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ON THE LYAPUNOV NUMBERS

SERGǏI KOLYADA AND OLEKSANDR RYBAK

Abstract. We introduce and study the Lyapunov numbers – quantitative
measures of the sensitivity of a dynamical system (X, f) given by a compact
metric space X and a continuous map f : X → X. In particular, we prove
that for a minimal topologically weakly mixing system all Lyapunov numbers
are the same.

1. Introduction

Throughout this paper (X, f) denotes a topological dynamical system, where X
is a compact metric space with metric d and f : X → X is a continuous map.

The notion of sensitivity (sensitive dependence on initial conditions) was first
used by Ruelle [14]. According to the works by Guckenheimer [10], Auslander and
Yorke [5] a dynamical system (X, f) is called sensitive if there exists a positive ε
such that for every x ∈ X and every neighborhood Ux of x, there exist y ∈ Ux and
a nonnegative integer n with d(fn(x), fn(y)) > ε.

Recently several authors studied the different properties related to sensitivity
(cf. Abraham et al.[1], Akin and Kolyada [3], Moothathu [13], Huang et al. [11]).
The following proposition holds according to [3].

Proposition 1.1. Let (X, f) be a topological dynamical system. The following

conditions are equivalent.

1. (X, f) is sensitive.

2. There exists a positive ε such that for every x ∈ X and every neighborhood

Ux of x, there exists y ∈ Ux with lim supn→∞ d(fn(x), fn(y)) > ε.
3. There exists a positive ε such that in any opene∗ U in X there are x, y ∈ U

and a nonnegative integer n with d(fn(x), fn(y)) > ε.
4. There exists a positive ε such that in any opene U ⊂ X there are x, y ∈ U

with lim supn→∞ d(fn(x), fn(y)) > ε.

For a dynamical system (X, f) a point x ∈ X is Lyapunov stable if the depen-
dence of the orbit upon the initial position is continuous at x (see [3]). This is most
easily defined using the f−extension of the metric d:

df (x, y) = sup {d(fn(x), fn(y)) : n ≥ 0}

for x, y ∈ X . Clearly, df is a metric on X and

df (x, y) = max[ d(x, y), df (f(x), f(y)) ].

Using these metrics we define the diameter and f-diameter for A ⊂ X , the radius

and f-radius for a neighborhood Ux of a point x ∈ X

diam(A) = sup {d(x, y) : x, y ∈ A}, diamf (A) = sup {df (x, y) : x, y ∈ A},

rad(Ux) = sup {d(x, y) : y ∈ Ux}, radf (Ux) = sup {df (x, y) : y ∈ Ux}.

2010 Mathematics Subject Classification. Primary 37B05; Secondary 54H20, 37B25.
Key words and phrases. Lyapunov numbers, minimal map, sensitive dynamical system, topo-

logically weakly mixing map.
∗Because we so often have to refer to open, nonempty subsets, we will call such subsets opene.
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The topology obtained from the metric df is usually strictly coarser than the
original d topology. When we use a term like “open”, we refer exclusively to the
original topology.

A point x ∈ X is called Lyapunov stable if for every ε > 0 there exists a δ > 0
such that rad(Ux) < δ implies radf (Ux) ≤ ε. This condition says exactly that the
sequence of iterates {fn : n ≥ 0} is equicontinuous at x. Hence, such a point is also
called an equicontinuity point. We label associated point sets:

Eqε(f) =
⋃

{Ux ⊂ X : Ux is a neighborhood of a point x

with radf (Ux) ≤ ε} and Eq(f) =
⋂

ε>0

Eqε(f).

As the label suggests, Eq(f) is the set of equicontinuity points. If Eq(f) = X ,
i.e. every point is equicontinuous, then the two metrics d and df are topologically
equivalent and so, by compactness, they are uniformly equivalent. Such a system
is called equicontinuous. Thus, (X, f) is equicontinuous exactly when the sequence
{fn : n ≥ 0} is uniformly equicontinuous.

If the Gδ set Eq(f) is dense in X then the system is called almost equicontinuous.
On the other hand, if Eqε(f) = ∅ for some ε > 0 then it is the same that the
system shows sensitive dependence upon initial conditions or, more simply, (X, f)
is sensitive. We define

Lr := sup{ε : for every x ∈ X and every neighborhood Ux of x there

exist y ∈ Ux and a nonnegative integer n with d(fn(x), fn(y)) > ε}

and call it the (first) Lyapunov number.
It can happen that Eqε(f) 6= ∅ for all positive ε and yet still the intersection,

Eq(f), is empty (see [3]). This cannot happen when the system is transitive†

(Glasner and Weiss [9], Akin et al [2]).

Theorem 1.2. Let (X, f) be a topologically transitive dynamical system. Exactly

one of the following two cases holds.

Case i (Eq(f) 6= ∅) Assume there exists an equicontinuity point for the

system. The equicontinuity points are exactly the transitive points, i.e.

Eq(f) = Trans(f), and the system is almost equicontinuous. The map f is a

homeomorphism and the inverse system (X, f−1) is almost equicontinuous.

Furthermore, the system is uniformly rigid meaning that some subsequence

of {fn : n = 0, 1, ...} converges uniformly to the identity.

Case ii (Eq(f) = ∅) Assume the system has no equicontinuity points. The

system is sensitive, i.e. there exists ε > 0 such that Eqε(f) = ∅.

Corollary 1.3. If (X, f) is a minimal dynamical system then it is either sensitive

or equicontinuous.

Let us define

Equε(f) =
⋃

{U ⊂ X : U is open with diamf (U) ≤ ε}.

Obviously Eq(f) = ∩ε>0 Equε(f), and if Equε(f) = ∅ for some ε > 0 then the
system (X, f) is sensitive (see also Proposition 1.1). Therefore, it is natural to
define

Ld := sup{ε : in any opene U ⊂ X there exist x, y ∈ U and there is

a positive integer n with d(fn(x), fn(y)) > ε}

and call it the second Lyapunov number.

†We recall the definition in Section 3.
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According to Proposition 1.1 we will define

Lr := sup{ε : for every x ∈ X and every open neighborhood Ux of x

there exists y ∈ Ux with lim sup
n→∞

d(fn(x), fn(y)) > ε},

Ld := sup{ε : in any opene U ⊂ X there exist x, y ∈ U with

lim sup
n→∞

d(fn(x), fn(y)) > ε}.

Sometimes it will be useful to use also the following notations

L1 := Lr ; L2 := Ld; L3 := Lr; L4 := Ld.

So, various definitions of sensitivity, formally give us different Lyapunov numbers
– quantitative measures of these sensitivities.

In Section 2 we prove that for a topological dynamical system (X, f), it holds
Ld ≤ 2Lr. In Section 3 we examine the equalities between the Lyapunov numbers
for topologically transitive systems and in Section 4 for weakly mixing systems.
In particular, we prove that for topologically weakly mixing minimal systems all
Lyapunov numbers are the same. Finally, in Section 5 we give some examples and
open problems for Lyapunov numbers.

Acknowledgements. We thank the anonymous reviewer for helpful remarks and
suggestions. The first author was supported by Max-Planck-Institut für Mathe-
matik (Bonn); he acknowledges the hospitality of the Institute.

2. A general inequality for the Lyapunov numbers

Directly from the definitions, the following inequalities hold

Ld ≥ Ld ≥ Lr and Ld ≥ Lr ≥ Lr.

Proposition 2.1. Let (X, f) be a sensitive topological dynamical system. Then

Ld ≤ 2Lr.

Proof. Let Ld be the second Lyapunov number of (X, f). Fix a (small enough)
δ > 0, a point x ∈ X and a neighborhood Ux of x. Let U0 = Ux and n0 be the first
positive integer, for which diam(fn0(U0)) > Ld − δ. There exists a point y0 ∈ U0

such that d(fn0(x), fn0(y0)) > (Ld − δ)/2. Choose an opene U1 with its closure
contained in U0 such that y0 ∈ U1 and diam(fm(U1)) ≤ δ/2 for every non-negative
integer m ≤ n0. Let n1 be the first positive integer, for which diam(fn1(U1)) >
Ld − δ. By the definition of U1, we clearly have n1 > n0.

We define recursively opene sets U2, U3, ... and positive integers n2, n3, ... as
follows. Since nk−1 is defined, there exists a point yk−1 ∈ Uk−1 such that
d(fnk−1(x), fnk−1(yk−1)) > (Ld − δ)/2. So we can choose an opene Uk in Uk−1

such that yk−1 ∈ Uk and diam(fm(Unk
)) ≤ δ/2 for every non-negative integer

m ≤ nk−1. Let nk be the first positive integer, for which diam(fnk(Uk)) > Ld − δ.
As in the previous step, by the definition of Uk we clearly have nk > nk−1.

If y is a point of the nonempty intersection ∩kUnk
, then, obviously, y ∈ U and

lim supn→∞ d(fn(x), fn(y)) ≥ Ld/2− δ. �

As a consequence of the inequalities at the beginning of Section 2 and Proposition
2.1 we conclude that Li ≤ 2Lj for any i, j ∈ {1, 2, 3, 4}.

3. Lyapunov numbers for transitive maps

A topological dynamical system (X, f) is called topologically transitive, if for any
pair of opene subsets U, V ∈ X

nf (U, V ) := {n ∈ Z+ : U ∩ f−n(V ) 6= ∅}
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is infinite. A point x ∈ X is called a transitive point if its orbit {x, f(x), f2(x), ...}
is dense in X . If (X, f) is topologically transitive and X is compact, then the set
of transitive points is a Gδ-dense subset of X .

If every point of a dynamical system (X, f) is transitive, then this system is
called minimal. An f -invariant closed subset M ⊂ X is called minimal if the orbit
of any point of M is dense in M (in this case a point of M is called minimal, too).

For a dynamical system (X, f), a point x ∈ X and a set U ⊂ X let

nf (x, U) := {n ∈ Z+ : fn(x) ∈ U}.

A point x ∈ X is said to be recurrent if for every neighborhood U of x the set
nf (x, U) is infinite.

A subset S of Z+ is syndetic if it has bounded gaps, i.e. there is N ∈ N such
that {i, i+1, ..., i+N}∩S 6= ∅ for every i ∈ Z+. S is thick if it contains arbitrarily
long runs of positive integers, i.e. there is a strictly increasing subsequence {ni}
such that S ⊃ ∪∞

i=1{ni, ni + 1, ..., ni + i}.
Some dynamical properties can be interpreted by using the notions of syndetic

or thick subsets. For example, a classic result of Gottschalk states that x ∈ X is a
minimal point if and only if nf (x, U) is syndetic for any neighborhood U of x, and
a topological dynamical system (X,T ) is (topologically) weakly mixing (we recall
the definition in Section 4) if and only if nf (U, V ) is thick for any opene subsets
U, V of X [7],[8].

Theorem 3.1. Let (X, f) be a sensitive topologically transitive dynamical system.

Then Ld = Ld.

Proof. By the definition of Ld, for any ε < Ld and for any opene U ∈ X there are
points x, y ∈ U and a positive integer n0 such that d(fn0(x), fn0(y)) > ε. Choose
an arbitrary (small) δ > 0. Let Ux, Uy ⊂ U be neighborhoods of x and y such that
diam(fn0(Ux)) < δ and diam(fn0(Uy)) < δ. If z ∈ Ux is a transitive point, there
is a positive integer m for which fm(z) ∈ Uy. By the triangle inequality we have
d(fn0(z), fn0+m(z)) > ε− 2δ.

Let Uz be a neighborhood of z such that Uz ⊂ Ux and fm(Uz) ⊂ Uy. Then obvi-
ously diam(fn0(Uz)) < δ and diam(fn0+m(Uz)) < δ. Since a sensitive system has
no isolated points, Uz is infinite. Therefore, the orbit of the point z visits Uz infin-
itely many times. If nk is such that fnk(z) ∈ Uz, then fn0+nk(z) = fn0(fnk(z)) ⊂
fn0(Uz) and fn0+nk+m(z) = fn0+m(fnk(z)) ⊂ fn0+m(Uz) = fn0(fm(Uz)) ⊂
fn0(Uy). And so, by the triangle inequality, d(fn0+nk(z), fn0+nk+m(z)) > ε− 2δ.

From this we have Ld > lim supn→∞ d(fn(z), fn(fm(z))) ≥ ε−2δ. Since δ > 0 and
ε < Ld were chosen arbitrarily, Ld = Ld. �

A topologically transitive dynamical system (X, f), where X has no isolated
points, is called ToM if every point x ∈ X is either (topologically) transitive or
minimal. ToM systems were introduced by Downarowicz and Ye in [6]. Since we
do not require that both types are present (as in [6]), a minimal system is also
ToM. If a ToM system is not minimal, then the set of minimal points is dense in X
(because for a transitive, but non-minimal system, the set of non-transitive points
is dense (see for instance [12])).

Theorem 3.2. Let (X, f) be a sensitive ToM system. Then Lr = Lr.

Proof. Fix a point x ∈ X . Let Ux be a neighborhood of x and let δ > 0. By
the definition of Lr, there exist a point y ∈ Ux and a positive integer m such that
d(fm(x), fm(y)) > Lr − δ. Take a neighborhood Uy ⊂ Ux of point y such that
diamfm(Uy) < δ.



ON THE LYAPUNOV NUMBERS 5

Now, if x is a transitive point, one can just repeat the idea of the proof of Theorem
3.1 for the proof of this case. If x is not transitive, then is minimal. Since (X, f) is
ToM, we can find a minimal point z1 ∈ Uy and therefore d(fm(x), fm(z1)) > Lr−2δ.

Consider the direct product system (Orbf (x)×Orbf (z1), f |Orbf (x)
× f |Orbf (z1)

).

Let M be a minimal subset of this system. Then obviously M ∩Mx 6= ∅, where
Mx := {(x, z) : z ∈ Orbf (z1)}. Hence there is a point (x, z2) ∈ Ux×Orbf (z1), which
is minimal, and therefore (uniformly) recurrent for the map f |Orbf (x)

× f |Orbf (z1)
).

Clearly, every point of the form (x, fk(z2)), k = 0, 1, 2, ...will be uniformly recurrent
too. Since z1 is minimal, we can take a positive integer k, such that z3 := fk(z2) ∈
Uy. Therefore, we have lim supn→∞ d(fn(x), fn(z3)) ≥ Lr − 2δ. Since x and δ > 0

were chosen arbitrarily, we get Lr = Lr. �

As a corollary of the last two theorems we conclude that the equalities Lr = Lr

and Ld = Ld hold for minimal dynamical systems. And what we can say about
dynamical systems for which Lr = Ld holds?

4. Lyapunov numbers for weakly mixing maps

Recall that a topological dynamical system (X, f) is called (topologically) weakly
mixing if for any opene U1, U2, V1, V2 ∈ X there is a non-negative integer n such
that U1 ∩ f−n(V1) 6= ∅ and U2 ∩ f−n(V2) 6= ∅. In other words if its direct product
(X ×X, f × f) is topologically transitive.

Theorem 4.1. Let (X, f) be a topologically weakly mixing dynamical system. Then

1. Ld = Ld = diam(X).
2. Lr = Lr.

3. If, in addition, (X, f) is minimal, then Lr = Lr = Ld = Ld = diam(X).

Proof. 1. Since a weakly mixing system is topologically transitive, from Theorem
3.1 we have Ld = Ld. Since (X, f) be a topologically weakly mixing, also the direct
product (X × X, f × f) is topologically transitive. So, in every open set in the
product, in particular, in the Cartesian square of every ball U in X , there is a
transitive point of (X ×X, f × f), i.e., a pair of points x, y ∈ U . Such pair visits
all places in the Cartesian square X × X infinitely many times. It means that
lim supn→∞ d(fn(x), fn(y)) = diam(X) = Ld.

2. Let x ∈ X . Since (X, f) is weakly mixing, there is a point z ∈ X , such that
for any neighborhood G of z and any opene U, V in X there exist infinitely many
positive integers n, for which fn(x) ∈ G and fn(U) ∩ V 6= ∅ ([3]).

By the definition of Lr, for the point z and any (small enough) positive δ there
is a point y ∈ X and a positive integer k such that d(fk(y), fk(z)) > Lr − δ.

Now, let Ux be a neighborhood of point x, let Gz and Vy be open balls of radius
δ centered at points fk(z) and fk(y), respectively. Suppose also Gz ∩ Vy = ∅. In
order to prove the second part of this theorem we will find a point in Ux by using
the above property from [3]. Let n0 be a positive integer such that fn0(x) ∈ Gz and
fn0(Ux)∩Vy 6= ∅. Put U0 := Ux∩f

−n0(Vy). Obviously, U0 is an opene subset of Ux,

U0 ⊂ Ux and x 6∈ U0. Define inductively opene sets U1, U2, ... and positive integers
ni as follows. Let nk be a (large enough) positive integer, say nk ≥ k, such that
fnk(x) ∈ Gz and fnk(Uk−1)∩Vy 6= ∅. Define Uk := Uk−1∩f

−nk(Vy). It is clear that

Uk is an opene subset in X and Ui ⊂ Ui−1 for any i ≥ 1. Hence U0 ⊃ U1 ⊃ U2 ⊃ ...
If u is a point of the nonempty intersection ∩iUi, then for any natural i we have
fni(u) ∈ V y and fni(x) ∈ Gz. Therefore, lim supn→∞ d(fn(x), fn(u)) ≥ Lr − 3δ.

Since δ > 0 is arbitrary, we have Lr = Lr.
3. Cases 1 and 2 imply that it is sufficient to prove Lr = diam(X). Let x ∈ X

and let Ux be a neighborhood of x. There are two opene (infinite) sets Vx and Vy
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in X and a positive (small enough) number δ such that the distance between Vx

and Vy is large or equal to diam(X)− δ.
As we have mentioned before, since TDS (X, f) is minimal, any point of X is

uniformly recurrent. In particular, it means that nf (x, Vx) is a syndetic subset
of Z+. On the other hand (X, f) is also a topologically weakly mixing dynami-
cal system. And again it means that nf (U, Vy) is a thick subset of Z+. Hence
nf (x, Vx) ∩ nf (U, Vy) 6= ∅ and therefore there exist a point y ∈ U and a pos-
itive integer k ∈ nf (x, Vx) ∩ nf (U, Vy) such that fk(x) ∈ Vx and fk(y) ∈ Vy .
So, d(fk(x), fk(y)) ≥ diam(X) − δ. Since δ > 0 was arbitrary, we get Lr =
diam(X). �

5. Concluding remarks

Firstly, let us remark that there are topologically weakly mixing (even topolog-
ically mixing) systems for which Lr = Lr = diam(X)/2. For instance, the continu-
ous interval map g : [0, 1] → [0, 1], where g(x) = 3((x−1/3)−|x−1/3|+|x−2/3|), is
topologically mixing, one of its fixed points is 1/2, therefore clearly that Lr = 1/2.

Also (as we will see in Proposition 5.1 below) there are dynamical systems for
which Lr = 2Lr, but it is still an open question for topologically transitive maps
(non-minimal by Theorem 3.2).

Two more open questions:

1. Does there exist a non-transitive dynamical system (X, f) for which Ld >
Ld and/or Lr > Ld ?

2. Does there exist a minimal dynamical system (X, f) for which Ld > Lr ?

Proposition 5.1. There exists a topological dynamical system (X, f) for which

Lr = 2Lr.

Proof. We define the space X as a compact surface in R
3 which is homeomorphic to

a two-dimensional disk in R
2. More precisely, the cylindric coordinates of a point

(x, y, z) ∈ X have the form (r, ϕ, z), where r =
√

x2 + y2 and ϕ is an angle, for
which x = r cosϕ and y = r sinϕ. In other words, (r, ϕ) are the polar coordinates
of (x, y), and z remains unchanged. Let h(r) = 8r(1 − r). Now, define X as a set
of points with cylindric coordinates (r, ϕ, h(r)), where 0 ≤ r ≤ 1, ϕ ∈ R, and let
the Euclidian metric (in R

3) d be the metric on X .
Now we define a continuous map f from X to itself as follows f : (r, ϕ, h(r)) →

(g(r), 2ϕ, h(g(r))), where g(x) is a continuous map [0, 1] → [0, 1] with g(0) = 0,
g(1) = 1 and g(x) > x for all x ∈ (0, 1). From this properties one can easily deduce
that limn→∞ gn(x) = 1 for any x ∈ (0, 1]. For example, let g(x) = 2x− x2.

Let p ∈ X and U be a neighborhood of p. If p 6= (0, 0, 0), then for any δ > 0 there
are n ∈ N and q ∈ U such that d(fn(p), fn(q)) > 2 − δ. If p = (0, 0, 0), then there
are n ∈ N and q ∈ U , for which fn(q) lies on a circumference of X with the center
(0, 0, 2) (in R

3) and the radius 1
2 . For these n and q we have d(fn(p), fn(q)) > 2

and so Lr ≥ 2.
Now, let p = (0, 0, 0). The equality limn→∞ d(fn(p), fn(q)) = 1 holds for any

q 6= p. So Lr ≤ 1. Since Lr ≤ 2Lr (by Proposition 2.1), it gives Lr = 2Lr. �

The idea of introducing and studying the Lyapunov numbers is derived from the
following:

1. If some practical assumption holds for the behavior of a particular system,
for example, a physical object, we need to know how far we can go wrong in
calculations, if we mean to predict the evolution of the system over a quite long
term. Only knowing that there could exist errors in the calculations of the future
behavior of a system is not that useful, since from the practical point of view,
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the existence of errors in calculations of almost all natural systems (as a result of
inaccurate initial data) is a well-known fact. So, quantitative analysis of sensitivity
that determines to what extent one’s calculations are accurate is of great interest.
Comparison of different Lyapunov numbers (the ones which are determined by the
upper limit and the ones without limit) demonstrates that errors in calculations
cannot disappear (decrease) during passing of time. That is, we cannot expect
that, for example, after 10000 or 1000000 steps the accuracy of our prediction
increase significantly (which seems commonsensical).

2. According to the Auslander theorem, one of the most important theo-
rems in topological dynamics, any proximal cell (i.e., Proxf (x) := {y ∈ X :
lim infn→∞ d(fn(x), fn(y)) = 0}) contains a minimal point [4]. This implies, in
particular, that a distal point is always minimal. It should be noted that, if (X, f)
is a weak mixing dynamical system then for every x ∈ X , the proximal cell Proxf (x)
is dense in X [3]. What about this property for the sensitive topologically transi-
tive systems, in particular, for the Devaney systems (i.e., topologically transitive
with a dense set of periodic points systems)? There is a direct connection be-
tween this question and the following one: When does Lr = Lr hold for a sensitive
topologically transitive system?
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