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COMPUTATION OF ATR DARMON POINTS ON

NON-GEOMETRICALLY MODULAR ELLIPTIC CURVES

XAVIER GUITART AND MARC MASDEU

Abstract. ATR points were introduced by Darmon as a conjectural con-
struction of algebraic points on certain elliptic curves for which in general
the Heegner point method is not available. So far the only numerical evi-
dence, provided by Darmon–Logan and Gärtner, concerned curves arising as
quotients of Shimura curves. In those special cases the ATR points can be
obtained from the already existing Heegner points, thanks to results of Zhang
and Darmon–Rotger–Zhao.

In this paper we compute for the first time an algebraic ATR point on a
curve which is not uniformizable by any Shimura curve, thus providing the
first piece of numerical evidence that Darmon’s construction works beyond
geometric modularity. To this purpose we improve the method proposed by
Darmon and Logan by removing the requirement that the real quadratic base
field be norm-euclidean, and accelerating the numerical integration of Hilbert
modular forms.

1. Introduction

Let F be a totally real number field and let E/F be an elliptic curve of conductor
N. Denote by L(E/F, s) the Hasse–Weil L-series attached to E, which is known to
converge in the half plane ℜ(s) > 3/2. Let us assume thorough this note that E
is modular ; that is to say, that L(E/F, s) equals the L-series of a Hilbert modular
form over F of weight 2 and level N. Thanks to the modularity theorems of [Wil95],
[BCDT01] and [SW01], E is known to be modular if either F = Q, or if [F : Q] > 1
and it satisfies certain mild conditions on the reduction type at primes above 3. The
L-series L(E/F, s) admits analytic continuation, and the Birch and Swinnerton-
Dyer (BSD) Conjecture predicts that its order of vanishing at s = 1, called the
analytic rank of E/F , equals the rank of the group of F -rational points E(F ).

In this context, BSD Conjecture is known to hold in analytic rank 0 or 1 provided
that E satisfies the following Jacquet–Langlands hypothesis :

(JL) Either [F : Q] is odd or there is a prime p in F such that ordp(N) is odd.

Theorem 1.1 (Gross–Zagier, Kolyvagin, Zhang). Let E be a modular elliptic curve
over a totally real number field F satisfying (JL). If ords=1 L(E/F, s) ≤ 1 then

ords=1 L(E/F, s) = rank(E(F )).

In analytic rank 0, BSD is also known for modular elliptic curves not satisfying
(JL), thanks to the work of Longo [Lon06]. However, in analytic rank 1 (JL) cannot
be dispensed with at the moment, because the construction of non-torsion points
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relies on the existence of the so-called Heegner points. Indeed, if E satisfies (JL)
then it is geometrically modular : there exists a non-constant F -homomorphism

(1.1) πE : Jac(X) −→ E,

from the Jacobian of a suitable Shimura curve X defined over F onto E. Shimura
curves are endowed with CM points, which are defined over ring class fields of
quadratic CM extensions K/F . The projection of CM points via πE gives rise
to Heegner points on E, whose arithmetic behavior is linked to the corresponding
L-series of E thanks to formulas of Gross–Zagier and Zhang.

On the other hand, if E does not satisfy (JL) then it is not known to be geo-
metrically modular unless it is a Q-curve; i.e., a curve isogenous to all of its Galois
conjugates. As a consequence of Serre’s modularity conjecture Q-curves admit Q-
parametrizations from classical modular Jacobians, and this has been exploited in
[DRZ12] in order to construct Heegner points and prove BSD in analytic rank 1
for some Q-curves not satisfying (JL). But BSD in analytic rank 1 seems to remain
intractable for elliptic curves which are not Q-curves and do not satisfy (JL). In-
deed, since they are not geometrically modular the Heegner point method sketched
in the previous paragraph cannot be applied in this setting.

The Heegner point construction constitutes the only known procedure for sys-
tematically manufacturing algebraic non-torsion points on elliptic curves. However,
several conjectural constructions have emerged in the last years under the generic
name of Stark–Heegner points, or also Darmon points as the first such construction
was introduced in [Dar01]. Variants of this initial construction applying to several
different settings have been proposed since then, for instance in [Das05], [Gre09],
[LRV09], [Gär11a], and [GRZ12]. The leitmotif of these methods is the analytic
construction of algebraic points on ring class fields of quadratic extensions K/F
which, unlike the classical case, are not CM.

This note deals with the effective computation of a type of Darmon points known
as ATR points, which where introduced in [Dar04, Chapter VIII]. To explain the
terminology, recall that a number field is said to be almost totally real, or ATR for
short, if it has exactly one complex non-real archimedean place.

LetK be a quadratic ATR extension of the totally real field F . For an ideal c of F
denote by Rc ⊂ K the order of conductor c, andHc the ring class field corresponding
to Rc. Darmon associates to any optimal embedding ϕ : Rc →֒ M2(OF ) a point
Pϕ ∈ E(C), called an ATR point, which is conjectured to be defined over Hc.
Moreover, by analogy with the formulas of Gross–Zagier and Zhang, its trace down
to K is believed to be non-torsion if and only if ords=1 L(E/K, s) = 1.

An algorithm for computing ATR points in the particular case where F is real
quadratic and E has conductor 1 is given in [DL03]. These elliptic curves do not
satisfy (JL), so that the Heegner point construction is not available in general. Both
the definition of the points Pϕ and the conjectures of Darmon concerning them will
be recalled in Section 2. For the moment, it is enough for us to mention that they
are the image under the Weierstrass map C/ΛE → E(C) of a complex number of
the form

(1.2) Jϕ =

∫ b1

a1

∫ d1

c1

ω + · · ·+
∫ bn

an

∫ dn

cn

ω,

where ω is a certain differential 2-form on the Hilbert modular surface SL2(OF )\H2.
The limits of integration depend on the embedding ϕ, but they are not uniquely
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determined: for a given ϕ there are many possible choices for ai, bi, ci, di. The
Fourier series of ω is explicitly computable from E, and term by term integration
of a truncation leads to a numerical approximation to Jϕ. The rate of convergence
depends essentially on the imaginary parts of the limits, and this turns out to be
the main computational restriction of this method.

The algorithm outlined above was used in [DL03] to obtain numerical evidence
towards Darmon’s conjectures. More concretely, ATR points on three concrete
elliptic curves were computed, and they were checked to be (up to a certain nu-
merical precision) multiples of the corresponding generators of the Mordell–Weil
groups. Calculations of the same kind were performed in [Gär11b] for one more
curve. However, computational limitations restricted them to elliptic curves which
all happen to be geometrically modular. In this case, the BSD Conjecture im-
plies that ATR points in these curves should be related to the already existing
Heegner points. Actually, in the case of Q-curves (as they are all examples consid-
ered in [DL03]) a precise relation between Heegner and ATR points is conjectured
in [DRZ12, §4.2].

In this note we speed up the algorithm devised by Darmon and Logan by im-
proving its two main bottlenecks. Namely, the computation of integrals of Hilbert
modular forms, and the determination of limits ai, bi, ci, di in (1.2) having the high-
est imaginary part possible. This allows us to gather more numerical evidence in
support of Darmon’s conjectures, by calculating ATR points on elliptic curves which
were not computationally accessible using the algorithm in [DL03]. In particular,
we have been able to compute for the first time an ATR point of infinite order on
a non-geometrically modular elliptic curve.

More concretely, the contents of the article are as follows. In Section 2 we
review the definition of the points Pϕ and Darmon’s conjectures on their arithmetic
properties. We also sketch the algorithm of Darmon and Logan for their explicit
computation.

In Section 3 we present the algorithm for speeding up the computation of in-
tegrals of Hilbert modular forms. The idea is to use the fact that the limits are
invariant under the group SL2(OF ) in order to transform the given integral into a
sum of integrals whose limits are uniformly bounded away from the real axis, the
bound depending only on F . It is worth remarking that this algorithm does not
exploit any particular property of the integrals involved in ATR points, and there-
fore it may be of independent interest for computing integrals of Hilbert modular
forms in other contexts.

In Section 4 we comment on a trick that can sometimes accelerate the compu-
tation of ATR points. The procedure for computing the limits ai, bi, ci, di in (1.2)
for an embedding ϕ involves at some point the calculation of a continued fraction
expansion of an element in F . We exploit the non-uniqueness of continued fractions
to attach to a given ϕ limits ai, bi, ci, di with as high imaginary part as possible.

Finally, in Section 5 we use Darmon–Logan’s algorithm together with the im-
provements of sections 3 and 4 to enlarge the pool of elliptic curves on which Dar-
mon’s conjectures have been numerically tested. Arguably, the most interesting
among them is the curve E509 given by the equation

y2 − xy − ωy = x3 + (2 + 2w)x2 + (162 + 3w)x+ (71 + 34ω), ω =
1 +

√
509

2
,
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because it is not a Q-curve. We have computed an ATR point corresponding
to the field K = F (

√
9144ω + 98577), and we have numerically checked that it

coincides with a multiple of the Mordell–Weil generator of E509(K). Since E509 is
not geometrically modular, such point does not seem to be explained by the presence
of Heegner points. This gives experimental evidence that Darmon’s construction
leads to algebraic points that are genuinely new, not attainable by classical methods.

Finally, it is worth mentioning that ATR points are also the base of an algorithm
by L. Dembélé [Dem08] for computing equations of elliptic curves with everywhere
good reduction attached to Hilbert modular forms of level 1. The authors hope that
the algorithm presented in this note can be useful for this purpose, and that it may
lead in the future to a systematic computation of such equations using Dembélé’s
method.

Acknowledgments. The authors are thankful to Henri Darmon and Victor Rotger
for initially suggesting the problem and for many helpful conversations, and to the
anonymous referee for many valuable comments and suggestions. They are grate-
ful to the Max Planck Institute for Mathematics for the hospitality and financial
support, and for making available its computational resources, crucially needed for
part of this note. Part of this work was also carried out in the facilities of Centro
de Ciencias de Benasque Pedro Pascual during the Summer of 2011. The authors
received financial support from DGICYT Grant MTM2009-13060-C02-01 and from
2009 SGR 1220.

2. Computation of ATR points

Let F be a real quadratic number field of discriminant D and narrow class
number 1. Write OF for its ring of integers and set Γ = SL2(OF ). We denote by
v0, v1 the embeddings of F into R. For an element x ∈ F we may write xi instead
of vi(x), and |x| for the norm of x, given by x0x1. Recall that Γ acts discretely
on H2 via v0 × v1. The analytic variety Γ \ H2 can be compactified by adding one
cusp, which gives rise to the Hilbert modular surface X attached to Γ.

Let K/F be a quadratic ATR extension. For an ideal c of F we denote by Hc

the ring class field corresponding to the order Rc of conductor c of K. We assume
without loss of generality that v0 extends to a complex place of K and v1 extends
to a pair of real places of K. We fix an extension of v0 to Q ⊂ C, which we use to
to identify K and its extensions with subfields of C. Recall that an embedding of
OF -algebras ϕ : Rc →֒ M2(F ) is said to be optimal if ϕ(K)∩M2(OF ) = ϕ(Rc). We
denote by Ec the set of such optimal embeddings.

Let E/F be an elliptic curve of conductor 1. In this section we review Darmon’s
construction, which attaches to each optimal embedding ϕ a point Pϕ ∈ E(C) that
conjecturally belongs to E(Hc). There are several equivalent ways of defining Pϕ.
For instance, a nice geometric definition in terms of a non-algebraic analogue to the
Abel–Jacobi map is given in [DRZ12, §2.1]. However, for computational purposes
the original definition of [Dar04, Chapter VIII], or rather the subsequent refinement
of [DL03] are better suited. Key to the approach of [DL03] is the definition of
certain semi-definite integrals of Hilbert modular forms, whose existence and main
properties we will take as a black box.

2.1. Semi-definite integrals of Hilbert modular forms. Let f ∈ S2(Γ) be a
Hilbert modular form. Recall that f has a Fourier expansion indexed by totally
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positive elements of OF . Actually, the Fourier coefficient corresponding to n ∈ O+
F

only depends on the ideal (n) generated by n, and the expansion is of the form

(2.1) f(τ0, τ1) =
∑

n∈O+

F

a(n)e
2πi(

n0
δ0

τ0+
n1
δ1

τ1), τ0, τ1 ∈ H,

where δi = vi(δF ) and δF is a totally positive generator of the different ideal of F .
Let us assume from now on that all Fourier coefficients a(n) are rational numbers.
The reader can refer to [GRZ12, §2.4] for the definition of ATR points when the
Fourier coefficients generate a number field of degree > 1, in which case they belong
to some higher dimensional modular abelian variety.

The differential form

ωf =
(2πi)2√

D
f(τ0, τ1)dτ0dτ1

is invariant under the action of Γ and extends to a holomorphic form at the cusp,
thus defining a holomorphic 2-form on X . The expansion in Equation (2.1) is useful
for computing integrals of ωf . Indeed, for x0, x1, y0, y1 ∈ H we have that

(2.2)

∫ y0

x0

∫ y1

x1

ωf =
√
D

∑

n∈O
+

F

a(n)

|n|
(

e
2πi

n0
δ0

y0 − e
2πi

n0
δ0

x0

)(

e
2πi

n1
δ1

y1 − e
2πi

n1
δ1

x1

)

.

In the definition of ATR points the key role is not played by ωf but instead by the
non-holomorphic differential

ω+
f =

(2πi)2√
D

(

f(τ0, τ1)dτ0dτ1 + f(u0τ0, u1τ1)d(u0τ0)d(u1τ1)
)

,

where u is a fundamental unit in F such that u0 > 1 and u1 < −1. The differential
form ω+

f is also Γ-invariant, and it follows from the definition that it is invariant

under the action of the matrix γ̃u =

(

u 0
0 1

)

. Therefore, if we let

Γ̃ = {γ ∈ GL2(OF ) : v0(det(γ)) > 0}
we find that

∫ y0

x0

∫ y1

x1

ω+
f =

∫ γy0

γx0

∫ γy1

γx1

ω+
f , for all γ ∈ Γ̃.

Here γ acts on the outer limits (reps. inner limits) through v0 (resp. v1).
Let

Λ+
f =

{
∫

δ

ω+
f : δ ∈ H2(X,Z)

}

⊂ C

be the period lattice of ω+
f .

Theorem 2.1 (Darmon–Logan). There exists a unique map

H× P1(F )× P1(F ) −→ C/Λ+
f

(τ0, c1, c2) 7−→
∫ τ0 ∫ c2

c1
ω+
f

satisfying the following properties:

(i)
∫ γτ0 ∫ γc2

γc1
ω+
f =

∫ τ0 ∫ c2
c1

ω+
f for all γ ∈ Γ̃,

(ii)
∫ τ0 ∫ c2

c1
ω+
f +

∫ τ0 ∫ c3
c2

ω+
f =

∫ τ0 ∫ c3
c1

ω+
f ,

(iii)
∫ y ∫ c2

c1
ω+
f −

∫ x ∫ c2
c1

ω+
f =

∫ y

x

∫ c2
c1

ω+
f .
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For the existence of such map we refer the reader to [DL03, §1]. Uniqueness is
proved in [DL03, §4], and it follows from repeated application of properties (i), (ii)
and (iii). Since this also leads to an algorithm for computing the map, we review
the proof in the next section.

2.2. Computation of semi-definite integrals via continued fractions. Given
b0, b1, . . . , bn ∈ OF the (finite) continued fraction [b0, b1, . . . , bn] ∈ F is defined,
inductively, as

[b0] = b0, [b0, b1] = b0 +
1

b1
, . . . , [b0, b1, . . . , bn] = [b0, [b1, . . . , bn]].

Let [b0, b1, . . . , bk] =
pk

qk
, with pk, qk ∈ OF coprime. It is well known that

(2.3) pkqk−1 − pk−1qk = (−1)k−1.

Since O×
F is infinite and F has trivial class number, by a result of Cooke–Vaserstein

[Coo76] every element c ∈ F can be written as a finite continued fraction. See
[GM12] and §4 for an effective version of this result.

Two cusps c1, c2 ∈ P1(F ) are said to be adjacent if c1 = γ · 0 and c2 = γ · ∞
for some γ ∈ Γ. One can join every cusp c ∈ F with ∞ by a sequence of adjacent
cusps. Indeed, if c = [b0, b1, . . . , bn] then the sequence

∞,
p0
q0

,
p1
q1

, . . . ,
pn
qn

= c

has this property thanks to (2.3). Using this fact and property (i) every integral
∫ τ0 ∫ c2

c1
ω+
f can be written as a sum of integrals of the form

∫ τ0 ∫ γ·∞
γ·0 ω+

f . Thanks

to (i) they are of the form
∫ τ ∫∞

0
ω+
f , and can be computed as follows:

∫ τ ∫ ∞

0

ω+
f =

∫ τ ∫ 1

0

ω+
f +

∫ τ ∫ ∞

1

ω+
f

=

∫ − 1
τ
∫ −1

∞
ω+
f +

∫ τ−1 ∫ ∞

0

ω+
f

=

∫ τ−1

1− 1
τ

∫ ∞

0

ω+
f .

Integrals of the form
∫ τ2
τ1

∫∞
0

ω+
f , with τ1, τ2 ∈ H, can be computed by taking τ3 ∈ H

and writing

(2.4)

∫ τ2

τ1

∫ ∞

0

ω+
f =

∫ τ2

τ1

∫ τ3

0

ω+
f +

∫ τ2

τ1

∫ ∞

τ3

ω+
f =

∫ − 1
τ2

− 1
τ1

∫ − 1
τ3

∞
ω+
f +

∫ τ2

τ1

∫ ∞

τ3

ω+
f ,

for which formula (2.2) can be used.

2.3. Definition of ATR points. Under the assumption that E is modular there
exists a Hilbert modular newform fE ∈ S2(Γ) such that L(E/F, s) = L(fE , s). The
Fourier expansion of fE can be explicitly computed as follows. For a prime ideal
p ⊂ F , let ap := |p| + 1 − #E(OK/p), where |p| denotes #OF /p. For arbitrary
ideals n ⊂ F the integer an is defined by means of the identity

∑

n⊂F

an|n|−s =
∏

p prime

(

1− ap|p|−s + |p|1−2s
)−1

,
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and the Fourier expansion of fE is given by

(2.5) fE(τ0, τ1) =
∑

n∈O+

F

a(n)e
2πi(

n0
δ0

τ0+
n1
δ1

τ1), τ0, τ1 ∈ H.

Let ϕ : Rc →֒ M2(F ) be an optimal embedding. Since K is ATR the group

Γϕ = {γ ∈ ϕ(OF ) : det(γ) = 1}
has rank 1; let γϕ be one of its generators. Since v0 extends to a complex place of
K, the action of K× on H by means of v0 ❛ϕ has a single fixed point τ0. Let Jϕ be

the quantity in C/Λ+
f defined as

(2.6) Jϕ =

∫ τ0 ∫ γϕ∞

∞
ω+
f .

Let ωE ∈ H0(E,Ω1) be a differential which extends to a smooth differential on
the Néron model of E over OF . Let

Λi =

{
∫

Z

vi(ωE) : Z ∈ H1(Ej ,Z)

}

and let λ+
j (resp. λ−

j ) be a generator of Λj ∩ R (resp. Λj ∩ iR).

Conjecture 2.2 (Oda). There exists a integer c such that c
λ+

1

Λ+
f ⊆ Λ0.

Granting Conjecture 2.2 and denoting by η : C/Λ0 → E0(C) the Weierstrass
parametrization map, the ATR point Pϕ is defined as

Pϕ = η(
c

λ+
1

· Jϕ) ∈ E0(C).

The group Γ̃ acts by conjugation on Ec, and the set of equivalence classes Ec/Γ̃ has
cardinal [Hc : K] (cf. [Dar04, §8.5]).

Conjecture 2.3 (Darmon). The point Pϕ belongs to E0(Hc). Moreover, the point

PK =
∑

ϕ∈Ec/Γ̃

Pϕ

belongs to E0(K) and it is non-torsion if and only if ords=1 L(E/K, s) = 1.

Note that under the assumptions of this section, namely the conductor of E/F
is 1 and K/F is ATR, the L-function L(E/K, s) has sign −1. Thus the condition
ords=1 L(E/K, s) = 1 is equivalent to L′(E/K, 1) 6= 0, which can be numerically
checked.

3. Integration of Hilbert Modular forms

When evaluating (2.2) one can collect the elements n ∈ O+
F modulo powers of

u2, because the Fourier coefficient corresponding to n only depends on the ideal
(n). The sum corresponding to n · 〈u2〉 is then

Sn =
√
D

∞
∑

k=−∞

a(n)

|n|
(

e
2πi

n0
δ0

u2k
0 y0 − e

2πi
n0
δ0

u2k
0 x0

)(

e
2πi

n1
δ1

u−2k
0

y1 − e
2πi

n1
δ1

u−2k
0

x1

)

.
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For a fixed k, the modulus of each exponential term (after multiplying out the
brackets) is of the form

(3.1) e−2π(
n0
δ0

ru2k
0 +

n1
δ1

su−2k
0

), with r ∈ {ℑ(y0),ℑ(x0)}, s ∈ {ℑ(y1),ℑ(x1)}.
It is easy to see that (3.1) has a single maximum, when viewed as a function of k,
and that the maximum value afforded by the four exponential terms is bounded by

Mn = e
−4π

√
|n|ǫ√

D ,

where ǫ = ǫ(x0, y0, x1, y1) is defined by:

(3.2) ǫ(x0, y0, x1, y1)
2 = min{ℑ(x0)ℑ(x1),ℑ(x0)ℑ(y1),ℑ(y0)ℑ(y1),ℑ(y0)ℑ(x1)}.

Moreover, one easily checks that Sn is dominated by a geometric series and that

Sn ≤ 2
√
D|a(n)|Mn

|n| , for |n| >> 0.

This estimate allows us to know a priori how many terms need to be considered
in order to obtain a prescribed accuracy. We observe that the speed of conver-
gence of expression (2.2) depends on the limits x0, y0, x1, y1 through the quantity
ǫ(x0, y0, x1, y1). The main result of this section is the following.

Theorem 3.1. There exists a constant ǫF , which depends only on F , such that
for every (x0, y0, x1, y1) ∈ H4 and for every ǫ0 < ǫF the integral

∫ y0

x0

∫ y1

x1
ωf can be

expressed as

(3.3)

∫ y0

x0

∫ y1

x1

ωf =

∫ b1

a1

∫ d1

c1

ωf + · · ·+
∫ bn

an

∫ dn

cn

ωf ,

with ǫ(ai, bi, ci, di) ≥ ǫ0 for all i = 1, . . . , n.

Observe that in the integrals considered in Theorem 3.1 the four limits of in-
tegration lie in H. By (2.4) integrals of the form

∫ y0

x0

∫∞
x1

ω+
f are involved in the

computation of ATR points. One can choose any y1 ∈ H whose imaginary part is
large enough to satisfy that
∫ y0

x0

∫ ∞

x1

ω+
f =

∫ y0

x0

∫ y1

x1

ω+
f +

∫ y0

x0

∫ ∞

y1

ω+
f , with ℑ(x0)ℑ(y1),ℑ(y0)ℑ(y1) > ǫF ,

and apply Theorem 3.1 to the integral
∫ y0

x0

∫ y1

x1
ω+
f .

We devote the rest of the section to prove Theorem 3.1, which as we will see can
be made effective and algorithmic.

It will be useful for us to regard F as a subset of R2 by means of v0 × v1. Let
‖ · ‖ denote the norm on R2 given by

‖(x0, x1)‖ = max{|x0|, |x1|}.
The basic ingredient in the proof of 3.1 is the following classical result.

Lemma 3.2. There exists a constant CF , only depending on F , such that for each
x ∈ R2 and for each 0 < δ < 1 there are elements c, d ∈ OK , with c 6= 0, such that

‖cx+ d‖ ≤ δ, ‖c‖ ≤ CF

δ
.
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Proof. This is [Fre90, Lemma 3.6]. We rewrite the proof in an algorithmic fashion
in order to give an approximation to CF (see Remark 3.3 below), as well as to give
an algorithm to find the elements c and d.

Consider a fundamental parallelogram P for OF as a subgroup of R2. Let
U1, . . . , UN be boxes of side δ that cover P . It is easy to see that there is a constant
N ′, depending only on F , such that N can be taken to be ≤ N ′/δ2.

For each positive real r, consider the set

SF (r) = {c ∈ OF | ‖c‖ < r} .
A well-known result in Ehrhart theory (see e.g. [BR07, Theorem 2.9]) implies

that there exists a constant CF > 0, which depends on F but not on δ, such that

#SF

(

CF

2δ

)

>
N ′

δ2
≥ N.

Consider now an ordering {cn}n≥1 of the elements of SF (CF /(2δ)). For each of the
cn, find dn ∈ OF such that

cnx+ dn ∈ P,

and set i(n) to be the integer such that cnx + dn ∈ Ui(n). By the pigeonhole
principle the sequence {i(n)}n will have a repetition, say i(n1) = i(n2). Therefore

‖(cn1
− cn2

)x + (dn1
− dn2

)‖ < δ,

and

‖cn1
− cn2

‖ ≤ ‖cn1
‖+ ‖cn2

‖ ≤ CF

2δ
+

CF

2δ
=

CF

δ
.

The seeked elements are thus c = cn−1 − cn−2 and d = dn−1 − dn−2. �

Remark 3.3. In our applications, the parameter δ will be small enough so that the
quantity N in the above proof can be approximated by area(P )/δ2. Also, [BR07,
Theorem 2.9(b)] gives in this case that

#SF

( r

2δ

)

≥ r2

4δ2
4

area(P )
+ 1.

Therefore, it is enough for #SF (
r
2δ ) to be larger than N that

r2

4δ2
4

area(P )
≥ area(P )

δ2
.

This yields an approximate value of CF ≈ area(P ), which is good enough for
our purposes. Note that this area is easily calculated: if OF = Z ⊕ Zw, then
area(P ) = |w0 − w1|.

We define

ǫF =
u0

CF (1 + u2
0)
.

In the next lemmas we prove that this can, indeed, be taken as the constant ǫF of
Theorem 3.1.

Lemma 3.4. Let z = (z0, z1) be an element in H×H. There exists a matrix γ ∈ Γ
such that

(ℑ(γ0z0)ℑ(γ1z1))1/2 ≥ ǫF .
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Proof. Let zj = rj + isj and let r = (r0, r1). If s0s1 ≥ ǫ2F one may take γ = 1 and
there result is obvious, so assume from now on that s0s1 < ǫ2F . By Lemma 3.2 for
each 0 < δ < 1 there exist c′, d′ ∈ OF with c′ 6= 0 and such that

‖c′r + d′‖ ≤ δ, ‖c′‖ ≤ CF

δ
.

We have that

(

(c′0r0 + d′0)
2 + c′20 s

2
0

) (

(c′1r1 + d′1)
2 + c′21 s

2
1

)

≤
(

δ2 +
C2

F s
2
0

δ2

)(

δ2 +
C2

F s
2
1

δ2

)

.

Let g = gcd(c′, d′) and let n = NmK/Q(g) . If we let c = c′/g and d = d′/g then

(

(c0r0 + d0)
2 + c20s

2
0

) (

(c1r1 + d1)
2 + c21s

2
1

)

≤ 1

n2

(

δ2 +
C2

F s
2
0

δ2

)(

δ2 +
C2

F s
2
1

δ2

)

≤
(

δ2 +
C2

F s
2
0

δ2

)(

δ2 +
C2

F s
2
1

δ2

)

.

Since gcd(c, d) = 1 there exists γ ∈ Γ having (c, d) as bottom row and

ℑ(γ0z0)ℑ(γ1z1) =
s0

|c0z0 + d0|2
s1

|c1z1 + d1|2

=
s0s1

((c0r0 + d0)2 + c20s
2
0) ((c1r1 + d1)2 + c21s

2
1)

≥ s0s1
(

δ2 +
C2

F s2
0

δ2

)(

δ2 +
C2

F s2
1

δ2

) .

We choose δ that maximizes this expression. The optimal value for δ turns out to
be

δ = (C2
F s0s1)

1/4.

Note that δ < 1 since s0s1 < ǫ2F . With this value of δ the above inequality gives

(ℑ(γ0z0)ℑ(γ1z1))1/2 ≥ 1

2CF

G(s0, s1)

A(s0, s1)
,

where G(s0, s1) and A(s0, s1) are the geometric and arithmetic means, respectively.
Of course, for this quantity to be not too small we should ensure that the ratio
G/A is not too small. That is, s0 and s1 should be close. This can be done by the

action of the matrix γu =

(

u 0
0 u−1

)

, which guarantees that:

(3.4) u−2
0 ≤ s1

s0
≤ u2

0.

Therefore one obtains (the worst case is when the ratio is at any extreme):

(3.5)
G(s0, s1)

A(s0, s1)
≥ 2u0

1 + u2
0

,

and the result follows. �

Remark 3.5. A similar argument to that of Lemma 3.4 shows that for any (z0, z1) ∈
H×H there exists γ ∈ Γ̃ such that

(ℑ(γ0z0)ℑ(γ1z1))1/2 ≥
√
u0

CF (1 + u0)
.
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Indeed, in this case one can improve (3.4) to

u−1
0 ≤ y1

y0
≤ u0

by using the action of γ̃u =

(

u 0
0 1

)

∈ Γ̃. We will apply this remark to the

computation of ATR points, because the integrals
∫ y0

x0

∫ y1

x1
ω+
f are Γ̃-invariant, and

then we can take ǫF in Theorem 3.1 to be

(3.6) ǫF =

√
u0

CF (1 + u0)
.

Given x, y ∈ H denote by ρ(x, y) the geodesic in H joining x and y. We also
let d(x, y) be the hyperbolic distance between x and y. This distance is invariant
under the action of SL2(R), and it is given by the formula

coshd(x, y) = 1 +
| x− y |2
2ℑ(x)ℑ(y) .

Observe that

(3.7) d(x, y) ≥ cosh−1

(

1 +
(ℑ(x)/ℑ(y) − 1)2

2ℑ(x)/ℑ(y)

)

.

For x0, y0, x1, y1 ∈ H we denote by { y0 y1
x0 x1

} the image under the quotient map
H2 ⊔ {∞} → Γ \ (H2 ⊔ {∞}) of the region ρ(x0, y0) × ρ(x1, y1) ⊂ H × H. Since
SL2(R) acts by isometries on H we have that { y0 y1

x0 x1
} = { γ0y0 γ1y1

γ0x0 γ1x1
} for all γ ∈ Γ

and the area of { y0 y1
x0 x1

} is given by d(x0, y0)d(x1, y1).
For a given ǫ0 < ǫF , let ǫ1 :=

√
ǫ0ǫF . This auxiliary quantity will be used in the

proof of Theorem 3.1. We also define quantities d0, d1 and dmin as

di = cosh−1

(

1 +
((ǫF /ǫi)

2 − 1)2

2(ǫF /ǫi)2

)

for i ∈ {0, 1}, and dmin = min{d1, d2}.

Lemma 3.6. Let x0, y0, x1, y1 ∈ H be such that ǫ(x0, y0, x1, y1) < ǫ0 < ǫF . Then
∫ y0

x0

∫ y1

x1
ωf can be written as a sum of either two or three integrals along sub-regions

of { y0 y1
x0 x1

} with zero-measure intersection, in which the first one is of the form
∫ y′

0

x′
0

∫ y′
1

x′
1

ωf with x′
0, y

′
0, x

′
1, y

′
1 satisfying the following properties:

(1) ǫ(x′
0, y

′
0, x

′
1, y

′
1) ≥ ǫ0

(2) for each i ∈ {0, 1} either (x′
i, y

′
i) = (xi, yi) or d(x′

i, y
′
i) ≥ dmin;

Proof. Actually we will prove that x′
0, y

′
0, x

′
1, y

′
1 can be chosen to satisfy

(3.8) ℑ(x′
0)ℑ(x′

1) ≥ ǫ2F , ℑ(x′
0)ℑ(y′1) ≥ ǫ21, ℑ(y′0)ℑ(y′1) ≥ ǫ20, ℑ(y′0)ℑ(x′

1) ≥ ǫ20.

Observe that (3.8) implies condition (1) of the lemma.
By Lemma 3.4 and transforming the limits x0, y0, x1, y1 of the integral under an

appropriate element of Γ, we can assume that

(3.9) ℑ(x0)ℑ(x1) ≥ ǫ2F .

If ℑ(x0)ℑ(y1) ≥ ǫ21, ℑ(x1)ℑ(y0) ≥ ǫ21 and ℑ(y0)ℑ(y1) ≥ ǫ21 then ǫ(x0, y0, x1, y1) >
ǫ0. So we can suppose that one of these conditions is not satisfied. We divide the
proof in three cases, that we label (a), (b) and (c), according to the condition which
is not satisfied.
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(a) If ℑ(x0)ℑ(y1) < ǫ21. Then we break the integral as

(3.10)

∫ y0

x0

∫ y1

x1

ωf =

∫ y0

x0

∫ t1

x1

ωf +

∫ y0

x0

∫ y1

t1

ωf ,

where t1 ∈ ρ(x1, y1) satisfies that

(3.11) ℑ(t1)ℑ(x0) = ǫ21.

Observe that this is possible because ℑ(x1) ≥ ǫ2F
ℑ(x0)

>
ǫ21

ℑ(x0)
and ℑ(y1) < ǫ21

ℑ(x0)
,

so that the geodesic between x1 and y1 in H1 intersects the line ℑ(z) = ǫ21
ℑ(x0)

,

and we take t1 to be the intersection point.
If ℑ(y0)ℑ(t1) ≥ ǫ20 then multiplying this condition by (3.9) and using (3.11)

we obtain that ℑ(x1)ℑ(y0) ≥ ǫ20 and (3.8) holds. Moreover, dividing (3.9) by
(3.11) we find that

ℑ(x1)/ℑ(t1) ≥ (ǫF /ǫ1)
2

so that, in view of (3.7), the first integral satisfies condition (2).
If ℑ(y0)ℑ(t1) < ǫ20 then we break (3.10) as

(3.12)

∫ y0

x0

∫ y1

x1

ωf =

∫ t0

x0

∫ t1

x1

ωf +

∫ y0

t0

∫ t1

x1

ωf +

∫ y0

x0

∫ y1

t1

ωf ,

where we take t0 ∈ ρ(x0, y0) such that

(3.13) ℑ(t0)ℑ(t1) = ǫ20.

This is possible because ℑ(x0) =
ǫ21

ℑ(t1)
>

ǫ20
ℑ(t1)

and ℑ(y0) <
ǫ20

ℑ(t1)
. Now

multiplying (3.9) and (3.13) and using (3.11) we obtain that ℑ(x1)ℑ(t0) ≥ ǫ20.
In addition, dividing (3.9) by (3.13) we find that

ℑ(x0)/ℑ(t0) ≥ (ǫF /ǫ0)
2,

which implies condition (2) for the first integral.
(b) If ℑ(x1)ℑ(y0) < ǫ21. This is analogous to the first case: we break the integral

as

(3.14)

∫ y0

x0

∫ y1

x1

ωf =

∫ t0

x0

∫ y1

x1

ωf +

∫ y0

t0

∫ y1

x1

ωf ,

where t0 ∈ ρ(x0, y0) satisfies that ℑ(t0)ℑ(x1) = ǫ21. If ℑ(t0)ℑ(y1) < ǫ20 then we
break further the integral as

(3.15)

∫ y0

x0

∫ y1

x1

ωf =

∫ t0

x0

∫ t1

x1

ωf +

∫ t0

x0

∫ y1

t1

ωf +

∫ y0

t0

∫ y1

x1

ωf ,

where we take t1 ∈ ρ(x1, y1) such that ℑ(t0)ℑ(t1) = ǫ20.
(c) If ℑ(y0)ℑ(y1) < ǫ21. In this case we can assume that

(3.16) ℑ(x0)ℑ(y1) ≥ ǫ21 and ℑ(x1)ℑ(y0) ≥ ǫ21,

because otherwise we are in case (a) or (b). Then we can also suppose that

(3.17) ℑ(y0)ℑ(y1) < ǫ20,

because otherwise ǫ(x0, y0, x1, y1) ≥ ǫ0. Then we can break the integral as
∫ y0

x0

∫ y1

x1

ωf =

∫ t0

x0

∫ y1

x1

ωf +

∫ y0

t0

∫ y1

x1

ωf ,
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where t0 ∈ ρ(x0, y0) satisfies that

(3.18) ℑ(t0)ℑ(y1) = ǫ20.

Observe that

ℑ(t0)ℑ(x1) =
ǫ20ℑ(x1)

ℑ(y1)
> ℑ(y0)ℑ(x1) ≥ ǫ21,

so that the first integral satisfies the conditions of the Lemma, because from
(3.16) and (3.18) if follows that ℑ(x0)/ℑ(t0) ≥ (ǫ1/ǫ0)

2 = (ǫF /ǫ1)
2.

�

Proof of Theorem 3.1. Define the quantity ǫ(I) as

ǫ(I) = ǫ(x0, y0, x1, y1), if I =

∫ y0

x0

∫ y1

x1

ωf .

We can compute an expression I = I1 + · · · + In with ǫ(Ii) ≥ ǫ0 as in (3.3) by
repeated application of Lemma 3.6. To be more precise, we can apply the following
algorithmic procedure.

We initialize a void list V and a list W = [I]. We denote by W0 the first element
in W . If ǫ(W0) ≥ ǫ0 we append W0 to V and we remove W0 from W . If ǫ(W0) < ǫ0,
we apply Lemma 3.6 to write W0 = I0 + J1 + · · · + Jk with ǫ(I0) ≥ ǫ0 and k ≤ 2.
We append I0 to V , we remove W0 from W and we append J1, . . . , Jk to W . Then
we repeat the process to the first element W0 in the list W , until W is void.

Observe that if this process finishes in a finite number of steps, then at the end
the list V contains integrals I0, I1, . . . , In with I = I0 + · · ·+ In and ǫ(Ii) ≥ ǫ0 for
all i = 1, . . . , n, as desired. What remains to be shown, then, is that this procedure
cannot be repeated infinitely many times. As we shall now see, this follows from
properties (2) and (3) of Lemma 3.6.

First of all, observe that I is the integral of ωf along the region { y0 y1
x0 x1

}. Applying
Lemma 3.6 to a certain integralW0 =

∫ s0
r0

∫ s1
r1

ωf amounts to give a decomposition of

the region { s0 s1
r0 r1 } ⊆ { y0 y1

x0 x1
} into a union of regions with zero measure intersection.

This decomposition can be of the following 4 types, which correspond to (3.12),
(3.15), (3.10) and (3.14) respectively:

(i) { s0 s1
r0 r1 } =

{

t0 t1
r0 r1

}

⊔
{

y0 t1
t0 r1

}

⊔ { s0 s1
r0 t1 } with d(ri, ti) > dmin for i = 0, 1,

(ii) { s0 s1
r0 r1 } =

{

t0 t1
r0 r1

}

⊔
{

t0 r1
r0 t1

}

⊔ { s0 s1
t0 r1 } with d(ri, ti) > dmin for i = 0, 1,

(iii) { s0 s1
r0 r1 } =

{

s0 t1
r0 r1

}

⊔ { s0 s1
r0 t1 } with d(r1, t1) > dmin, or

(iv) { s0 s1
r0 r1 } =

{

t0 s1
r0 r1

}

⊔ { s0 s1
t0 r1 } with d(r0, t0) > dmin.

Each time that an application of Lemma 3.6 gives a decomposition of type (i)
or (ii), the first term is a subregion of { y0 y1

x0 x1
} of area at least d2min. Since the area

of { y0 y1
x0 x1

} is finite, this cannot happen infinitely many times. Therefore, in the
algorithmic process described above we can assume that, after a finite number of
steps, all applications of Lemma 3.6 give rise to decompositions of types (iii) or
(iv).

At this stage, the algorithmic procedure applied to an integral W0 is as follows.
Let R0 = { s0 s1

r0 r1 } be the region associated to W0, and let ∆(R0) = d(r0, s0) +
d(r1, s1). As application of Lemma 3.6 one obtains a decomposition R0 = R1 ⊔ S1

of type (iii) or (iv). Observe that ∆(S1) ≤ ∆(R0) − dmin by property (3) of
Lemma 3.6. If ǫ(S1) ≥ ǫ0 then procedure for W0 ends; otherwise one iterates by
applying again 3.6, obtaining S1 = R2 ⊔ S2 with ∆(S2) ≤ ∆(S1)− dmin. It is clear
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that this procedure cannot continue indefinitely because ∆(Si) ≥ 0. Therefore, at
some step ǫ(Si) ≥ ǫ0 and the process for W0 ends.

4. Dependence on the continued fractions

The computation of ATR points is equivalent to the computation of semi-definite
integrals of the form

(4.1)

∫ τ0 ∫ c

∞
ω+
f , c ∈ F.

As we recalled in §2.2, one can write (4.1) as a sum of ordinary 4-limit integrals
by expressing c as a continued fraction with coefficients in OF . If the limits of the
resulting ordinary integrals are too close to the real axis then the number of terms
to sum for a prescribed accuracy, and therefore the number of Fourier coefficients to
be computed, may be too large. In this case, the algorithm described in §3 can be
used to express them as sums of integrals whose limits are uniformly bounded away
from the real axis, reducing the number of terms and Fourier coefficients needed.

If F is norm-euclidean then the euclidean algorithm gives an effective procedure
for computing continued fractions. This is the method used in the numerical calcu-
lations over Q(

√
29), Q(

√
37) and Q(

√
41) carried out in [DL03]. But this can only

be done in a few fields: there are only finitely many norm-euclidean real quadratic
fields, being Q(

√
73) the one having largest discriminant.

An algorithm for computing continued fractions in 2-stage euclidean real qua-
dratic fields was given in [GM12]. A field F is said to be 2-stage euclidean if for
every a, b ∈ OF , b 6= 0, there exist either:

(i) q, r ∈ OF with a = qb + r and Nm(r) < Nm(b), or
(ii) q1, q2, r1, r2 ∈ OF with a = q1b+ r1, b = q2r1 + r2 and Nm(r2) < Nm(b).

All real quadratic fields of class number 1 are conjectured to be 2-stage euclidean
(see [Coo76]). Actually, the algorithm of [GM12] can also be used to verify that
a given F is 2-stage euclidean, and this was used to prove that all real quadratic
fields of class number 1 and discriminant up to 8, 000 are indeed 2-stage euclidean
[GM12, Theorem 4.1].

Unlike the situation encountered in norm-euclidean fields, 2-stage division chains
as in condition (ii) are not unique. As a consequence, elements of F admit in general
many different continued fraction expansions. This leads to different expressions of
(4.1) as a sum of ordinary integrals, whose limits may have very different imaginary
parts. As it will be illustrated in §5 with some explicit examples, numerical exper-
iments suggest that it is useful to exploit non-uniqueness of continued fractions, by
searching for continued fractions leading to integrals whose limits have large imag-
inary parts; or, to be more precise, whose limits give large values of the quantity ǫ
defined in (3.2). The procedure for computing an expression such as (4.1) is then:

(1) Compute all continued fraction expansions of c given by the algorithm of
[GM12], which have length up to a certain fixed bound.

(2) For each continued fraction, compute the corresponding expression of (4.1) as
a sum of ordinary integrals and compute ǫmin: the minimum of the quantities
ǫ corresponding to the limits.

(3) Choose the continued fraction giving the highest ǫmin.
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(4) For each of the ordinary integrals appearing in the expression given by the
continued fraction found in the previous step, compute the quantity ǫ and apply
the algorithm of Theorem 3.1 if ǫ < ǫF , with a suitable choice of ǫ < ǫ0 < ǫF .

We end the section with some remarks about the algorithm above.

1. One can exploit non-uniqueness of 2-stage division chains even if F is euclidean.
As the next section illustrates, this may be beneficial since it usually gives rise
to integrals with larger values of ǫ, providing an improvement even on the curves
already considered in [DL03]. In some cases, it may even happen that the ǫmin

obtained in this way is higher than ǫF , in which case it is not necessary to apply
the algorithm provided by Theorem 3.1. However, the lack of an a priori estimate
of the value ǫmin obtained by the non-uniqueness of division chains trick explains
the key importance of Theorem 3.1 in treating the cases where ǫmin < ǫF .

2. In Step (3) we choose the continued fraction giving the highest ǫmin because
experimentally this seems to produce the fewer resulting integrals in step (4).
We have no rigorous explanation for this fact, although it seems reasonable that
better initial conditions give better results.

3. There is a trade-off between small and large values of ǫ0 in Step (4) above:
smaller values yield less integrals after the breaking process, but each of these
integrals requires more Fourier coefficients at the time of integration; on the
other hand, higher values lead to integrals requiring less Fourier coefficients, but
the number of resulting integrals tends to be higher. Experimentally, we found
that the running time of the algorithm is more sensible to the number of needed
Fourier coefficients, so a value of ǫ0 close to ǫF seems to be a good choice. For
instance, in the implementation of the algorithm used to compute the numerical
examples of the next section, we used ǫ0 = 0.81ǫF , which corresponds to a value
of ǫ1 = 0.9ǫF .

5. Numerical verification of Darmon’s conjecture

In this section we illustrate the algorithm described above by calculating approx-
imations to ATR points which add numerical evidence on top of the one presented
in [DL03]. Before detailing the computation of an ATR point on E509, we comment
on some calculations of ATR points on three Q-curves that we denote E29, E37, and
E109. The curves E29 and E37 were also considered in [DL03], and we have included
them here in order to compare the computational requirements of the algorithm
used in [DL03] with the one presented in this note. The curve E109 is an example of
a curve of conductor 1 defined over a real quadratic field of class number 1 which is
not norm-euclidean. Therefore, it was not numerically accessible before, although
it is a Q-curve and algebraic points can be more efficiently computed by using the
Heegner point method of [DRZ12].

The computations for E29, E37, and E109 were performed on a laptop with Intel
CoreTM i5-2540M CPU running at 2.60 GHz, and 8 GB of memory. For the curve
E509 we used a machine equipped with eightQuad-Core AMD OpteronTM Processor
8384 for a total of 32 cores running each at 800 MHz, and equipped with 320 GB
of memory.
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The curve E29. Consider the curve defined over F = Q(
√
29) and given by the

equation

E29 : y
2 + xy + (5ω + 11)y = x3, ω =

1 +
√
29

2
.

For this field the estimated CF is CF ≃ 5 (see Remark 3.3), which by (3.6) yields
ǫF ≃ 0.0736.

We consider the ATR field K = F (β) with β =
√
9ω + 3, for which E29(K)

has a non-torsion point with x-coordinate equal to −1/3. With the algorithm used
in [DL03], one obtains integrals with ǫmin ≃ 0.00145. In order to get 12 decimal
digits, which is the minimum precision in which the calculations in [DL03] were
performed, one would have needed to find the Fourier coefficients of all ideals up
to norm N ≃ 6.7 · 107.

Using the non-uniqueness of continued fraction expansions as explained in Sec-
tion 4, considering expansions of length up to 5, we obtained 5 integrals with
imaginary part ǫmin ≃ 0.0072, which is almost 5 times better than before. In order
to obtain the same precision one would have to find the Fourier coefficients of ideals
up to norm N ≃ 2.7 · 106, which is almost 25 times less.

Since ǫmin < ǫF , we broke further the integrals with the algorithm of Theorem 3.1
to move the imaginary parts of the limits close to this theoretical optimal, with a
choice of ǫ0 = 0.81ǫF in Step (4) of the algorithm outlined in Section 4. This yielded
539 integrals with an imaginary part of ǫmin ≃ 0.0596, and allowed us to obtain
the same precision of 12 digits by only considering ideals up to norm N ≃ 40, 000:
an improvement by a factor of 1, 675. By taking ideals of norm up to 40, 000 we
obtained that

Jτ = 13.2923360157968468468 . . .− 10.78402031269077180934 . . . i,

and −3 · Jτ coincides with P up to the prescribed accuracy. The calculation took
less than two minutes.

The curve E37. Let E37 be the curve defined over F = Q(
√
37) appearing in [DL03]

and having equation

E37 : y
2 + y = x3 + 2x2 − (19 + 8ω)x+ 28 + 11ω, ω =

1 +
√
37

2
.

For this field the constant CF is approximately equal to 6. By (3.6) we see that
ǫF ≃ 0.044.

We consider the field K = F (β), with β =
√
4ω + 10, and one of the points

computed by [DL03], namely

P = (−β2/8− 3/4,−β3/8− 1/2).

Using the algorithm of [DL03] one obtains a minimal imaginary part of ǫmin ≃
0.0012, which means that one has to integrate using the Fourier coefficients up to
norm N ≃ 1.12 · 108 for obtaining 12 digits of precision.

In order to illustrate the algorithm of Theorem 3.1 we rewrote the integrals
provided by the method of [DL03] as a sum involving 328 integrals (with a choice
of ǫ0 = 0.81ǫF ). The minimal imaginary part then improved to ǫmin ≃ ǫ0 ≃ 0.0359,
which means that to get 12 digits of precision it is enough to use ideals of norm up
to N ≃ 138, 000. This is an improvement by a factor of 815. In this case, it took
about 7 minutes to find that

Jτ = −1.3589031642485772101 . . .+ 8.36575277665729384437 . . . i,
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which satisfies the equality

5Jτ
?
= −8P

up to the prescribed accuracy.

The curve E109. In the two remaining subsections we present larger examples
that were not available to [DL03]. First, consider the curve E109 defined over the

field F = Q(
√
109), and given by the equation

E109 : y
2 + ωxy = x3 − (1 + ω)x2 − (58ω + 245)x− 630ω − 2944, ω =

1 +
√
109

2

Although E109 is a Q-curve, the field F is not norm-euclidean and therefore this
example was not available before. For this field we have that CF ≃ 10.4, giving that
ǫF ≃ 0.006. By using the algorithm of Theorem 3.1 with, say, ǫ0 = 0.81ǫF , one can
express any integral

∫ y0

x0

∫ y1

x1
ω+
f as a sum of integrals with ǫ ≃ 0.81 · ǫF ≃ 0.0048.

In order to compute any such integral with ǫ = 0.0048 to a precision of 12 digits,
one needs to sum the Fourier coefficients of norm up to roughly 2 · 107.

Let us consider the point P = (3ω + 11, 12β − 7ω − 81/2) defined over the field

K = F (β), with β =
√
268ω + 1265. Exploiting the non-uniqueness of continued

fractions, and considering expansions of length up to 5, we obtained 8 integrals
with ǫmin ≃ 0.035, which is roughly 6 times higher than ǫF . It is not necessary then
in this case to further break the integrals. We computed an approximation to the
ATR point by considering ideals of norm up to N = 430, 000, obtaining that

Jτ = −3.24024368505944150 . . . · 10−12 − 42.392087963225793791 . . . i,

which satisfies

Jτ
?
= −2P

up to the prescribed precision of 12 digits. This computation took less than 3
minutes.

The curve E509. We consider here the curve already mentioned in Section 1 and
in [DL03], defined over F = Q(

√
509) and given by the equation

y2 − xy − ωy = x3 + (2 + 2w)x2 + (162 + 3w)x+ (71 + 34ω), ω =
1 +

√
509

2
.

We have that CF ≃ 22.5, and therefore ǫF ≃ 0.0015. Theorem 3.1 allows us to
express any integral

∫ y0

x0

∫ y0

x0
ω+
f as a sum of integrals having ǫ < ǫ0 < ǫF . For

instance, for a choice of ǫ0 = 0.81ǫF we obtain that each of those integrals could
be computed to 12 digits of precision by summing over the Fourier coefficients of
norm up to roughly 1.6 · 109; a bound which, although being large, is within reach
of the current technology.

We consider the ATR field K = F (β) where β =
√
9144ω + 98577, and the point

P ∈ E(K) of infinite order having coordinates

P = (ω + 17, β/2 +
√
509/2 + 9).

The field extension K/F has relative discriminant of norm 55, which is relatively
small. Write

OK = OF + αOF , α2 + α = 127
√
509 + 2865.

The ATR points are conjectured to be defined over the Hilbert class field of K.
Since K has class number 2, we will need to compute the points corresponding to
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the two non-equivalent optimal embeddings if we want to obtain a point defined
over K. The first of these embeddings maps

α 7→ ϕ1(α) =

(

0 254ω + 2738
1 −1

)

,

whereas the second maps

α 7→ ϕ2(α) =

(

0 127ω + 1369
2 −1

)

.

The fixed points for the induced action of K× on H given by the embedding
v0 : K →֒ C are, respectively:

τ
(1)
0 = 0.5 + 0.024492046328012136937583 . . . i

τ
(2)
0 =

1

2
τ
(1)
0 .

Exploiting the non-uniqueness of quadratic continued fractions we obtain 4 integrals
for the first of the points, and 8 for the second. The then minimal imaginary parts

are ǫ
(1)
min = 0.01917 and ǫ

(2)
min = 0.002926. Since ǫ

(1)
min > ǫF and ǫ

(2)
min > ǫF we see that

in this case it is not necessary to break further the integrals using Theorem 3.1.
In order to obtain about 12 decimal digits of accuracy we precomputed the

Fourier coefficients of all ideals up to norm 4 · 108. The total computation time
was under two days on the 32-processor machine specified at the beginning of this
section. We should note that in this computation we heavily exploited parallelism,
both when computing the Fourier coefficients as well as during the integration step.
The period lattices for EK attached to the Néron differential ωEK

= dx
2y−x−ω are

Λ0 = 〈−5.38425378853615683456 . . . ,−7.44383552310672504690 . . . i〉 = 〈λ+
0 , λ

−
0 〉,

Λ1 = 〈2.47855898378449003059 . . . , 1.14589256545011559322 . . . i〉 = 〈λ+
1 , λ

−
1 〉.

A preimage of P on C/Λ0 under the Weierstrass map is

z = −2.6921268942680784172834 · · ·− 5.1426086531573572370822 . . . i.

The computed values are

J (1)
τ = 22.63291528772669504213102498 . . . i,

J (2)
τ = 106.761524788388057098773188 . . .− 73.6179507973347981534240251 . . . i.

Setting Jτ = J
(1)
τ + J

(2)
τ we find that:
∣

∣

∣

Jτ

λ+
1

− 4z + 10λ+
0

∣

∣

∣
≃ 5.126285 · 10−11,

which suggests that

Jτ
?
= 4z.
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