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INDECOMPOSABLE SURFACE BUNDLES

OVER SURFACES

R. İNANÇ BAYKUR AND DAN MARGALIT

Abstract. For each pair of integers g ≥ 2 and h ≥ 1, we explic-
itly construct infinitely many fiber sum and section sum indecom-
posable genus g surface bundles over genus h surfaces whose total
spaces are pairwise homotopy inequivalent.

1. Introduction

A surface bundle over a surface is a surjective submersion f : X → B,
where X and B are closed, smooth, oriented 4- and 2-dimensional
manifolds, respectively. We say that (X, f) is a genus g surface bundle
over a genus h surface if the genus of a fiber F is g and the genus of
the base B is h.

There are two common ways to construct new surface bundles over sur-
faces from old ones, namely, by summing along fibers or along sections.
We now explain both constructions.

First, suppose (X1, f1) and (X2, f2) are genus g surface bundles over
surfaces of genus h1 and h2, respectively. Let Fi be a fiber of fi for
i = 1, 2. The fiber sum of (X1, f1) and (X2, f2) is obtained by re-
moving a fibered tubular neighborhood of each Fi and then identifying
the resulting boundaries via any fiber-preserving, orientation-reversing
diffeomorphism. The end result is a genus g bundle over a genus
h = h1 + h2 surface.

On the other hand, if (X1, f1) and (X2, f2) are genus gi surface bun-
dles over surfaces of genus h, and if each (Xi, fi) has a section Si with
self-intersection number ni so that n1 = −n2, we can take the section
sum of (X1, f1) and (X2, f2) along the Si in order to obtain a genus
g = g1 + g2 surface bundle over a genus h surface, this time by re-
moving a fibered tubular neighborhood of each Si and then identifying
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2 R. İ. BAYKUR AND DAN MARGALIT

the resulting boundaries via any base-preserving, orientation-reversing
diffeomorphism.

We say that a fiber sum is trivial if one of the two bundles is
Σ × S2. Similarly, a section sum is trivial if one of the bundles is
an S2-bundle over a surface Σ. If a surface bundle over a surface can-
not be expressed as a nontrivial fiber/section sum, then we say it is
fiber/section sum indecomposable.

Main Theorem. For any fixed g ≥ 2 and h ≥ 1, there are infinitely
many fiber sum and section sum indecomposable genus g surface bun-
dles over genus h surfaces whose total spaces are pairwise homotopy
inequivalent.

The Main Theorem is proven by explicitly constructing surface bundles
with the stated properties. Consider the case h = 2. For any integer
n, let Xn → Σ2 be the surface bundle prescribed by the monodromy
factorization:

[T−n
c2

T n
c1
,WT n

c5
WT−n

c5
] [T n

c3
T n
c5
WT−1

c5
, T n

c5
T−n
c1

T−n
c5

T n
c1
] = 1.

where W = T n
c4
T−n
c5
· · ·T−n

c2g−1
T n
c2g

T−n
c2g−1
· · ·T−n

c5
T n
c4
, and where the simple

closed curves c1, . . . , c2g+1 are as shown in Figures 1 and 5 and Tci is the
(right) Dehn twist about ci. By varying n over the set of odd primes,
we obtain the surface bundles promised by the Main Theorem.

Our bundles for h ≥ 3 are pullbacks of the above bundles via a fixed
covering map Σh → Σ2; see Step 7 in Section 4.1 for the explicit mon-
odromy factorizations.

The hypotheses on genus in our Main Theorem are in fact necessary:
When g < 2, the identity component of the group of orientation-
preserving self-diffeomorphisms of the fiber is not simply-connected.
So using twisted gluings one can decompose any genus zero or genus
one bundle as a nontrivial fiber sum where one of the summands is a
nontrivial ruled or elliptic fibration over the 2-sphere. On the other
hand, if h = 0, one can see that there is a unique surface bundle of
genus g ≥ 2, namely the trivial bundle Σg×S

2, which can be expressed
as the section sum of trivial surface bundles of smaller fiber genera.

In some cases, one can argue the existence of fiber sum or section sum
indecomposable surface bundles using the topology of the underlying
4-manifolds. For example, the surface bundles over genus two surfaces
with nonzero signatures produced by Bryan and Donagi [8] are clearly
fiber sum indecomposable because any surface bundle over a genus zero
or one surface has signature zero [1, 16], and thus by Novikov additivity
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their fiber sum has signature zero [32]. Similarly, the genus three sur-
face bundles of Endo, Korkmaz, Kotschick, Ozbagci, and Stipsicz [16]
with nonzero signatures can be seen to be section sum indecomposable,
since any surface bundle of fiber genus less than three is hyperelliptic,
and hence has vanishing signature. However, it is a priori unclear that
for either one of these families of bundles we can strike both indecom-
posability properties in question, nor can this signature argument can
be employed to cover higher fiber or base genus examples.

Outline. In Section 2 we will provide algebraic characterizations of
fiber sum indecomposability and section sum indecomposability, re-
spectively. The proof of Theorem 1 will then rely on the advances
in geometric group theory on embeddings of surface groups into map-
ping class groups, which we will review in Section 3. We will focus
on the simplest and most explicit embeddings of this sort, which fac-
tor through right angled Artin groups and braid groups. Section 4 is
where we will prove Theorem 1, and discuss the underlying geometric
structures. Unlike the examples discussed above, the total spaces of
the bundles we construct will all have signature zero.

Acknowledgments. This paper was partly inspired by a question
of Ursula Hamenstädt. We would like to thank her as well as John
Etnyre, Sang-hyun Kim, and Michael Lönne for helpful conversations.
We are especially grateful to Sang-hyun Kim for pointing out a mistake
in an earlier draft.

2. Algebraic characterizations of indecomposability

Let Σ denote a compact, connected oriented surface with a finite set of
marked points in its interior. The mapping class group of Σ, denoted
Mod(Σ), is the group of isotopy classes of orientation-preserving self-
diffeomorphisms of Σ that fix ∂Σ pointwise and preserve the set of
marked points.

We denote by Σg the closed, connected, orientable surface of genus g.
We also denote by Σg,1 and Σ1

g the surfaces obtained from Σg by mark-
ing one point and by deleting the interior of an embedded disk, respec-
tively. There are surjective homomorphisms Mod(Σ1

g) → Mod(Σg,1)
and Mod(Σg,1) → Mod(Σg) obtained by collapsing the boundary to a
marked point and by forgetting the marked point, respectively.

Say that g ≥ 2, and let B be any Hausdorff, paracompact space. A
classical result of Earle and Eells states that the connected components
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of the diffeomorphism group Diff(Σg) are contractible [15]. It follows
that there is a bijective correspondence:





Genus g surface
bundles over B

up to isomorphism



 ←→





Homomorphisms
π1(B)→ Mod(Σg)
up to conjugacy





The homomorphism µ : π1(B) → Mod(Σg) corresponding to a given
bundle is called the monodromy of the bundle.

Let f : X → Σh be a genus g surface bundle over a genus h surface.

Choose generators αj, βj of π1(Σh) so that

h∏

j=1

[αj , βj] = 1.

Since this is the only defining relation for π1(Σh), a bundle X → Σh

is completely determined by the images of the αj and βj under the
monodromy µ. In other words, genus g bundles f : X → Σh are
completely determined by choices of µ(αj), µ(βj) ∈ Mod(Σg) satisfying
the relation

h∏

j=1

[µ(αj), µ(βj)] = 1.

Such an expression is called a monodromy factorization for (X, f).

The purpose of this section is to give algebraic interpretations of the
fiber sum and section sum operations in terms of the corresponding
monodromies.

2.1. Fiber sums via free products. Let (X1, f1) and (X2, f2) be
genus g surface bundles over surfaces of genus h1 and h2, respectively.
Let µi : π1(Bi) → Mod(Σg) be the monodromy of the bundle fi, for
i = 1, 2. There is an induced homomorphism

µ1 ∗ µ2 : π1(B1) ∗ π1(B2)→ Mod(Σg).

Let B be a surface of genus h = h1 + h2 obtained by taking the con-
nected sum of the Bi, and let γ denote the simple closed curve in B
along which the Bi \D

2 are glued. Base π1(B) at a point of γ. There
is a homomorphism

π1(B)→ π1(B1) ∗ π1(B2)

induced by collapsing γ to a point. The monodromy of the fiber sum
of (X1, f1) and (X2, f2) is precisely the one induced by postcomposing
the above map with µ1 ∗ µ2.
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We conclude that a surface bundle over a surface is fiber sum inde-
composable if and only if its monodromy does not decompose into a
nontrivial free product of surface bundle monodromies as above. More
precisely:

Fiber Sum Criterion. A surface bundle over a surface is fiber sum
decomposable if and only if the kernel of the monodromy contains a
nontrivial separating simple closed curve.

We will make use of the following immediate consequence of the Fiber
Sum Criterion:

If a surface bundle over a surface has injective mon-
odromy, then the bundle is fiber sum indecomposable.

We can restate the Fiber Sum Criterion in terms of the monodromy
factorization: a genus g bundle over B ∼= Σh with monodromy µ is
fiber sum decomposable if and only if there is a choice of generators
αj, βj for π1(B), and a 1 ≤ k < h so that

[µ(α1), µ(β1)] · · · [µ(αk), µ(βk)] = 1

in Mod(Σg).

The fiber sum operation involves a choice of gluing map, and we can say
precisely how this affects the resulting monodromy factorization: the
different choices of gluing map correspond to all possible monodromy
factorizations of the form

φ([µ(α1), µ(β1)] · · · [µ(αk), µ(βk)])φ
−1

[µ(αk+1), µ(βk+1)] · · · [µ(αg), µ(βg)] = 1

for φ ∈ Mod(Σg).

2.2. Section sums via direct products. Let (Xi, fi) be genus gi sur-
face bundles over Σh, and let Si be a section of fi with self-intersection
number ni. Assume that n1 = −n2. We again denote the monodromy
of fi by µi, for i = 1, 2.

The boundary of a fibered regular neighborhood of Si is a circle bun-
dle over Σh whose euler class is ni. Thus, there is a base-preserving,
orientation reversing diffeomorphism between these two circle bundles.

Let F be a genus g = g1 + g2 fiber obtained by taking the section sum
of (X1, f1) and (X2, f2) along the Si. If F1 and F2 are fibers of fi over
the same point, then F is the connect sum of F1 and F2 along a simple
closed curve γ ⊂ F .
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By construction, the monodromy µ of the section sum preserves the
simple closed curve γ with orientation. There is a short exact sequence

1→ 〈Tγ〉 → Mod(F,~γ)→ Mod(Σg1,1)×Mod(Σg1,1)→ 1

where Mod(F,~γ) is the subgroup of Mod(F ) consisting of all elements
that preserve the isotopy class of γ with orientation [17, Proposition
3.20]. The monodromy µ is a lift of µ1 × µ2 to Mod(F,~γ).

Conversely, if the monodromy of a surface bundle preserves the orien-
tation of an oriented, essential, separating simple closed curve, then
we can reverse the above process, and so the bundle is section sum
decomposable.

Section Sum Criterion. A surface bundle over a surface with fiber
F ∼= Σg is section sum decomposable if and only if there is an oriented
essential separating simple closed curve γ ⊂ F whose isotopy class is
preserved by each element of the monodromy.

An element of Mod(Σg) is irreducible if it does not preserve the isotopy
class of any homotopically essential 1-submanifold of Σg. Similarly, a
subgroup of Mod(Σg) is irreducible if there is no homotopically essential
1-submanifold preserved up to isotopy by each element of the group,
and a monodromy π1(Σh) → Mod(Σg) is irreducible if its image is an
irreducible subgroup.

We will use the following immediate consequence of the Section Sum
Criterion:

If the monodromy of a surface bundle over a surface is
irreducible, then the bundle is section sum indecompos-
able.

To show that a monodromy is irreducible, it is enough to find one
irreducible element in its image. In fact, the converse is also true:
every infinite irreducible subgroup contains an irreducible element [24,
Corollary 7.14].

We can again restate our criterion in terms of monodromy factoriza-
tions. Let f : X → B be a genus g surface bundle over a genus h
surface. Fix a generating set αi, βi for B with [α1, β1] · · · [αh, βh] = 1.
Fix a fiber F and let µ : π1(B) → Mod(F ) be the monodromy. The
bundle (X, f) is section sum decomposable if and only if there is an
oriented, essential, separating simple closed curve γ ⊂ F with the prop-
erty that, for each δ ∈ {αi, βi}, we have

µ(δ)(γ) = γ.
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As such, we can write

µ(δ) = µ+(δ)µ−(δ),

where µ+(δ) and µ−(δ) are supported on the subsurfaces to the left
and right of γ, respectively. It follows that

h∏

j=1

[µ+(αj), µ
+(βj)] = T n

γ and

h∏

j=1

[µ−(αj), µ
−(βj)] = T−n

γ .

So in this case the monodromy factorization can be written as

h∏

j=1

[µ+(αj)µ
−(αj), µ

+(βj)µ
−(βj)] = T n

γ T
−n
γ = 1.

As in the fiber sum case, different choices of gluing maps give rise to
different monodromies. Given one monodromy µ as above, all other
monodromies take the form:

µ(δ) = φµ+(δ)φ−1µ−(δ),

for varying φ in Mod(Σ1
g1
), the mapping class group of the closed sub-

surface to the left of γ (as above, δ ∈ {αi, βi}); here φ is independent
of δ.

3. From surface groups to mapping class groups

By the Fiber Sum Criterion and the Section Sum Criterion of Section 2,
we can construct indecomposable surface bundles over surfaces if we
can construct injective irreducible homomorphisms from surface groups
to mapping class groups.

The homomorphisms π1(Σh) → Mod(Σg) we construct in Section 4
will pass through the theories of right-angled Artin groups and braid
groups:

Surface groups → Right-angled Artin groups →
Braid groups → Mapping class groups

The goal of this section is to explain each of these relationships. Before
we begin in earnest, we recall the definition of a right-angled Artin
group.

A right-angled Artin group is a group defined by a presentation with
generators {v1, . . . , vn}, and where each defining relation has the form
vivj = vjvi. To any finite graph Γ, we can associate a right-angled
Artin group A(Γ) by taking one generator vi for each vertex and a
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relation vivj = vjvi whenever the corresponding vertices are connected
by an edge.

3.1. Surface groups into right-angled Artin groups. We now give
a method due to Crisp–Wiest for explicitly embedding surface groups
into right-angled Artin groups [14].

Let Γ be a finite graph with vertex set vi. A Γ-dissection of a closed,
oriented surface Σ is a finite union of labeled, oriented simple closed
curves {ci} in Σ with the following properties:

(1) The label of each ci is an element of the set {vi} (multiple curves
can have the same label).

(2) If two curves ci and cj intersect then the corresponding vertices
of Γ are distinct and are connected by an edge.

(3) The complement of ∪ci in Σ is a disjoint union of disks.

Let γ be any oriented loop in Σh that does not pass through any in-
tersection points of the curves vi. We can read off a word w(γ) in the
vi and their inverses by keeping track of the order and the directions
(right-to-left or left-to-right) in which γ crosses the vi-curves.

The rule γ 7→ w(γ) gives rise to a homomorphism π1(Σ)→ A(Γ) called
the label-reading map. To see that the label-reading map is well-defined,
notice that, if we pass γ across an intersection point of curves labeled
vi and vj, then that corresponds to swapping vi and vj in w(γ). By
part 2 of the definition of a Γ-dissection and the defining relations of
A(Γ), the resulting element of A(Γ) is the same as before. Any two
representatives of an element of π1(Σh) differ by such moves, and so
well-definedness follows.

We will be interested in when the label-reading map is injective. The
condition is best stated in the language of cube complexes, that is, cell
complexes whose cells are all cubes. The link of a vertex v in a cube
complex X can be given the structure of a simplicial complex with one
d-simplex for each (d+ 1)-cube of X incident to v.

There are two cube complexes relevant to us. First, any Γ-dissection
{ci} of a closed surface Σh gives rise to a cell structure on Σh where
each intersection point of the ci is a vertex; the dual cell decomposition
is a cube complex X{ci} with one square for each intersection point of
the ci.

There is also a cube complex XΓ, sometimes called the Salvetti complex
for A(Γ), which is a natural K(A(Γ), 1) space. It has one vertex, one
loop for each vertex of Γ, one 2-torus for each edge of Γ (glued along the
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corresponding commutator [vi, vj ]), and, more generally, one k-torus for
each complete graph on k vertices in Γ.

The label-reading map induces a cellular map X{ci} → XΓ. We say
that this map satisfies the link condition if for each vertex v of X{ci},
the induced map from the link of v to the link of the vertex of XΓ is
injective and the image of the link of v is a full subcomplex of the link
of the vertex of XΓ.

The following is a special case of a theorem of Crisp–Wiest [14].

Theorem 1. Let h ≥ 2, let Γ be a graph, and let {ci} be a Γ-dissection
of Σh. If the induced map X{ci} → XΓ satisfies the link condition, then
the label-reading map π1(Σh)→ A(Γ) is injective.

3.2. Right-angled Artin groups into right-angled Artin groups.

We next give explicit embeddings of right-angled Artin groups into
right-angled Artin groups due to Kim [25].

The opposite of a graph Γ is the graph Γ with the same vertex set as Γ
and with the property that two vertices of Γ are connected by an edge
if and only if they are not connected by an edge in Γ.

The basic idea of Kim’s embeddings is that, if we collapse a connected

subgraph of Γ in order to obtain a graph Γ
′
, then there is often a natural

injective homomorphism A(Γ′)→ A(Γ).

Let Γ be a finite graph, and S a subset of its vertex set {vi}. The
induced subgraph of Γ corresponding to S is the graph whose vertex
set is S and whose edge set is the set of edges of Γ with both endpoints
in S. Say that the subset S is anti-connected in Γ if the induced
subgraph of S in Γ is connected.

The contraction CO(Γ, S) is the graph obtained by collapsing the in-
duced subgraph of Γ with respect to S and removing any edge-loops
and repeated edges. The co-contraction of Γ with respect to S is:

CO(Γ, S) ∼= CO
(
Γ, S

)

We denote the vertices of CO(Γ, S) by {vi | i /∈ S} ∪ {vS}.

If w is any word in the {v±1

i | i ∈ S}, then there is a homomorphism
A(CO(Γ, S))→ A(Γ) given by

vi 7→

{
vi vi 6= vS
w vi = vS.

That this is a homomorphism follows immediately from the defining
presentations and the definition of co-contraction.
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The only question that remains: how can we choose w so that the ho-
momorphism is injective? Kim gives the following sufficient condition.
Write

w = vǫ1i1 · · · v
ǫm
im

where ǫi ∈ {1,−1} for all i. If we delete each ǫi and some subset of
the vij from the expression for w, we obtain a sequence of vertices in
Γ. We say that the sequence of vertices appears in w.

Kim proved the following theorem [25]; see [3] and [26] for other proofs.

Theorem 2. Let Γ be a finite graph with vertex set {vi}, and let S be an
anti-connected subset of {vi}. Let w be a word in the set {v±1

i |vi ∈ S}
with the property that, for each ordered pair of vertices in S, there is
an edge path in the induced graph ΓS from one vertex to the other so
that the corresponding sequence of vertices appears in w. Then the
homomorphism

vi 7→

{
vi vi 6= vS

w vi = vS

is injective.

3.3. Right-angled Artin groups into the braid group. There are
a number of known methods for constructing embeddings of right-
angled Artin groups into braid groups (see the end of Section 4.2).
Here, we will present a family of embeddings (for a specific type of
Artin group) due to Lönne.

The Birman–Ko–Lee [5] generating set for the braid group Bn has one
generator βi,j for every pair 1 ≤ i < j ≤ n. These are square roots of
the standard generators for the pure braid group. Also, the generators
βi,i+1 are precisely the usual generators σi for Bn. The generator β1,n

is equal to (σ2 · · ·σn−1)
−1 σ1 (σ2 · · ·σn−1).

Let M = (mi,j) be a symmetric, nonnegative integer matrix, and let
BM

n denote the subgroup of Bn generated by the β
mi,j

i,j . Lönne gives the
following description of this subgroup [29].

Theorem 3. Let M = (mi,j) be a symmetric, nonnegative integer
matrix where each mi,j is not equal to 1 or 2. The group BM

n is a
right-angled Artin group with the presentation

BM
n
∼= 〈β

mi,j

i,j with mi,j 6= 0 | [β
mi,j

i,j , β
mk,l

k,l ] = 1 when i < j < k < l

or i < k < l < j〉
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c1 c2 c3 c4 c5 c6 c2g

Figure 1. The standard embedding of B2g+1 in Mod(Σ1
g).

3.4. The braid group to the mapping class group. There are two
natural homomorphisms1

B2g+1 → Mod(Σ1
g)→ Mod(Σg).

The first map is defined by the rule σi 7→ Tci, where {σi} is the standard
generating set for B2g+1 and the ci are the curves in Σ1

g shown in Fig-
ure 1. This map is a homomorphism because Dehn twists about curves
intersecting once satisfy the braid relation [17, Proposition 3.11]. We
have the following theorem of Birman–Hilden; see [17, Theorem 9.2].

Theorem 4. The homomorphism B2g+1 → Mod(Σ1
g) given by σi 7→ Tci

is injective.

The image of B2g+1 in Mod(Σ1
g) is precisely the hyperelliptic mapping

class group of Mod(Σ1
g). This is the subgroup of Mod(Σ1

g) consisting
of elements that have a representative commuting with a particular
hyperelliptic involution of Σ1

g; see [17, Section 9.4]. Because our mon-
odromy homomorphisms factor through this map, all of our bundles
will be hyperelliptic surface bundles over surfaces.

The second map, Mod(Σ1
g)→ Mod(Σg), is obtained by gluing a disk to

the boundary of Σ1
g. Each homeomorphism of Σ1

g can be extended by
the identity to a homeomorphism of Σg, and this induces a well-defined
map on the level of mapping class groups [17, Theorem 3.18].

Under this homomorphism, the Dehn twist about ci maps to the Dehn
twist about the image of this curve under the inclusion Σ1

g → Σg.

1Because in the braid group we traditionally compose elements left to right and in
the mapping class group we compose right to left, the first map here is really an anti-
homomorphism. This is the only place where we switch the order of composition,
and so our maps π1(Σh) → Mod(Σg) will also be anti-homomorphisms. We could

remedy the situation by composing elements of π1(Σh), A(C2g+1), and B2g+1 from
right to left. Instead, we abuse notation by referring to our anti-homomorphisms
as homomorphisms.
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The kernel is isomorphic to the fundamental group of the unit tangent
bundle of Σg [17, Section 4.2.5]. However, the intersection of the kernel
of this map with the image of B2g+1 is equal to Z(B2g+1) ∼= Z; see [7,
Theorem 3.1].

4. Constructing indecomposable surface bundles

In this section we prove the Main Theorem, that is, for any g ≥ 2 and
h ≥ 1 we explicitly construct infinitely many genus g surface bundles
over genus h surfaces that are both fiber sum indecomposable and
section sum indecomposable. The examples are all distinct in that
they are pairwise homotopy inequivalent.

To begin, in Section 4.1 we explain one specific construction of indecom-
posable bundles over surfaces of genus at least 2. Then, in Section 4.2
we complete the proof the Main Theorem using the construction from
Section 4.1 (the case there the base surface is a torus is dealt with
separately). At the end, we discuss various geometric properties of our
bundles, namely, holomorphicity, symplecticity, and signature.

4.1. A construction of indecomposable bundles. We will now
give an explicit construction of surface bundles over surfaces that are
both fiber sum indecomposable and section sum indecomposable. We
will give one bundle Xn = Xn(g, h) for each g ≥ 2, h ≥ 1, and n ≥ 3.
Recall that, by the Fiber Sum Criterion and the Section Sum Criterion,
it suffices to construct injective, irreducible homomorphisms:

π1(Σh)→ Mod(Σg)

for varying g and h (and n).

Let Ck denote the k-cycle graph. Our recipe for explicit irreducible
embeddings π1(Σh) → Mod(Σg) (for any g, h ≥ 2) is broken into four
steps:

π1(Σh)→ A(C5)→ A(C2g+1)→ B2g+1 → Mod(Σg).

At each stage, we give explicit maps. After giving the construction,
we will check that the composition π1(Σh)→ Mod(Σg) is injective and
irreducible.

Step 1 π1(Σh)→ A(C5).

To fix notation set

A(C5) = 〈v1, . . . , v5 | [v1, v3] = [v2, v4] = [v3, v5] = [v4, v1] = [v5, v2] = 1〉.
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v2

v1

v4

v5 v5

v4

v1
v3

v2

Figure 2. Each curve labeled vi corresponds to the gen-
erator vi of A(C5).

Note that C5
∼= C5, and so A(C5) ∼= A(C5). We use the former because

it will simplify the notation later.

Consider the surface with boundary shown in Figure 2. We have drawn
several oriented simple closed curves and arcs there. We obtain a col-
lection of oriented simple closed curves in Σ2 by gluing together the
two boundary components. This collection of curves is a C5-dissection
of Σ2 which appears in the paper of Crisp–Wiest [14, Figure 2].

More generally, we obtain a C5-dissection of Σh for any h ≥ 2 by
stacking h − 1 copies of the surface with boundary in Figure 2 end
to end and then gluing the two resulting boundary components. The
labels are inherited directly from the original curves. (Equivalently,
the dissection of Σh is the one induced by the (h− 1)-fold cover of Σ2

dual to v2.)

As in Section 3.1, the C5-dissection of Σh gives rise to a label-reading
homomorphism π1(Σh) → A(C5). We would like for this homomor-
phism to be injective. It is straightforward to check the link condition
of Theorem 1 (see [14, page 451] for details), and so the label-reading
map π1(Σh)→ A(C5) is indeed injective, as desired.

If we utilize the generating set for π1(Σ2) shown in Figure 3, the label-
reading map π1(Σ2)→ A(C5) has the following effect:

γ1 7→ v−1

1 v2

γ2 7→ v−1

5 v4v5v4

δ1 7→ v−1

5 v4v5v3

δ2 7→ v−1

1 v−1

5 v1v5
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γ1

γ2
δ1

δ2

Figure 3. A standard set of generators for π1(Σ2).

δ4

γ1

δ1 γ2

δ2

δ3

Figure 4. A set of generators for π1(Σ3) adapted to the
covering Σ3 → Σ2 dual to v2.

Since our dissection of Σh is induced by the (h−1)-fold cover Σh → Σ2

dual to v2, we can write our map π1(Σh)→ A(C5) as the composition
π1(Σh) → π1(Σ2) → A(C5). Consider the generating set for π1(Σh)
suggested by Figure 4. With respect to these generators, the map
π1(Σh)→ π1(Σ2) is given by:

γ1 7→ γh−1
1

γ2 7→ γ2

and

δ2k+1 7→ γk
1δ1γ

−k
1

δ2k+2 7→ γk
1δ2γ

−k
1

for 0 ≤ k ≤ h− 2.

Step 2 A(C5)→ A(C2g+1).
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Denote the vertices of C2g+1 by v1, . . . , v2g+1 (in cyclic order), and let
S = {v4, . . . , v2g}. We have

CO(C2g+1, S) = CO (C2g+1, S) ∼= C5.

The group A(CO(C2g+1, S)) is generated by v1, v2, v3, vS, and v2g+1.

There is an isomorphism A(C5)→ A(CO(C2g+1, S)) defined by

(v1, v2, v3, v4, v5) 7→ (v1, v2, v3, vS, v2g+1).

Let

w = v4v
−1

5 · · · v
−1

2g−1v2gv
−1

2g−1 · · · v
−1

5 v4 ∈ A(C2g+1).

Notice that the sequences v4, . . . , v2g and v2g, . . . , v4 both appear in w.
By Theorem 2, the homomorphism

A(C5)
∼=
→ A(CO(C2g+1, S))→ A(C2g+1)

defined by

vi 7→





vi i = 1, 2, 3

w i = 4

v2g+1 i = 5.

is injective.

Step 3 A(C2g+1)→ B2g+1

Let M = (mi,j) be given by:

mi,j =

{
n j ≡ i± 1 mod 2g + 1

0 otherwise

By Theorem 3, the group BM
2g+1 has the presentation

〈σ1, . . . , σ2g, β1,2g+1 | [σi, σj ] = 1 for |i− j| > 1,

[β1,2g+1, σi] = 1 for i /∈ {1, 2g}〉.

There is thus an isomorphism

A(C2g+1)
∼=
→ BM

2g+1 < B2g+1

given by

vi 7→

{
σi 1 ≤ i ≤ 2g

β1,2g+1 i = 2g + 1.

Step 4 B2g+1 → Mod(Σg)

The map here was already described in Section 3.4. We will make
several remarks. First, the image of β1,2g+1 ∈ B2g+1 is the Dehn twist
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c2g+1

Figure 5. The simple closed curve c2g+1.

Tc2g+1
, where c2g+1 is the simple closed curve shown in Figure 5. In

terms of the Tci, we can write

Tc2g+1
=

(
Tc2g · · ·Tc3Tc2

)
Tc1

(
Tc2g · · ·Tc3Tc2

)−1
.

Also, the class of c2g+1 in H1(Σ
1
g) is [c1]− [c2]+ [c3]−· · ·+[c2g−1]− [c2g].

Finally, for large n, the injectivity of our map A(C2g+1) → Mod(Σg)
can also be deduced directly from a theorem of Koberda [27, Theorem
1.1]. We have taken the slightly more circuitous route in order to gain
the explicitness.

Step 5 Injectivity

Our homomorphism π1(Σh) → Mod(Σg) is the composition of the
above homomorphisms:

π1(Σh)→ A(C2g+1, S)→ A(C2g+1)→ B2g+1 → Mod(Σ1

g)→ Mod(Σg).

The only map in this sequence that is not injective is the last one.
Recall that the kernel of the composition

B2g+1 → Mod(Σ1
g)→ Mod(Σg)

is Z(B2g+1). Under an injective homomorphism, noncentral elements
cannot map to central elements. As π1(Σg) has trivial center for
g ≥ 2, it follows that the composition π1(Σh) → Mod(Σg) is injec-
tive, as desired.

Step 6 Irreducibility

The Nielsen–Thurston classification theorem states that each element
of Mod(Σg) falls into one of three categories: periodic, reducible, or
pseudo-Anosov; see [17, Theorem 13.2]. Moreover, pseudo-Anosov ele-
ments are neither periodic nor reducible.

In order to prove that our map π1(Σh) → Mod(Σg) is irreducible, we
will use Penner’s construction of pseudo-Anosov elements of Mod(Σg),
as follows [34]. In the statement, we say that two simple closed curves in
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a surface are in minimal position if they intersect the minimal number
of times with respect to their two homotopy classes.

Theorem 5. Let A = {ai} and B = {bi} be two collections of essential
simple closed curves in Σg with the following properties:

(1) We have ai ∩ aj = ∅ and bi ∩ bj = ∅ for any choices of i and j.
(2) For any i and j, the curves ai and bj are in minimal position.
(3) The complement of A ∪B in Σ is a union of disks.

Then any product of the Tai and T−1

bj
where each ai and each bj appears

at least once represents a pseudo-Anosov element of Mod(Σg).

In our situation, the elements γ1, γ2, and δ1 in π1(Σh) shown in Fig-
ure 4 map to (v−1

1 v2)
h−1, v−1

5 v4v5v4, and v−1

5 v4v5v3 in A(C5). Thus the
product γ−1

2 δ1γ
−1

1 maps to

(v−1

5 v4v5v4)
−1(v−1

5 v4v5v3)(v
−1

1 v2)
−1 = v−1

4 v3(v
−1

2 v1)
h−1

in A(C5), and then

w−1v3(v
−1

2 v1)
h−1 =

(
v−1

4 v5 · · · v2g−1v
−1

2g v2g−1 · · · v5v
−1

4

)
v3(v

−1

2 v1)
h−1

in A(C2g+1). The image in Mod(Σ1
g) is:

(
T n
c1
T−n
c2

)h−1 (
T n
c3

) (
T−n
c4

T n
c5
· · ·T n

c2g−1
T−n
c2g

T n
c2g−1
· · ·T n

c5
T−n
c4

)
,

where the ci are as shown in Figure 1. It follows from Theorem 5 that
this maps to a pseudo-Anosov element of Mod(Σg) (set A = {ci | i odd}
and B = {ci | i even}).

The irreducibility of our monodromy follows from general principles,
namely, the classification of subgroups of the mapping class group; see
[6, 24, 30, 31]. For our purposes, it is simpler to simply produce an
explicit pseudo-Anosov monodromy using Penner’s theorem than to
explain the more general theory.

Step 7 Monodromy factorization

We first deal with the case h = 2, since it is notationally simpler. In
Figure 3 we have drawn generators for π1(Σ2). Referring to Figure 2,
we see that the label-reading map π1(Σ2) → A(C5) has the following
effect:

(γ1, γ2, δ1, δ2) 7→ (v−1

1 v2 , v−1

5 v4v5v4 , v−1

5 v4v5v3 , v−1

1 v−1

5 v1v5).
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It follows that the images of the generators for π1(Σ2) in Mod(Σg) are:

γ1 7→ T n
c2
T−n
c1

γ2 7→WT n
c5
WT−n

c5

δ1 7→ T n
c3
T n
c5
WT−1

c5

δ2 7→ T n
c5
T n
c1
T−n
c5

T−n
c1

where W = T n
c4
T−n
c5
· · ·T−n

c2g−1
T n
c2g

T−n
c2g−1
· · ·T−n

c5
T n
c4
.

We conclude that there is a fiber sum and section sum indecomposable
genus g ≥ 2 surface bundle over a genus h = 2 surface prescribed by
the monodromy factorization

[T−n
c2

T n
c1
,WT n

c5
WT−n

c5
] [T n

c3
T n
c5
WT−1

c5
, T n

c5
T−n
c1

T−n
c5

T n
c1
] = 1.

As above, our bundles over genus h ≥ 3 surfaces are obtained by pulling
back the above bundles via the (h− 1)-fold cyclic cover Σh → Σ2 dual
to v2. In Step 1, we wrote down the map π1(Σh)→ π1(Σ2) in terms of
standard generators for π1(Σh). From here we can easily write down
the monodromy factorization.

4.2. Infinite families. In this section we complete the proof of the
Main Theorem. The case h = 1 will be handled from scratch. The case
h ≥ 2 will be dealt with by showing that the Xn(g, h) constructed in
Section 4.1 are all distinct (for n prime).

Computing first homology. Before delving into the proof, we recall
how the first homology of a bundle is computed. Let X → B be a
fiber bundle with fiber F . Via the monodromy, the group π1(B) acts
on H1(F ). Using this action we obtain

H1(X) ∼= H1(B)⊕ (H1(F )/π1(B)) .

We can compute this quotient by fixing generators for π1(B) andH1(F ).
There is then one (possibly trivial) relation for the action of each gen-
erator of π1(B) on each generator of H1(F ).

As all of our monodromies are expressed in terms of Dehn twists, it is
enough to repeatedly use the formula:

T k
b ([a]) = [a]− k î(a, b)[b]

for oriented simple closed curves a and b; here î(a, b) denotes algebraic
intersection. We will do one sample calculation of this sort in the proof
below and leave the rest of the (straightforward) calculations to the
reader.
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Bundles over tori. We first deal with the case h = 1. Since the
torus cannot be written as a nontrivial connect sum, fiber sum decom-
posability is immediately ruled out. By the Section Sum Criterion, it
suffices to produce bundles whose monodromies π1(T

2) → Mod(Σg)
are irreducible.

Let φ be any irreducible element of Mod(Σg). The monodromy factor-
ization

[φ, 1] = 1

corresponds to a section sum indecomposable bundle, as desired. (Ob-
serve that this construction amounts to taking the product of S1 and
a Σg bundle over S1 with irreducible monodromy.)

In order to obtain infinitely many bundles whose total spaces are dis-
tinct up to homotopy equivalence, it suffices to find infinitely many
such φ whose actions on H1(F ) are distinct in the sense that the groups
H1(F )/π1(B) are nonisomorphic. One example of such an infinite fam-
ily is:

φk = T k
c1
T−1
c2

Tc3T
−1
c4
· · ·Tc2g−1

T−1
c2g

.

Each φk with k > 0 is pseudo-Anosov (hence irreducible) by Penner’s
Theorem 5. (Again set A = {ci | i odd} and B = {ci | i even}). Denote
by Xk the bundle over T 2 with monodromy factorization [φk, 1] = 1.

Choose orientations for the ci so that the algebraic intersection numbers
î(ci, ci+1) are equal to 1, and denote by [ci] the resulting elements of
H1(F ) ⊆ H1(Xk). As discussed above, we can compute H1(Xk) by
adding relations φk([ci]) = [ci] for each i. In the case i = 1, we obtain:

[c1] = φk([c1])

= T k
c1
T−1

c2
Tc3T

−1

c4
· · ·Tc2g−1

T−1

c2g
([c1])

= T k
c1
T−1

c2
([c1])

= T k
c1
([c1] + [c2])

= [c1] + ([c2] + k[c1])

So k[c1] = −[c2]. There are 2g − 1 similar calculations. They yield the
relations −[c2] = [c3], [c3] = −[c4], . . . , [c2g−1] = −[c2g], and [c2g] = 0.
We thus conclude that

H1(Xk) ∼= H1(T
2)⊕ Z/kZ ∼= Z

2 ⊕ Z/kZ.

In particular, the total spaces of the Xk are pairwise homotopy inequiv-
alent, as desired.
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Bundles over higher genus surfaces. Now let h ≥ 2. For any
g ≥ 2 and n ≥ 3, let Xn = Xn(g, h) be the bundle constructed in
Section 4.1. Recall that all these bundles are fiber sum and section
sum indecomposable. We will show that the family {Xn : n prime}
consists of 4-manifolds with distinct first homology groups, and thus
of 4-manifolds that are pairwise homotopy inequivalent.

Fix some Xn and denote its base by B and its fiber by F . We have

H1(Xn) ∼= Z
2h ⊕ (H1(F )/π1(B)) .

where π1(B) acts via the monodromy. As above, we take the [ci] as a
basis for H1(F ).

For our purposes it will suffice to make two observations.

Firstly, since the monodromy action of π1(B) onH1(F ;Z/nZ) is trivial,
we easily calculate

H1(Xn;Z/nZ) ∼= (Z/nZ)2h
⊕

(Z/nZ)2g =
⊕

(Z/nZ)2h+2g.

It then follows from the universal coefficients theorem that, for n = p
prime, H1(Xn) = H1(Xn;Z) has a total of 2h + 2g direct summands,
each isomorphic to either Z or Z/pkZ for some k ≥ 1.

Secondly, when we calculate H1(Xn) as above, we find many relations
between the 2h+ 2g generators c1, . . . , c2g. For example, it is straight-
forward to check that the action of γ1 on [c1] gives a nontrivial relation
(in the h = 2 case the relation is n [c2] = 0).

Combining the two observations, we see that at least one summand of
H1(Xp;Z) must be of the form Z/pkZ. It follows that the H1(Xp;Z) are
all distinct, and the {Xp : p prime} are pairwise homotopy inequivalent,
as desired. This completes the proof of our Main Theorem.

Variations. While our construction of surface bundles is general
enough to give the infiniteness result of the Main Theorem, we would
like to point out some of the ways in which the construction can be al-
tered in order to give other examples of indecomposable surface bundles
over surfaces.

First, there are many C5-dissections of Σh. There are also completely
different approaches to embedding surface groups into right-angled
Artin groups; see the work of Servatius–Droms–Servatius [36], Crisp–
Wiest [14], Röver [35], Crisp–Sageev–Sapir [13], Kim [25], and Bell
[3].
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Next, there are other known methods for embedding right-angled Artin
groups into other right-angled Artin groups; see the papers of Bestvina–
Kleiner–Sageev [4], Hsu–Wise [22], and Green [20].

Various embeddings of right-angled Artin groups into braid groups
and mapping class groups are given by Collins [11], Humphries [23],
Crisp–Paris [12], Crisp–Wiest [14], Clay–Leininger–Mangahas [9], and
Koberda [27].

Finally, there are other approaches to embedding surface groups into
mapping class groups that do not pass through the theory of right-
angled Artin groups; see, for instance, the works of González-Dı́ez–
Harvey [19], and Leininger–Reid [28].

Because of all of this work, there are many possible paths for embedding
surface groups into mapping class groups. We chose to focus on the
constructions of Crisp–Wiest, Kim, Lönne, and Birman–Hilden since
this approach is both completely explicit and strikingly simple.

Final remarks. A surface bundle over a surface (X, f) is called sym-
plectic if X admits a symplectic form for which all the fibers are sym-
plectic subsurfaces. It is well-known that when the surface bundles
(Xi, fi), and the sections Si when involved, are symplectic, then the
fiber sum and section sum operations can be performed symplectically
[18]. One can thus ask: when does a symplectic surface bundle over
a surface fail to decompose into symplectic surface bundles of smaller
fiber or base genera?

It follows from a classical argument of Thurston [37] that if the fiber
F of a surface bundle (X, f) is nonzero in H2(X ;R), then there is a
symplectic form on X so that F is symplectic. The symplectic form
can be chosen so that both the fiber and a prescribed section are sym-
plectic subsurfaces in X . The first chern class of an almost complex
structure associated to the fibration f gives a class in H2(X ;R), which
evaluates on [F ] as χ(F ) = 2 − 2g, which implies that the above ho-
mological condition is satisfied whenever g 6= 1. We therefore conclude
that the surface bundles we construct in this article are all symplectic
bundles that cannot be decomposed as fiber sums or section sums of
(symplectic) bundles with smaller fiber or base genera.

It is quite often the case that the surface bundle over a surface ob-
tained by performing fiber sum or section sum is not holomorphic for
any choice of complex structures on the total space (with either orien-
tation) or the base; see for instance [2]. One can thus inquire whether
our surface bundles owe their indecomposability to being holomorphic.
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This is however ruled out by Parshin’s finiteness result, which states
that there are only finitely many holomorphic fibrations with fixed fiber
genus g ≥ 2 and base genus h ≥ 0 [33]. The very fact that we get infi-
nite families of such bundles therefore imply that an infinite subfamily
of them are not holomorphic.

As per the discussion after Theorem 4, all of our bundles are hyper-
elliptic surface bundles. Such bundles necessarily have signature zero
[10, 21]. In particular, it follows that our bundles are distinct from the
earlier examples discussed in the introduction. More to the point, this
means that we cannot apply the same signature obstruction to fiber
sum decomposability.
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