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INFINITE-DIMENSIONAL PROLONGATION LIE ALGEBRAS
AND MULTICOMPONENT LANDAU-LIFSHITZ SYSTEMS

ASSOCIATED WITH HIGHER GENUS CURVES

SERGEY IGONIN, JOHAN VAN DE LEUR, GIANNI MANNO, AND VLADIMIR TRUSHKOV

Abstract. The Wahlquist-Estabrook prolongation method constructs for some PDEs a Lie algebra
that is responsible for Lax pairs and Bäcklund transformations of certain type. We present some general
properties of Wahlquist-Estabrook algebras for (1 + 1)-dimensional evolution PDEs and compute this
algebra for the n-component Landau-Lifshitz system of Golubchik and Sokolov for any n ≥ 3.

We prove that the resulting algebra is isomorphic to the direct sum of a 2-dimensional abelian
Lie algebra and an infinite-dimensional Lie algebra L(n) of certain matrix-valued functions on an
algebraic curve of genus 1+(n−3)2n−2. This curve was used by Golubchik, Sokolov, Skrypnyk, Holod
in constructions of Lax pairs. Also, we find a presentation for the algebra L(n) in terms of a finite
number of generators and relations. These results help to obtain a partial answer to the problem of
classification of multicomponent Landau-Lifshitz systems with respect to Bäcklund transformations.

Furthermore, we construct a family of integrable evolution PDEs that are connected with the
n-component Landau-Lifshitz system by Miura type transformations parametrized by the above-
mentioned curve. Some solutions of these PDEs are described.

1. Introduction

1.1. Motivation for the studied problem and a summary of the results. In the last 30 years,
it has been relatively well understood how to obtain integrable PDEs from some infinite-dimensional
Lie algebras (see, e.g., [1, 3, 4, 5, 8, 10, 11, 19, 23, 26, 27] and references therein). We study the inverse
problem: given a PDE1, how to determine whether this PDE is related to an infinite-dimensional Lie
algebra and how to construct the corresponding Lie algebra?
A partial answer to this question is provided by the so-called Wahlquist-Estabrook prolongation

method [6, 20, 22, 29]. For a given (1 + 1)-dimensional evolution PDE, this method constructs a Lie
algebra in terms of generators and relations. It is called the Wahlquist-Estabrook algebra of the PDE
(WE algebra for short). The method is applicable also to some non-evolution PDEs (see, e.g., [9, 22]).
The construction of the WE algebra for a PDE uses only the PDE itself. Here the PDE does not

have to be integrable. When the WE algebra turns out to be infinite-dimensional, this is usually a
serious indication that the PDE possesses some integrability properties.
Before describing the results of this paper, we would like to recall some known applications of

WE algebras. Any matrix representation of the WE algebra of a PDE determines a zero-curvature
representation (ZCR) for this PDE. (For (1 + 1)-dimensional PDEs, the notion of ZCR is essentially
equivalent to that of Lax pair.) Vector field representations of the WE algebra often lead to Bäcklund
transformations. Computing the structure of WE algebras for PDEs, one can get many interesting
infinite-dimensional Lie algebras (see, e.g., [7, 9, 12, 14, 24] and references therein).
Using some generalization of WE algebras, one obtains powerful necessary conditions for two given

PDEs to be connected by a Bäcklund transformation (BT for short) [14, 15, 16]. For example, the
following result has been proved recently in [15] by means of this theory. For any e1, e2, e3 ∈ C,
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consider the Krichever-Novikov equation

(1) KN(e1, e2, e3) =

{

ut = uxxx −
3

2

u2xx
ux

+
(u− e1)(u− e2)(u− e3)

ux
, u = u(x, t)

}

,

and the algebraic curve C(e1, e2, e3) =
{

(z, y) ∈ C2
∣
∣
∣ y2 = (z − e1)(z − e2)(z − e3)

}

.

Proposition 1 ([15]). Let e1, e2, e3, e
′
1, e

′
2, e

′
3 ∈ C be such that ei 6= ej and e′i 6= e′j for all i 6= j.

If the curve C(e1, e2, e3) is not birationally equivalent to the curve C(e′1, e
′
2, e

′
3), then the equation

KN(e1, e2, e3) is not connected with the equation KN(e′1, e
′
2, e

′
3) by any Bäcklund transformation.

Also, if e1 6= e2 6= e3 6= e1, then KN(e1, e2, e3) is not connected with the KdV equation by any BT.

Similar results are proved in [15] for the Landau-Lifshitz and nonlinear Schrödinger equations as
well.
BTs of Miura type (differential substitutions) for (1) were studied in [28]. According to [28], the

equation KN(e1, e2, e3) is connected with the KdV equation by a BT of Miura type iff ei = ej for
some i 6= j.
The papers [15, 16] and Proposition 1 consider the most general class of BTs, which is much

larger than the class of BTs of Miura type studied in [28]. WE algebras played an important role in
obtaining these results about BTs in [14, 15, 16]. A method to obtain results similar to Proposition 1
is discussed in Subsection 1.3 of the present paper.
In our opinion, the above-mentioned applications of WE algebras strongly suggest to study these

algebras for more PDEs. According to [24], the WE algebra of the Landau-Lifshitz equation is
isomorphic to the infinite-dimensional Lie algebra of certain matrix-valued functions on an algebraic
curve of genus 1. One of our goals is to present examples of WE algebras related to higher genus
curves.
To this end, we study a multicomponent generalization of the Landau-Lifshitz equation from [10,

27]. To describe this PDE, we need some notation. Let K be either C or R. Fix an integer n ≥ 2.
For any n-dimensional vectors V = (v1, . . . , vn) and W = (w1, . . . , wn), set 〈V,W 〉 =

∑n

i=1 v
iwi.

Let r1, . . . , rn ∈ K be such that ri 6= rj for all i 6= j. Denote by R = diag (r1, . . . , rn) the diagonal
(n× n)-matrix with entries ri. Consider the PDE

(2) St =
(

Sxx +
3

2
〈Sx, Sx〉S

)

x
+

3

2
〈S,RS〉Sx, 〈S, S〉 = 1, R = diag (r1, . . . , rn),

where S =
(
s1(x, t), . . . , sn(x, t)

)
is a column-vector of dimension n, and si(x, t) take values in K.

System (2) was introduced in [10]. According to [10], for n = 3 it coincides with the higher
symmetry (the commuting flow) of third order for the Landau-Lifshitz equation. Thus (2) can be
regarded as an n-component generalization of the Landau-Lifshitz equation.
The paper [10] considers also the following algebraic curve

(3) λ2i − λ2j = rj − ri, i, j = 1, . . . , n,

in the space Kn with coordinates λ1, . . . , λn. According to [10], this curve is of genus 1 + (n− 3)2n−2,
and system (2) possesses a ZCR parametrized by points of this curve.
System (2) has an infinite number of symmetries, conservation laws [10], and an auto-Bäcklund

transformation with a parameter [2]. Soliton-like solutions of (2) can be found in [2]. In [27] system (2)
and its symmetries are constructed by means of the Kostant–Adler scheme.
The results of this paper can be summarized as follows.
In Section 2 some general properties of WE algebras are presented. In particular, a rigorous

definition of these algebras is given for a wide class of PDEs. An outline of these properties is
presented in Subsection 1.2.
In Sections 3, 4, for all n ≥ 3, the WE algebra of system (2) is computed. We prove that the

WE algebra of (2) is isomorphic to the direct sum K2 ⊕ L(n). Here K2 is a 2-dimensional abelian
Lie algebra, and L(n) is an infinite-dimensional Lie algebra of certain matrix-valued functions on the
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curve (3). Applications of this result to some classification problems for Bäcklund transformations
of (2) are discussed in Subsection 1.3.
To our knowledge, this is the first example of a computation of WE algebras for PDEs related to

algebraic curves of genus > 1. Also, this seems to be the first example of an explicit description of
the WE algebra for a PDE with more than 3 dependent variables. (In system (2), the dependent
variables are s1(x, t), . . . , sn(x, t).)
In Remark 2 in Subsection 1.2 we discuss how one can recover the curve (3) from the WE algebra

of (2).
As a by-product, we obtain a presentation for the algebra L(n) in terms of a finite number of

generators and relations.
The algebra L(n) is very similar to infinite-dimensional Lie algebras that were studied in a different

context in [10, 13, 26, 27]. Note that a presentation in terms of a finite number of generators and
relations was not known for L(n) in the case n > 3. For n = 3 such a presentation was obtained
in [24] in the computation of the WE algebra of the classical Landau-Lifshitz equation.
In Section 5 we construct new Bäcklund transformations of Miura type, which connect system (2)

with a family of integrable evolution PDEs parametrized by the curve (3). Also, some solutions of
these PDEs are described. The constructed BTs correspond to certain vector field representations of
the WE algebra of (2).
These results are explained in more detail in Subsection 1.2.
Weaker versions of some of these results appeared in our preprint [17]. For completeness, we include

some results of [17] in the present paper.

1.2. A more detailed description of the results. In Section 2 we give a definition of WE algebras
for evolution systems

(4)
∂ui

∂t
= F i(u1, . . . , um, u11, . . . , u

m
1 , . . . , u

1
d, . . . , u

m
d ), ui = ui(x, t), uik =

∂kui

∂xk
, i = 1, . . . , m.

The main idea of our definition is very similar to that of [6, 20, 22, 29]. However, instead of the
standard approach of differential forms and vector fields, we use formal power series with coefficients
in Lie algebras. The formal power series approach has the following advantage.
In the classical Wahlquist-Estabrook prolongation theory [6, 20, 22, 29], one imposes some con-

ditions on the functions F i in (4), in order to get a well-defined WE algebra. We do not impose
any conditions on F i. The formal power series approach makes it possible to define the WE algebra
rigorously for every system (4), where F i can be arbitrary.
The definition goes as follows. Suppose that ui take values in K. Let Dx, Dt be the total derivative

operators corresponding to (4).
Fix aik ∈ K for i = 1, . . . , m and k = 0, 1, 2, . . . such that the functions F i from (4) are defined on

a neighborhood of the point uik = aik. Here u
i
0 is ui. Consider the equation

(5) Dx(B)−Dt(A) + [A,B] = 0,

where A is a power series in the variables ui − ai0, and B is a power series in the variables uik − aik for

k ≤ d− 1. Here d ≥ 1 is such that F i may depend only on ujl for l ≤ d.
The coefficients of the power series A, B are regarded as generators of the WE algebra, and

equation (5) provides relations for these generators. A more detailed description of this construction
is given in Section 2.1.
Thus the WE algebra is determined by system (4) and numbers aik. In Section 2.2 we show that

in many cases the WE algebra does not depend on the choice of aik.

Remark 1. Let q be a nonnegative integer. One can also study equation (5) in the case when A may
depend on uik − aik for k ≤ q and B may depend on ui

′

k′ − ai
′

k′ for k
′ ≤ q + d− 1.

If q = 0, we get the WE algebra. When q > 0, the problem becomes much more complicated,
because one needs to use gauge transformations, in order to simplify solutions A, B of (5). Studying
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equation (5) for q > 0 and using gauge transformations, one can obtain the so-called fundamental Lie

algebra for (4), which generalizes the WE algebra. The notion of fundamental Lie algebras for PDEs
is described in [16] and is briefly discussed in Subsection 1.3 of the present paper.

In Section 3 this construction is applied to system (2). If n = 2 then (2) is equivalent to a scalar
equation of the form ut = uxxx + f(u, ux, uxx). For scalar equations of this type, WE algebras have
already been studied quite well (see, e.g., [7, 14] and references therein). In the case n = 2 the
curve (3) is rational. For these reasons, we assume n ≥ 3.
Using the definition of WE algebras, we first obtain the WE algebra of (2) in terms of generators

and relations. Namely, in Section 3 it is shown that the WE algebra of (2) is isomorphic to the direct
sum of a 2-dimensional abelian Lie algebra and an infinite-dimensional Lie algebra g(n). The algebra
g(n) is given by generators p1, . . . , pn and the relations

[pi, [pj, pk]] = 0, i 6= j 6= k 6= i, i, j, k = 1, . . . , n,(6)

[pi, [pi, pk]]− [pj, [pj , pk]] = (rj − ri)pk, i 6= k, j 6= k, i, j, k = 1, . . . , n.(7)

In Section 4 we prove that g(n) is isomorphic to the infinite-dimensional Lie algebra L(n) of certain
son,1-valued functions on the curve (3). Here son,1 is the Lie algebra of the matrix Lie group O(n, 1),
which consists of linear transformations that preserve the standard bilinear form of signature (n, 1).
From the isomorphism g(n) ∼= L(n) we get for L(n) a presentation in terms of n generators and
relations (6), (7).
One has also L(n) =

⊕∞

i=1 Li for some vector subspaces Li ⊂ L(n) with the following properties

[Li, Lj] ⊂ Li+j + Li+j−2, dimL2k−1 = n, dimL2k =
n(n− 1)

2
, i, j, k ∈ Z>0.

Thus the Lie algebra L(n) is quasigraded (almost graded) in the sense of [21, 27].
For n = 3 relations (6), (7) and the isomorphism g(3) ∼= L(3) were obtained in [24] in the compu-

tation of the WE algebra of the classical Landau-Lifshitz equation.

Remark 2. Clearly, relations (7) look somewhat similar to equations (3). And indeed, formulas (80),
(90) and Theorem 4 in Section 4 explain how pi is related to λi. Relations (7) are obtained by the
Wahlquist-Estabrook method applied to (2). Therefore, at least in some examples, WE algebras help
to answer the following question. Given a PDE, which is suspected to be integrable, how to find an
algebraic curve such that the PDE possesses a ZCR parametrized by this curve? More precisely, we
mean the following.
According to Section 2.1, one has a universal procedure that constructs the WE algebra in terms

of generators and relations for any system (4). Applying this procedure to system (2), one gets
relations (6), (7). If we want to find a ZCR parametrized by an algebraic curve, we should assume
that pi corresponds to a matrix-valued function on a curve. Then, looking at relations (7), one can
guess that one should consider the curve (3).

Our proof of the isomorphism g(n) ∼= L(n) goes as follows. The ZCR for (2) described in [10, 27]
can be interpreted as a ZCR with values in L(n). This ZCR corresponds to a representation of the
WE algebra of (2). Therefore, we obtain a homomorphism from the WE algebra to L(n). Using some
filtrations on the algebras g(n) and L(n), we prove that this homomorphism induces an isomorphism
between g(n) and L(n).
Recall that a Miura type transformation (MTT) for system (4) is given by

vit = Gi(vj, vjx, v
j
xx, . . . ), vi = vi(x, t), i, j = 1, . . . , m,(8)

ui = H i(vj, vjx, v
j
xx, . . . ), i, j = 1, . . . , m.(9)

Here (8) is another evolution PDE, and formulas (9) must satisfy the following properties. For any
solution vi of (8), the functions ui given by (9) obey equations (4). And for any solution ui of (4),
locally there exist functions vi satisfying (8), (9).
MTTs play an essential role in the classification of some types of integrable PDEs (see, e.g., [28]).
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To our knowledge, before the present paper, there were no examples of MTTs for system (2). In
Section 5 we construct a family of such MTTs parametrized by points of the curve (3).
Namely, we find an evolution system of the form

(10) vit = P i(λ1, . . . , λn, v
j, vjx, v

j
xx, v

j
xxx), i = 1, . . . , n,

n∑

i=1

(vi)2 = 1,

and a transformation

(11) si = Ri(λ1, . . . , λn, v
j, vjx), i = 1, . . . , n.

Here λ1, . . . , λn ∈ C are parameters satisfying (3) and λi 6= 0 for all i = 1, . . . , n. Formulas (10), (11)
are defined locally on some open subset of the space of jets of functions si, vi.
For any solution v1, . . . , vn of (10), the function S = (s1, . . . , sn) given by (11) obeys (2). For any

fixed solution S = (s1, . . . , sn) of (2) and any fixed nonzero numbers λ1, . . . , λn satisfying (3), locally
there is an (n− 1)-parametric family of solutions v1, . . . , vn of equations (10), (11).
This seems to be the first example of MTTs parametrized by an algebraic curve of genus > 1. To

construct this MTT, we find a nonlinear reduction of the auxiliary linear system corresponding to
the ZCR for (2).
It is well known that, if system (4) is integrable and system (8) is connected with (4) by an MTT (9),

then (8) is also integrable. Therefore, since (2) is integrable, we see that (10) is integrable as well. In
particular, one can transfer the known ZCR, conservation laws, and auto-Bäcklund transformations
of (2) to system (10) by means of the transformation (11).
In Remark 12 it is shown that the constructed MTTs correspond to some vector field representations

of the WE algebra of (2). In Section 5 we show also how to obtain solutions for (10) from solutions
of (2) and describe some solutions for (10) explicitly.
Section 6 contains the proof of the technical Lemma 6 about g(n).

Remark 3. Several more integrable PDEs with ZCRs parametrized by the curve (3) were introduced
in [10, 13, 26]. It was noticed in [26] that the formulas λ = λ2i + ri, y =

∏n

i=1 λi provide a map from
the curve (3) to the hyperelliptic curve y2 =

∏n

i=1(λ− ri). According to [10], for n > 3 the curve (3)
itself is not hyperelliptic.

1.3. Some problems on Bäcklund transformations. In this subsection, all functions are assumed
to be analytic. Recall that system (2) is determined by constants r1, . . . , rn. Denote system (2) by
L(r1, . . . , rn).
Similarly to Proposition 1, it is natural to ask the following question. Let r1, . . . , rn, r

′
1, . . . , r

′
n ∈ K

be such that ri 6= rj and r′i 6= r′j for all i 6= j. Is the system L(r1, . . . , rn) connected with the
system L(r′1, . . . , r

′
n) by any Bäcklund transformation (BT)?

In other words, we are interested in classification of systems L(r1, . . . , rn) for r1, . . . , rn ∈ K with
respect to Bäcklund transformations. In the present subsection, we would like to discuss some work
in progress about questions of this type.
It is well known that, in order to study BTs for a PDE (4), one needs to consider overdetermined

systems

wj
x = f j(wl, x, t, ui, uix, u

i
xx, . . . ), wj

t = gj(wl, x, t, ui, uix, u
i
xx, . . . ),(12)

wj = wj(x, t), j, l = 1, . . . , q,

such that system (12) is compatible modulo (4).
The WE algebra of (4) helps to describe systems of the following type

(13) wj
x = f j(wl, ui), wj

t = gj(wl, ui, uix, u
i
xx, . . . ), wj = wj(x, t), j, l = 1, . . . , q,

where equations (13) are assumed to be compatible modulo (4). It is well known that systems (13)
correspond to representations of the WE algebra by vector fields on the manifold W with coordinates
w1, . . . , wq.
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A similar description of systems (12) is given in [16]. We do not have a possibility to report here
all details of this theory, so we present only a sketchy overview of the main ideas.
For a given PDE (4), the preprint [16] defines the fundamental Lie algebra, which generalizes the

WE algebra and satisfies the following property. Any compatible system (12) is gauge equivalent
to a system arising from a vector field representation of the fundamental Lie algebra of (4). More
precisely, the fundamental Lie algebra is defined for each point of the infinite prolongation of (4) in
the corresponding jet space (see [16] for details).
This Lie algebra is called fundamental, because it is analogous to the fundamental group in topology.

According to [20], there is a notion of coverings of PDEs such that compatible systems (12) are
coverings of (4). This notion is similar to the classical concept of coverings from topology. Recall
that the fundamental group of a manifold M is responsible for topological coverings of M . In a
somewhat similar way, the fundamental Lie algebra of (4) is responsible for coverings (12) of (4).
The fundamental Lie algebra of a PDE has also some coordinate-independent geometric meaning
(see [16]).
Let L1 and L2 be Lie algebras. We say that L1 is cofinitely-equivalent to L2 if for each i = 1, 2

there is a subalgebra Hi ⊂ Li of finite codimension such that H1 is isomorphic to H2.
For example, let L1 be an infinite-dimensional Lie algebra and L2 ⊂ L1 be a subalgebra of finite

codimension. Then L1 is cofinitely-equivalent to L2, because one can take H1 = H2 = L2.
The following result is proved in [16].

Proposition 2 ([16]). Let E1 and E2 be evolution PDEs. Suppose that E1 and E2 are connected by

a BT. Then for each i = 1, 2 there is a point ai in the infinite prolongation of Ei such that the

fundamental Lie algebra of E1 at the point a1 is cofinitely-equivalent to the fundamental Lie algebra

of E2 at a2.

In fact the preprint [16] proves a more general result about PDEs that are not necessarily evolution.
A result similar to Proposition 2 is used in [15] in order to prove Proposition 1.
For a given evolution PDE (4), there is a natural homomorphism from the fundamental Lie algebra

to the WE algebra. This homomorphism reflects the fact that systems (13) are a particular case of
systems (12).
Recall that (2) is an evolution PDE, so we can consider the fundamental Lie algebras of (2). These

algebras are studied in [18]. Fix a point a in the infinite prolongation of (2). Denote by ψ the
homomorphism from the fundamental Lie algebra of (2) at a to the WE algebra of (2).
As has been said in Subsection 1.1, the WE algebra is isomorphic to K2 ⊕ L(n). Using this

description of the WE algebra, the preprint [18] shows that the image of ψ is isomorphic to L(n).
The kernel of ψ is studied in [18] as well. Loosely speaking, the results of [18] imply that the “main
part” of the fundamental Lie algebra of (2) is equal to the image of ψ and, therefore, is isomorphic
to L(n).
Thus the structure of the WE algebra (described in the present paper) plays a very important role

in the description of the fundamental Lie algebras for (2) given in [18].
Also, WE algebras help to obtain a partial answer to the above question about L(r1, . . . , rn) and

L(r′1, . . . , r
′
n). Namely, using Proposition 2 and the results of [16, 18], one can prove the following.

Statement 1. If the WE algebra of L(r1, . . . , rn) is not cofinitely-equivalent to the WE algebra of

L(r′1, . . . , r
′
n), then L(r1, . . . , rn) is not connected with L(r′1, . . . , r

′
n) by any BT.

We do not prove Statement 1 in the present paper. A proof of this statement will appear elsewhere.
Since we have an explicit description of the WE algebra for (2), Statement 1 provides an algebraic

necessary condition for existence of a BT connecting L(r1, . . . , rn) and L(r′1, . . . , r
′
n).

Recall that the WE algebra of L(r1, . . . , rn) is isomorphic to K2 ⊕ L(n), where L(n) consists of
certain matrix-valued functions on the curve (3). Similarly to Proposition 1, it is natural to expect
that the condition of Statement 1 can be reformulated in terms of properties of algebraic curves or
other algebraic varieties, but this is not clear yet.
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Note that the present paper is self-contained and can be studied independently of [14, 15, 16, 18].

1.4. Abbreviations and notation. The following abbreviations and notation are used in the paper.
WE = Wahlquist-Estabrook, ZCR = zero-curvature representation, BT = Bäcklund transformation,
MTT = Miura type transformation. The symbols Z>0 and Z≥0 denote the sets of positive and
nonnegative integers respectively.

2. The definition and some properties of Wahlquist-Estabrook algebras

2.1. The definition of Wahlquist-Estabrook (WE) algebras. The main idea of our definition
of WE algebras is very similar to that of [6]. However, instead of the standard approach of differential
forms and vector fields, we use formal power series with coefficients in Lie algebras.
This will allow us to define the WE algebras for any evolution system of the form

(14)
∂ui

∂t
= F i(u1, . . . , um, u11, . . . , u

m
1 , . . . , u

1
d, . . . , u

m
d ), ui = ui(x, t), uik =

∂kui

∂xk
, i = 1, . . . , m.

Here the number d ∈ Z>0 is such that F i may depend only on ujk for k ≤ d.
Following the jet bundle approach to PDEs [6], we regard

(15) uik, i = 1, . . . , m, k ∈ Z≥0, ui0 = ui,

as coordinates of an infinite-dimensional manifold E .
Let K be either C or R. In this paper, all vector spaces and algebras are over the field K. The

coordinates uik take values in K. If K = C then any function of the variables uik is assumed to be
analytic. In the case K = R, any function is smooth.
For each l ∈ Z≥0, consider the manifold El ∼= Km(l+1) with the coordinates uik for k ≤ l. We have

the natural projection πl : E → El that “forgets” the coordinates ui
′

k′ for k
′ > l.

The topology on E is defined as follows. For any l and any open subset V ⊂ El, the preim-
age π−1

l (V ) ⊂ E is, by definition, open in E . Such subsets form a base of the topology on E . In other
words, we consider the smallest topology on E such that all the maps πl are continuous.
A function f(uik) is called admissible if f depends only on a finite number of the coordinates (15).

Let E ′ be an open subset of E such that the functions F i from (14) are defined on E ′. Denote by A
the algebra of K-valued admissible functions on E ′.
The total derivative operators corresponding to (14) are

(16) Dx =
∂

∂x
+
∑

i,k

uik+1

∂

∂uik
, Dt =

∂

∂t
+
∑

i,k

Dk
x(F

i)
∂

∂uik
.

We regard Dx, Dt as derivations of the algebra A. It is well known that [Dx, Dt] = 0.
Let L be a Lie algebra. An admissible function with values in L is an element of the tensor product

L ⊗K A. From now on, all functions are supposed to be admissible. One has the Lie bracket on
L⊗K A defined as follows [h1 ⊗ f1, h2 ⊗ f2] = [h1, h2]⊗ f1f2 for h1, h2 ∈ L and f1, f2 ∈ A.
Recall that a zero-curvature representation (ZCR) for system (14) is given by a pair of func-

tions M , N with values in a Lie algebra such that

(17) Dx(N)−Dt(M) + [M,N ] = 0.

In the classical Wahlquist-Estabrook prolongation theory [6], one imposes some conditions on the
functions F i, M , N . These conditions imply that M may depend only on u10, . . . , u

m
0 and N may

depend on uik for k ≤ d− 1.
We do not impose any conditions on F i. We simply assume that M = M(ui0) may depend only

on u10, . . . , u
m
0 , while N = N(uik) can be a function of any finite number of the variables (15).

According to the next lemma, our assumption implies that actually N(uik) may depend only on
uik for k ≤ d − 1. This lemma is very similar to well-known computations in Wahlquist-Estabrook
theory [6].
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Lemma 1. If M =M(ui0) and N = N(uik) satisfy (17), then
∂N

∂ujl
= 0 for all l ≥ d and j = 1, . . . , m.

Proof. Let s be the maximal integer such that
∂N

∂ujs
6= 0 for some j. Suppose s ≥ d.

Since F i from (14) do not depend on ui
′

k′ for k
′ > d, using formulas (16), we obtain

∂

∂ujs+1

(

Dx(N)
)

=
∂N

∂ujs
,

∂

∂ujs+1

(

Dt(M)
)

=
∂

∂ujs+1

(

[M,N ]
)

= 0.

Hence, differentiating (17) with respect to ujs+1, one gets
∂N

∂ujs
= 0, which contradicts to our assump-

tion. �

A point of the manifold E is determined by the values of the coordinates (15) at this point. Let
aik ∈ K be such that the point

(18) a =
(
uik = aik, i = 1, . . . , m, k ∈ Z≥0

)
∈ E

belongs to E ′ ⊂ E .

Remark 4. The main idea of the definition of WE algebras can be informally outlined as follows.
Consider a ZCR of the form M = M(ui0), N = N(uik). Let M̃ and Ñ be the Taylor series of M and

N at the point (18). Then M̃ is a power series in the variables ui0 − ai0, and Ñ is a power series in
the variables uik − aik for k ≤ d− 1.

We regard the coefficients of the power series M̃, Ñ as generators of a Lie algebra, and equation (17)
provides relations for these generators. As a result, one obtains a Lie algebra given by generators
and relations, which is called the WE algebra of system (14) at the point (18). The details of this
construction are presented below.
As we will show in Section 2.2, in many cases the WE algebra does not depend on the choice of

numbers aik.

For each q ∈ Z≥0, let Sq be the set of matrices of size m× (q+1) with nonnegative integer entries.
For a matrix γ ∈ Sq, its entries are denoted by γik ∈ Z≥0, where i = 1, . . . , m and k = 0, . . . , q. Let
Uγ be the following product

(19) Uγ =
∏

i=1,...,m,
k=0,...,q

(
uik − aik

)γik .

We are going to study some formal power series in the variables uik − aik for k ≤ q. Any such series
can be written as

∑

γ∈Sq

cγ · U
γ ,

where cγ are the coefficients of it. In what follows, we will sometimes omit the multiplication sign ·
in such formulas.
Let F be the free Lie algebra generated by the symbols Aα, Bβ for α ∈ S0, β ∈ Sd−1. Then

Aα ∈ F, Bβ ∈ F, [Aα,Bβ] ∈ F ∀α ∈ S0, ∀ β ∈ Sd−1.

Consider the following power series with coefficients in F

(20) A =
∑

α∈S0

Aα · Uα, B =
∑

β∈Sd−1

Bβ · U
β .

For any α ∈ S0 and β ∈ Sd−1, the expressions Dx(U
β), Dt(U

α) are functions of a finite number of
the variables uik. Taking the corresponding Taylor series at the point (18), we regard these expressions
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as power series. Let

Dx(B) =
∑

β∈Sd−1

Bβ ·Dx(U
β), Dt(A) =

∑

α∈S0

Aα ·Dt(U
α),(21)

[A,B] =
∑

α∈S0, β∈Sd−1

[Aα,Bβ] · U
α · Uβ .(22)

It is easily seen that Dx(B), Dt(A), [A,B] can be regarded as power series with coefficients in F. We
have

(23) Dx(B)−Dt(A) + [A,B] =
∑

γ∈Sd

zγ · U
γ

for some zγ ∈ F. Let I ⊂ F be the ideal generated by the elements zγ for all γ ∈ Sd.
The WE algebra of system (14) at the point (18) is defined to be the quotient Lie algebra F/I. For

a ∈ E ′, the WE algebra at a is denoted by W(a).
Let L be a Lie algebra. A formal ZCR at the point (18) with coefficients in L is given by power

series

(24) A =
∑

α∈S0

Aα · Uα, B =
∑

β∈Sd−1

Bβ · U
β , Aα, Bβ ∈ L,

such that Dx(B)−Dt(A) + [A,B] = 0, where Dx(B), Dt(A), [A,B] are defined similarly to (21),
(22).

Consider the natural map ρ : F → F/I = W(a) and set Âα = ρ(Aα), B̂β = ρ(Bβ). The definition
of I implies that the power series

(25) Â =
∑

α∈S0

Âα · Uα, B̂ =
∑

β∈Sd−1

B̂β · U
β

satisfy Dx

(
B̂
)
−Dt

(
Â
)
+
[
Â, B̂

]
= 0. Thus Â, B̂ constitute a formal ZCR with coefficients in W(a).

Proposition 3. Any formal ZCR (24) with coefficients in a Lie algebra L determines a homomor-

phism W(a) → L given by Âα 7→ Aα and B̂β 7→ Bβ.

Proof. Since F is a free Lie algebra generated by Aα, Bβ, one can consider the homomorphism
µ : F → L given by µ(Aα) = Aα, µ(Bβ) = Bβ . For any power series of the form

C =
∑

γ∈Sq

cγ · U
γ , cγ ∈ F, q ∈ Z≥0,

set

µ̃(C) =
∑

γ∈Sq

µ(cγ) · U
γ .

Taking into account (20), (24), we get

µ̃(A) =
∑

α∈S0

Aα · Uα = A, µ̃(B) =
∑

β∈Sd−1

Bβ · U
β = B,

µ̃
(

Dx(B)−Dt(A) + [A,B]
)

= Dx(B)−Dt(A) + [A,B] = 0.(26)

From (23), (26) it follows that µ(zγ) = 0 for all γ ∈ Sd and, therefore, µ(I) = 0. Hence µ : F → L

induces the homomorphism W(a) = F/I → L such that Âα 7→ Aα, B̂β 7→ Bβ. �

Remark 5. Suppose that functions M(ui0), N(uik) with values in a Lie algebra L form a ZCR. Then
the Taylor series of M(ui0), N(uik) at the point (18) constitute a formal ZCR with coefficients in L.
Therefore, by Proposition 3, we obtain a homomorphism W(a) → L.
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2.2. WE algebras at different points.

Remark 6. According to [6, 7, 12, 24, 29] and references therein, for many PDEs (including the KdV,
nonlinear Schrödinger, Landau-Lifshitz, Harry-Dym equations), the WE algebra does not depend on
the choice of numbers aik in (18), (19).
In the present subsection we explain this property. The main idea can be outlined as follows. For

each of these PDEs, there is a finite collection of analytic functions

f1(u
i
0), f2(u

i
0), . . . , fn1

(ui0), g1(u
i
k), g2(u

i
k), . . . , gn2

(uik)

such that any ZCR M(ui0), N(uik) is of the form

M(ui0) =

n1∑

j=1

Mj · fj(u
i
0), N(uik) =

n2∑

l=1

Nl · gl(u
i
k),

where Mj , Nl are elements of a Lie algebra and satisfy some Lie algebraic relations. Using the Taylor
series of M(ui0) and N(uik) at the point (18), we will show that Mj , Nl generate the WE algebra.
Since the Lie algebraic relations forMj, Nl do not depend on the choice of numbers aik in (18), (19),

one obtains that the WE algebra does not depend on aik for such PDEs. The details of these arguments
are presented below.

We need first some auxiliary constructions. Recall that A is the algebra of K-valued admissible
functions on E ′. Fix positive integers n1, n2 and functions fj , gl ∈ A for j = 1, . . . , n1, l = 1, . . . , n2.
Let R be the free Lie algebra generated by the symbols M1, . . . ,Mn1

, N1, . . . ,Nn2
. Consider the

following element of R⊗K A

Z =
∑

l

Nl ⊗Dx(gl)−
∑

j

Mj ⊗Dt(fj) +
∑

j,l

[Mj ,Nl]⊗ fjgl.

An ideal I ⊂ R is said to be Z-tame if the natural map R⊗A → (R/I)⊗A sends Z to zero. Let
Z ⊂ R be the intersection of all Z-tame ideals of R.

Remark 7. A set of generators for the ideal Z is constructed as follows. Let v1, . . . , vq be a basis for
the linear subspace of A spanned by the functions Dx(gl), Dt(fj), fjgl. Then there are e1, . . . , eq ∈ R
such that

Z =
∑

l

Nl ⊗Dx(gl)−
∑

j

Mj ⊗Dt(fj) +
∑

j,l

[Mj ,Nl]⊗ fjgl =

q
∑

s=1

es ⊗ vs.

Then e1, . . . , eq generate the ideal Z. Indeed, since v1, . . . , vq are linearly independent, the elements
e1, . . . , eq belong to any Z-tame ideal and, therefore, belong to Z. On the other hand, the ideal
generated by e1, . . . , eq is Z-tame and, consequently, contains Z. In particular, one obtains that the
ideal Z is Z-tame.

Consider the natural homomorphism σ : R → R/Z and set M̂j = σ(Mj), N̂l = σ(Nl). Since Z is
Z-tame, one has

(27)
∑

l

N̂l ⊗Dx(gl)−
∑

j

M̂j ⊗Dt(fj) +
∑

j,l

[M̂j , N̂l]⊗ fjgl = 0.

Theorem 1. Consider an evolution system (14) and the corresponding manifold E with coordi-

nates (15). Suppose that there are a connected open subset E ′ ⊂ E and analytic functions

f1(u
i
0), f2(u

i
0), . . . , fn1

(ui0), g1(u
i
k), g2(u

i
k), . . . , gn2

(uik)

on E ′ such that the following properties hold.

• The functions F i from (14) are analytic on E ′.
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• For any point (18) of E ′, any Lie algebra L, and any formal ZCR (24), one has

(28) A =

n1∑

j=1

Mj · fj , B =

n2∑

l=1

Nl · gl

for some elements Mj , Nl ∈ L. In formulas (28) we regard fj, gl as power series, using the

Taylor series of fj, gl at the point (18).

Consider the algebra R and the ideal Z ⊂ R corresponding to f1, . . . , fn1
, g1, . . . , gn2

, as constructed

above.

Then for any a ∈ E ′ the WE algebra W(a) of system (14) is isomorphic to R/Z. Hence for any

a, a′ ∈ E ′ one has W(a) ∼= W(a′).

Proof. Recall that (25) is a formal ZCR with coefficients in W(a). Applying the assumption of the
theorem to this formal ZCR, we get

(29) Â =

n1∑

j=1

Mj · fj, B̂ =

n2∑

l=1

Nl · gl

for some elements Mj , Nl ∈ W(a).
Since E ′ is connected, any analytic function on E ′ is uniquely determined by its Taylor series at

the point (18). Therefore, the identity Dx

(
B̂
)
−Dt

(
Â
)
+
[
Â, B̂

]
= 0 is equivalent to the following

equation in the space W(a)⊗K A

(30)
∑

l

Nl ⊗Dx(gl)−
∑

j

Mj ⊗Dt(fj) +
∑

j,l

[Mj , Nl]⊗ fjgl = 0.

Since R is a free Lie algebra generated by Mj , Nl, one can consider the homomorphism τ : R → W(a)
given by τ(Mj) =Mj , τ(Nl) = Nl.
Equation (30) says that the kernel of τ is Z-tame and, therefore, τ(Z) = 0. Thus τ : R → W(a)

induces the homomorphism ϕ : R/Z → W(a) such that ϕ
(
M̂j

)
=Mj and ϕ

(
N̂l

)
= Nl.

Using the Taylor series of fj and gl, we regard the expressions

M̂ =
∑

j

M̂j · fj , N̂ =
∑

l

N̂l · gl,

as power series with coefficients in R/Z.

Equation (27) implies Dx

(
N̂
)
−Dt

(
M̂

)
+
[
M̂, N̂

]
= 0. Hence M̂, N̂ constitute a formal ZCR.

Let ψ : W(a) → R/Z be the homomorphism corresponding to this formal ZCR by Proposition 3.
It is easy to check that the constructed homomorphisms ϕ : R/Z → W(a) and ψ : W(a) → R/Z

are inverse to each other. Thus for any a ∈ E ′ the algebra W(a) is isomorphic to R/Z. Hence for any
a, a′ ∈ E ′ one has W(a) ∼= R/Z ∼= W(a′). �

Remark 8. According to Section 2.1, in general the WE algebra is given by an infinite number
of generators and relations. However, if the assumptions of Theorem 1 are satisfied, then the WE
algebra is isomorphic to R/Z, which is given by a finite number of generators and relations.

Indeed, the elements M̂1, . . . , M̂n1
, N̂1, . . . , N̂n2

generate R/Z. Relations for these generators are
given by e1, . . . , eq ∈ Z constructed in Remark 7.

Example 1. To clarify the constructions of this section, consider a simple example in the case m = 1.
Set u = u1. Let us describe generators and relations for the WE algebra of the equation ut = uxx.
Similarly to (15), we regard uk = ∂ku/∂xk as coordinates of the corresponding manifold E . For-

mulas (16) become Dx = ∂x +
∑

k≥0 uk+1∂uk
and Dt = ∂t +

∑

k≥0 uk+2∂uk
, where u0 = u.
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For a Lie algebra L, a formal ZCR (24) at a point a ∈ E is given by formal power series

A =

∞∑

i0=0

Ai0(u0 − a0)
i0, B =

∞∑

i0,i1=0

Bi0,i1(u0 − a0)
i0(u1 − a1)

i1 , Ai0 , Bi0,i1 ∈ L,

Dx(B)−Dt(A) + [A,B] = 0,(31)

where the numbers ak ∈ K determine the point a ∈ E , similarly to (18).
It is easy to check that equation (31) is satisfied if and only if A, B are of the form

(32) A =M1 · u0 +M2 · 1, B = N1 · u1 +N2 · u0 +N3 · 1

for some Mj, Nl ∈ L satisfying N1 − M1 = 0, [M1, N1] = 0, N2 + [M2, N1] = 0, [M1, N2] = 0,
[M1, N3] + [M2, N2] = 0, [M2, N3] = 0. According to formulas (32), one can apply Theorem 1 for
E ′ = E , n1 = 2, n2 = 3, f1 = u0, f2 = 1, g1 = u1, g2 = u0, g3 = 1.
By Theorem 1, the WE algebra at any point a ∈ E is isomorphic to R/Z. Applying Remark 8 to

this example, we obtain that the algebra R/Z is given by the generators M̂1, M̂2, N̂1, N̂2, N̂3 and

the relations N̂1−M̂1 = 0, [M̂1, N̂1] = 0, N̂2+[M̂2, N̂1] = 0, [M̂1, N̂2] = 0, [M̂1, N̂3]+ [M̂2, N̂2] = 0,

[M̂2, N̂3] = 0.

According to the computations of [6, 12, 24, 29] and references therein, Theorem 1 is applicable also
to the KdV, nonlinear Schrödinger, Landau-Lifshitz, Harry-Dym equations, and many other analytic
evolution PDEs. Although the papers [6, 12, 24, 29] consider only smooth or analytic ZCRs, for these
PDEs the computations essentially remain the same for any formal ZCRs (24), so one can apply
Theorem 1. In Section 3 we will show that Theorem 1 is applicable also to system (2), if we rewrite
this system as (33), (34).

3. The WE algebra of the multicomponent Landau-Lifshitz system

For any m ∈ Z≥0 and m-dimensional vectors v = (v1, . . . , vm), w = (w1, . . . , wm), set 〈v, w〉 =
∑m

i=1 v
iwi.

In order to compute the WE algebra of system (2), we need to resolve the constraint 〈S, S〉 = 1
for the vector-function S =

(
s1(x, t), . . . , sn(x, t)

)
. Following [10], we do this as

(33) sj =
2uj

1 + 〈u, u〉
, j = 1, . . . , n− 1, sn =

1− 〈u, u〉

1 + 〈u, u〉
,

where u =
(
u1(x, t), . . . , un−1(x, t)

)
is an (n− 1)-dimensional vector-function.

We assume n ≥ 3. The reasons for this assumption were explained in Section 1.2.
As is shown in [10], using (33), one can rewrite system (2) as

(34) ut = uxxx − 6〈u, ux〉∆
−1uxx +

(
−6〈u, uxx〉∆

−1 + 24〈u, ux〉
2∆−2 − 6〈u, u〉〈ux, ux〉∆

−2
)
ux+

+
(
6〈ux, uxx〉∆

−1 − 12〈u, ux〉〈ux, ux〉∆
−2
)
u+

3

2

(

rn + 4∆−2
n−1∑

i=1

(ri − rn)(u
i)2

)

ux,

where ∆ = 1 + 〈u, u〉, and r1, . . . , rn are the distinct numbers such that R = diag (r1, . . . , rn) in (2).

Set uik =
∂kui

∂xk
for i = 1, . . . , n−1 and k ∈ Z≥0. In particular, ui0 = ui. Similarly to (15), we regard

uik as coordinates of the corresponding manifold E . Recall that uik take values in K, where K is either
C or R. For simplicity of notation, we will write ui instead of ui0.
Since the right hand-side of (34) contains negative powers of ∆ = 1 +

∑

i(u
i)2, we introduce the

following open subset E ′ ⊂ E

E ′ =
{(
u1, . . . , un−1, u11, . . . , u

n−1
1 , u12, . . . , u

n−1
2 , . . .

)
∈ E

∣
∣
∣ 1 +

∑

i

(ui)2 6= 0
}

.
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System (34) is of the form

(35)
∂uj

∂t
= uj3 +Gj

(
ui, ui1, u

i
2

)
, j = 1, . . . , n− 1,

and the functions Gj
(
ui, ui1, u

i
2

)
are analytic on E ′.

According to Section 2, in order to compute the WE algebra of (34), we need to study the equation

Dx(B)−Dt(A) + [A,B] = 0,(36)

A = A(u1, . . . , un−1), B = B(u1, . . . , un−1, u11, . . . , u
n−1
1 , u12, . . . , u

n−1
2 ).

Here A, B can be either smooth functions with values in a Lie algebra L or formal power series with
coefficients in L.
In the case of smooth functions, we assume that A, B are defined on a connected open subset of E ′.
In the case of formal power series, one has

A =
∑

i1,...,in−1≥0

Ai1...in−1
(u1 − a10)

i1 . . . (un−1 − an−1
0 )in−1 , Ai1...in−1

∈ L,

and B is a power series in the variables ui − ai0, u
i
1 − ai1, u

i
2 − ai2 for some fixed numbers aik ∈ K

satisfying 1 +
∑n−1

i=1 (a
i
0)

2 6= 0.
We will show that in both cases equation (36) implies that A, B are of the form

A =

n1∑

j=1

Mj · fj(u
i), B =

n2∑

l=1

Nl · gl(u
i, ui1, u

i
2), Mj , Nl ∈ L,

for some functions fj(u
i), gl(u

i, ui1, u
i
2), which are certain polynomials in sm, Dx(s

m), D2
x(s

m). Here
sm = sm(ui) for m = 1, . . . , n are given by (33). In particular, the functions fj , gl will be analytic
on E ′, so we will be able to use Theorem 1.
Differentiating equation (36) with respect to ui3, we see that B is of the form

(37) B =

n−1∑

i=1

ui2Aui + F,

where F may depend only on uj and uj1. Here and below, the subscripts ui denote derivatives with
respect to ui. That is, Aui = ∂A/∂ui.
Then equation (36) becomes

(38)
n−1∑

i,j=1

ui2u
j
1Auiuj +

n−1∑

j=1

(

uj1Fuj + uj2
∂F

∂uj1
−GjAuj + uj2 [A,Auj ]

)

+ [A, F ] = 0,

where Gj is defined by (34), (35) and satisfies

(39)
∂Gj

∂ui2
= ∆−1

(

− 6δij
∑

k

ukuk1 − 6uiuj1 + 6ui1u
j
)

∀ j, i.

Differentiating (38) with respect to ui2 and using (39), one gets

(40)
∂F

∂ui1
= −

n−1∑

j=1

(

uj1Auiuj +∆−1
(

6δij
∑

k

ukuk1 + 6uiuj1 − 6ui1u
j
)

Auj

)

− [A,Aui] ∀ i.

Integrating equations (40) with respect to ui1, we obtain that F is of the form

(41) F = −
1

2

∑

i,j

ui1u
j
1

(
Auiuj + 12ui∆−1Auj

)
+
∑

i,j

3∆−1
(
ui1
)2
ujAuj +

∑

i

ui1[Aui , A] +H,

where H may depend only on u1, u2, . . . , un−1.
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Substituting (41) in (38), we see that the left-hand side of (38) is a third degree polynomial in ui1.
Equating to zero the coefficients of ui11 u

i2
1 u

i3
1 of this polynomial, one gets the following equations

Auiuiui = 6∆−1

(
∑

k

ukAuiuk − 2uiAuiui − Aui

)

+

+ 12∆−2

(
∑

k

uiukAuk + 〈u, u〉Aui − 2
(
ui
)2
Aui

)

∀ i,

(42)

Auiuiuh = 2∆−1

(
∑

k

ukAuhuk − 4uiAuiuh − Auh − 2uhAuiui

)

+

+ 4∆−2

(
∑

k

uhukAuk − 4uiuhAui − 2
(
ui
)2
Auh + 〈u, u〉Auh

)

∀ i 6= h,

(43)

Auiujuh = −4∆−1
(
ujAuiuh + uiAujuh + uhAuiuj

)
+

+ 8∆−2
(
−ujuhAui − uiuhAuj − uiujAuh

)
∀ i < j < h.

(44)

Proposition 4. Let A = A(u1, . . . , un−1) be either a smooth function with values in a Lie algebra L
or a formal power series with coefficients in L. Then A satisfies (42), (43), (44) if and only if

(45) A = C0 +

n∑

l=1

Cls
l

for some C0, C1, . . . , Cn ∈ L. Here the functions sl = sl(u1, . . . , un−1) are given by (33).

Remark 9. We would like to explain how one can guess that A in (36) must be of the form (45).
Since the original system (2) is written in terms of S = (s1, . . . , sn), it is natural to expect that A can
be expressed in terms of sl. Then the simplest possibility is that A depends linearly on sl. According
to Proposition 4, this natural guess turns out to be correct.
For n = 3 some analog of formula (45) appears in the description of ZCRs of the classical Landau-

Lifshitz equation [24].

Proof of Proposition 4. We regard (42), (43), (44) as PDEs for A = A(u1, . . . , un−1). Let us compute
some differential consequences of these PDEs.
Denote by R(i) the right-hand side of (42) and by R̃(i, h) the right-hand side of (43). For any

i 6= h, let us differentiate equation (42) with respect to uh and equation (43) with respect to ui. One
gets

(46) Auiuiuiuh =
∂

∂uh

(

R(i)
)

, Auiuiuhui =
∂

∂ui

(

R̃(i, h)
)

.

Since Auiuiuiuh = Auiuiuhui , equations (46) imply

(47)
∂

∂uh

(

R(i)
)

=
∂

∂ui

(

R̃(i, h)
)

∀ i 6= h.

Equations (47) are PDEs of third order for A. Let us replace the third order derivatives of A by
the right-hand sides of (42), (43), (44). Then equations (47) become PDEs of second order. It is
straightforward to show that the obtained system of second order PDEs is equivalent to

(48) Auiuh = −2∆−1
(
uhAui + uiAuh

)
∀ i 6= h.

Since R̃(i, h) is the right-hand side of (43), one has Auiuiuh = R̃(i, h). Differentiating (48) with
respect to ui and replacing Auiuhui by R̃(i, h), we obtain

(49) R̃(i, h) =
∂

∂ui

(

− 2∆−1
(
uhAui + uiAuh

))

∀ i 6= h.



PROLONGATION LIE ALGEBRAS AND MULTICOMPONENT LANDAU-LIFSHITZ SYSTEMS 15

Using (48), in (49) we can replace Aujul by −2∆−1
(
ulAuj +ujAul

)
for any j 6= l. As a result, one gets

(50)
(
Auiui − Aujuj

)
+ 4∆−1

(
uiAui − ujAuj

)
= 0 ∀ i 6= j.

Consider first the case when A is a formal power series with coefficients in K.

Lemma 2. Let a10, . . . , a
n−1
0 ∈ K be such that 1 +

∑

i(a
i
0)

2 6= 0. A formal power series

(51) A =
∑

i1,...,in−1≥0

Ai1...in−1
(u1 − a10)

i1 . . . (un−1 − an−1
0 )in−1 , Ai1...in−1

∈ K,

satisfies (42), (43), (44) iff A = b0 +
∑n

l=1 bls
l for some b0, b1, . . . , bn ∈ K, where sl = sl(u1, . . . , un−1)

are given by (33).
Here we regard the functions sl = sl(u1, . . . , un−1) as power series, using the corresponding Taylor

series at the point ui = ai0.

Proof. Let V be the vector space of formal power series (51) satisfying (42), (43), (44). If A ∈ V
then A obeys also (48), (50). Let A ∈ V be given by (51). According to (42), (43), (44), any third
order derivative of A is expressed in terms of lower order derivatives. Therefore, if Ai1...in−1

= 0 for
all i1, . . . , in−1 ≥ 0 such that i1 + · · ·+ in−1 ≤ 2, then A = 0.
Combining this with (48), (50), we see the following. If A20...0 = 0 and Aj1...jn−1

= 0 for all
j1, . . . , jn−1 ≥ 0 satisfying j1 + · · ·+ jn−1 ≤ 1, then A = 0.
Thus any power series A ∈ V is uniquely determined by the coefficients

A20...0, Aj1...jn−1
, j1, . . . , jn−1 ≥ 0, j1 + · · ·+ jn−1 ≤ 1,

hence dimV ≤ n+ 1. It is easy to check that the functions

(52) 1, s1(u1, . . . , un−1), s2(u1, . . . , un−1), . . . , sn(u1, . . . , un−1)

satisfy PDEs (42), (43), (44). The functions (52) are linearly independent over K and are analytic on
a neighborhood of the point ui = ai0. Therefore, the Taylor series of the functions (52) are linearly
independent and belong to V. Since dimV ≤ n+ 1, this implies the statement of the lemma. �

Now let us study the case when A is a smooth function with values in K.

Lemma 3. Consider the space K
n−1 with the coordinates u1, . . . , un−1 and the open subset

U =
{(
u1, . . . , un−1

)
∈ K

n−1
∣
∣
∣ 1 +

∑

i

(ui)2 6= 0
}

.

Let W be a connected open subset of U . A smooth K-valued function A(u1, . . . , un−1) on W satisfies

(42), (43), (44) iff A = b0 +
∑n

l=1 bls
l for some b0, b1, . . . , bn ∈ K.

Proof. If K = C, then, according to the assumptions of Section 2.1, the function A(u1, . . . , un−1) is
analytic and the statement follows from Lemma 2.
Consider the case K = R. Since the functions (52) satisfy PDEs (42), (43), (44), we see that

b0 +
∑n

l=1 bls
l obeys these PDEs for any b0, . . . , bn ∈ K.

Suppose that a smooth function A = A(u1, . . . , un−1) on W satisfies (42), (43), (44).
Let p ∈ W . Applying Lemma 2 to the Taylor series of A at the point p ∈ W , we obtain the

following. There are b0, . . . , bn ∈ K such that the function Ã = A− b0 −
∑

l bls
l satisfies Ã(p) = 0

and all partial derivatives of Ã vanish at p. It remains to prove that Ã(p′) = 0 for any p′ ∈ W .
Since W is connected, there is a smooth map ϕ : [0, 1] → W such that ϕ(0) = p and ϕ(1) = p′,

where [0, 1] ⊂ R is the unit interval. Set

ψ0(y) = Ã
(
ϕ(y)

)
, ψi(y) =

∂Ã

∂ui
(
ϕ(y)

)
, i = 1, . . . , n− 1, ψn(y) =

∂2Ã

∂u1∂u1
(
ϕ(y)

)
, y ∈ [0, 1].

Since A satisfies (42), (43), (44), (48), (50), the function Ã obeys these PDEs as well. According

to (42), (43), (44), any third order derivative of Ã is expressed linearly in terms of lower order
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derivatives of Ã. Equations (48), (50) say that any second order derivative of Ã is expressed linearly
in terms of Ãu1 , . . . , Ãun−1, Ãu1u1 .
This implies that ψ0, . . . , ψn satisfy some linear ordinary differential equations

(53)
dψi

dy
=

n∑

j=0

gij(y)ψj(y), i = 0, 1, . . . , n.

Since ψj(0) = 0 for all j = 0, 1, . . . , n, equations (53) imply ψj(1) = 0. Hence Ã(p′) = ψ0(1) = 0. �

Return to the proof of Proposition 4.
Consider the case when A is a smooth function with values in L. That is, A belongs to the tensor

product L⊗K A0, where A0 is the space of K-valued smooth functions in the variables u1, . . . , un−1.
There are linearly independent elements E1, . . . , Eq ∈ L such that A =

∑q

r=1Er ⊗Ar for some
Ar ∈ A0. Then A satisfies PDEs (42), (43), (44) iff for all r = 1, . . . , q the function Ar obeys these
PDEs. Then formula (45) follows from Lemma 3 applied to Ar.
Finally, it remains to study the case when A is a formal power series

A =
∑

i1,...,in−1≥0

Ai1...in−1
(u1 − a10)

i1 . . . (un−1 − an−1
0 )in−1 , Ai1...in−1

∈ L.

Denote by V ⊂ L the vector subspace spanned by Aj1...jn−1
for j1 + · · ·+ jn−1 ≤ 2.

LetD1, . . . , Dq be a basis of V . Equations (42), (43), (44) imply that Ai1...in−1
∈ V for all i1, . . . , in−1.

Therefore, A obeys (42), (43), (44) iff A is of the form A =
∑q

r=1DrÃ
r, where Ãr are power series

with coefficients in K and satisfy (42), (43), (44). Then formula (45) follows from Lemma 2 applied

to Ãr. �

Recall that the left-hand side of (38) is a third degree polynomial in ui1. As we have shown above,
the coefficients of ui11 u

i2
1 u

i3
1 of this polynomial vanish iff A is of the form (45). Therefore, from now

on we can assume that A is given by (45).
Substituting (45) in (41) and (38), one obtains that the coefficients of ui11 u

i2
1 in (38) vanish iff

(54) [C0, Ck] = 0, k = 1, . . . , n.

Equating to zero the linear in uj1 part of (38), we get

(55) Huj =
3

2

n∑

i,k=1

riCk

(
si
)2
skuj −

n∑

i,m,k=1

[Ci, [Cm, Ck]]s
ismujsk.

Recall that the subscripts uj denote derivatives with respect to uj. So, Huj = ∂H/∂uj and sk
uj =

∂sk/∂uj .
Differentiating (55) with respect to uh, one obtains

(56) Hujuh =
3

2

n∑

i,k=1

riCk

(

2sisiuhs
k
uj+

(
si
)2
skujuh

)

−
n∑

i,m,k=1

[Ci, [Cm, Ck]]
(
siuhs

m
ujsk+sismujuhs

k+sismujskuh

)
.

Since Hujuh = Huhuj , equations (56) imply

(57)

n∑

i,m,k=1

[Ci, [Cm, Ck]]
(
siuhs

m
ujsk − siujsmuhs

k + sismujskuh − sismuhs
k
uj

)
=

= 3

n∑

i,k=1

riCk

(
sisiuhs

k
uj − sisiujskuh

)
, j, h = 1, . . . , n− 1.
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Substituting (33) in (57), we obtain that equations (57) are equivalent to

[Ci, [Cj, Ck]] = 0, i 6= j 6= k 6= i, i, j, k = 1, . . . , n,(58)

[Ci, [Ci, Ck]]− [Cj, [Cj , Ck]] = (rj − ri)Ck, i 6= k, j 6= k, i, j, k = 1, . . . , n.(59)

Set

(60) Y1 = [C2, [C2, C1]] + r2C1, Ym = [C1, [C1, Cm]] + r1Cm, m = 2, 3, . . . , n.

From (59), (60) it follows that

(61) Yj = [Ci, [Ci, Cj]] + riCj ∀ i 6= j, i, j = 1, . . . , n.

Using (58), (61), and
∑

i(s
i)2 = 1,

∑

i s
isi

uj = 0, we can rewrite (55) as

(62) Huj =

n∑

k=1

Yks
k
uj +

1

2

n∑

i,k=1

riCk

(
si
)2
skuj +

n∑

i,k=1

riCks
isiujsk, j = 1, . . . , n− 1.

Integrating equations (62) with respect to uj, we see that H is of the form

(63) H =

n∑

k=1

Yks
k +

1

2

n∑

i,k=1

riCks
k
(
si
)2

+ Cn+1 for some Cn+1 ∈ L.

Then equation (38) reduces to [A,H ] = 0. Using (45), (54), (63), one shows that the equa-
tion [A,H ] = 0 is equivalent to

(64) [C0, Cn+1] +

n∑

l=1

sl[Cl, Cn+1] +

n∑

l,k=1

slsk[Cl, Yk] = 0.

To study equation (64), we need the following lemma.

Lemma 4. Recall that n ≥ 3. If C1, . . . , Cn ∈ L satisfy (58), (59) then

(65) [Cp, Yq] = −[Cq, Yp], p, q = 1, . . . , n.

Proof. Let l ∈ {1, . . . , n} be such that l 6= p, l 6= q. By (61),

(66) Yp = [Cl, [Cl, Cp]] + rlCp, Yq = [Cl, [Cl, Cq]] + rlCq.

Consider first the case p 6= q. Using the Jacobi identity and (58), we get

[Cp, [Cl, [Cl, Cq]]] = [[Cp, Cl], [Cl, Cq]] + [Cl, [Cp, [Cl, Cq]]] = [[Cp, Cl], [Cl, Cq]],

because [Cp, [Cl, Cq]] = 0 by (58). Similarly, one has [Cq, [Cl, [Cl, Cp]]] = [[Cq, Cl], [Cl, Cp]]. Therefore,

[Cp, Yq] + [Cq, Yp] = [Cp, [Cl, [Cl, Cq]] + rl[Cp, Cq] + [Cq, [Cl, [Cl, Cp]] + rl[Cq, Cp] =

= [Cp, [Cl, [Cl, Cq]]] + [Cq, [Cl, [Cl, Cp]]] = [[Cp, Cl], [Cl, Cq]] + [[Cq, Cl], [Cl, Cp]] = 0.

Consider the case p = q. By (66), for p = q equation (65) is equivalent to

(67) [Cp, [Cl, [Cl, Cp]]] = 0,

so we need to prove (67). Applying adCk to (59), we get

(68) [Ck, [Ci, [Ci, Ck]]] = [Ck, [Cj, [Cj, Ck]]], i 6= k, j 6= k.

By the Jacobi identity,

(69) [Ck, [Ci, [Ci, Ck]]] = [Ci, [Ck, [Ci, Ck]]] = −[Ci, [Ck, [Ck, Ci]]].

Let m ∈ {1, . . . , n} be such that m 6= p, m 6= l. Using (68), (69), one obtains

[Cp, [Cl, [Cl, Cp]]] = [Cp, [Cm, [Cm, Cp]]] = −[Cm, [Cp, [Cp, Cm]]] =

= −[Cm, [Cl, [Cl, Cm]]] = [Cl, [Cm, [Cm, Cl]]] = [Cl, [Cp, [Cp, Cl]]].

On the other hand, by (69), [Cp, [Cl, [Cl, Cp]]] = −[Cl, [Cp, [Cp, Cl]]]. Therefore, we get (67). �
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Since [Cl, Yk] = −[Ck, Yl] by Lemma 4, one has
∑n

l,k=1 s
lsk[Cl, Yk] = 0. Hence equation (64) reads

(70) [C0, Cn+1] +

n∑

l=1

sl[Cl, Cn+1] = 0.

Since 1, s1, s2, . . . , sn are linearly independent, equation (70) is equivalent to

(71) [Ck, Cn+1] = 0, k = 0, 1, 2, . . . , n.

Combining (33), (37), (41), (45), (60), (63), one obtains

(72) B = D2
x(A) + [Dx(A), A] +

3

2

n∑

i,k=1

Cks
k
(
Dx(s

i)
)2

+
1

2

n∑

i,k=1

riCks
k
(
si
)2
+

+
(
[C2, [C2, C1]] + r2C1

)
s1 +

n∑

j=2

(
[C1, [C1, Cj]] + r1Cj

)
sj + Cn+1.

Thus we get the following result.

Theorem 2. Suppose that n ≥ 3. Let

A = A(u1, . . . , un−1), B = B(u1, . . . , un−1, u11, . . . , u
n−1
1 , u12, . . . , u

n−1
2 )

be either smooth functions with values in a Lie algebra L or formal power series with coefficients in L.
Then A, B satisfy the ZCR equation Dx(B)−Dt(A) + [A,B] = 0 for system (34) if and only if A,

B are of the form (45), (72), where C0, C1, . . . , Cn+1 ∈ L obey (54), (58), (59), (71) and the functions

si = si(u1, . . . , un−1) are given by (33).

Theorem 2 implies that system (34) satisfies the conditions of Theorem 1. This allows us to give
the following description of the WE algebra of (34).

Theorem 3. Let n ≥ 3. For any point a ∈ E ′, the WE algebra W(a) of system (34) is isomorphic

to the Lie algebra given by generators p0, p1, . . . , pn+1 and the relations

[p0, pl] = [pn+1, pl] = [p0, pn+1] = 0, l = 1, . . . , n,(73)

[pi, [pj , pk]] = 0, i 6= j 6= k 6= i, i, j, k = 1, . . . , n,(74)

[pi, [pi, pk]]− [pj, [pj, pk]] = (rj − ri)pk, i 6= k, j 6= k, i, j, k = 1, . . . , n.(75)

The algebra W(a) is isomorphic to the direct sum K2 ⊕ g(n). Here g(n) is the subalgebra generated

by p1, . . . , pn, and K
2 is the abelian subalgebra spanned by p0, pn+1.

Proof. Let H be the Lie algebra given by generators p0, p1, . . . , pn+1 and relations (73), (74), (75).
From (73), (74), (75) it follows that H is isomorphic to K

2 ⊕ g(n), where g(n) is the subalgebra
generated by p1, . . . , pn, and K2 is the abelian subalgebra spanned by p0, pn+1.
We are going to construct an isomorphism H ∼= W(a) similarly to the proof of Theorem 1. In

Section 2.1, for any system (14), we defined a formal ZCR with coefficients in the WE algebra of (14).
Let A, B be the power series with coefficients in W(a) that determine this ZCR for system (34).
Applying Theorem 2 to L = W(a), we obtain that A, B are of the form (45), (72) for some elements

C0, C1, . . . , Cn+1 ∈ W(a). Since C0, C1, . . . , Cn+1 ∈ W(a) satisfy (54), (58), (59), (71), one has the
homomorphism ϕ : H → W(a) given by ϕ(pi) = Ci.

On the other hand, by Theorem 2, the formulas Ã = p0 +
∑n

l=1 pls
l and

B̃ = D2
x

(
Ã
)
+
[
Dx

(
Ã
)
, Ã

]
+

3

2

n∑

i,k=1

pks
k
(
Dx(s

i)
)2

+
1

2

n∑

i,k=1

ripks
k
(
si
)2
+

+
(
[p2, [p2, p1]] + r2p1

)
s1 +

n∑

j=2

(
[p1, [p1, pj ]] + r1pj

)
sj + pn+1
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determine a ZCR with values in H. Applying Proposition 3 and Remark 5 to this ZCR, we get a
homomorphism ψ : W(a) → H. It is easy to verify that the constructed homomorphisms ϕ : H →
W(a) and ψ : W(a) → H are inverse to each other. �

Remark 10. Theorems 2, 3 imply that any ZCR (45), (72) with values in a Lie algebra L determines
a homomorphism W(a) → L given by pi 7→ Ci.

4. The explicit structure of the WE algebra

Let g(n) be the Lie algebra given by generators p1, . . . , pn and the relations

[pi, [pj, pk]] = 0, i 6= j 6= k 6= i, i, j, k = 1, . . . , n,(76)

[pi, [pi, pk]]− [pj, [pj , pk]] = (rj − ri)pk, i 6= k, j 6= k, i, j, k = 1, . . . , n.(77)

According to Theorem 3, the WE algebra of system (34) is isomorphic to K2 ⊕ g(n). To describe
the explicit structure of g(n), we need some auxiliary constructions.
Denote by gln+1(K) the space of matrices of size (n + 1) × (n + 1) with entries from K. Let

Ei,j ∈ gln+1(K) be the matrix with (i, j)-th entry equal to 1 and all other entries equal to zero.
The Lie subalgebra son,1 ⊂ gln+1(K) was defined in Section 1.2. It has the following basis

Ei,j −Ej,i, i < j ≤ n, El,n+1 + En+1,l, l = 1, . . . , n.

From the results of [10, 27] one can obtain the following son,1-valued ZCR for system (2)

M =

n∑

i=1

siλi(Ei,n+1 + En+1,i),(78)

N = D2
x(M) + [Dx(M),M ] +

(

r1 + λ21 +
1

2
〈S,RS〉+

3

2
〈Sx, Sx〉

)

M,(79)

Dx(N)−Dt(M) + [M,N ] = 0.

Here λ1, . . . , λn ∈ K are parameters satisfying (3). If S = (s1, . . . , sn) is given by formulas (33)
then (78), (79) determine a ZCR for system (34).
Let us regard λ1, . . . , λn as abstract variables and consider the algebra K[λ1, . . . , λn] of polynomials

in λ1, . . . , λn. Let I ⊂ K[λ1, . . . , λn] be the ideal generated by λ2i − λ2j + ri − rj for i, j = 1, . . . , n.
Consider the quotient algebra Q = K[λ1, . . . , λn]/I. If K = C then Q is isomorphic to the algebra

of polynomial functions on the algebraic curve (3).
The space son,1 ⊗K Q is an infinite-dimensional Lie algebra over K with the Lie bracket

[M1 ⊗ h1, M2 ⊗ h2] = [M1,M2]⊗ h1h2, M1,M2 ∈ son,1, h1, h2 ∈ Q.

We have the natural homomorphism ξ : K[λ1, . . . , λn] → K[λ1, . . . , λn]/I = Q. Set λ̂i = ξ(λi) ∈ Q.
Formula (78) suggests to study the following elements of son,1 ⊗Q

(80) Qi = (Ei,n+1 + En+1,i)⊗ λ̂i, i = 1, . . . , n.

Denote by L(n) ⊂ son,1 ⊗Q the Lie subalgebra generated by Q1, . . . , Qn.
To construct a basis for L(n), we need to describe some properties of Q.

Since λ̂2i − λ̂2j + ri − rj = 0 in Q, the element λ̂ = λ̂2i + ri ∈ Q does not depend on i.

Lemma 5. The elements

(81) λ̂kλ̂l, λ̂kλ̂iλ̂j , i, j, l ∈ {1, . . . , n}, i < j, k ∈ Z≥0,

are linearly independent over K.

Proof. Suppose that some linear combination of the elements (81) is zero in Q

(82)
∑

l,k

alkλ̂
kλ̂l +

∑

i,j,k, i<j

bijkλ̂
kλ̂iλ̂j = 0, alk, bijk ∈ K,
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where only a finite number of the coefficients alk, bijk may be nonzero. Set

Ψ1 =
∑

l,k

alk(λ
2
1 + r1)

kλl, Ψ2 =
∑

i,j,k, i<j

bijk(λ
2
1 + r1)

kλiλj, Ψ = Ψ1 +Ψ2.

Since ξ(λ21 + r1) = λ̂, the left-hand side of (82) is equal to ξ(Ψ). Hence (82) is equivalent to Ψ ∈ I.
For l = 1, . . . , n, let ρl be the automorphism of the algebra K[λ1, . . . , λn] given by ρl(λl) = −λl and

ρl(λi) = λi for all i 6= l. Obviously, ρl(I) = I.
One has (ρ1ρ2 . . . ρn)(Ψ) = Ψ− 2Ψ1. Since Ψ ∈ I, we obtain Ψ1 ∈ I and Ψ2 = Ψ−Ψ1 ∈ I. Then

the identity ρl(Ψ1) = Ψ1 − 2λl
∑

k alk(λ
2
1 + r1)

k implies

(83) λl
∑

k

alk(λ
2
1 + r1)

k ∈ I, l = 1, . . . , n.

We have also ρm(Ψ2) = Ψ2 − 2Φm for all m = 1, . . . , n, where

Φm = λm

(
∑

i,k, i<m

bimk(λ
2
1 + r1)

kλi +
∑

j,k, j>m

bmjk(λ
2
1 + r1)

kλj

)

.

Therefore, since Ψ2 ∈ I, one gets Φm ∈ I. Then the identity

ρi(Φm) = Φm − 2λmλi
∑

k

bimk(λ
2
1 + r1)

k ∀ i < m,

yields

(84) λmλi
∑

k

bimk(λ
2
1 + r1)

k ∈ I ∀ i < m.

Suppose that alk0 6= 0 for some l ∈ {1, . . . , n} and k0 ∈ Z≥0. Then there exists c1 ∈ C such that

(85)
∑

k

alk(c
2
1 + r1)

k 6= 0, c21 + r1 − rl 6= 0.

Let c2, c3, . . . , cn ∈ C be such that c2q = c21 + r1 − rq for q = 2, 3, . . . , n. Then c2i − c2j + ri − rj = 0 for
all i, j = 1, . . . , n. Therefore, P (c1, . . . , cn) = 0 for any polynomial P (λ1, . . . , λn) ∈ I.
From (85) we get cl

∑

k alk(c
2
1 + r1)

k 6= 0, which contradicts to (83). Hence alk = 0 for all l, k.
Similarly, (84) implies bimk = 0 for all k and i < m. Thus we have proved that equation (82) yields

alk = bijk = 0. Therefore, the elements (81) are linearly independent. �

For i, j ∈ {1, . . . , n} and k ∈ Z>0, consider the following elements of son,1 ⊗K Q

Q2k−1
i = (Ei,n+1 + En+1,i)⊗ λ̂k−1λ̂i, Q2k

ij = (Ei,j −Ej,i)⊗ λ̂k−1λ̂iλ̂j .

For i, j, l,m ∈ {1, . . . , n} and k1, k2 ∈ Z>0 one has

(86) [Q2k1
ij , Q

2k2
lm ] = δljQ

2(k1+k2)
im − δimQ

2(k1+k2)
lj + δjmQ

2(k1+k2)
li − δilQ

2(k1+k2)
jm +

+ riδimQ
2(k1+k2−1)
lj − rjδljQ

2(k1+k2−1)
im + riδilQ

2(k1+k2−1)
jm − rjδjmQ

2(k1+k2−1)
li ,

(87) [Q2k1
ij , Q

2k2−1
l ] = δljQ

2k1+2k2−1
i − δilQ

2k1+2k2−1
j − rjδljQ

2k1+2k2−3
i + riδilQ

2k1+2k2−3
j ,

(88) [Q2k1−1
i , Q2k2−1

j ] = Q
2(k1+k2−1)
ij , [Q2k1−1

i , Q2k2−1
i ] = 0.

Since Q1
i = Qi and Q

2k
ij = −Q2k

ji , from (86), (87), (88) we obtain that the elements

(89) Q2k−1
l , Q2k

ij , i, j, l ∈ {1, . . . , n}, i < j, k ∈ Z>0,

span the Lie algebra L(n). From Lemma 5 it follows that the elements (89) are linearly independent
over K and, therefore, form a basis of L(n).
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For k ∈ Z>0 set L2k−1 = span
{
Q2k−1

l

∣
∣ l = 1, . . . , n

}
and L2k = span

{
Q2k

ij

∣
∣ i, j = 1, . . . , n

}
. Here

and below, for elements v1, . . . , vs of a vector space, the expression span {v1, . . . , vs} denotes the linear
span of v1, . . . , vs over K.
Then from (86), (87), (88) one gets L(n) =

⊕∞

i=1 Li and [Li, Lj] ⊂ Li+j + Li+j−2. Thus the Lie
algebra L(n) is quasigraded (almost graded) in the sense of [21, 27]. Note that the algebra L(n) is
very similar to infinite-dimensional Lie algebras that were studied in [26, 27].
It is easy to check that Qi satisfy relations (76), (77), if we replace pi by Qi in these relations.

Therefore, one has the homomorphism

(90) ϕ : g(n) → L(n), ϕ(pi) = Qi, i = 1, . . . , n.

Theorem 4. For all n ≥ 3, the homomorphism (90) is an isomorphism. Thus g(n) is isomorphic to

L(n).

Proof. In the case n = 3 this was proved in [24] for a different matrix representation of L(3).
Define a filtration on L(n) by vector subspaces Lm ⊂ L(n) for m ∈ Z≥0 as follows

L0 = 0, L1 = span {Q1, . . . , Qn}, Lm = L1 +
∑

i,j>0, i+j≤m

[Li, Lj] for m > 1.

One has Lm ⊂ Lm+1 for all m ∈ Z≥0 and L(n) =
⋃

m L
m.

Since the elements (89) are linearly independent, from (86), (87), (88) it follows that for all q ∈ Z>0

• the elements Q2d−1
l , Q2d

ij , i, j, l ∈ {1, . . . , n}, i < j, 1 ≤ d ≤ q, form a basis of L2q,

• Q2d1−1
l , Q2d2

ij , i, j, l ∈ {1, . . . , n}, i < j, 1 ≤ d1 ≤ q, 1 ≤ d2 ≤ q − 1, form a basis of L2q−1.

This implies for all m > 0

(91) dim
(
Lm/Lm−1

)
=

{
n, if m is odd,

n(n− 1)/2, if m is even.

Consider a similar filtration on g(n) by vector subspaces gm ⊂ g(n)

g0 = 0, g1 = span {p1, . . . , pn}, gm = g1 +
∑

i,j>0, i+j≤m

[gi, gj] for m > 1.

Clearly,

(92) ϕ(gm) = Lm ∀m ∈ Z≥0.

Combining (92) with (91), we see that it remains to prove for all m > 0

(93) dim
(
gm/gm−1

)
≤

{
n, if m is odd,

n(n− 1)/2, if m is even.

Indeed, if (93) holds then properties (91), (92) imply that ϕ is an isomorphism.
For n = 3 the statement (93) was proved in [24]. Below we suppose n ≥ 4. For k ∈ Z>0, set

P 2k
ij = (ad pi)

2k−1(pj), i, j = 1, . . . , n,

P 2k−1
1 = (ad p2)

2k−2(p1), P 2k−1
l = (ad p1)

2k−2(pl), l = 2, 3, . . . , n.

We will use the following notation for iterated Lie brackets of elements of g(n)

(94) [e1 e2 . . . es−1 es] = [e1, [e2, . . . , [es−1, es]] . . . ], e1, . . . , es ∈ g(n).

In such Lie brackets, for brevity we replace each pi by the corresponding index i. For example,

[ii[jjk]lk] = [pi, [pi, [[pj , [pj, pk]], [pl, pk]]]], P 2k
ij = [i . . . i

︸ ︷︷ ︸

2k−1

j],(95)

P 2k−1
1 = [2 . . . 2

︸ ︷︷ ︸

2k−2

1], P 2k−1
l = [1 . . . 1

︸ ︷︷ ︸

2k−2

l], l = 2, 3, . . . , n.(96)
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For V1, V2 ∈ g(n) and m ∈ Z≥0, the notation

(97) V1 ≡ V2 mod gm

means that V1 − V2 ∈ gm. The following lemma is proved in Section 6.

Lemma 6 (Section 6). Let n ≥ 4. Let i, j, i′, j′ be distinct integers from {1, . . . , n}. Then for all

k1, k2 ∈ Z≥0 one has

[[i . . . i
︸ ︷︷ ︸

2k1

j][i . . . i
︸ ︷︷ ︸

2k2

j]] ≡ 0, in particular, [P 2k1+1
j , P 2k2+1

j ] ≡ 0 mod g2k1+2k2+1,(98)

P
2(k1+k2+1)
ij ≡ −P

2(k1+k2+1)
ji mod g2k1+2k2+1,(99)

[P 2k1
ij , P 2k2+2

ij ] ≡ 0 mod g2k1+2k2+1 for k1 ≥ 1,(100)

[P 2k1+1
i , P 2k2+1

j ] ≡ P
2(k1+k2+1)
ij mod g2k1+2k2+1,(101)

[P 2k1+1
i , P 2k2+2

ij ] ≡ P
2(k1+k2)+3
j mod g2k1+2k2+2,(102)

[P 2k1+1
i , P 2k2+2

i′j′ ] ≡ 0 mod g2k1+2k2+2,(103)

[P 2k1
ij , P 2k2+2

i′j′ ] ≡ 0 mod g2k1+2k2+1 for k1 ≥ 1,(104)

[P 2k1
ij , P 2k2+2

ij′ ] ≡ −P
2(k1+k2+1)
jj′ mod g2k1+2k2+1 for k1 ≥ 1.(105)

From Lemma 6, by induction on k ∈ Z>0, we obtain that

• the elements P 2d−1
l , P 2d

ij , i, j, l ∈ {1, . . . , n}, i < j, 1 ≤ d ≤ k, span the space g2k,

• P 2d1−1
l , P 2d2

ij , i, j, l ∈ {1, . . . , n}, i < j, 1 ≤ d1 ≤ k, 1 ≤ d2 ≤ k − 1, span the space g2k−1,

which implies (93). �

Remark 11. Clearly, formulas (78), (79) can be regarded as a ZCR with values in the Lie alge-
bra L(n). Then formula (78) becomes M =

∑n

i=1 s
iQi, where Qi ∈ L(n) is given by (80). The

homomorphism (90) corresponds to this ZCR by Remark 10.

5. Miura type transformations

The definition of Miura type transformations (MTTs) was given in Section 1.2. In the present
section we assume that all functions take values in C.
Since the matrices (78), (79) form a ZCR for (2), the following system is compatible modulo (2)

(106) Wx =MT ·W, Wt = NT ·W,

where W =
(
w1(x, t), . . . , wn+1(x, t)

)
is a column-vector of dimension n + 1 and MT, NT are the

transposes of the matrices M , N given by (78), (79).
Using (78), (79), we see that equations (106) read

wi
x = λis

iwn+1, i = 1, . . . , n, wn+1
x =

n∑

j=1

λjs
jwi,(107)

wi
t = λiw

n+1

(

sixx + si
(

r1 + λ21 +
1

2
〈S,RS〉+

3

2
〈Sx, Sx〉

))

+

+
n∑

j=1

λiλjw
j
(
sjxs

i − sixs
j
)
, i = 1, . . . , n,

(108)

wn+1
t =

n∑

j=1

λjw
j

(

sjxx + sj
(

r1 + λ21 +
1

2
〈S,RS〉+

3

2
〈Sx, Sx〉

))

.(109)

Here λ1, . . . , λn ∈ C are parameters satisfying (3). In this section we assume λi 6= 0 for all i.
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To construct MTTs for (2), we are going to use some reduction of system (107), (108), (109).
Equations (107), (108), (109) imply

(110)
∂

∂x

(
(
wn+1

)2
−

n∑

i=1

(
wi

)2
)

= 0,
∂

∂t

(
(
wn+1

)2
−

n∑

i=1

(
wi

)2
)

= 0.

Therefore, we can impose the constraint

(111)
(
wn+1

)2
=

n∑

i=1

(
wi

)2
.

Set

(112) vi = wi/wn+1, i = 1, . . . , n.

From (111), (112) one gets

(113)
n∑

i=1

(
vi
)2

= 1.

Since vi = wi/wn+1, one has vix = wi
x/w

n+1 − viwn+1
x /wn+1. Combining this with (107), we get

(114) vix = λis
i − vi

n∑

j=1

λjs
jvj, i = 1, . . . , n.

Similarly, using the formula vit = wi
t/w

n+1 − viwn+1
t /wn+1 and equations (108), (109), one obtains

(115) vit = λis
i
xx +

n∑

j=1

λiλjv
j
(
sjxs

i − sixs
j
)
− vi

n∑

j=1

λjv
jsjxx+

+
(

r1 + λ21 +
1

2
〈S,RS〉+

3

2
〈Sx, Sx〉

)(

λis
i − vi

n∑

j=1

λjv
jsj

)

, i = 1, . . . , n.

Using equations (114), we want to express (at least locally) the functions si in terms of λj, v
j, vjx.

Locally one can resolve the constraint
∑n

j=1(s
j)2 = 1 by taking sk =

√

1−
∑

i 6=k(s
i)2 for some k ∈

{1, . . . , n}. Here and below, we choose a suitable branch of the multivalued function
√

1−
∑

i 6=k(s
i)2.

For simplicity of notation, assume k = n. (The case k 6= n can be studied analogously.) Then

sn =
√

1−
∑n−1

j=1 (s
j)2.

Similarly, on a neighborhood of the point v1 = v2 = · · · = vn−1 = 0, vn = 1, equation (113) is

equivalent to vn =
√

1−
∑n−1

j=1 (v
j)2, and system (114) becomes

(116) vix = λis
i − vi

n−1∑

j=1

λjs
jvj − viλn

√
√
√
√1−

n−1∑

j=1

(sj)2

√
√
√
√1−

n−1∑

j=1

(vj)2, i = 1, . . . , n− 1.

Denote by ai = ai(λ1, . . . , λn, v
1, . . . , vn−1, s1, . . . , sn−1) the right-hand side of (116).

For v1 = · · · = vn−1 = 0 we have
∂ai

∂sj
= δijλi. Recall that λi 6= 0. Therefore, by the implicit

function theorem, on a neighborhood of the point v1 = · · · = vn−1 = 0 from equations (116) we can
express

(117) si = Ri(λ1, . . . , λn, v
j, vjx), i = 1, . . . , n− 1.
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Combining (117) with the formula sn =
√

1−
∑n−1

j=1 (s
j)2, one gets

(118) sn =

√
√
√
√1−

n−1∑

j=1

(

Rj(λ1, . . . , λn, vj, v
j
x)
)2

.

Substituting (117), (118) to (115), we obtain an evolution system of the form

(119) vit = P i(λ1, . . . , λn, v
j, vjx, v

j
xx, v

j
xxx), i = 1, . . . , n,

n∑

i=1

(vi)2 = 1.

System (119) is connected with (2) by the Miura type transformation (117), (118).
Note that for system (2) many solutions are known [2]. Therefore, it makes sense to describe how

to construct solutions for (119) from solutions of (2).
Recall that (119) is obtained from (113), (114), (115) by eliminating si. Hence we need to describe

solutions vi of system (113), (114), (115) for a given solution s1, . . . , sn of (2). We can use the fact
that system (113), (114), (115) is obtained by the reduction (111), (112) of (106).
So let us fix a solution S =

(
s1(x, t), . . . , sn(x, t)

)
of (2). Then system (106) is compatible and is

equivalent to a system of linear ordinary differential equations (ODEs). Indeed, one can first solve
Wx =MT ·W as an ODE with respect to x, treating t as a parameter. Then one can substitute the
obtained solution to the equation Wt =MT ·W , which is an ODE with respect to t.
Suppose that the functions si(x, t) are defined on a neighborhood of a point (x0, t0). For any

z1, . . . , zn+1 ∈ C satisfying

(120) (zn+1)
2 =

n∑

i=1

(zi)
2, zn+1 6= 0,

consider the solution w1, . . . , wn+1 of the linear system (106) with the initial condition wj(x0, t0) = zj .
From (110), (120) it follows that wj obey (111). Since wn+1(x0, t0) = zn+1 6= 0, one has wn+1(x, t) 6=

0 on some neighborhood of (x0, t0). Then v
i(x, t) given by (112) satisfy (113), (114), (115).

For example, suppose that si are constant, i.e., do not depend on x, t. Then S = (s1, . . . , sn) is a
constant solution of (2). Since six = 0, from (78), (79) we see that equations (106) read

Wx = M̃W, Wt = ÑW, M̃ =

n∑

i=1

siλi
(
Ei,n+1 + En+1,i

)
, Ñ =

(

r1 + λ21 +
1

2
〈S,RS〉

)

M̃.

Since [M̃, Ñ ] = 0 and the matrices M̃ , Ñ do not depend on x, t, one has

W = e(x−x0)M̃+(t−t0)Ñ · Z,

where Z = (z1, . . . , zn+1) is a column-vector satisfying (120). The corresponding functions vi(x, t) are
given by (112), where wi are the components of the vector W .

Remark 12. It is well known that vector field representations of the WE algebra of an evolution
PDE often lead to Bäcklund transformations. Let us show that the Miura type transformations
constructed above correspond to some vector field representations of the WE algebra of (2).
The constructed MTTs are determined by system (114), (115), which is compatible modulo (2).

Let ãi(λl, v
l, sl) be the right-hand side of (114) and b̃i(λl, v

l, sl, slx, s
l
xx) be the right-hand side of (115).

Set

(121) A =

n∑

i=1

ãi(λl, v
l, sl)

∂

∂vi
, B =

n∑

i=1

b̃i(λl, v
l, sl, slx, s

l
xx)

∂

∂vi
.

Then compatibility of system (114), (115) is equivalent to the equation

(122) Dx(B)−Dt(A) + [A,B] = 0,
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where Dx, Dt are the total derivative operators corresponding to system (2).
Let D be the Lie algebra of vector fields on the space Cn with coordinates v1, . . . , vn. That is, D

consists of vector fields of the form
∑n

i=1 h
i(v1, . . . , vn)

∂

∂vi
.

Equation (122) says that formulas (121) can be regarded as a ZCR with values inD. By Remark 10,
this ZCR determines a homomorphism from the WE algebra of (2) to D. The homomorphism is given
by

(123) p0 7→ 0, pn+1 7→ 0, pj 7→ λj
∂

∂vj
− λjv

j

n∑

i=1

vi
∂

∂vi
, j = 1, . . . , n,

where p0, p1, . . . , pn+1 are the generators of the WE algebra described in Theorem 3. Note that the
vector fields (123) are tangent to the submanifold given by equation (113).

6. Proof of Lemma 6

We prove Lemma 6 by induction on k1 + k2. For k1 + k2 = 0 (that is, k1 = k2 = 0) the statements
of Lemma 6 follow easily from (76), (77). Let m ∈ Z≥0 be such that the statements (98)–(105) are
valid for k1 + k2 ≤ m. We must prove (98)–(105) for k1 + k2 = m+ 1.
Below l ∈ {1, . . . , n} is such that l 6= i, l 6= j. In what follows, the symbol “=” denotes equality in

the usual sense, and the symbol “≡” is used in the sense of (97).
Also, we often use the following property. If V1 ≡ V2 mod gr for some r ∈ Z≥0 and V1, V2 ∈ g(n),

then [V3, V1] ≡ [V3, V2] mod gr+r′ for any r′ ∈ Z≥0 and V3 ∈ gr
′

.
Proof of (98). We continue to use the notation (94), (95), (96) for Lie brackets of elements of g(n).

For example, according to this notation, [iP 2q+2
ij ] = [pi, P

2q+2
ij ] and [P 1

i P
2q+2
ij ] = [P 1

i , P
2q+2
ij ].

By the induction assumption, for all q ≤ m one has

[i . . . i
︸ ︷︷ ︸

2q+2

j] = [iP 2q+2
ij ] = [P 1

i P
2q+2
ij ] ≡ P 2q+3

j mod g2q+2,(124)

[ll i . . . i
︸ ︷︷ ︸

2q

j] = [ll[P 1
i P

2q
ij ]] ≡ [llP 2q+1

j ] = [l[P 1
l P

2q+1
j ]] ≡ [lP 2q+2

lj ] = [P 1
l P

2q+2
lj ] ≡ P 2q+3

j mod g2q+2.

Since (124) is valid for any i 6= j, we have also [l . . . l
︸ ︷︷ ︸

2q+2

j] ≡ P 2q+3
j mod g2q+2. Therefore,

(125) [ll i . . . i
︸ ︷︷ ︸

2q

j] ≡ [i . . . i
︸ ︷︷ ︸

2q+2

j] ≡ [l . . . l
︸ ︷︷ ︸

2q+2

j] ≡ P 2q+3
j mod g2q+2 ∀ i 6= j 6= l 6= i, ∀ q ≤ m.

Without loss of generality, we can assume k2 ≥ 1 in (98). By the induction assumption, we have
[[i . . . i
︸ ︷︷ ︸

2k1

j] i . . . i
︸ ︷︷ ︸

2k2−2

j] ≡ 0 mod g2k1+2k2−1. Using this and the Jacobi identity, one gets

(126) [l[i . . . i
︸ ︷︷ ︸

2k1

j][l i . . . i
︸ ︷︷ ︸

2k2−2

j]] = [l[[i . . . i
︸ ︷︷ ︸

2k1

j]l] i . . . i
︸ ︷︷ ︸

2k2−2

j] + [ll[i . . . i
︸ ︷︷ ︸

2k1

j] i . . . i
︸ ︷︷ ︸

2k2−2

j] ≡

≡ −[l[l i . . . i
︸ ︷︷ ︸

2k1

j][i . . . i
︸ ︷︷ ︸

2k2−2

j]] mod g2k1+2k2+1,

Using (125) and (126), we obtain

(127) [[i . . . i
︸ ︷︷ ︸

2k1

j][i . . . i
︸ ︷︷ ︸

2k2

j]] ≡ [[i . . . i
︸ ︷︷ ︸

2k1

j][ll i . . . i
︸ ︷︷ ︸

2k2−2

j]] = −[[l i . . . i
︸ ︷︷ ︸

2k1

j][l i . . . i
︸ ︷︷ ︸

2k2−2

j]] + [l[i . . . i
︸ ︷︷ ︸

2k1

j][l i . . . i
︸ ︷︷ ︸

2k2−2

j]] =

= [[ll i . . . i
︸ ︷︷ ︸

2k1

j][i . . . i
︸ ︷︷ ︸

2k2−2

j]]− [l[l i . . . i
︸ ︷︷ ︸

2k1

j][i . . . i
︸ ︷︷ ︸

2k2−2

j]] + [l[i . . . i
︸ ︷︷ ︸

2k1

j][l i . . . i
︸ ︷︷ ︸

2k2−2

j]] ≡

≡ [[ll i . . . i
︸ ︷︷ ︸

2k1

j][i . . . i
︸ ︷︷ ︸

2k2−2

j]]− 2[l[l i . . . i
︸ ︷︷ ︸

2k1

j][i . . . i
︸ ︷︷ ︸

2k2−2

j]] mod g2k1+2k2+1.
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Since, by (125), [ll i . . . i
︸ ︷︷ ︸

2k1

j] ≡ [i . . . i
︸ ︷︷ ︸

2k1+2

j] mod g2k1+2, from (127) it follows that

(128) [[i . . . i
︸ ︷︷ ︸

2k1

j][i . . . i
︸ ︷︷ ︸

2k2

j]] ≡ [[i . . . i
︸ ︷︷ ︸

2k1+2

j][i . . . i
︸ ︷︷ ︸

2k2−2

j]]− 2[l[l i . . . i
︸ ︷︷ ︸

2k1

j][i . . . i
︸ ︷︷ ︸

2k2−2

j]] mod g2k1+2k2+1.

If k2 ≥ 2, applying the same procedure to the term [[i . . . i
︸ ︷︷ ︸

2k1+2

j][i . . . i
︸ ︷︷ ︸

2k2−2

j]] in equation (128), one gets

[[i . . . i
︸ ︷︷ ︸

2k1

j][i . . . i
︸ ︷︷ ︸

2k2

j]] ≡ [[i . . . i
︸ ︷︷ ︸

2k1+4

j][i . . . i
︸ ︷︷ ︸

2k2−4

j]]− 2[l[l i . . . i
︸ ︷︷ ︸

2k1

j][i . . . i
︸ ︷︷ ︸

2k2−2

j]]− 2[l[l i . . . i
︸ ︷︷ ︸

2k1+2

j][i . . . i
︸ ︷︷ ︸

2k2−4

j]] mod g2k1+2k2+1.

Thus, applying this procedure several times to the first summand of the right-hand side, we obtain

(129) [[i . . . i
︸ ︷︷ ︸

2k1

j][i . . . i
︸ ︷︷ ︸

2k2

j]] ≡ [[ i . . . i
︸ ︷︷ ︸

2(k1+k2)

j]j]− 2

k2∑

s=1

[l[l i . . . i
︸ ︷︷ ︸

2(k1+s−1)

j][ i . . . i
︸ ︷︷ ︸

2(k2−s)

j]] mod g2k1+2k2+1.

By the induction assumption and (125), one has for all s = 1, . . . , k2

[[l i . . . i
︸ ︷︷ ︸

2(k1+s−1)

j]i] ≡ [[P 1
l P

2(k1+s)−1
j ]P 1

i ] ≡ [P
2(k1+s)
lj P 1

i ] ≡ 0 mod g2(k1+s).

Therefore,

(130) [l[l i . . . i
︸ ︷︷ ︸

2(k1+s−1)

j][ i . . . i
︸ ︷︷ ︸

2(k2−s)

j]] ≡ [l i . . . i
︸ ︷︷ ︸

2(k2−s)

[l i . . . i
︸ ︷︷ ︸

2(k1+s−1)

j]j] = −[l i . . . i
︸ ︷︷ ︸

2(k2−s)

jl i . . . i
︸ ︷︷ ︸

2(k1+s−1)

j] mod g2k1+2k2+1.

By the induction assumption and (125),
(131)

[l i . . . i
︸ ︷︷ ︸

2(k1+s−1)

j] ≡ [P 1
l P

2(k1+s)−1
j ] ≡ [P

2(k1+s)
lj ] ≡ −[P 1

j P
2(k1+s)−1
l ] ≡ −[j i . . . i

︸ ︷︷ ︸

2(k1+s−1)

l] mod g2(k1+s)−1.

Using (130), (131), and (125), we obtain

(132) [l[l i . . . i
︸ ︷︷ ︸

2(k1+s−1)

j][ i . . . i
︸ ︷︷ ︸

2(k2−s)

j]] ≡ −[l i . . . i
︸ ︷︷ ︸

2(k2−s)

jl i . . . i
︸ ︷︷ ︸

2(k1+s−1)

j] ≡ [l i . . . i
︸ ︷︷ ︸

2(k2−s)

jj i . . . i
︸ ︷︷ ︸

2(k1+s−1)

l] =

= [l i . . . i
︸ ︷︷ ︸

2(k2−s)

[jj i . . . i
︸ ︷︷ ︸

2(k1+s−1)

l]] ≡ [l i . . . i
︸ ︷︷ ︸

2(k2−s)

[ i . . . i
︸ ︷︷ ︸

2(k1+s)

l]] = [l i . . . i
︸ ︷︷ ︸

2(k1+k2)

l] mod g2k1+2k2+1.

Combining (132) with (129), one gets
(133)
[[i . . . i
︸ ︷︷ ︸

2k1

j][i . . . i
︸ ︷︷ ︸

2k2

j]] ≡ −[j i . . . i
︸ ︷︷ ︸

2(k1+k2)

j]− 2k2[l i . . . i︸ ︷︷ ︸

2(k1+k2)

l] mod g2k1+2k2+1 ∀ k1, k2, k1 + k2 = m+ 1.

For k1 = 0 and k2 = m+ 1, equation (133) implies

(134) [j i . . . i
︸ ︷︷ ︸

2m+2

j] ≡ −(m+ 1)[l i . . . i
︸ ︷︷ ︸

2m+2

l] mod g2k1+2k2+1.

Since we assume n ≥ 4 in Lemma 6, there is b ∈ {1, . . . , n} such that b 6= i, b 6= j, b 6= l. Since (134)
is valid for any i 6= j 6= l 6= i, we get also

(135) [j i . . . i
︸ ︷︷ ︸

2m+2

j] ≡ −(m+ 1)[b i . . . i
︸ ︷︷ ︸

2m+2

b], [l i . . . i
︸ ︷︷ ︸

2m+2

l] ≡ −(m+ 1)[b i . . . i
︸ ︷︷ ︸

2m+2

b] mod g2k1+2k2+1.

Using (134), (135), one obtains

(136) (m+ 1)[b i . . . i
︸ ︷︷ ︸

2m+2

b] ≡ −[j i . . . i
︸ ︷︷ ︸

2m+2

j] ≡ (m+ 1)[l i . . . i
︸ ︷︷ ︸

2m+2

l] ≡ −(m+ 1)2[b i . . . i
︸ ︷︷ ︸

2m+2

b] mod g2k1+2k2+1.

Equation (136) implies [b i . . . i
︸ ︷︷ ︸

2m+2

b] ≡ 0 mod g2k1+2k2+1. Combing this with (133), (135), we obtain (98).
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Proof of (99). By the induction assumption and properties (98), (76), (77),

[i . . . i
︸ ︷︷ ︸

2m+1

j] ≡ −[j . . . j
︸ ︷︷ ︸

2m+1

i], [i j . . . j
︸ ︷︷ ︸

2m

i] ≡ 0 mod g2m+1,

[[iij]j] ≡ 0 mod g3, [iij] ≡ [llj], [jji] ≡ [lli] mod g2, [ilj] = 0.

Using this, one gets

P
2(k1+k2+1)
ij = [i . . . i

︸ ︷︷ ︸

2m+3

j] = [ii i . . . i
︸ ︷︷ ︸

2m+1

j] ≡ −[ii j . . . j
︸ ︷︷ ︸

2m+1

i] ≡ −[i[ij] j . . . j
︸ ︷︷ ︸

2m

i] ≡

≡ −[[iij] j . . . j
︸ ︷︷ ︸

2m

i] ≡ −[j . . . j
︸ ︷︷ ︸

2m

[iij]i] = [j . . . j
︸ ︷︷ ︸

2m

iiij] ≡ [j . . . j
︸ ︷︷ ︸

2m

illj] = [j . . . j
︸ ︷︷ ︸

2m

[il]lj] =

= [j . . . j
︸ ︷︷ ︸

2m

[[il]l]j] = −[j . . . j
︸ ︷︷ ︸

2m

jlli] ≡ −[j . . . j
︸ ︷︷ ︸

2m

jjji] = −P
2(k1+k2+1)
ji mod g2k1+2k2+1.

Proof of (100). By the Jacobi identity and (98),

(137) [P 2k1
ij , P 2k2+2

ij ] = [[i . . . i
︸ ︷︷ ︸

2k1−1

j][i . . . i
︸ ︷︷ ︸

2k2+1

j]] = [[[i . . . i
︸ ︷︷ ︸

2k1−1

j]i][i . . . i
︸ ︷︷ ︸

2k2

j]] + [i[i . . . i
︸ ︷︷ ︸

2k1−1

j][i . . . i
︸ ︷︷ ︸

2k2

j]] =

= −[[i . . . i
︸ ︷︷ ︸

2k1

j][i . . . i
︸ ︷︷ ︸

2k2

j]] + [i[i . . . i
︸ ︷︷ ︸

2k1−1

j][i . . . i
︸ ︷︷ ︸

2k2

j]] ≡ [i[i . . . i
︸ ︷︷ ︸

2k1−1

j][i . . . i
︸ ︷︷ ︸

2k2

j]] mod g2k1+2k2+1.

By the induction assumption and (125),

(138) [[i . . . i
︸ ︷︷ ︸

2k1−1

j][i . . . i
︸ ︷︷ ︸

2k2

j]] ≡ [P 2k1
ij P 2k2+1

j ] ≡ P
2(k1+k2)+1
i mod g2k1+2k2 .

Using (137), (138), and (98), we obtain

[P 2k1
ij , P 2k2+2

ij ] ≡ [i[i . . . i
︸ ︷︷ ︸

2k1−1

j][i . . . i
︸ ︷︷ ︸

2k2

j]] ≡ [iP
2(k1+k2)+1
i ] = [P 1

i P
2(k1+k2)+1
i ] ≡ 0 mod g2k1+2k2+1.

Proof of (101). By (125) and the induction assumption of (103), for any q1, q2 ∈ Z≥0 such that

q1 + q2 ≤ m, one has [[l . . . l
︸ ︷︷ ︸

2q1

i][l . . . l
︸ ︷︷ ︸

2q2+1

j]] ≡ [P 2q1+1
i , P 2q2+2

lj ] ≡ 0 mod g2q1+2q2+2. For k1 + k2 = m + 1

this implies

(139) [[ l . . . l
︸ ︷︷ ︸

2k1+2s

i][ l . . . l
︸ ︷︷ ︸

2k2−2s−1

j]] ≡ 0, [[ l . . . l
︸ ︷︷ ︸

2k1+2s+1

i][ l . . . l
︸ ︷︷ ︸

2k2−2s−2

j]] ≡ 0 mod g2k1+2k2 ∀ s, 0 ≤ s < k2.

Using (139) and the Jacobi identity, we get

(140) [[l . . . l
︸ ︷︷ ︸

2k1

i][l . . . l
︸ ︷︷ ︸

2k2

j]] ≡ −[[l . . . l
︸ ︷︷ ︸

2k1+1

i][l . . . l
︸ ︷︷ ︸

2k2−1

j]] ≡

≡ [[l . . . l
︸ ︷︷ ︸

2k1+2

i][l . . . l
︸ ︷︷ ︸

2k2−2

j]] ≡ · · · ≡ [[ l . . . l
︸ ︷︷ ︸

2(k1+k2)

i]j] = −[j l . . . l
︸ ︷︷ ︸

2(k1+k2)

i] mod g2k1+2k2+1.

Combining (140) with (125) and (99), one obtains

[P 2k1+1
i , P 2k2+1

j ] ≡ [[l . . . l
︸ ︷︷ ︸

2k1

i][l . . . l
︸ ︷︷ ︸

2k2

j]] ≡ −[j l . . . l
︸ ︷︷ ︸

2(k1+k2)

i] ≡

≡ −[j j . . . j
︸ ︷︷ ︸

2(k1+k2)

i] = −P
2(k1+k2+1)
ji ≡ P

2(k1+k2+1)
ij mod g2k1+2k2+1.

Proof of (102). Consider first the case k1 = 0. For j ∈ {1, . . . , n}, set

̃ =

{
1, if j 6= 1,
2, if j = 1.
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If i = ̃ then [P 2k1+1
i , P 2k2+2

ij ] = [i i . . . i
︸ ︷︷ ︸

2k2+1

j] = [̃ . . . ̃
︸ ︷︷ ︸

2k2+2

j] = P
2(k1+k2)+3
j for k1 = 0.

Now suppose that i 6= ̃ and k1 = 0. By (98),

(141) [i j . . . j
︸ ︷︷ ︸

2k2

i] ≡ 0 mod g2k2+1.

From (76) it follows that [[ij]̃] = 0. Using (99), (125), (141), and [[ij]̃] = 0, we obtain

[P 2k1+1
i , P 2k2+2

ij ] ≡ −[P 2k1+1
i , P 2k2+2

ji ] = −[i j . . . j
︸ ︷︷ ︸

2k2+1

i] ≡ −[[ij] j . . . j
︸ ︷︷ ︸

2k2

i] ≡ −[[ij] ̃ . . . ̃
︸ ︷︷ ︸

2k2

i] =

= −[̃ . . . ̃
︸ ︷︷ ︸

2k2

[ij]i] = [̃ . . . ̃
︸ ︷︷ ︸

2k2

[iij]] ≡ [̃ . . . ̃
︸ ︷︷ ︸

2k2

[̃̃j]] = P
2(k1+k2)+3
j mod g2k1+2k2+2 for k1 = 0.

If k1 = 0 then [P 2k1+1
i , P 2k2+2

ij ] = [i . . . i
︸ ︷︷ ︸

2m+4

j] for m = k1 + k2 − 1. We have proved (102) for k1 = 0, that

is,

(142) [i . . . i
︸ ︷︷ ︸

2m+4

j] ≡ P 2m+5
j mod g2m+4 ∀ i 6= j.

Now consider the case k1 ≥ 1. By (125), for all l 6= i, l 6= j one obtains

(143) [P 2k1+1
i , P 2k2+2

ij ] = −[P 2k2+2
ij , P 2k1+1

i ] ≡ −[[i . . . i
︸ ︷︷ ︸

2k2+1

j][l . . . l
︸ ︷︷ ︸

2k1

i]] mod g2k1+2k2+2.

By the induction assumption of (103),

(144) [[i . . . i
︸ ︷︷ ︸

2k2+1

j]l] = [P 2k2+2
ij , P 1

l ] ≡ 0 mod g2k2+2.

Using (125), (143), (144), we get

[P 2k1+1
i , P 2k2+2

ij ] ≡ −[[i . . . i
︸ ︷︷ ︸

2k2+1

j][l . . . l
︸ ︷︷ ︸

2k1

i]] ≡ −[l . . . l
︸ ︷︷ ︸

2k1

[i . . . i
︸ ︷︷ ︸

2k2+1

j]i] = [l . . . l
︸ ︷︷ ︸

2k1

i . . . i
︸ ︷︷ ︸

2k2+2

j] ≡ [l . . . l
︸ ︷︷ ︸

2m+4

j] mod g2m+4.

Since (142) is valid for all i 6= j, one has [l . . . l
︸ ︷︷ ︸

2m+4

j] ≡ P
2(k1+k2)+3
j mod g2k1+2k2+2.

Proof of (103). Since n ≥ 4, there is l ∈ {1, . . . , n} such that l 6= i, l 6= i′, l 6= j′.
Consider first the case k1 ≥ 1. Then k2 ≤ m. By the induction assumption of (103),

[[i′ . . . i′
︸ ︷︷ ︸

2k2+1

j′]l] = [P 2k2+2
i′j′ , P 1

l ] ≡ 0, [[i′ . . . i′
︸ ︷︷ ︸

2k2+1

j′]i] = [P 2k2+2
i′j′ , P 1

i ] ≡ 0 mod g2k2+2.

Using this and (125), one gets

(145) [P 2k1+1
i , P 2k2+2

i′j′ ] = −[P 2k2+2
i′j′ , P 2k1+1

i ] ≡ −[[i′ . . . i′
︸ ︷︷ ︸

2k2+1

j′] l . . . l
︸ ︷︷ ︸

2k1

i] ≡

≡ −[l . . . l[i′ . . . i′
︸ ︷︷ ︸

2k2+1

j′]i] ≡ 0 mod g2k1+2k2+2.

If we set k2 = 0, k1 = m+ 1 then (145) implies that for any distinct integers c1, c2, c3, c4 ∈ {1, . . . , n}

(146) [[c1c2] c4 . . . c4
︸ ︷︷ ︸

2m+2

c3] ≡ 0 mod g2m+4.

By (125), one has [c4 . . . c4
︸ ︷︷ ︸

2m+2

c3] ≡ [c2 . . . c2
︸ ︷︷ ︸

2m+2

c3] mod g2m+2. Combining this with (146), we obtain

(147) [[c1c2] c2 . . . c2
︸ ︷︷ ︸

2m+2

c3] ≡ 0 mod g2m+4.
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By the Jacobi identity, (147), and (125),
(148)
[c1 c2 . . . c2

︸ ︷︷ ︸

2m+3

c3] = [[c1c2] c2 . . . c2
︸ ︷︷ ︸

2m+2

c3] + [c2c1 c2 . . . c2
︸ ︷︷ ︸

2m+2

c3] ≡ [c2c1 c2 . . . c2
︸ ︷︷ ︸

2m+2

c3] ≡ [c2 c1 . . . c1
︸ ︷︷ ︸

2m+3

c3] mod g2m+4.

Also, property (99) implies

(149) [c1 c2 . . . c2
︸ ︷︷ ︸

2m+3

c3] ≡ −[c1 c3 . . . c3
︸ ︷︷ ︸

2m+3

c2] mod g2m+4.

It remains to study the case k1 = 0. Using (148) and (149), for k1 = 0 we get

[P 2k1+1
i , P 2k2+2

i′j′ ] = [i i′ . . . i′
︸ ︷︷ ︸

2k2+1

j′] ≡ [i′ i . . . i
︸ ︷︷ ︸

2k2+1

j′] ≡ −[i′j′ . . . j′i] ≡ −[j′i′ . . . i′i] ≡

≡ [j′i . . . ii′] ≡ [ij′ . . . j′i′] ≡ −[ii′ . . . i′j′] = −[P 2k1+1
i , P 2k2+2

i′j′ ] mod g2k1+2k2+2, k1 = 0.

Therefore, [P 2k1+1
i , P 2k2+2

i′j′ ] ≡ 0 mod g2k1+2k2+2.

Proof of (104). By (103), we have [i, P 2k2+2
i′j′ ] ≡ 0, [j, P 2k2+2

i′j′ ] ≡ 0 mod g2k2+2. This implies (104).

Proof of (105). By (103), [[i . . . i
︸ ︷︷ ︸

2k1−1

j]j′] ≡ 0 mod g2k1 . Using this and (99), (125), one obtains

[P 2k1
ij , P 2k2+2

ij′ ] ≡ −[P 2k1
ij , P 2k2+2

j′i ] = −[[i . . . i
︸ ︷︷ ︸

2k1−1

j] j′ . . . j′
︸ ︷︷ ︸

2k2+1

i] ≡ −[j′ . . . j′
︸ ︷︷ ︸

2k2+1

[i . . . i
︸ ︷︷ ︸

2k1−1

j]i] =

= [j′ . . . j′
︸ ︷︷ ︸

2k2+1

i . . . i
︸ ︷︷ ︸

2k1

j] ≡ [j′ . . . j′
︸ ︷︷ ︸

2k2+1

j′ . . . j′
︸ ︷︷ ︸

2k1

j] = P
2(k1+k2+1)
j′j ≡ −P

2(k1+k2+1)
jj′ mod g2k1+2k2+1.
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