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VECTOR BUNDLES ON NON-KAEHLER ELLIPTIC PRINCIPAL

BUNDLES

VASILE BRÎNZĂNESCU, ANDREI D.HALANAY, AND GÜNTHER TRAUTMANN

Abstract. We study relatively semi-stable vector bundles and their moduli
on non-Kähler principal elliptic bundles over compact complex manifolds of
arbitrary dimension. The main technical tools used are the twisted Fourier-
Mukai transform and a spectral cover construction. For the important example
of such principal bundles, the numerical invariants of a 3-dimensional non-
Kähler elliptic principal bundle over a primary Kodaira surface are computed.

1. Introduction

The study of vector bundles over elliptic fibrations has been a very active area of
research in both mathematics and physics over the past twenty years; in fact, there
is by now a well understood theory for projective elliptic fibrations (see for example
[Don97], [DP08], [Fri89], [FMW99], [BM02],[RMP02], [Bri98], etc.). However, not
very much is known about the non-Kähler case; the study of rank 2 vector bundles
on non-Kähler elliptic surfaces is done in [BM05],[BM06]. In this article we study
relatively semi-stable vector bundles on non-Kähler principal elliptic bundles over
complex manifolds of arbitrary dimension with the invariant δ 6= 0. One of the
motivations for the study of vector bundles on non-Kähler elliptic n-folds comes
from recent developments in superstring theory, where six-dimensional non-Kähler
manifolds occur in the context ofN = 1 supersymmetric heterotic and type II string
compactifications with non-vanishing background H− field; in particular most of
the non-Kähler examples appearing in the physics literature so far are non-Kähler
principal elliptic fibrations (see [BBDG03], [CCD+03], [GP04]). There are also two
classes of non-Kähler Calabi-Yau type threefolds appearing in the mathematical and
physical literature: one is due to M. Gross (privately communicated to us by A.
Căldăraru). Other examples appear in [Add09a], [Add09b],[Kuz08] and [CDH+10].
The main technical tools used are the twisted Fourier-Mukai transform, introduced
by A.Căldăraru (see [Cal00]) and the spectral cover construction, see [FMW99],
[Don95], [BBRMP98], [RMP02].

The paper is organized as follows. In the second section we determine the struc-
ture of the relative Jacobian of a principal elliptic bundle as a moduli space and find
out that it is the product of the fiber with the basis. In the third and fourth sec-
tions, using the relative Jacobian, we adapt the construction of Căldăraru, [Căl02],
to our case, obtaining a twisted Fourier-Mukai transform. Similar results were ob-
tained in different settings by O.Ben-Bassat [BB09] and I.Burban and B.Kreussler
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[BK06]. In the fifths section using this transform and the associated spectral cover
we prove that the moduli space of rank n, relatively semi-stable vector bundles is
corepresented by the relative Douady space of length n and relative dimension 0
subspaces of the relative Jacobian, see theorem 5.

After reviewing some background results on torus bundles from [Höf93] in the
first appendix, in the second appendix we compute the numerical invariants (Hodge
and Betti numbers) of a principal elliptic bundle over a primary Kodaira surface and
use them to distinguish the non-trivial elliptic bundles. These invariants are also of
interest for physicists working on heterotic string-theory models with non-Kähler
Calabi-Yau type threefolds as backgrounds.
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Alexander von Humboldt Foundation in the framework of the Stability Pact. The
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2. Line bundles on elliptic principal bundles

In this section we shall be concerned with the study of the (coarse) moduli space
of line bundles over a principal elliptic bundle π : X → S , where S is a compact
complex manifold, with fiber E := Eτ := C/Λ (Λ = Z⊕ τZ). Among the invariants
of such bundles is the homomorphism δ : H1(E,C) → H2(S,C) which is the d2-

differential E0,1
2 → E2,0

2 of the Leray spectral sequence of the sheaf CX with terms
Ep,q

2 = Hp(S,Rqπ∗CX) ∼= Hp(S,C)⊗Hq(E,C), see also the first appendix for more
invariants.

We make the assumption that δ 6= 0. In particular, X → S does not have the
topology of a product. We should note here that if S is Kähler, then X is non-Kähler
if and only if δ 6= 0, see [Höf93].

We shall need in the sequel the following result of Deligne, [Del68], in the for-
mulation of [Höf93, Prop.5.2].

Theorem 1. Let X → S be a principal elliptic bundle. Then the following state-
ments are equivalent:

a) The Leray spectral sequence for CX degenerates at the E2−level;
b) δ : H1(E,C) → H2(X,C) is the zero map;
c) The restriction map H2(X,C) → H2(E,C) to a fibre takes a non-zero value

in H1,1
E .

In our case the preceding theorem has a very important consequence

Corollary 1. Let X → S be a principal elliptic bundle with S a compact complex
manifold and δ 6= 0. Then for any vector bundle F over X and any s ∈ S the
bundle F|Xs

has degree 0.

Proof. Indeed let r : H2(X,C) → H2(E,C) be the restriction map. We have
that c1(L|Xs

) = r(c1(L)) = 0 by the theorem. ✷

Let us recall now the definition of the Jacobian variety J of a smooth curve C,
see for instance [Har77, IV.4]. Let Pic0(C/T ) for any analytic space T denote the
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group

{L ∈ Pic(T × C) | deg(L|{t}×C) = 0 for any t ∈ T }/p∗Pic(T ),

where p : T × C → T is the second projection. The Jacobian variety of C will be
a variety J , together with an element P ∈ Pic0(C/J) such that for any analytic
space T and any M ∈ Pic0(C/T ) there is a unique morphism f : T → J such that
(f × idC)

∗P ∼ M in Pic0(T ×C), i.e. J represents the functor T 7→ Pic0(C/T ). It
is well known that J exists for any smooth curve C. When C is an elliptic curve
E then J = E∗, the dual torus, and P is called a Poincaré bundle. In this case P
is a line bundle over E∗ ×E such that P|{[L]}×E ≃ L, and E∗ ≃ Pic0(E). We pass
now to the relative case for elliptic principal bundles.

Definition 1. Let X
π
−→ S be an elliptic principal bundle with typical fibre an

elliptic curve Eτ and base S a smooth manifold. Let F : (An/S)op → (Sets) be the
functor from the category of analytic spaces over S to the category of sets, given,
for any commutative diagram

(2.1) XT

π

��

// X

π

��

T // S,

where XT := X ×S T , by

F (T ) := {L invertible on XT | deg(L|XT,t
) = 0, for all t ∈ T }/ ∼,

where L1 ∼ L2 if there is a line bundle L on T such that L1 ≃ L2 ⊗ π∗L.
A variety J over S will be called the relative Jacobian of X if
(i) it corepresents the functor F , see [HL97, Def. 2.2.1], i.e. there is a natural

transformation F
σ
−→ HomS(−, J) and for any other variety N/S with a natural

transformation F
σ′

−→ HomS(−, N) there is a unique S-morphism J
ν
−→ N such that

ν∗ ◦ σ = σ′.
(ii) for any point s ∈ S the map F ({s}) → HomS({s}, J) ≃ Js is bijective. Then

each fibre Js is the Jacobian of the fibre Xs ≃ E.

If X is projective, the existence of the relative Jacobian is well known, because it
can be identified with the coarse relative moduli space of stable locally free sheaves
of rank 1 and degree 0 on the fibres of X , see [HL97], [Cal00]. The relative Jacobian
exists also in our non-Kähler case. It is just the product S×E∗ and has the following
special properties.

Theorem 2. (i) The functor F is corepresented by J := S × E∗.
(ii) For any point s ∈ S the map F ({s}) → HomS({s}, J) ≃ Js ≃ E∗ is bijective.
(iii) The map σ(T ) is injective for any complex space T .
(iv) The functor F is locally representable by J = S × E∗, i.e. if U ⊂ S is a

trivializing open subset, σ(U) is bijective.

For the proof we use the following Seesaw lemma and its Corollary.

Lemma 1. Let Y
q
−→ T be a principal elliptic bundle over a complex analytic space

T with fibre E and let M be an invertible sheaf on Y such that Mt = M|Yt is
trivial on any fibre of q. Then L = q∗M is locally free of rank 1 and M = q∗L.
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Proof. Because the statements are local over T and Y is locally trivial, we may
assume that Y = T × E and that q is the first projection p1. We first note that
the canonical homomorphism p∗1p1∗M → M is an isomorphism because each Mt

is trivial so that it is an isomorphism when restricted to a fibre of p1. In order
to show that p1∗M is invertible we consider the sheaf M(a) := M⊗ p∗2OE(a) for
some a ∈ E. Then h0(Mt(a)) = 1 and h1(Mt(a)) = 0, whereas h1(Mt) = 1. Let
φi(t) : (Rip1∗M(a))(t) → Hi(Xt,Mt(a)) denote the base change homomorphism.
Because φ1(t) = 0 it follows that R1p1∗M(a) = 0, and by that that L := p1∗M(a)
is invertible, see e.g. [Har77, Th.12.11].

Let C(a) be the sky-scraper sheaf with stalk C at a ∈ E. Then M⊗ p∗2C(a) =
M|T×{a} and we have the exact sequence

0 → M → M(a) → M⊗ p∗2C(a) → 0,

giving rise to the long exact sequence

0 → p1∗M → p1∗M(a)
α
−→ p1∗(M|S×{a}) → R1p1∗(M) → 0.

Denoting byA the image of α and pulling back to y, we obtain the exact sequence

p∗1p1∗M
γ
−→ p∗1p1∗M(a) → p∗1A → 0.

The restriction of γ to a fibre becomes the canonical map

H0(Xt,Mt)⊗OYt
→ H0(Yt,Mt(a))⊗OYt

,

which is an isomorphism. Hence (p∗1A)t = 0 for any t ∈ T , and then also p∗1A = 0
and finally A = 0. This proves that p1∗M ∼= p1∗M(a) = L, and we have M ∼=
p∗1p1∗M

∼= p∗1L.
One should note here that p∗1p1∗M(a) → M(a) is not an isomorphism, hav-

ing M|T×{a} as its cokernel, because H0(Xt,Mt(a)) ⊗ OYt
→ Mt(a) is not an

isomorphism. ✷

Corollary 2. Let T be a complex space and T × Eτ
θ

∼
// T × Eτ an isomorphism

of the form θ(t, α) = (t, α+λ(t)) with λ : T → E a holomorphic map. Then for any
invertible sheaf L on T ×Eτ with deg(Lt) = 0 for any t ∈ T , there is an invertible
sheaf L on T such that θ∗L ≃ L ⊗ p∗1L.

Proof. Because Ls has degree 0, (θ∗sLs) ⊗ L−1
s is trivial on any fiber (recall

that a line bundle of degree 0 is isomorphic with its pull-back via a translation, see
[BL04], [Mum70]). Now apply the Lemma to θ∗L⊗ L−1

✷

Proof of Theorem 2. Let f : T → S be a morphism of analytic spaces and let
L be a line bundle on XT . Let {Si} be an open cover of S that gives a trivialization
of the bundle X (that is Xi := X |Si

≃ Si × Eτ ). Taking the inverse image of this
cover we get an open cover {Ti = f−1Si} of T with the same property. Let us
denote XT,i := XT |Ti

. There are trivializing maps

(2.2) XT,i ∼

θi //

""❉
❉❉

❉❉
❉❉

❉
Ti × Eτ

{{✈✈
✈✈
✈✈
✈✈
✈

Ti .
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Let Li be the sheaf on Ti×E defined by θ∗i Li = L|XT,i
such that Lj ≃ (θi ◦θ

−1
j )∗Li

over Tij .
Let now P be a Poincare bundle on E∗

τ ×Eτ . Then for any i we’ll have a unique

morphism φi : Ti → E∗
τ such that Li ∼ (φi × id)∗(P). Taking into account that

θi ◦ θ
−1
j = id× θij and θij acts by translations, the preceding corollary implies that

Li ∼ Lj on Tij . Therefore φi = φj on Tij . So we are given a global morphism
φ : T → E∗

τ .
Let now

(2.3) T
φ̃

//

��
❃
❃
❃
❃
❃
❃
❃
❃ S × E∗

τ = J

yytt
tt
tt
tt
tt

S

be the corresponding map φ̃ := (f, φ). This provides us with a map F (T )
σ(T )
−−−→

HomS(T, J). It is straightforward to check that σ : F → HomS(−, J) is a morphism
of functors. The minimality of J will be proved after the proof of (iv).

ii) Property (ii) follows directly from the definition of the maps σ({s}).
iii) We show next that each map σ(T ) : F (T ) → HomS(T, J) is injective. For

that let L and L′ be two line bundles such that their respective maps φ and φ′ are
equal. We need to show that π∗(L′ ⊗ L−1) =: L is locally-free.

We have that φi = φ′
i for any i. This implies that over XT,i we have

(2.4) Li ∼ L′
i.

Because of the relation (2.4) L′
t⊗L−1

t is trivial for any t ∈ T . By the above corollary
we obtain that π∗(L′ ⊗ L−1) is locally free.

iv) Let U ⊂ S be trivializing for the bundle X such that XU ≃ U × E. By the
universal property of the dual torus E∗, the map σ(U) as well as all the maps σ(T )
for T → U are bijective.

Let now F
σ′

−→ HomS(−, N) be any natural transformation. For any s ∈ S there
is the map νs := σ′({s}) ◦σ({s})−1 : Js → Ns, thus defining a map ν : J → N over
S. In order to show that ν is a morphism, we just remark that νs is the restriction
of the map σ′(U ×E∗) ◦ σ(U ×E∗)−1(id) : JU → NU for a trivializing open subset
U ⊂ S and any s ∈ U .

Finally ν∗ ◦σ = σ′ follows from (iv) of the theorem and the fact that the functor
HomS(−, N) is a sheaf, using a trivializing covering for X of S. This completes the
proof of (i). ✷

Remark 1. There is a very convenient description of σ(S) as follows. Let L be
an arbitrary line bundle over X. We know that [L] ∈ F (S) by Corollary 1. By the
above proof φ := σ(S)([L]) : S → S × E∗ is given by φ(s) = (s, x) with x = [L|Xs

].

It will follow from theorem 3 that the relative Jacobian J = S × E∗ is only a
coarse moduli space under our assumption on X . However, by property (iv) of the
theorem one can find a system of local universal sheaves which will form a twisted
sheaf in the next section as in [Cal00], chapter 4.
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3. The twisted universal sheaf

In the following we replace the relative Jacobian J by S × E via the canonical

isomorphism between E and E∗. Then the local trivilalizations Xi
θi−→ Si × E are

at the same time isomorphisms between Xi and Ji := Si × E. The local universal
sheaves Ui on XiJ = J ×S Xi = Ji ×Si

Xi are then given as pull backs of the
universal sheaf OE×E(∆) ⊗ p∗2OE(−p0) for the classical Jacobian of the elliptic
curve E, after fixing an origin p0 ∈ E and where ∆ is the diagonal.

Denoting by ρi the composition of maps

XiJ
id×θi−−−→ J ×S (Si × E) ≃ Si × E × E → E × E,

and by pX the projection from XiJ to Xi, the local universal sheaf becomes

Ui = ρ∗i (OE×E(∆)⊗ p∗2OE(−p0)) ≃ OXiJ(Γi)⊗ p∗XOXi
(−si),

where Γi is the inverse of the diagonal (or the graph of the map θi) and si is the
section of Xi corresponding to the reference point p0 under the isomorphism θi, see
[Cal00], prop. 4.2.3.

To measure the failure of these bundles to glue to a global universal one let us
consider the line bundles Mij := Ui ⊗ U−1

j over J ×S Xij . Then the restriction of

Mij to a fibre Xs of the projection J ×s Xi
qi
−→ J is trivial because both Uj and

Ui restrict to isomorphic sheaves. By Lemma 1 there are invertible sheaves Fij on
Jij = Sij × E such that Mij = q∗i Fij .

This collection of line bundles satisfies the following properties:

1. Fii = OJi
;

2. Fji = F−1
ij ;

3. Fij⊗Fjk⊗Fki =: Fijk is trivial, with trivialization induced by the canonical
one of Mij ⊗Mjk ⊗Mki;

4. Fijk ⊗F−1
jkl ⊗Fkli ⊗F−1

lij is canonically trivial.

These conditions tell us that the collection {Fij} represents a gerbe (see [DP08])and
gives rise to an element α ∈ H2(J,O∗

J ). More explicitly, α is defined as fol-
lows. We may assume that the sheaves Fij are already trivial with trivializations
aij : OJ ≃ Fij over Jij .

If cijk : OJ ≃ Fijk is the isomorphism which is induced by the canonical trivial-
ization of Mij ⊗Mjk ⊗Mki, then

(3.1) aij ⊗ ajk ⊗ aki = αijkcijk

with scalar functions αijk which then define a cocycle for the sheafO∗
J , thus defining

the class α ∈ H2(J,O∗
J ), see see [Cal00], sect. 4.3. It is straightforward to prove:

Lemma 2. The sheaves Ui can be glued to a global universal sheaf if and only if
the class α = 0.

The element α is related to the element ξ ∈ H1(S,OS(E)) which is defined by
the cocycle of the elliptic bundle X → S, using the Ogg-Shafarevich group XS(J)

of J , see [Cal00], section 4.4. There is an exact sequence 0 → Br(S) → Br(J)
π
−→

XS(J) → 0, where Br(S) ≃ H2(J,O∗
J) is the analytic Brauer group of S and

XS(J) is isomorphic to H1(S,OS(E)) in our setting. We have the

Theorem 3. ([Cal00, Th 4.4.1]) ξ = π(α).
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Because ξ 6= 0 in our case, α 6= 0, and thus the local universal sheaves cannot be
glued to a global universal sheaf by preserving the bundle structure on the elliptic
fibres.

4. The twisted Fourier-Mukai transform

The collection of local universal sheaves above can be considered as an α-twisted
sheaf with which one can define a Fourier-Mukai transform. Recall the definition
of an α−twisted sheaf on a complex space or on an appropriate scheme X .

Definition 2. Let α ∈ C2(U,O∗
X) be a Čech 2-cocycle, given by an open cover

U = {Ui}i∈I and sections αijk ∈ Γ(Ui ∩ Uj ∩ Uk,O∗
X). An α-twisted sheaf on X

will be a pair of families ({Fi}i∈I , {ϕij}i,j,∈I) with Fi a sheaf of OX−modules on
Ui and ϕij : Fj|Ui∩Uj

→ Fi|Ui∩Uj
isomorphisms such that

• ϕii is the identity for all i ∈ I.
• ϕij = ϕ−1

ji , for all i, j ∈ I.

• ϕij ◦ ϕjk ◦ ϕkl is multiplication by αijk on Fi|Ui∩Uj∩Uk
for all i, j, k ∈ I.

It is easy to see that the coherent α-twisted sheaves on X make up an abelian
category and thus give rise to a derived category D♭(X,α). For further properties
of α-twisted sheaves, see [Cal00].

With the notation above, the family (Ui) becomes a twisted sheaf U w.r.t. the
cocycle p∗Jα of the sheaf O∗

J×SX as follows. The trivializations aij of the Fij induce
isomorphisms φij : Uj ≃ Ui which satisfy the definition of a twisted sheaf because
of identity 3.1. We also need the dual V of U on J ×S X which locally over Si is
given by

Vi = ρ∗i (OE×E(−∆)⊗ p∗2OE(p0)) ≃ OXiJ (−Γi)⊗ p∗XOXi
(si).

It follows that Vi is α
−1-twisted. We let V0 and U0 denote the extensions of V and

U to J ×X by zero.
The following theorem supplies us with the main tool for the treatment of the

moduli spaces MX(n, 0) of relatively semistable vector bundles on X of rank n
and degree 0 on the fibres Xs in section 5. It is an analog of theorem [Cal00,
Th.6.5.4](and also [Căl02]):

Theorem 4. Let X
π
−→ S be an elliptic principal fiber bundle. Let α ∈ Br(J) be

the obstruction to the existence of the universal sheaf on J ×S X and let U be the
associated p∗J(α)-twisted universal sheaf on J ×S X with its dual V as above.

Then the twisted Fourier-Mukai transform Ψ : D♭(J, α) → D♭(X), given by Ψ(F) :=
RpX∗(V0 ⊗L LpJ

∗F) is an equivalence of categories, where pJ and pX are the
product projections

(4.1) J J ×X
pJoo

pX // X

Note here that V0 ⊗L LpJ
∗F) is an object in the category of untwisted sheaves.

Proof. The theorem follows from the Căldăraru’s version of the Bridgeland (Orlov,
Mukai, etc.)-criterion ([Orl03],[Bri99], [Cal00, Th.3.2.1]), applied to our case. Due
to a private communication this criterion works also in the case when α is not
torsion1). It follows that the functor Ψ is fully faithful if and only if for each point
y ∈ J and its skyscraper sheaf C(y), Hom(Ψ(C(y)), Ψ(C(y))) = C and for any

1The authors are indebted to Andrei Căldăraru for this information.
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y1, y2 ∈ J , Exti(Ψ(C(y1)), Ψ(C(y2))) = 0, unless y1 = y2 and 0 ≤ i ≤ dim(J).
Moreover Ψ is an equivalence of categories if and only if for any y ∈ J we have
Ψ(C(y))⊗ ωX ≃ Ψ(C(y)). Note that in our case the canonical bundle is trivial so
that the last condition is automatically satisfied.
In order to compute Ψ(C(y))) for a point y ∈ J , let s ∈ Si be the image in S
and consider V0 ⊗ p∗JC(y). Its support is (J ×S X) ∩ ({y} × X) = {y} × Xs.
We may therefore identify V with Vi and obtain V0|{y} × X ≃ OXs

(−x + si(s)),
where θi(x) = y and si denotes the local section of X corresponding to p0. Because
p∗JC(y) = Oy×Xs

, we obtain Ψ(C(y))) ≃ pX∗OXs
(−x+si(s)) ≃ is∗OXs

(−x+si(s))
by the base change isomorphism for the inclusion is which holds in this case because
Xs is smooth as is the projection pX , see [BO95, Lemma 1.3] Using this, we conclude
that Hom(Ψ(C(y)),Ψ(C(y))) = C and we proceed in the same way for Ext. �

Remark 2. On can see this result in connection with section 6 of [KO03], since
the element α ∈ Br(J) is not torsion.

In the sequel we shall work with the adjoint transform

Φ(−) = RpJ∗(U
0 ⊗L Lp∗X(−))

of Ψ, with kernel U0. It is the reverse equivalence, see [BM02, 8.4], [Huy06],
[BBHR09] for the untwisted situation.

We need the following special cases of base change properties.

Proposition 1. For any s ∈ S let is : Xs → X and js : {s}×E → J be the natural
inclusions. Then the canonical morphism of functors

(4.2) Lj∗s ◦ Φ ≃ Φs ◦ Li
∗
s,

is an isomorphism, where Φs is the classical Fourier-Mukai transform associated
with the Poincarè bundle over E × E.

Proof. Let j̃s denote the inclusion of Js ×Xs into J ×S X and let pJs
be the first

projection of Js ×Xs. By [BO95, Lemma 1.3] Lj∗spJ∗ = RpJs∗j̃s
∗
. Then

Lj∗spJ∗(V
0 ⊗ p∗XF) ≃ RpJs∗j̃s

∗
V0 ⊗ p∗XF ≃ (V|Js ×Xs)⊗ p∗Xs

i∗sF ,

which implies the formula. �

The following definition is very usefull for dealing with the spectral covers in the
next section.

Definition 3. ([Muk81]) We denote by Φi(F) the i-th term of the complex Φ(F).
We say that the sheaf F is Φ−WITi (the weak index theorem holds) if Φi(F) 6= 0
and Φj(F) = 0 for any j 6= i. Moreover if F is WITi and Φi(F) is locally free we
say that F is ITi.

Consider now a rank n vector-bundle F over the principal elliptic bundle X and
denote its restriction to a fibre Xs by Fs. From Proposition 1 it follows that if Fs

is Φs-WITi for any s then F is Φ−WITi.

5. A spectral cover and vector bundles on X

In this section we shall apply the twisted Fourier-Mukai transform to the moduli
problem for rank-n relatively semi-stable vector bundles on the principal elliptic
bundle X . By Deligne’s theorem (Theorem 1), the degree of the restriction Fs
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of any vector bundle F on X is 0 for any s ∈ S. Therefore we consider the set
MSX(n, 0) of rank-n vector bundles on X which are fibrewise semistable and of
degree zero, together with its quotient

MX(n, 0) := MSX(n, 0)/ ∼

of equivalence classes, where two bundles are defined to be equivalent if they are
fibrewise S-equivalent.

Let us recall that a vector bundle E on a smooth projective curve is called
semistable if for any proper subbundle E ′,

deg(E ′)/ rank(E ′) ≤ deg(E)/ rank(E).

For such bundles there is the standard notion of S-equivalence, see e.g. [HL97].
It is well-known that the semistable vector bundles of degree zero on the elliptic

curve E are direct sums

(5.1) E =
⊕

i

Ani
⊗OE(xi − p0),

where the An denote the indecomposable Atiyah bundles of degree zero which are
inductively defined by nontrivial extensions 0 → OE → An → An−1 → 0 with
A1 = OE , see [Ati57] [FMW99, Def. 1.12] or [Tu93]. It follows that each such E
is S-equivalent to a direct sum gr(E) = ⊕jOE(yj − p0)

⊕mj with pairwise distinct
points yj .

Proposition 2. ([RMP02], [BBRMP98]) Let F be a member of MSX(n, 0). Then
(i) F is Φ-WIT1.
(ii) for any s ∈ S with Fs as in 5.1, the sheaf Φ1(Fs) is a skyscraper sheaf ⊕jCj with
Supp(Cj) = {−yj}, (the point of the dual bundle OE(−yj + p0) ≃ OE([−yj ]− p0),
[−yj] denoting the divisor of −yj ∈ E) and length(Cj) = mj.

Proof. The first part follows from [BBRMP98] Prop. 2.7 and Cor. 2.12. The second
part follows by direct computation and the base change property Proposition 1. �

Remark 3. The proof shows that the sheaves Φ1(Fs) and Φ1(gr(Fs)) are the same.

Remark 4. The condition for Fs to be Φs-WIT1 is even equivalent for Fs to be of
degree 0 and semi-stable, see [RMP02].

For a Φ-WIT1-sheaf F on X , we define the spectral cover of F as follows.

Definition 4. Let F be a WIT1 sheaf on X. The spectral cover C(F) of F is
the 0−th Fitting subscheme of J given by the Fitting ideal sheaf Fitt0(Φ

1(F)) of
Φ1(F).

Because we work over a non-algebraic manifold and because the image of Φ is
not in the derived category of coherent shaves, but in that of twisted sheaves, we
need to prove that the Fitting scheme is well-defined in our case. But this follows
from the fact that the Fitting ideals are independent of the finite presentation of
the local sheaves Fi of an α−sheaf, see [Eis95, 20.4]. Thus we have well-defined
sheaves of ideals Fittl(F) given locally by the ideal sheaves Ipi−l(Fi) of minors of

size pi − l of the matrix Fi of a local presentation Oqi
J

Fi−→ Opi

J → Fi → 0 over the
open set Ui. This sheaf gives us an analytic subspace V (Fittl(F)) called the l-th
Fitting scheme by abuse of notation in the analytic category.
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By Proposition 2 (ii), for a single fiber Xs, we are given a map MXs
(n, 0) →

SymnJs from the moduli space of semistable vector bundles of rank n and degree
0 to the n−th symmetric power of the torus Js = {s} × E, defined by

Fs 7→ Σj mj(s,−yj).

In this way we obtain a map from MX(n, 0) to S × Symn E, where Symn E :=
En/Sn is the n-th symmetric power of E as the quotient of En by the symmetric
group Sn. Then S × Symn E is a complex manifold of dimension n+2 and can be
thought of as the relative space of cycles of degree n in E. We will show that this
map is part of a transformation of functors with target HomS(−, S× Symn E) and
that S × Symn E corepresents the moduli functor MX(n, 0) for MX(n, 0) defined
as follows.

For any complex space T over S let the set MX(n, 0)(T ) be defined by

MX(n, 0)(T ) := MSX(n, 0)(T )/ ∼,

where MSX(n, 0)(T ) is the set of vector bundles on XT of rank n and fibre degree
0, and where the equivalence relation F ∼ G is defined by S−equivalence of the
restricted sheaves Ft and Gt on the fibres XTt. The functor property is then defined
via pull backs.

We are going to describe the spectral cover as a functor below. For that let
T → S be a complex space over S and let ΦT be the Fourier-Mukai transform for
the product JT ×XT with the pull back UT of U as kernel. By [BBRMP98], Prop.
2.7 and Cor. 2.12, any bundle FT in MSX(n, 0)(T ) is also ΦT −WIT1 and admits
a spectral cover C(FT ) ⊂ T × E defined by the Fitting ideal Fitt0Φ

1
T (FT ).

Lemma 3. If T is reduced, then C(FT ) is flat over T .

Proof. The fibres of C(FT ) are finite of constant lenght n as in the case of S above.
Because the projection to T is surjective, flatness follows from Douady’s criterion
in [Dou68]. �

Lemma 4. The spectral cover is compatible with base change: For any morhism
h : T

′

→ T over S and any bundle FT in MSX(n, 0)(T ),

h∗C(FT ) ≃ C(h∗FT )

Proof. Because the fibres of the morphisms pJ : JT ×XT → JT are 1-dimensional
and the sheaves FT are locally free, base change holds for R1pJ∗, see [BBRMP98]
Prop.2.6. When the induced map JT ′ → JT is denoted by hJ , then

h∗
JΦ

1
T (FT ) ≃ Φ1

T
′ (h∗FT )

for any FT ∈ MSX(n, 0)(T ). Since the Fitting ideals are also compatible with base
change, the claim follows. �

The spectral covers C(FT ) lead us to consider the relative Douady functors

Dn : (An/S)op → (Sets),

where (An/S) denotes the category of complex analytic spaces over S and where
a set Dn(T ) for a morphism T → S is defined as the set of analytic subspaces
Z ⊂ T × E which are flat over T and have 0-dimensional fibres of constant lenght
n. The Douady functor Dn is represented by a complex space Dn(S × E/S) over
S, see [Pou69]. For a point s ∈ S, Dn({s}) is the set of 0-dimensional subspaces
of length n and can be identified with the symmetric product Symn(E) because
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it is well known that the Hilbert-Chow morphism, in our case the Douady-Barlet
morphism, Dn({s}) → {s} × Symn(E) is an isomorphism for the smooth curve
E, see [Bar75] Ch.V. It is then easy to show that also the relative Douady-Barlet
morphism Dn(S ×E/S) → S × Symn(E) is an isomorphism. This implies that for
any complex space T over S there is bijection

(5.2) Dn(T )
∼
−→ HomS(T, S × Symn(E)).

One should note here that the behavior of families of cycles is more difficult to
describe than of those for the Douady space.

Let now Dn
r resp.MX(n, 0)r be the restriction of the functors Dn and MX(n, 0)

to the category (Anr/S) of reduced complex analytic spaces. By the Lemmas 3
and 4 the spectral covers give rise to a transformation of functors

(5.3) MX(n, 0)r
γ
−→ Dn

r ≃ HomS(−, S × Symn(E)),

where for a reduced space T over S and for a class [FT ] in MX(n, 0)(T ) we have
γ(T )(FT ) = C(FT ). Note that by flatness C(FT ) depends only on the equivalence
class of FT . We are now able to present the main theorem which generalises theorem
2.

Theorem 5. Let X → S be an elliptic principal bundle over a compact complex
manifold S of arbitrary dimension with invariant δ 6= 0. Then the spectral cover
induces a transformation of functors
γ : MX(n, 0)r → HomS(−, S × Symn(E)) with the following properties.

(i) The functor MX(n, 0)r is corepresented by S×Symn(E) via the transforma-
tion γ,

(ii) For any point s ∈ S the induced map MXs
(n, 0) → Symn(E) is bijective.

(iii) The map γ(T ) is injective for any reduced complex space T over S.
(iv) MX(n, 0)r is locally representable by S × Symn(E), i.e. if U ⊂ S is a triv-

ializing open subset for X and T is a complex space over U , then γ(T ) is bijective.

Proof. Property (ii) is clear by the construction of the functors.
We begin proving the injectivity in (iii). Let [F1], [F2] ∈ MX(n, 0)(T ) such that
γ(T )([F1]) = γ(T )[F2]). This implies that for every t ∈ T the spectral covers of
(F1)t and (F2)t are the same. If (F1)t is S-equivalent to ⊕jOE(yj − p0)

⊕mj , then
C((F1)t) = Σjmj(−yj) and visa versa by by Atiyah’s classification. Hence (F1)t
and (F2)t are S-equivalent. But this is precisely the equivalence relation for the
classes [F1] and [F2].
To prove (iv), let U ⊂ S be an open subset over which X is trivial and let T → U
be a reduced complex space over U . Then we can assume that XT = T × E. First
we define a map

HomS(T, S × En)
b(T )
−−−→ MX(n, 0)(T )

as follows. Given a morphism (p, f) : T → U × En over S, let fν : T → E be the
ν-th component of f . Let then

Lν := (fν × id)∗OE×E(−∆)⊗ p∗2OE(p0)

on T ×E be the pull back of the dual Poincare bundle. Then the spectral cover of
Lν,t for any point t ∈ T consists of the point fν(t) ∈ E. The map b(T ) can now
be defined by (p, f) 7→ [L1 ⊕ · · · ⊕ Ln]. This map is obviously Sn-equivariant and
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thus can be factorized through HomS(T, S × Symn(E)), giving a map

HomS(T, S × Symn(E))
β(T )
−−−→ MX(n, 0)(T ).

By construction, β(T ) is an inverse of γ(T ).
The proof of (i) is now analogous to that of (i) for Theorem 2, using (iv). �

Appendix A. Invariants of torus bundles

LetM be an n-dimensional compact complex manifold, T = V/Λ an m-dimensional

complex torus and X
π
−→ M a principal bundle with fiber T . The theory of prin-

cipal torus bundles is developed in great detail in [Höf93]; see also [BU96]. It is
well known that such bundles are described by elements of H1(M,OM (T )), where
OM (T ) denotes the sheaf of local holomorphic maps from M to T . Considering the
exact sequence of groups

0 → Λ → V → T → 0

and taking local sections we obtain the following exact sequence

0 → Λ → OM ⊗ V → OM (T ) → 0.

Passing to the cohomology we have the long exact sequence

· · · → H1(M,Λ) → H0,1
M ⊗ V → H1(M,OM (T ))

cZ

−→

cZ

−→ H2(M,Λ) → H0,2
M ⊗ V → · · ·

By taking the image of the co-cycle defining the bundle via the map cZ we obtain
a characteristic class cZ(X) ∈ H2(M,Λ) = H2(M,Z) ⊗ Λ and also a characteristic
class c(X) ∈ H2(M,C)⊗ V .

Concerning some important sheaves on X we have (see [Höf93]):

(A.1) KX = π∗KM , Riπ∗OX = OM ⊗C H0,i(T )

and the exact sequence

(A.2) 0 → Ω1
M → π∗Ω

1
X → OM ⊗C H1,0(T ) → 0.

All the informations concerning the topology of the bundle X → M are given by
the following invariants

a) The exact sequence (A.2) gives rise to an element γ ∈ Ext1(OM⊗H1,0(T ),Ω1
M ) =

H1(Ω1
M )⊗H1,0(T )∗. Thus γ is a map H1,0(T ) → H1,1(M).

b) The first non-trivial d2− differential in the Leray spectral sequence (d2 :

E0,1
2 → E2,0

2 ) of the sheaf CX . We obtain in this way a map δ : H1(T,C) →
H2(M,C). In the same way we may define the maps δZ : H1(T,Z) →
H2(M,Z).

c) The first non-trivial d2−differential in the Leray spectral sequence of OX ,
where d2 : H0(R1π∗OX) → H2(π∗OX). Via the identifications (A.1) we
get a map ǫ : H0,1(T ) → H0,2(M).

d) The characteristic classes cZ(X) and c(X) defined above.

These invariants are related by the following theorem of Höfer:

Theorem 6. Let X
π
−→ M be a holomorphic principal T -bundle. Then:
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(1) The Borel spectral sequence ([Hir66, Appendix Two by A.Borel])
p,qEs,t

2 =
∑

Hi,s−i(M)⊗Hp−i,t−p+i(T ) degenerates on E3− level and the
d2−differential is given by ǫ and γ.

(2) The Leray spectral sequence Es,t
2 = Hs(M,C) ⊗ Ht(T,C) degenerates on

E3− level and the d2− differential is given by δ.
(3) Via the identification H1(T,Z) = Hom(Λ,Z) the characteristic class cZ and

the map δZ coincide.
(4) δ is determined by δZ via scalar extension.
(5) If H2(M) has Hodge decomposition then δ determines ǫ and γ and con-

versely.

In order to compute the Dolbeault cohomology of X we need to use the Borel
spectral sequence because the direct-image sheavesRjπ∗Ω

p
X are non-trivial for p > 0

and the Leray spectral sequence is more difficult to use.

Appendix B. Invariants of elliptic principal bundles over surfaces

In what follows we shall consider fiber bundles with basis M a smooth complex
surface and fiber T an elliptic curve. In this case a more detailed description is
possible. Let (1, τ) be a basis of Λ, let (dt, dt̄) be a basis of H1(T,C) given by the
decomposition H1(T,C) = H1,0(T )⊕H0,1(T ) (another basis on H1(T,C) is given
by the canonical coordinates (dx1, dx2)). Assume that cZ = a ⊗ 1 + b ⊗ τ , then
c = (a+ b · τ) ⊗ 1 = η ⊗ 1, with η02 = 0. Then we have

δ : dt 7→ a+ τ · b = η

dt̄ 7→ a+ τ̄ · b = η̄

ǫ : dt̄ 7→ (a+ τ̄ · b)02 = η̄02

γ : dt 7→ (a+ τ · b)11 = η11.

The only non-zero terms in the Borel spectral sequence are

(B.1) Hp−1,q−2(M)⊗H1,1(T )

γ
uu❦❦❦

❦❦
❦❦
❦❦
❦❦
❦❦
❦

−ǫ

))❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙

Hp,q−1(M)⊗H0,1(T )

ǫ

))❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙

⊕ Hp−1,q(M)⊗H1,0(T )

γ
uu❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦

Hp,q+1(M)⊗H0,0(T ).

From now on we shall be concerned with the case when M has trivial canonical
bundle. By (A.1) this implies that X also has trivial canonical bundle. The case
when M is Kähler was considered by Höfer. This leaves us with the case when M
is a primary Kodaira surface. We shall use the preceding diagram to compute the
Hodge numbers for X in this case. Recall that the Hodge diamond for a primary
Kodaira together with Betti numbers is, see [BPVdV84, V.5.].

1 1
2 1 3

1 2 1 4
1 2 3

1 1
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Taking into account the Hodge numbers from above and the fact that all the Dol-
beault groups of the elliptic curve that appear in (B.1) are 1-dimensional we obtain
the following Hodge diamond for X

(B.2)

1
2− e 3− g

3− e 6− g − h 2− g
1 5− g − h 5− g − h 1

2− g 6− g − h 3− e
2− g 1− e

1

where e = Rank(ǫ); g = Rank(γ) and h is the rank of the map given by the multi-
plication with γ(dt)− ǫ(dt̄).

The first Betti number is given by b1(X) = b1(M)+dim Ker(δ) = 3+2−d = 5−d,
where d = Rank(δ). To compute the Betti number b2(X) we shall use the Leray
spectral sequence for the constant sheaf CX . We have Epq

2 = Hp(M,Rqπ∗CX) =

HP (M,C)⊗Hq(T,C), the d2−differential is determined by δ : E0,1
2 = H1(T,C) →

E20
2 = H2(M,C) and the sequence degenerates at the E3 level. In this case E02

∞ =
E02

3 = Ker(E02
2 → E21

2 ) = Ker(H2(T,C) → H2(M,C)⊗H1(T,C)), and so E02
3 ≃ 0

(we assumed that δ 6= 0). Moreover, E11
3 = Ker(E11

2 → E30
2 ) = Ker(H1(M,C) ⊗

H1(T,C) → H3(M,C)). It follows that dim(E11
3 ) = 6− d′, where d′ is the rank of

the map obtained by composing δ and the cup-product. Similarly, dim(E20
3 ) = 4−d.

We have the filtration 0 ⊂ F2 ⊂ F1 ⊂ F0 = H2(X,C) associated with the spectral
sequence (that is F2 ≃ E20

∞ , F1/F2 ≃ E11
∞ and F0/F1 ≃ E02

∞ = 0). So we obtain
an exact sequence 0 → F2 → F1 → F1/F2 → 0. From the above computations it
follows that b2(X) = dim(E20

∞ ) + dim(E11
∞) = 10− d− d′.

For b3(X) we remark that in the Leray filtration 0 ⊂ F3 ⊂ F2 ⊂ F1 ⊂ F0 =
H3(X,C) we have F1 = F0. This makes the things easier and by a 2-step compu-
tation we obtain that b3(X) = 12 − 2d′ so we can complete the table (B.2) with

(B.3)

1
5− d

10− d− d′

12− 2d′

10− d− d′

5− d
1

For comparison purpose we present also the results of Höfer ([Höf93, 13.6,13.7]). In
the case M is a torus we get

(B.4)

1 1
5− f − g 3− e 4

3− h 8− f − g 3− e 8
1 6− h 6− h 1 10

3− e 8− f − g 3− h 8
3− e 5− f − g 4

1 1,
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where h := Rank(H0,1(M)⊗H1,0(T )
γ(dt)∧·
−−−−→ H1,2(M) and

f := Rank(H1,0(M)⊗H0,1(T )
ǫ(dt̄)∧·
−−−−→ H1,2. When M is a K3 surface we have

(B.5)

1 1
1− g 1− e 0

1 20− g 1− e 20
1 20 20 1 42

1− e 20− g 1 20
1− e 1− g 0

1 1.
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Non-Kähler string backgrounds and their five torsion classes. Nuclear Phys. B, 652
(1-3):5–34, 2003. CODEN NUPBBO. ISSN 0550-3213. URL http://dx.doi.org/10.

1016/S0550-3213(03)00049-X.
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