ S,

so that f is toral. This can be seen directly since f is the minimal polynomial
of ξ over Q, so that any g ∈ R1 with U(g) ⊇ U(f) must be in (f). As shown in
[12, Example 3.4], ∆αf

(Xf ) = {0}, because the 1-dimensional stable and unstable
eigenlines have only trivial intersection. Here (f) = nf = mf .

Example 4.3. Let d = 2 and f(u, v) = 2 − u − v. Then U(f) = {(1, 1)} and so f
is atoral. For example, g(u, v) = u− 1 has U(g) ⊇ U(f), but g /∈ (f).

As discussed in [13, Sect. 5], 1/f∗ is integrable on S2, with Fourier coefficients

w∆
(−m,−n) =





1

2m+n+1

(
m+ n

n

)
if m > 0 and n > 0,

0 otherwise.

Hence x∆ = η(w∆) ∈ ∆αf
(Xf ), but x∆ is not summable since, for example,

x∆(−n,−n) =
1

22n+1

(
2n

n

)
≈ 1

2
√
πn

decays too slowly.
We can attempt to speed up the rate of decay by applying difference operators,

or equivalently by multiplying 1/f∗ by powers of u− 1 and v− 1. It turns out that
third powers are exactly what is needed, so that for example (u − 1)3/f∗(u, v) has
absolutely convergent Fourier series whose coefficients provide a nonzero point in
∆1
αf

(Xf ).

Here nf = {g ∈ R2 : g(1, 1) =
∑

n gn = 0} and mf is the ideal in R2 generated by
(u− 1)p(v − 1)q with p+ q = 3. The “summable defect” in this example is

∆αf
(Xf )/∆1

αf
(Xf ) ∼= nf/mf ,

which is a finitely generated abelian group of rank five generated by the cosets
(u− 1)r(v − 1)s + mf with 1 6 r + s 6 2.

Example 4.4. Let d = 2 and f(u, v) = 3 − u − u−1 − v − v−1. Then U(f) is a
1-dimensional curve in S2 which is the image under the exponential map e : T2 → S2

of the closed curve given by

t = ± 1

2π
cos−1

(3

2
− cos 2πs

)
, −1

6
6 s 6

1

6
.

Thus f is toral, and so ∆1
αf

(Xf ) = {0}. It follows easily from [15] that all elements

of U(f) ∩ Ω must have order 30. A straightforward search verifies that U(f) ∩
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Ω = {(ω, 1), (ω, 1), (1, ω), (1, ω)}, where ω = e2πi/6. Hence dimFix◦Γ(αf ) 6 4 for all
Γ ∈ F .

Ironically, ∆αf
(Xf ) is so large that it is uncountable. Let µ be any measure

supported on U(f) that is a smooth function multiple of arc length. Since the
curvature of U(f) is bounded away from zero, a result of Stein [21, Thm. 2 of
§VIII.3.2] shows that µ̂(n) → 0 as ‖n‖ → ∞. Hence the point x with xn =
η(Re[µ̂(n)]) is in ∆αf

(Xf ). However, the same result shows that µ̂(n) must decay
so slowly that x is never summable.

The dynamical properties of αf are still somewhat mysterious. In particular, we
do not know whether Theorem 1.3 holds here.

Example 4.5. Let d = 2 and f(u, v) = u2 + u−2 − 2u − 2u−1 + v + v−1. Then f
is irreducible, and it is easy to check that U(f) consists of two 1-dimensional curves
together with the point (1, 1). This illustrates the possibility that the connected
components of U(f) may have different dimensions.

Example 4.6. Let d = 3 and f(u, v, w) = 1 + u + v + w. This example has
appeared in the literature due to the interesting value of its logarithmic Mahler
measure [20]: m(f) = 7ζ(3)/2π2. It is easy to verify that U(f) is the union of three
circles {(−1, s,−s) : s ∈ S}, {(s,−1,−s) : s ∈ S}, and {(s,−s,−1) : s ∈ S}. Hence
f is atoral. For example, both uvw+uv+uw+vw and (u−v)(v−w)(w−u) vanish
on U(f) but are not in (f).

Observe that U(f) contains infinitely many torsion points. Indeed, if Γn = nZ3,
then

|ΩΓn ∩ U(f)| =

{
3n− 3 if n is even

0 if n is odd.

Hence the dimension of Fix◦Γn
(αf ) is unbounded, an issue that will need to be dealt

with in the proof of our main theorem (see Lemma 6.8).
This example is a special case of the fact that if U(f) has infinitely many torsion

points, then all of these must lie on a finite union of cosets of rational subtori.

Example 4.7. Let d = 3 and f(u, v, w) = 2 + u + v + w, which is irreducible.
Since f is not symmetric, it is atoral. One can consider points in U(f) as possible
positions of a closed linkage of four rods, one fixed horizontal rod of length 2, and
three others of length 1 joined end to end. This system has one degree of freedom,
and so U(f) is a smooth loop in S3.

By Theorem 3.2, ∆1
αf

(Xf ) 6= {0} (in fact is dense in Xf ). Now U(f) is a smooth

curve with finite order of contact with every hyperplane (i.e., has finite type in the
terminology of [21]). Hence if µ is any measure on U(f) that is a smooth multiple
of arc length, then by [21, Thm. 2, §VIII.3.2] we have that µ̂(n) → 0 as ‖n‖ → ∞.
Hence x = (xn), where xn = η(Re[µ̂(n)]), is in ∆αf

(Xf ), but decays too slowly to
be summable.

In this example ∆1
αf

(Xf ) is countable and dense in Xf by Corollary 3.4, while

∆αf
(Xf ) r ∆1

αf
(Xf ) is uncountable.
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Example 4.8. The roots of u2 − 9u+ 19 are ξ ≈ 3.3819 and ζ ≈ 5.6180. Consider

f(u, v) := g1(u, v)g2(u, v) = (ξ − u− u−1 − v − v−1)(ζ − u− u−1 − v − v−1)

= 23 + u2 + u−2 − 9u− 9u−1 + v2 + v−2 − 9v − 9v−1

+ 2uv + 2u−1v−1 + 2uv−1 + 2u−1v.

Here f is irreducible in R2, or equivalently in Q[u±1, v±1], but factors in C[u±1, v±1].
Furthermore, U(g1) is a 1-dimensional curve in S2, analogous to Example 4.4, while
U(g2) = ∅, and so f is toral in our sense. However, f is neither toral nor atoral in
the sense of [1] since it has mixed factors over C.

Remark 4.9. If f ∈ Rd is irreducible, but factors over C, it can be shown that ex-
cept for a trivial scalar normalization, each factor has coefficients that are algebraic
numbers, i.e. this factorization already takes place in Q[u±1

1 , . . . , u±1
d ]. Indeed, by

Dedekind’s Prague Theorem [8, p. 2], the coefficients of each factor can be taken to
be algebraic integers.

5. Symbolic covers and specification

Let f ∈ Rd be an irreducible atoral Laurent polynomial and αf be the corre-

sponding algebraic Zd-action on Xf . By Theorem 3.2, there are nonzero summable
homoclinic points for αf . Fix one of these, say x. As pointed out in [12], there is a

surjective, shift-equivariant map ξx : ℓ∞(Zd,Z) → Xf defined by

ξx(v) =
∑

n∈Zd

vnα
−n
f (x),

where coordinatewise convergence follows from summability of x. In fact, ξx is
surjective when restricted to a suitably large ball of radius K in ℓ∞(Zd,Z), thereby
providing a symbolic cover for Xf with symbols {−K, . . . ,K}.

Having established the existence of summable homoclinic points for atoral poly-
nomials here, the proof in [13, Thm. 8.2] using symbolic covers applies to yield the
following remarkably strong specification properties of αf .

Proposition 5.1 ([13, Thm. 8.2]). Let f ∈ Rd be an irreducible atoral polynomial
and αf be the corresponding algebraic Zd-action on Xf . Fix a translation-invariant
metric δ on Xf . Then for every ε > 0 there exists a number p(ε) > 0 with the
following properties:

(1) For every finite collection {Q1, . . . , Qr} of finite subsets of Zd with

(*) dist(Qj , Qk) := min
m∈Qj , n∈Qk

‖m− n‖ > p(ε) for 1 6 j < k 6 r,

every collection {x(1), . . . , x(r)} ⊂ Xf , and every Γ ∈ F with

dist(Qj + k, Qk) > p(ε) for 1 6 j < k 6 r and every k ∈ Γ r {0},
there is a y ∈ FixΓ(αf ) with

(**) δ
(
αn
f (y), αn

f (x(j))
)
< ε for 1 6 j 6 r and every n ∈ Qj .
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(2) For every finite collection {Q1, . . . , Qr} of finite subsets of Zd satisfying (*)

and every collection {x(1), . . . , x(r)} ⊂ Xf there is a point y ∈ ∆1
αf

(Xf )

satisfying (**).

6. Proof of the main theorem

To begin the proof of Theorem 1.3, we fix an atoral irreducible Laurent polynomial
f ∈ Rd, and let αf be the corresponding cyclic algebraic Zd-action on Xf .

Roughly speaking, with the availability of summable homoclinic points, obtaining
sufficiently many separated points in FixΓ(αf ) is relatively easy. However, many of
these could lie in the same coset of the connected component Fix◦Γ(αf ) of the identity.
In order to show that this does not affect the logarithmic growth rate of PΓ(αf ), we
invoke a result of H. B. Mann which shows that U(f)∩Ω lies in the union of a finite
number of cosets of rational subtori of Sd. This enables us to embed Fix◦Γ(αf ) in a
finite sum of subtori with spanning sets whose cardinality have logarithmic growth
rate zero. This will force the number of cosets of Fix◦Γ(αf ) in FixΓ(αf ) to have the
correct logarithmic growth rate.

We begin with some terminology.

Definition 6.1. Let Q ⊂ Zd be a finite set. Define a pseudometric dQ on TZd
by

setting

dQ(x, y) = max
n∈Q

||xn − yn||, for x, y ∈ TZd

,

where ||x− y|| is the usual distance between s, t ∈ T.

A set F ⊂ TZd

is (Q, ε)-separated if dQ(x, y) > ε for every pair x, y of distinct

points in F . If Y ⊂ TZd
, then a set F ⊂ Y is (Q, ε)-spanning if, for every y ∈ Y ,

there is an x ∈ F with dQ(x, y) < ε.
If Γ ∈ F , we write dΓ for the metric on FixΓ(σ) defined by dΓ = dQ for any

fundamental domain Q for Γ. A set F ⊂ FixΓ(σ) is (Γ, ε)-separated if dΓ(x, y) > ε
for every pair x, y of distinct points in F , and there is an analogous definition of
(Γ, ε)-spanning.

Lemma 6.2. For every ε > 0 there is a finite set Aε ⊂ Zd such that, for every Γ ∈ F
and every fundamental domain Q ⊂ Zd of Γ, the set FixΓ(αf ) is

(⋂
m∈Aε

(Q−m)
)
-

spanning in Xf .

Proof. Since f is atoral, our discussion in Section 3 shows that there is a g ∈ Rd
relatively prime to f such that the Fourier transform of g/f provides a summable
homoclinic point for αf . The proof of Lemma 7.3 in [13] is then also valid in this
situation. �

The next lemma is an easily proved special case of [6, Cor. 5.6].

Lemma 6.3. Let (Γn)n>1 be a sequence in F with 〈Γn〉 → ∞ as n→ ∞. Then there
exists a sequence (Qn)n>1 of finite subsets of Zd such that each Qn is a fundamental
domain for Γn, and also that (Qn)n>1 is a Følner sequence for Zd.
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Lemma 6.4. Let ε > 0 and let (Γn)n>1 be a sequence in F with 〈Γn〉 → ∞. Choose
a Følner sequence (Qn)n>1 of fundamental domains for the groups (Γn)n>1 as in
Lemma 6.3. Let Aε be the finite set chosen according to Lemma 6.2. Define

Q′
n =

⋂

m∈Aε

(Qn −m).

Then (Q′
n)n>1 is again a Følner sequence, and |Q′

n|/|Qn| → 1 as n → ∞. Fur-
thermore, for every n > 1 there exists a (Γn, ε)-separated set Fn(ε) ⊂ FixΓn(αf )
which is (Q′

n, 2ε)-spanning in Xf .

Proof. From Lemma 6.2 we know that FixΓn(αf ) is (Q′
n, ε)-spanning in Xf for all

n > 1. Let Fn(ε) ⊂ FixΓn(αf ) be a (Γ,ε)-separated set of maximal cardinality. Then
Fn(ε) is also (Γn, ε)-spanning in FixΓn(αf ), hence (Q′

n, 2ε)-spanning in Xf . �

It follows from [5, Prop. 2] that

(6.1) lim
ε→0

lim inf
n→∞

1

|Zd/Γn|
log |Fn(ε)| = h(αf ).

The next, and more difficult, step in our proof consists of showing that the number of
distinct cosets of Fix◦Γn

(αf ) intersecting Fn(ε) nontrivially has the same logarithmic
growth rate as Fn(ε).

We first introduce some notation to linearize our situation. We write ℓ∞(Zd,C)
for the space of bounded complex-valued functions on Zd, and σ̃ for the Zd-shift
action on this space. Similarly, σ̃ acts on the real part ℓ∞(Zd,R) of ℓ∞(Zd,C). For
Γ ∈ F we let ℓ(Zd/Γ,C) and ℓ(Zd/Γ,R) be the corresponding finite-dimensional Γ-

periodic subspaces. For each ω ∈ ΩΓ there is an element v(ω) in ℓ(Zd/Γ,C) defined

by v
(ω)
n = ω

n for all n ∈ Zd.
A set S ⊂ ΩΓ is called symmetric if it is closed under taking inverses. A function

c : S → C on a symmetric set is skew-symmetric if c(ω−1) = c(ω). Let V (S,C) ⊂
ℓ(Zd/Γ,C) denote the complex span of the points v(ω) where ω ∈ S, and V (S,R) =

V (S,C)∩ ℓ(Zd/Γ,R). Then V (S,R) consists of all sums of the form
∑

ω∈S c(ω)v(ω)

where c is skew-symmetric on S, which has real dimension |S|.
For ∆ ∈ F let B1(ℓ(Z

d/∆,R)) denote the unit ball in ℓ(Zd/∆,R) with respect to
the ℓ∞-norm.

Lemma 6.5. Let ∆ ∈ F and 0 < ε < 1. Then there is a (∆, ε)-spanning set

F ⊂ B1(ℓ(Z
d/∆,R)) with cardinality |F | < (2/ε)|Z

d/∆|. Hence η(ℓ(Zd/∆,R)) =

Fix∆(σ) = {x ∈ TZd
: σnx = x for all n ∈ ∆} has a (∆, ε)-spanning set of cardinal-

ity < (2/ε)|Z
d/∆|.

Proof. Let Q be a fundamental domain for ∆. Then ℓ(Zd/∆,R) ∼= ℓ∞(Q,R) with
the ℓ∞-norm. For each q ∈ Q let Fq = {jε1{q} : −1/ε < j < 1/ε}, so |Fq| < 2/ε.

Put F =
∑

q∈Q Fq. Clearly F is (∆, ε)-spanning for B1(ℓ(Zd/∆,R)), and |F | <
(2/ε)|Q| = (2/ε)|Z

d/∆|.
Finally, η(B1(ℓ(Zd/∆,R))) = Fix∆(σ) and η is a local isometry. Hence η(F ) is a

(∆, ε)-spanning set for Fix∆(σ) of cardinality < (2/ε)|Z
d/∆|. �
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We will be using proper closed subgroups of Sd to capture the torsion points in
U(f), which are responsible for the dimension of Fix◦Γ(αf ). To do so, we define, for

every 0 6= m ∈ Zd the subgroup Hm = {s ∈ Sd : sm = 1} ⊂ Sd. Observe that
H⊥

m := {n ∈ Zd : sn = 1 for all s ∈ Hm} is just Zm. The next lemma allows us to
estimate the size of the slice of ΩΓ contained in Hm.

Lemma 6.6. Let 0 6= m ∈ Zd and Γ ∈ F . Then

|ΩΓ ∩Hm| 6 ‖m‖
〈Γ〉 |ΩΓ|.

Proof. Basic duality shows that ΩΓ/(ΩΓ∩Hm) is isomorphic with (ΩΓ∩Hm)⊥/Ω⊥
Γ ,

and that Ω⊥
Γ = Γ and (ΩΓ∩Hm)⊥ = Ω⊥

Γ +H⊥
m = Γ+Zm. Hence |ΩΓ/(ΩΓ∩Hm)| =

|(Γ + Zm)/Γ|, which is just the order k of m in Zd/Γ. Since 0 6= km ∈ Γ, we have
‖km‖ > 〈Γ〉, so that k > 〈Γ〉/‖m‖. Hence

|ΩΓ ∩Hm| =
1

k
|ΩΓ| 6

〈Γ〉
‖m‖ |ΩΓ|. �

Lemma 6.7. Let 0 6= m ∈ Zd and s ∈ Sd. If (s · Hm) ∩ Ω 6= ∅, then there is a
k > 1 such that s ·Hm ⊂ Hkm.

Proof. If s ·Hm ∩ Ω 6= ∅, then there is an s′ ∈ Ω such that s′ ·Hm = s ·Hm. Let k
be the order of s′ in Sd. �

Lemma 6.8. Let 0 6= f ∈ Rd. Then there are nonzero m1, . . . ,mL ∈ Zd such that

U(f) ∩ Ω ⊂
L⋃

j=1

Hmj
.

Proof. A special case of the Manin-Mumford conjecture established by Mann [15]
shows that U(f) ∩ Ω is contained in a finite union of cosets of connected proper
rational subtori (i.e., closed, connected subgroups) of Sd. By Lemma 6.7, we can
embed these cosets into appropriate Hmj

. �

Remark 6.9. There is a finite procedure for computing the mj appearing in the
previous lemma (see [10, §3.1] or [2, §6]).

Lemma 6.10. Let Γ ∈ F and 0 6= f ∈ Rd. Define f(σ̃) : ℓ∞(Zd,R) → ℓ∞(Zd,R) as
above, and put VΓ(f) = ker f(σ̃) ∩ ℓ(Zd/Γ,R). Then VΓ(f) = V (U(f) ∩ ΩΓ,R) and
η(VΓ(f)) = Fix◦Γ(αf ).

Proof. This assertion is contained in the proof of [13, Lemma 6.8], but we include
it here for the convenience of the reader. Since f has real coefficients, U(f) ∩
ΩΓ is symmetric. Hence V := V (U(f) ∩ ΩΓ,R) consists of the skew-symmetric

combinations
∑

ω∈U(f)∩ΩΓ
c(ω)v(ω), so the first statement follows. Clearly V is a

linear subspace of ℓ∞(Zd,R) and η(V ) ⊂ Fix◦Γ(αf ) by connectedness.

Let ε =
(
2
∑

n∈Zd |fn|
)−1

, and consider the neighborhood Nε = {x ∈ Fix◦Γ(αf ) :

supn ||xn|| < ε}. If B̃ε = {v ∈ ℓ(Zd/Γ,R) : ‖v‖∞ < ε} and Ñε = η−1(Xf ) ∩ B̃ε,
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then η(Ñε) = Nε. For every v ∈ Ñε we have that η(f(σ̃)v) = 0, so that f(σ̃)(v) ∈
ℓ(Zd/Γ,Z). But our choice of ε then forces f(σ̃)(v) = 0, so that v ∈ V . Hence
η(V ) ⊃ Nε. Since Fix◦Γ(αf ) is connected, it follows that η(V ) ⊃ Fix◦Γ(αf ), and hence
η(V ) = Fix◦Γ(αf ). �

Lemma 6.11. Let 0 6= f ∈ Rd and choose nonzero m1, . . . ,mL ∈ Zd according to
Lemma 6.8 so that U(f) ∩ Ω ⊂ Hm1 ∪ · · · ∪ HmL

. Let ∆Γ,j = (ΩΓ ∩ Hmj
)⊥ ⊃ Γ.

Then

Fix◦Γ(αf ) ⊂
L∑

j=1

Fix∆Γ,j
(σ).

Proof. Let Sj = ΩΓ ∩Hmj
and S = S1 ∪ . . . SL, which is clearly symmetric. Then

Fix◦Γ(αf ) = η(V (ΩΓ ∩ U(f),R) ⊂ η(V (S,R)) =
L∑

j=1

η(V (Sj,R))

=

L∑

j=1

η(ℓ(Zd/∆Γ,j ,R)) =

L∑

j=1

Fix∆Γ,j
(σ). �

Proof of Theorem 1.3. Let (Γn)n>1 be a sequence in F with 〈Γn〉 → ∞, and fix
ε > 0 for the moment. Chose m1, . . . ,mL ∈ Zd for f according to Lemma 6.8. Put
M = max16j6L ‖mj‖. Let ∆n,j = (ΩΓn ∩Hmj

)⊥ ⊃ Γn.
Applying Lemma 6.5 to each ∆n,j, we obtain (∆n,j, ε/2L)-spanning (and hence

(Γn, ε/2L)-spanning) sets Fn,j ⊂ Fix∆n,j
(σ) of cardinality |Fn,j | < (4L/ε)|Z

d/∆n,j |.
Let Fn = Fn,1 + · · · + Fn,L. Clearly Fn is (Γn, ε/2)-spanning for the subgroup

Hn =

L∑

j=1

Fix∆n,j
(σ) ⊂ FixΓn(σ) ⊂ TZd

,

and

|Fn| 6
L∏

j=1

|Fn,j| 6
L∏

j=1

(4L

ε

)|ΩΓn∩Hmj
|
6

(4L

ε

)LM|ΩΓn
|

〈Γn〉
.

Since |Zd/Γn| = |ΩΓn | and 〈Γn〉 → ∞, it follows that

lim
n→∞

1

|Zd/Γn|
log |Fn| = 0.

Since the cardinality of every (Γn, ε)-separated set is bounded by the cardinality of
every (Γn, ε/2)-spanning set, every sequence of (Γn, ε)-separated sets F ′

n ⊂ Hn must
also satisfy that

(6.2) lim
n→∞

1

|Zd/Γn|
log |F ′

n| = 0.

Choose the finite set Aε according to Lemma 6.2. Let (Qn)n>1 be a Følner se-
quence of fundamental domains for the groups (Γn)n>1, and put Q′

n =
⋂

m∈Aε
(Qn−

m). Then by Lemma 6.3, we have that (Q′
n)n>1 is again a Følner sequence with
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|Q′
n|/|Qn| → 1 as n → ∞. From Lemma 6.4 we know that FixΓn(αf ) contains a

(Γn, ε)-separated set Fn(ε) ⊂ Xf which is (Q′
n, 2ε)-spans Xf .

For n > 1, the intersection of Fn(ε) with every coset of the group Hn in FixΓn(σ)
is (Γn, ε)-separated. We set

Dn(ε) = max
y∈FixΓn(σ)

|Fn(ε) ∩ (y +Hn)| > max
y∈FixΓn(σ)

|Fn(ε) ∩ (y + Fix◦Γn
(αf ))|

and conclude from (6.2) that

(6.3) lim
n→∞

1

|Zd/Γn|
logDn(ε) = 0.

Up to now ε was fixed, but now we start varying it. For every n > 1, Fn(ε) has
to intersect at least |Fn(ε)|/Dn(ε) distinct cosets of Fix◦Γn

(αf ). By (6.1) and (6.3),

lim inf
n→∞

1

|Zd/Γn|
log |FixΓn(αf )/Fix◦Γn

(αf )|

> sup
ε>0

lim inf
n→∞

1

|Zd/Γn|
log

(
|Fn(ε)|/Dn(ε)

)

= sup
ε>0

lim inf
n→∞

1

|Zd/Γn|
log |Fn(ε)| = h(αf ).

Combining this with the previously mentioned fact that p+(αf ) = h(αf ) completes
the proof of Theorem 1.3. �

7. Diophantine consequences

If f ∈ Rd is atoral, then Theorem 1.3 shows that the Riemann sums for log |f |
over ΩΓ converge to its integral m(f) as 〈Γ〉 → ∞. Roughly speaking, this means
that those ω ∈ ΩΓ lying close to U(f) cannot contribute a disproportionate amount
to the Riemann sum, and this prevents these ω from getting very close to U(f).

When d = 1 this phenomenon was first established by Gelfond [9] using quite
different methods. He showed that if λ ∈ S is an algebraic number, then for all
ε > 0 the inequality

(7.1) |λn − 1| > e−εn

holds for all sufficiently large n. This can be reformulated as follows. For f ∈ R1

with U(f) 6= ∅, for all sufficiently large n the inequality

(7.2) dist(U(f),ΩnZ) > e−ε|ΩnZ|

holds. When d > 2 our method gives a result formally identical to this. However,
it of course does not apply when d = 1 since for this case f cannot be atoral unless
U(f) = ∅.

For 0 6= f ∈ Rd let us say that the Riemann sums for log |f | converge to m(f)
provided that

1

|ΩΓ|
∑

ω∈ΩΓrU(f)

log |f(ω)| → m(f) :=

∫

Sd
log |f(s)| dλ(s) as 〈Γ〉 → ∞.
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By Theorem 1.3, this is valid for all atoral Laurent polynomials.
We begin by establishing a quantitative consequence of the convergence of the

Riemann sums.

Lemma 7.1. Let 0 6= f ∈ Rd, and assume that the Riemann sums for log |f |
converge to m(f). Let rn > 0 and Γn ∈ F such that rn → 0 and 〈Γn〉 → ∞ as
n→ ∞. Then

(7.3)
1

|ΩΓn |
∑

ω∈ΩΓn
0<|f(ω)|<rn

∣∣log |f(ω)|
∣∣ → 0 as n→ ∞.

Proof. Let ε > 0. For r > 0 define φr(s) := max{|f(s)|, r} and Er(f) := {s ∈ Sd :
0 < |f(s)| < r}. We may assume throughout that rn, r < 1, so that log |f(ω)| < 0
for all ω ∈ Er(f).

Note that log φr is continuous on Sd, and so is integrable there. Furthermore,
log |f | ∈ L1(Sd, λ), and log φr ց log |f |. By the Monotone Convergence Theorem,
we can find r0 > 0 such that

0 6

∫

Sd
log φr dλ−

∫

Sd
log |f | dλ < ε

for all 0 < r < r0. We may also choose r0 small enough so that λ
(
Er0(f)

)
< ε.

By our assumption about convergence of Riemann sums, we have that

(7.4)
∣∣∣m(f) − 1

|ΩΓ|
∑

ω∈ΩΓrU(f)

log |f(ω)|
∣∣∣ < ε

for 〈Γ〉 sufficiently large. Since log φr0 is continuous we also have that

(7.5)
∣∣∣
∫

log φr0 dλ− 1

|ΩΓ|
∑

ω∈ΩΓ

log |φr0(ω)|
∣∣∣ < ε

for sufficiently large 〈Γ〉. Finally, a standard argument using upper and lower ap-
proximations of the indicator of function of Er0(f) by continuous functions shows
that

(7.6)
|Er0(f) ∩ ΩΓ|

|ΩΓ|
< ε

for all sufficiently large 〈Γ〉. Thus we may choose L0 large enough so that (7.4),
(7.5), and (7.6) hold if 〈Γ〉 > L0.

Now assume that rn → 0 and 〈Γn〉 → ∞. Choose n0 such that rn < r0 and
〈Γn〉 > L0 for all n > n0. Then since Ern(f) ⊂ Er0(f) and log f(s) < 0 for all
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s ∈ Er0(f), it follows that

0 6
1

|ΩΓn |
∑

ω∈ΩΓn∩Ern(f)

∣∣log |f(ω)|
∣∣ 6 1

|ΩΓn |
∑

ω∈ΩΓn∩Er0 (f)

− log |f(ω)|

=
1

|ΩΓn |
∑

ω∈ΩΓn

log φr0(ω) − (log r0)|ΩΓn ∩Er0(f)|
|ΩΓn |

−
∑

ω∈ΩΓnrU(f)

log |f(ω)|

6 m(φr0) + ε− ε log r0 − (m(f) − ε) < 3ε+ ε log r0.

Since ε > 0 was arbitrary, this completes the proof. �

To make use of this result, we introduce two counting functions. For r > 0 let

Mf (ΩΓ, r) := |{ω ∈ ΩΓ : 0 < dist(ω,U(f)) < r}|,
and

Nf (ΩΓ, r) := |{ω ∈ ΩΓ : 0 < |f(ω)| < r}|.
Observe that f is Lipschitz on Sd, say with Lipschitz constant K. Then Mf (ΩΓ, r) 6
Nf (ΩΓ,Kr).

Theorem 7.2. Let 0 6= f ∈ Rd, and assume that the Riemann sums for log |f |
converge to m(f). Let rn → 0 and 〈Γn〉 → ∞ as n→ ∞. Then

Mf (ΩΓn , rn) · log(1/rn)

|ΩΓn |
→ 0 as n→ ∞.

In particular, for every ε > 0 there is an n0 such that

Mf (ΩΓn , rn) <
ε|ΩΓn |

log(1/rn)
for n > n0.

Proof. Let ε > 0, and K > 1 be a Lipschitz constant for f on Sd. By Lemma 7.1,
for all sufficiently large n we have that

1

|ΩΓn |
Nf (ΩΓn ,Krn) log

1

rn
6

1

|ΩΓn |
∑

ω∈ΩΓn
0<|f(ω)|<Krn

∣∣log |f(ω)|
∣∣ < ε.

Since Mf (ΩΓn , rn) 6 Nf (ΩΓn , Lrn) and log(1/Lrn) 6 log(1/rn), the result follows.
�

Corollary 7.3. Let f ∈ Rd be an atoral Laurent polynomial and ε > 0. Then

dist(ΩΓ,U(f) r ΩΓ) > e−ε|ΩΓ|

whenever 〈Γ〉 is sufficiently large.

Proof. Suppose there is an δ0 > 0 and a sequence Γn ∈ F with 〈Γn〉 → ∞ such that

dist(ΩΓn ,U(f) r ΩΓn) < e−δ0|ΩΓn |

for all n > 1. Put rn = e−δ0|ΩΓn | → 0. By the previous theorem, with ε = δ0/2, for
sufficiently large n we would have

1 6Mf (ΩΓn , rn) <
δ0
2

|ΩΓn |
δ0|ΩΓn |

=
1

2
,
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which is impossible. �

We can use Theorem 7.2 to obtain slightly weaker results even when f is toral
(e.g., in Gelfond’s original setting). Let Z+ denote {0, 1, 2, . . . }.

Theorem 7.4. Let d > 1 and f ∈ Rd be a nonzero irreducible Laurent polynomial.
For every ε > 0 and every ψ : Z+ → Z+ with ψ(n) → ∞ as n → ∞ (no matter
how slowly), there is an L > 1 such that for every Γ ∈ F with 〈Γ〉 > L and every
ω ∈ ΩΓ r U(f) we have that

(7.7) dist(ω,U(f)) > e−εψ(〈Γ〉)|ΩΓ |.

Proof. Let g(u) = u− 1, and consider the Laurent polynomial

h(u1, . . . , ud, ud+1) = f(u1, . . . , ud)f
∗(u1, . . . , ud) + g(ud+1)g∗(ud+1) ∈ Rd+1.

Clearly U(h) = U(f) × {1}, and so h is atoral.
Let ψ : Z+ → Z+ with ψ(n) → ∞ as n → ∞. For every finite index subgroup Γ

of Zd and every k > 1, let Γ(k) be the finite-index subgroup of Zd+1 generated by
Γ×{0} and (0, ψ(k)). Then |Zd+1/Γ(k)| = |Zd/Γ|ψ(k) and 〈Γ(k)〉 = min{〈Γ〉, ψ(k)}.
We can then apply Corollary 7.3 to obtain (7.7). �

Applying the previous theorem when d = 1, we obtain the following weaker
version of Gelfond’s result.

Corollary 7.5. Let γ ∈ S be an algebraic number which is not a root of unity. Then
for every ψ : Z+ → Z+ with ψ(n) → ∞ as n → ∞ and every ε > 0, there is a n0
such that for every n > n0 and every nth root of unity ω ∈ ΩnZ we have that

dist(γ, ω) > e−εψ(n)n.

Remark 7.6. In Corollary 7.5 we allow ψ(n) to grow arbitrarily slowly. But we
still require ψ(n) → ∞, so that this is not quite strong enough to obtain Gelfond’s
result (7.1). Thus this also does not imply the convergence of the logarithmic growth
rate of periodic points for quasihyperbolic toral automorphisms. For this one really
needs (7.1).
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