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HOFER GEOMETRY OF A SUBSET OF A
SYMPLECTIC MANIFOLD

Jan Swoboda and Fabian Ziltener

To every closed subset X of a symplectic manifold
(M,ω) we associate a natural group of Hamiltonian dif-
feomorphisms Ham(X,ω). We equip this group with a
semi-norm ‖ · ‖X,ω, generalizing the Hofer norm. We
discuss Ham(X,ω) and ‖ · ‖X,ω if X is a symplectic or
isotropic submanifold. The main result involves the rel-
ative Hofer diameter of X in M . Its first part states
that for the unit sphere in R

2n this diameter is bounded
below by π

2
, if n ≥ 2. Its second part states that for

n ≥ 2 and d ≥ n + 1 there exists a compact set in R
2n

of Hausdorff dimension at most d, with relative Hofer
diameter bounded below by π/ k(n, d), where k(n, d) is
an explicitly defined integer.

Contents

1. Motivation and main results 1

2. Proofs of the propositions 9

2.1. Proofs of Propositions 1 and 2 9

2.2. Proofs of Propositions 3, 4, 7, and 8 13

3. Coisotropic intersections and relative Hofer diameters 16

3.1. Coisotropic intersections 16

3.2. Rigidifying pairs 18

3.3. Proof of Theorem 6 (Relative Hofer diameter of a
small subset of a symplectic manifold) 21

Appendix A. Auxiliary results 30

A.1. (Pre-)symplectic geometry 30

A.2. Topology and manifolds 32

References 34

1. Motivation and main results

The theme of this article is the following.
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Question 1. How much symplectic geometry can a small subset of a
symplectic manifold carry?

To be specific, we interpret “small” as “of Hausdorff dimension bounded
above by a given number”. In the article [SZ] we gave some answers to
this question in terms of the displacement energy of the subset, non-
squeezing, and exoticness of symplectic structures. Here we look at this
question from a dynamical point of view. The goal is to lay the foun-
dations of a Hofer geometry for subsets of a symplectic manifolds, both
from an absolute and relative view-point, and to explore this geometry
in examples.

Absolute Hofer geometry. Let (M,ω) be a symplectic manifold and
X ⊆M a closed subset. (For simplicity all manifolds in this paper are
assumed to have empty boundary.) We define the set of Hamiltonian
diffeomorphisms of X, Ham(X,M, ω), as follows.
Let V : [0, 1]×M → TM be a smooth time-dependent vector field

on M . For every t ∈ [0, 1] we denote by ϕt
V the time-t flow of V . Its

domain is by definition the set Dt
V of all points x0 ∈ M for which the

problem
ẋ = V ◦ x, x(0) = x0

has a solution x ∈ C∞([0, t],M). We say that V is X-compatible
iff X ⊆ D1

V , and ϕt
V (X) = X , for every t ∈ [0, 1]. For a function

H ∈ C∞([0, 1] ×M,R) we denote by XH := Xω
H its time-dependent

Hamiltonian vector field, and we abbreviate ϕt
H := ϕt

H,ω := ϕt
XH

. We
define

(1) H(M,ω,X) :=
{
H ∈ C∞([0, 1]×M,R)

∣∣XH is X-compatible
}
,

(2) Ham(X,ω) := Ham(X,M, ω) :=
{
ϕ1
H |X

∣∣H ∈ H(M,ω,X)
}
.

Note that for X =M

H(M,ω) := H(M,ω,M)

is the set of all functions H ∈ C∞([0, 1] ×M,R) whose Hamiltonian
time-t flow is well-defined on M and a diffeomorphism of M , for every
t ∈ [0, 1]. Furthermore, Ham(M,ω) is the set of all time-one flows
of functions in H(M,ω). The following result shows that Ham(X,ω)
together with composition is a group, and that it naturally generalizes
Ham(M,ω).

Proposition 1 (Hamiltonian diffeomorphisms of a subset). The fol-
lowing statements hold.
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(i) The set Ham(X,ω) is a subgroup of the group of homeomorphisms
of X.

(ii) If X is a symplectic submanifold of M then

(3) Ham(X,ω) = Ham(X,ω|X)
(where on the right-hand side we regard X as a subset of itself).

The trickiest part of the proof of this result is the inclusion “⊇” in (3).
The idea is to extend a given Hamiltonian function H : [0, 1]×X → R

to a function H̃ : [0, 1] ×M → R in such a way that the restriction

of the time-t flow of H̃ to X agrees with the time-t flow of H (see
Proposition 12 below).
We define the Hofer semi-norm on Ham(X,ω) to be the map

‖ · ‖X,ω : Ham(X,ω) → [0,∞]

given as follows. Let H ∈ C∞([0, 1]×M,R). We define the Hofer norm
of H on X to be

(4) ‖H‖X :=

∫ 1

0

(
sup
X

H(t, ·)− inf
X
H(t, ·)

)
dt ∈ [0,∞].

(It follows from Lemma 30 below that this integral is well-defined.) For
every ϕ ∈ Ham(X,ω) we define

(5) ‖ϕ‖X,ω := inf
{
‖H‖X

∣∣H ∈ H(M,ω,X) : ϕ1
H |X = ϕ

}
.

By the next result the map ‖ · ‖X,ω is a semi-norm, which naturally
generalizes ‖ · ‖M,ω. Furthermore, ‖ · ‖M,ω is a norm. We will use the
following definition. Let G be a group. By a semi-norm on G we mean
a map ‖ · ‖ : G→ [0,∞] such that

‖1‖ = 0,(6)

‖g−1‖ = ‖g‖,(7)

‖gh‖ ≤ ‖g‖+ ‖h‖,(8)

for every g, h ∈ G. We call ‖ · ‖ a norm iff also

(9) ‖g‖ = 0=⇒g = 1.

We call ‖ · ‖ invariant iff

(10) ‖ghg−1‖ = ‖h‖, ∀g, h ∈ G.

Proposition 2 (Hofer semi-norm for a subset). The following state-
ments hold.

(i) The map ‖ · ‖X,ω is an invariant semi-norm.
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(ii) Assume that X is a symplectic submanifold of M . Then the map
‖ · ‖X,ω is a norm and

(11) ‖ · ‖X,ω = ‖ · ‖X,ω|X .

The proof of this result is similar to the proof of Proposition 1.
For a general closed subset X ⊆M the map ‖ · ‖X,ω may be degener-

ate, i.e., not satisfy (9). It is maximally degenerate, if X is a connected
isotropic submanifold. This is a consequence of the following result.

Proposition 3. If X is a connected isotropic submanifold then

(12) ‖ · ‖X ≡ 0 : H(M,ω,X) → [0,∞].

Relative Hofer geometry. Let Y ⊆M be a closed subset containing
X . We may compare the Hofer geometries of the sets X and Y as
follows: We define the Hofer semi-norm on X relative to Y to be the
map

‖ · ‖Y,ωX : Ham(X,ω) → [0,∞],(13)

‖ϕ‖Y,ωX := inf
{
‖ψ‖Y,ω

∣∣ψ ∈ Ham(Y, ω) : ψ|X = ϕ
}
.(14)

Intuitively, this map measures how short a Hamiltonian path on X
can be made inside Y . The definition (13) has the following natural
properties.

Proposition 4 (Relative Hofer semi-norm). The map ‖·‖Y,ωX is a semi-
norm. Furthermore, let Y ′ ⊆ M be a closed subset such that Y is
contained in the interior of Y ′. If Y is compact and non-empty, then
we have

(15) ‖ · ‖Y,ωX ≥ ‖ · ‖Y ′,ω
X .

In the case X = Y we have, by definition,

‖ · ‖X,ω
X = ‖ · ‖X,ω.

However, in general, the semi-norms ‖ · ‖Y,ωX and ‖ · ‖X,ω may differ a
lot. As an example, a forth-coming article [Zi2, Corollary 7] contains
the following result.

Theorem 5 (Relative Hofer diameter). Let (M,ω) and (M ′, ω′) be
connected symplectic manifolds and X ′ ⊆ M ′ a finite subset. Assume
that M is closed and M ′ has positive dimension. Then we have

(16) ‖ · ‖M×M ′,ω⊕ω′

M×X′ ≡ 0.
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In contrast with this result, under the hypotheses of Theorem 5, the
absolute semi-norm ‖ · ‖M×X′,ω⊕ω′

is non-degenerate. This follows from
Proposition 2(ii).
The relative Hofer semi-norm gives rise to the Hofer diameter of X

relative to Y , which we define as

(17) diam(X, Y, ω) := sup
{
‖ϕ‖Y,ωX

∣∣ϕ ∈ Ham(X,ω)
}
.

This quantity measures how much Hamiltonian dynamics of Y is cap-
tured by the subset X . Our main result is motivated by the following
instances of Question 1.

Question 2 (Hofer diameter of a subset). What is the relative Hofer
diameter diam(X,M, ω) for a given (small) closed subset X ⊆M?

We now fix a subset X0 ⊆M and a number d ∈ [0,∞).

Question 3 (Maximal Hofer diameter). What is the supremum of the
numbers diam(X,M, ω), where X is a compact subset of X0, of Haus-
dorff dimension at most d?

In order to state our result, we define the map

(18) k : N× [0,∞) → N ∪ {∞}
as follows. For (n, d) ∈ N× [0,∞) we define k(n, d) to be the infimum

of all sums
∑ℓ

i=1 ki, where ℓ ∈ N is such that

(19) ℓ ≥ 2,

and k1, . . . , kℓ ∈ N are integers for which there exist numbers ni ∈ N,
for i = 1, . . . , ℓ, such that the following conditions hold:

ni ≥ ki,(20) ∑
i kini ≥ n,

∑
i ki(2ni − ki) ≤ d.(21)

2min{n1, . . . , nℓ} ≤ n.(22)

Our main result provides lower bounds on the quantities in Questions
2 and 3 in the case (M,ω) := (R2n, ω0), with X the unit sphere S2n−1

(for Question 2) and X0 the closed unit ball B
2n ⊆ R2n:

Theorem 6 (Relative Hofer diameter of a small set). The following
statements hold.

(i) For every integer n ∈ {2, 3, . . .} we have

(23) diam(S2n−1,R2n, ω0) ≥
π

2
.
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(ii) For every integer n ∈ {2, 3, . . .} and real number d ∈ [n, 2n − 1]

there exists a compact subset X ⊆ B
2n

of Hausdorff dimension at
most d+ 1, such that

(24) diam
(
X,R2n, ω0

)
≥ π

k(n, d)
.

The estimate (23) is sharp up to a factor of 16. This follows from
the argument after Proposition 8 below. The proof of Theorem 6 is
based on a coisotropic intersection result proved by the authors in
[SZ]. As another key ingredient, given a pair (X0, α), where X0 ⊆ M
is a subset and α ∈ Ω1(M), we will define what it means for (X0, α)
to be “rigidifying”. Given a compact subset X0, we will prove a lower
bound on the Hofer norm of a certain Hamiltonian diffeomorphism, if
there exists a function f :M → R for which (X0, df) is rigidifying and
some other conditions hold (Lemma 14 below). We show that these
conditions are satisfied if there exists a certain Hamiltonian Lie group
action (Lemma 15).
The next result summarizes some properties of the map k, which

occurs in part (ii) of Theorem 6. We define the function K : N → N by

(25) K(n) := inf
{ ℓ∑

i=1

ki
∣∣ ℓ ∈ N, k1, . . . , kℓ ∈ N : n =

∑

i

k2i
}
.

The first few values of this function are

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
K(n) = 1 2 3 2 3 4 5 4 3 4 5 6 5 6 7 4 5

Proposition 7. For every n ∈ {2, 3, . . .} we have

(26) k(n, d) ≤ 2n− d, ∀d ∈ [n, 2n− 2].

k(n, n) = K(n), if n 6= k2, ∀k ∈ N,(27)

K(n) <
√
n+ 2

3
2 4
√
n.(28)

This proposition implies explicit lower bounds on the right-hand side
of inequality (24).
To put Theorem 6 into perspective, for each open subset U ⊆ M ,

we define the extension relative Hofer diameter of U to be

Diam(U,M, ω) :=

sup
{
‖ϕ1

H‖M,ω
∣∣H ∈ H(M,ω) : support of H ⊆ [0, 1]× U

}
∈ [0,∞]
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(where H(M,ω) := H(M,ω,M)). This diameter measures the sizes of
trivial extensions of Hamiltonian diffeomorphisms generated by func-
tions with support in [0, 1]×U . Note that in contrast with this, the def-
inition of diam(X,M, ω) involves the restriction of a map ψ :M → M
to X . The two diameters are related to each other as follows:

Proposition 8 (Relative Hofer diameters). Let (M,ω) be a symplectic
manifold, U ⊆M an open subset, and X ⊆ U a compact subset. Then

(29) Diam(U,M, ω) ≥ diam(X,M, ω).

We denote by B2n(a) ⊆ R
2n the open ball of radius

√
a/π around 0.

It follows from [Zi2, Corollary 2] and a cutoff argument that

Diam(B2n(a),R2n, ω0) ≤ 8a.

(The proof of this result is a variant of an argument by J.-C. Sikorav.)
Combining this with (29), it follows that

diam(S2n−1,R2n, ω0) ≤ 8π.

This shows that the estimate (23) in Theorem 6 is sharp up to a factor
of 16.

Remarks.

• On Theorem 6. A straight-forward calculation shows that

diam
(
R

2n, ω0, rX
)
= r2 diam

(
R

2n, ω0, X
)
,

for every X ⊆ R2n and r ∈ R. Hence Theorem 6 implies “rescaled
versions” of itself, e.g., that diam

(
S2n−1(a),R2n, ω0

)
≥ a

2
for ev-

ery n ≥ 2 and a > 0. Here S2n−1(a) ⊆ R2n denotes the sphere of

radius
√
a/π around 0.

The number k(n, d) occuring in this result is a modified version
of a quantity defined in [SZ].

• On further research. In the subsequent article [Zi2] Theorem
5 will be proved.

In Section 3 below we will develop a framework for finding
lower bounds on relative Hofer diameters. This technique can be
exploited in further examples.

• On compact supports. Analogously to the group Ham(X,ω)
(as defined in (2)), one can define the group Hamc(X,ω) of Hamil-
tonian diffeomorphisms onX generated by a compactly supported
function. To see that Ham(X,ω) can be strictly larger than
Hamc(X,ω), consider the example

M = X := R
2n, ω := ω0, ϕt : R2n = C

n → C
n, ϕt(x) := eitx,
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for some t ∈ R ∈ 2πZ. Then ϕt ∈ Ham(R2n, ω0) \Hamc(R
2n, ω0).

For the purpose of this article it seems more natural to consider
the group Ham(X,ω). One argument for this is that Ham(M,ω)\
Hamc(M,ω) may contain physically relevant maps, as in the above
example. (Here ϕt is the time-t evolution of the harmonic oscil-
lator.)

Furthermore, if we define the displacement energy e(X,M, ω)
of a subset X ⊆ M based on Ham(M,ω) (see (53) below), then
there exist triples (M,ω,X), for which X is non-compact and
e(M,ω,X) < ∞. (Take for example (M,ω) := (R2, ω0) and
X := R× {0}.) In contrast with this, if we base the definition of
e(X,M, ω) on Hamc(M,ω) instead, then we have to take special
care of subsets X ⊆M for which X is non-compact.

Note also that unlike Hamc, Ham has the nice product property

ϕ× id ∈ Ham
(
M ×M ′, ω ⊕ ω′

)
, ∀ϕ ∈ Ham(M,ω),

for arbitrary symplectic manifolds (M,ω) and (M ′, ω′). This gives
rise to an estimate for the displacement energy of a product set.

Related work. J.-C. Sikorav proved that for every open subset U ⊆
R2n the diameter Diam(U,R2n, ω0) is bounded above by 16 times the
proper displacement energy of U . (See [Si] or Theorem 10, Section 5.6
in the book [HZ].)
On the other hand, let (M,ω) be a closed symplectic manifold with

π2(M) = 0 and U ⊆ M a non-empty open subset. Then it follows
from the proof of Theorem 1.1. in the paper [Os] by Y. Ostrover that
Diam(U,M, ω) = ∞.
The absolute Hofer diameter

diam(M,ω) := diam(M,ω,M) = Diam(M,ω,M)

has been calculated for many closed symplectic manifolds. In all known
examples it is infinite. For a recent overview and references, see the
article by D. McDuff [McD].
In [SZ] we considered Question 1 from a different point of view,

obtaining a stable displacement-energy-Gromov-width inequality, non-
squeezing results, and existence of a stably exotic structure on R2n.
These results are consequences of the key result, Theorem 13 below.
They involve functions similar to k (as defined in (18)).

Organization of the article. In Section 2.1 we start by proving the
first parts of Propositions 1 and 2 in a parallel way. Then we do the
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same for the second parts. In Section 2.2 we prove Propositions 3, 4,
7, and 8.
In Section 3 we develop a framework for proving a lower bound on

the relative Hofer diameter of some subset, and we prove Theorem 6.
In Subsection 3.1 we state the key result about coisotropic intersections
(Theorem 13), which we proved in the article [SZ]. In Subsection 3.2
we introduce some “rigidifying property” and show how this implies
a lower bound on the relative Hofer norm of a certain Hamiltonian
diffeomorphism (Lemma 14). We also prove a sufficient criterion for
the “rigidifying property” (Lemma 15). In Subsection 3.3 we prove
Theorem 6.
The appendix contains some auxiliary results about symplectic ge-

ometry, point-set topology, and manifolds, which are used in the proofs
of the results of Section 1.

Acknowledgements. A considerable part of the work on this project
was done during the second author’s stay at the Max Planck Institute
for Mathematics, Bonn. He would like to express his gratitude to the
MPIM for the invitation and the generous fellowship.

2. Proofs of the propositions

2.1. Proofs of Propositions 1 and 2. We start by proving the first
parts of Propositions 1 and 2 in a parallel way, post-poning the proofs
of the second parts to page 12.
We need the following. LetM be a C∞-manifold and U ⊆ [0, 1]×M

an open subset. We denote by π : TM →M the canonical projection.
Let V : U → TM be a smooth map such that π ◦ V (t, x) = x, for
every (t, x) ∈ U . (If U = [0, 1]×M then this means that V is a time-
dependent vector field on M .) We denote V t := V (t, ·), for t ∈ [0, 1].
We define DV to be the set of all pairs (t0, x0) ∈ [0, 1] ×M for which
there exists a solution x ∈ C∞([0, t0],M) of the equations

(30) x(0) = x0, (t, x(t)) ∈ U, ẋ(t) = V t ◦ x(t), ∀t ∈ [0, 1].

Furthermore, we define the flow of V to be the map

DV ∋ (t0, x0) 7→ ϕt0
V (x0) := ϕV (t0, x0) := x(1) ∈M,

where x ∈ C∞([0, 1],M) the unique solution of (30).
In the following, (M,ω) is a symplectic manifold and X ⊆ M a

closed subset. Let H,K ∈ C∞([0, 1]×M,R). We define

(31) H : DXH
→ R, H

t
:= −H t ◦ ϕt

H ,
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(32) H#K :
{
(t, x) ∈ [0, 1]×M

∣∣ x ∈ ϕt
H(Dt

XH
)
}
→ R,

(H#K)t := H t +Kt ◦ (ϕt
H)

−1.

It follows from Remark 25 below that the inverse (ϕt
H)

−1 exists and
hence H#K is well-defined, and that the domains of the functions H
and H#K are open subsets of [0, 1] ×M . Their Hamiltonian vector
fields are defined on the same sets.
Let X ⊆ M be a closed subset.

Lemma 9. If H,K ∈ H(M,ω,X) then we have

X ⊆ D1
X

H

,(33)

X ⊆ D1
XH#K

,(34)

ϕt
H
|X = ϕt

H |−1
X , ∀t ∈ [0, 1],(35)

ϕt
H#K |X = ϕt

H ◦ ϕt
K |X , ∀t ∈ [0, 1].(36)

Proof of Lemma 9. These assertions follow from arguments as in the
proof of [HZ, Chapter 5, Proposition 1]. �

Proof of Proposition 1(i). Let ϕ ∈ Ham(X,ω). We show that ϕ is a
bijection on X : We choose H ∈ H(M,ω,X) such that ϕ1

H |X = ϕ.
By Remark 25 below the map ϕ1

H is injective. Furthermore, by the
definition of H(M,ω,X), we have ϕ(X) = ϕ1

H(X) = X . It follows that
ϕ is a bijection from X to itself.

Claim 1. We have ϕ−1 ∈ Ham(X,ω).

In the proof of this claim we will denote by IntA the interior of a
subset A ⊆M .

Proof of Claim 1. We define H as in (31). By (33) (Lemma 9) we have
X ⊆ D1

X
H

. Since X is closed and D1
X

H

is open, it follows that there

exist closed sets A0, A1 such that X ⊆ IntA1, M \ D1
X

H

⊆ IntA0 and

A0∩A1 = ∅. By Lemma 26 below there exists a function f ∈ C∞(M,R)

such that f ≡ i on Ai, for i = 0, 1. We define H̃ : [0, 1] ×M → R by

H̃ t(x) := f(x)H
t
, if x ∈ A0, and H̃

t(x) := 0, otherwise.

Note that H̃ t = H
t
on A1. Using that X ⊆ IntA1, it follows

that X ⊆ Dt
X

H̃

and ϕt

H̃
|X = ϕt

H
|X , for every t ∈ [0, 1]. Combining

this with the equality (35) of Lemma 9, it follows that ϕ−1 = ϕ1
H̃
|X .

Condition (35) implies that H̃ ∈ H(M,ω,X). Hence it follows that
ϕ−1 ∈ Ham(X,ω). This proves Claim 1. �
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A similar argument, using (34,36) in Lemma 9 shows that Ham(M,ω)
is closed under composition. The statement of Proposition 1(i) is a con-
sequence of this, Claim 1 and the fact idX ∈ Ham(X,ω). �

Proof of Proposition 2(i). That the map ‖ · ‖X,ω is a semi-norm follows
from an argument similar to the proof of Proposition 1(i), using Lemma
9. Invariance follows from a straight-forward argument. �

We continue by proving the second parts of Propositions 1 and 2 in a
parallel way. We need the following two results.

Lemma 10. Assume that X is a symplectic submanifold of M , and
H ∈ H(M,ω,X). Then we have

(37) D1

X
ω|X
H|X

= X, ϕt
H|X ,ω|X

= ϕt
H,ω|X , ∀t ∈ [0, 1].

For the proof of Lemma 10 we need the following result, which will
also be used for the proof of Proposition 3.

Lemma 11. Assume that X ⊆ M is a submanifold. Then for every
H ∈ H(M,ω,X), t ∈ [0, 1], and x ∈ X, we have

(38) Xω
Ht(x) ∈ TxX.

Proof of Lemma 11. Let x0 ∈ X . For t ∈ [0, 1] we denote xt :=
ϕt
H,ω(x0). By definition, we have ϕt

H,ω(X) = X and hence xt ∈ X ,
for every t ∈ [0, 1]. Let t ∈ [0, 1]. It follows that

XHt(xt) =
d

dt
xt ∈ TxtX.

Hence, using again ϕt
H,ω(X) = X , condition (38) follows. This proves

Lemma 11. �

Proof of Lemma 10. Let x ∈ X . Then for every v ∈ TxX , we have

ω|X(Xω|X
Ht|X

(x), v) = d(H t|X)v = dH t v = ω(Xω
Ht(x), v).

Applying Lemma 11 and using the fact that TxX is a symplectic sub-
space of TxM , it follows that

X
ω|X
Ht|X

(x) = Xω
Ht(x).

The statement of Lemma 10 follows. �
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Proposition 12. If X is a symplectic submanifold then for every H ∈
H(X,ω|X) there exists H̃ ∈ H(M,ω,X) such that

ϕt

H̃,ω
|X = ϕt

H,ω|X
, ∀t ∈ [0, 1],(39)

H̃|[0,1]×X = H.(40)

In the proof of this result we will use the following notation. Let (V, ω)
be a symplectic vector space and W ⊆ V a linear subspace. We denote

(41) W ω :=
{
v ∈ V

∣∣ω(v, w) = 0, ∀w ∈ W
}
.

Proof of Proposition 12. Let H ∈ H(X,ω|X). By Proposition 27 below
(applied with N := X) there exists an embedding ψ : E := TXω :=⋃

x∈X TxX
ω → M satisfying the conditions (97,98). We define U :=

ψ(E). This is an open subset of M containing X .
SinceM \U and X are closed and do not intersect, there exists a pair

of closed subsets A0, A1 ⊆M such thatM \U ⊆ Int(A0), X ⊆ Int(A1),
and A0 ∩ A1 = ∅. We choose a function f as in Lemma 26 below. We
denote by π : TXω → X the canonical projection, and define

H̃ : [0, 1]×M → R, H̃(t, x) :=

{
f(x)H

(
t, π ◦ ψ−1(x)

)
, if x ∈ ψ(E),

0, otherwise.

This function is smooth and satisfies equality (40). We define

r := π ◦ ψ−1 : IntA1 → X.

It follows from (97,98) and our choice E = TXω that this is a smooth
retraction onto X , satisfying ker dr(x) = TxX

ω, for every x ∈ X . Let

t ∈ [0, 1]. Then we have H t ◦ r = H̃ t on IntA1. Hence Lemma 19

below implies that Xω

H̃t
(x) = X

ω|X
Ht (x), for every x ∈ X . It follows that

H̃ ∈ H(M,ω,X) and equality (39) holds. This proves Proposition
12. �

We are now ready for the proofs of the remaining parts of Propositions
1 and 2.

Proof of Proposition 1(ii). We show the inclusion “⊆” in (3): Let ϕ ∈
Ham(X,ω). Choosing H ∈ H(M,ω,X) such that ϕ1

H |X = ϕ, the
inclusion “⊆” is a consequence of Lemma 10.
The inclusion “⊇” in (3) is a consequence of Proposition 12. This

completes the proof of Proposition 1(ii). �
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Proof of Proposition 2(ii). We show the inequality “≥” in (11): Let
ϕ ∈ Ham(X,ω). Let H ∈ H(M,ω,X) be such that ϕ1

H |X = ϕ. By
Lemma 10 the conditions (37) hold. By the definition of ‖ · ‖X,ω|X , it
follows that

‖ϕ‖X,ω|X ≤ ‖H|X‖X = ‖H‖X .
It follows that ‖ϕ‖X,ω|X ≤ ‖ϕ‖X,ω. This proves inequality “≥” in (11).
The inequality “≤” in (11) is a consequence of Proposition 12.
It remains to show that ‖ · ‖X,ω is non-degenerate, i.e., condition

(9) holds. By (11) it suffices to prove the following claim.

Claim 1. If X =M then condition (9) holds.

For the proof of this claim we denote by w(U) := w(U, ω|U) the
Gromov width of an open subset U ⊆ M .
Proof of Claim 1: Let id 6= ϕ ∈ Ham(M,ω). Let H ∈ H(M,ω,M)
be such that ϕ1

H = ϕ. We choose x0 ∈ M such that ϕ(x0) 6= x0
and an open neighborhood U of x0 with compact closure, such that
ϕ(U) ∩ U = ∅.
Let ε > 0. By Lemma 24 below there exists ψ ∈ Hamc(M,ω) such

that ψ|U = ϕ|U and condition (96) holds. By a result by D. McDuff
and F. Lalonde [LM, Theorem 1.1] we have

‖ψ‖M,ω
c ≥ 1

2
w(U).

Combining this with (96), and using that ε > 0 is arbitrary, it follows
that ‖ϕ‖M,ω ≥ 1

2
w(U) > 0. This proves Claim 1 and completes the

proof of Proposition 2(ii). �

2.2. Proofs of Propositions 3, 4, 7, and 8.

Proof of Proposition 3. Let H ∈ H(M,ω,X). It suffices to show that
for every path x ∈ C∞([0, 1], X) and t ∈ [0, 1] we have

(42) H t ◦ x(0) = H t ◦ x(1).
To see this, we fix such a pair (x, t). We have, for every s ∈ [0, 1],

(43)
d

ds
(H t ◦ x)(s) = dH tẋ(s) = ω

(
XHt ◦ x(s), ẋ(s)

)
.

By Lemma 11 we have XHt ◦x(s) ∈ Tx(s)X , for every s ∈ [0, 1]. Since X
is isotropic, it follows that the last expression in (43) vanishes. Hence
(43) implies (42). This proves Proposition 3. �
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Proof of Proposition 4. We prove the first statement. Conditions
(6,7) (with ‖ · ‖ := ‖ · ‖Y,ωX ) follow from straight-forward arguments.
To see that condition (8) holds, let ϕ1, ϕ2 ∈ Ham(X,ω). Without loss

of generality assume that ‖ϕi‖Y,ωX < ∞, for i = 1, 2. Let ε > 0. By

definition of ‖ϕi‖Y,ωX there exist maps ψ1, ψ2 ∈ Ham(Y, ω) such that

(44) ψi|X = ϕi, ‖ψi‖Y,ω < ‖ϕi‖Y,ωX + ε,

for i = 1, 2. We have ψ := ψ1 ◦ ψ2 ∈ Ham(Y, ω) and ψ|X = ϕ1 ◦ ϕ2. It
follows that

‖ϕ1 ◦ ϕ2‖Y,ωX ≤ ‖ψ‖Y,ω
≤ ‖ψ1‖Y,ω + ‖ψ2‖Y,ω

< ‖ϕ1‖Y,ωX + ‖ϕ2‖Y,ωX + 2ε,

where in the last inequality we used (44). Since ε > 0 is arbitrary, the
triangle inequality

‖ϕ1 ◦ ϕ2‖Y,ωX ≤ ‖ϕ1‖Y,ωX + ‖ϕ2‖Y,ωX

follows. This proves (8).
Let Y ′ as in the hypothesis of the second part of the proposition,

and ϕ ∈ Ham(X,ω). The second statement is a consequence of the
following claim.

Claim 1. For every ψ ∈ Ham(Y, ω) satisfying ψ|X = ϕ and every
ε > 0, there exists ψ′ ∈ Ham(Y ′, ω) such that

ψ′|X = ϕ,(45)

‖ψ′‖Y ′,ω < ‖ψ‖Y,ω + 3ε.(46)

Proof of Claim 1: Assume that ψ and ε are as above. We choose a
function H ∈ H(M,ω, Y ) such that

(47) ϕ1
H |Y = ψ, ‖H‖Y < ‖ψ‖Y,ω + ε.

Since by hypothesis, Y is compact and contained in Int Y ′, there exists
a compact neighborhoodK0 of Y that is contained in Int Y ′. We choose
a compact neighborhood K1 of Y that is contained in K0 and satisfies

(48) max
K1

H t ≤ max
Y

H t + ε, min
K1

H t ≥ min
Y

H t − ε,

for every t ∈ [0, 1]. Furthermore, we choose a compact neighborhood
K2 of Y that is contained in IntK1. By Lemma 26 below there exists
a function f ∈ C∞(M, [0, 1]) such that f ≡ 1 on K2 and f ≡ 0 on
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M \ IntK1. We choose a point x0 ∈ Y and define H ′ : [0, 1]×M → R

by
H ′(t, x) := H ′t(x) := f(x)

(
H t(x)−H t(x0)

)
.

The support of this function is contained in [0, 1]×K1 and hence com-
pact. Hence its Hamiltonian flow exists on M . We define ψ′ := ϕ1

H′ |Y ′.
It follows that ψ′ ∈ Ham(Y ′, ω). For each t ∈ [0, 1], the functions H ′t

and H t differ on K2 by the constant H t(x0). Since ϕ
1
H |Y = ψ, ψ|X = ϕ

and X ⊆ IntK2, equality (45) follows.
Using that f ≤ 1, f ≡ 0 on M \K1, and inequalities (48), we have,

for every t ∈ [0, 1],

sup
Y ′

H ′t − inf
Y ′
H ′t ≤ max

K1

(H t −H t(x0))−min
K1

(H t −H t(x0))

≤ max
Y

H t −min
Y
H t + 2ε.

It follows that
‖H ′‖Y ′ ≤ ‖H‖Y + 2ε.

Combining this with the inequality ‖ψ′‖Y ′,ω ≤ ‖H ′‖Y ′ and the in-
equality in (47), inequality (46) follows. Hence ψ′ has the required
properties. This proves Claim 1 and hence the second statement, and
completes the proof of Proposition 4. �

Proof of Proposition 7. Inequality (26) follows by taking ℓ := 2n−d,
ki := 1, for i = 1, . . . , ℓ, ni := 1, for i = 1, . . . , ℓ−1, and nℓ := d−n+1.
Let n ∈ N be such that n 6= k2, for every k ∈ N. Inequality “≥”

in (27) is a consequence of the next claim. Let ℓ ≥ 2 and k1, . . . , kℓ
be as in the definition of k(n, n).

Claim 1. We have

(49)
ℓ∑

i=1

k2i = n.

Proof of Claim 1. We choose integers n1, . . . , nℓ such that the inequal-
ities (20,21,22) are satisfied. Subtracting the first from the second
inequality in (21), we obtain

∑
i ki(ni − ki) ≤ 0. Using the inequalities

(20), it follows that ni = ki, for every i = 1, . . . , ℓ. Combining this
with (21), the equality (49) follows. This proves Claim 1. �

We show inequality “≤” in (27): Let ℓ ∈ N and k1, . . . , kℓ ∈ N

be as in the definition of K(n). This means that
∑ℓ

i=1 k
2
i = n. Our

hypothesis that n 6= k2, for every k ∈ N, implies that the condition
(19) is satisfied.
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We define ni := ki, for i = 1, . . . , ℓ. The conditions (20,21) are
satisfied with d = n. Furthermore, using that ℓ ≥ 2, it follows that
(22) holds. Inequality “≤” in (27) follows. This proves (27).
Inequality (28) was proved in [SZ] (Proposition 8, inequality (36)).

This completes the proof of Proposition 7. �

Proof of Proposition 8. Assume that c ∈
[
0, diam(X,M, ω)

)
. By defi-

nition there exists ϕ ∈ Ham(X,ω) such that ‖ϕ‖M,ω
X ≥ c. We choose

a function H ∈ H(M,ω,X) such that ϕ1
H |X = ϕ. We also choose

a function ρ ∈ C∞(R2n, [0, 1]) with compact support contained in U ,
such that ρ ≡ 1 in some neighborhood V ⊆ M of X . We define

H̃ : [0, 1]×M → R by H̃(t, x) := ρ(x)H(t, x).

Note that the support of H̃ is compact and contained in U . Further-
more, we have ϕ1

H̃
|X = ϕ. It follows that

Diam(M,ω, U) ≥ ‖ϕ1
H̃
‖M ≥ ‖ϕ‖M,ω

X ≥ c.

Since c < diam(X,M, ω) is arbitrary, the inequality (29) follows. This
proves Proposition 8. �

3. Coisotropic intersections and relative Hofer diameters

This section is the core of the article. We develop a framework for
proving a lower bound on the relative Hofer diameter of a set. We use
this to prove the main result, Theorem 6, in Section 3.3. The method
described here is of interest in its own, since it can be used to prove
similar results in different settings.

3.1. Coisotropic intersections. The proof of Theorem 6 is based on
the following result about coisotropic intersections, which we proved in
[SZ]. To state it, let (M,ω) be a symplectic manifold. We call it (weakly
geometrically) bounded iff there exist an almost complex structure J
on M and a complete Riemannian metric g such that the following
conditions hold:

• The sectional curvature of g is bounded and infx∈M ιgx > 0, where
ιgx denotes the injectivity radius of g at the point x ∈M .

• There exists a constant C ∈ (0,∞) such that

|ω(v, w)| ≤ C|v| |w|, ω(v, Jv) ≥ C−1|v|2,
for every v, w ∈ TxM and x ∈M . Here |v| :=

√
g(v, v).

This is a mild condition on (M,ω). (For examples see [SZ].)
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Recall that a submanifold N of M is called coisotropic iff for x ∈ N
the subspace

TxN
ω =

{
v ∈ TxM

∣∣ω(v, w) = 0, ∀w ∈ TxN
}

of TxM is contained in TxN . As an example, N is coisotropic if it is a
hypersurface.
Let N ⊆M be a coisotropic submanifold. We denote

Nω :=
{
isotropic leaf of N

}
,

and define the action spectrum and the minimal action of (M,ω,N) as
(50)

S(M,ω,N) :=

{∫

D

u∗ω

∣∣∣∣ u ∈ C∞(D,M) : ∃F ∈ Nω : u(S1) ⊆ F

}
,

(51) A(M,ω,N) := inf
(
S(M,ω,N) ∩ (0,∞)

)
∈ [0,∞].

(Here our convention is that inf ∅ := ∞.) We define the split minimal
symplectic action of N , A×(M,ω,N) as follows. We define a bounded
splitting of (M,ω,N) to be a tuple (Mi, ωi, Ni)i=1,...,k, where k ∈ N

and for every i = 1, . . . , k, (Mi, ωi) is a bounded symplectic mani-
fold and Ni ⊆ Mi a coisotropic submanifold, such that there exists
a symplectomorphism ϕ from

(
×k

i=1Mi,⊕k
i=1ωi

)
to (M,ω), satisfying

ϕ
(
×k

i=1Ni

)
= N .

We define

(52) A×(N) := A×(M,ω,N) :=

sup
{

min
i=1,...k

A(Mi, ωi, Ni)
∣∣ (Mi, ωi, Ni)i bounded splitting of (M,ω,N)

}
.

Here our convention is that sup ∅ = 0.
Remark. If (M,ω) is not bounded then (M,ω,N) does not admit
any bounded splitting, and therefore A×(M,ω,N) = 0. This follows
from the facts that a finite product of bounded symplectic manifolds
is bounded, and boundedness is invariant under symplectomorphisms.
2

We call a coisotropic submanifold N ⊆ M regular iff its isotropy
relation is a closed subset and a submanifold of N ×N . Equivalently,
the symplectic quotient of N is well-defined. (For more details and ex-
amples see [Zi1].) We abbreviate H(M,ω) := H(M,ω,M) and define
the displacement energy of a subset X ⊆M to be
(53)
e(X,M) := e(X,M, ω) := inf

{
‖H‖

∣∣H ∈ H(M,ω)
∣∣ϕ1

H(X) ∩X = ∅
}
.
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We call a manifold closed iff it is compact and its boundary is empty.
We are now able to formulate the key result.

Theorem 13 (Coisotropic intersections, see [SZ] (Theorem 1)). Let
(M,ω) be a symplectic manifold and ∅ 6= N ⊆ M a closed connected
regular coisotropic submanifold. Then we have

(54) e(N,M) ≥ A×(N).

The proof of this result (see [SZ]) is based on a certain Lagrangian
embedding of N and on the Main Theorem in the article [Ch] by
Y. Chekanov.
The idea of proof for part (i) of Theorem 6 is to find a Hamiltonian

flow [0, 1]×R2n ∋ (t, x) 7→ ϕt(x) ∈ R2n that preserves S2n−1, such that
the following holds. Let (ϕ′t) be a Hamiltonian flow generated by some
function in H(R2n, ω0, S

2n−1), such that ϕ′1|S2n−1 = ϕ1|S2n−1 . Then
there exists a regular closed coisotropic submanifold ∅ 6= N ⊆ R2n

such that
A×(N) ≥ π

2
, ϕ′1(N) ∩N = ∅.

It then follows from Theorem 13 that

‖ϕ1|S2n−1‖R2n,ω0

S2n−1 ≥ π

2
.

The claimed inequality (23) is a consequence of this.
In the following subsection we will put this idea into a more general

framework, which we will use for the proofs of both parts of Theorem
6.

3.2. Rigidifying pairs. Let (M,ω) be a symplectic manifold. In this
subsection, given a compact subset of M and a Hamiltonian S1-action
on M , we construct a pair (X,ϕ), where X ⊆M , and ϕ ∈ Ham(X,ω),
and we prove a lower bound on the Hofer norm of ϕ on X relative to
M . This is a key ingredient of the proof of Theorem 6.
Let X0 ⊆ M be a subset, and α ∈ Ω1(M). We call the pair (X0, α)

rigidifying iff for every symplectomorphism ϕ : M → M the following
holds. If ϕ|X0

= idX0
then, for every x ∈ X0 and v ∈ TxM , we have

(55) α dϕv = αv.

As an example, (X0, α) is rigidifying if X0 is open.
Let S1 ×M ∋ (z, x) 7→ ϕz(x) ∈ M be a Hamiltonian action. We fix

a compact subset X0 ⊆M , and define

(56) X :=
⋃

z∈S1

ϕz(X0).



HOFER GEOMETRY OF A SUBSET OF A SYMPLECTIC MANIFOLD 19

This is a compact subset of M . Let z0 ∈ S1 ⊆ C. We denote by z0
its complex conjugate. Note that ϕz0 |X ∈ Ham(X,ω). The next result

gives a lower bound on ‖ϕz0|X‖M,ω
X (defined as in (13)), if there exists

a suitable rigidifying one-form α for X0. Recall the definition (53) of
the displacement energy e(X,M) = e(X,M, ω) of a subset X ⊆M .

Lemma 14 (Main Lemma). Let [0, 1]×M ∋ (t, x) 7→ ψt(x) ∈M be a
smooth map satisfying

(57) ψ0 = id .

Assume that there exists a function f ∈ C∞(M,R) such that the pair
(X0, df) is rigidifying, and

f(X0) ⊆ [0,∞), f ◦ ϕz0(X0) ⊆ (−∞, 0],(58)
d
dt

∣∣
t=0

(f ◦ ψt(x)) > 0, d
dt

∣∣
t=0

(f ◦ ϕz0 ◦ ψt(x)) ≤ 0, ∀x ∈ X0.(59)

Then we have (with X as in (56))

(60) ‖ϕz0|X‖M,ω
X ≥ lim sup

tց0
e(ψt(X0),M, ω).

Proof of Lemma 14. We choose an open subset U ⊆ M containing X
such that U is compact. Let Φ ∈ Ham(M,ω) be such that

(61) Φ|X = ϕz0|X .
Claim 1. There exists t0 ∈ (0, 1] such that for t ∈ (0, t0], we have

Φ ◦ ψt(X0) ∩ ψt(X0) = ∅.
Proof of Claim 1. We define f̃ := f ◦ ϕz0 . We check the hypotheses of

Lemma 28 (below) with ϕ := Φ and f replaced by f̃ : The inclusions
(99) follow from (58,61).
We prove the inequalities (100): The first inequality in (100) fol-

lows from the second inequality in (59). Let x0 ∈ X0. We define
x(t) := ψt(x). To prove the second inequality (with x replaced by
x0), observe that by (57), we have x(0) = x0. Furthermore, (61) im-
plies that ϕz0 ◦ Φ|X0

= idX0
. Therefore the hypothesis that (X0, df) is

rigidifying implies that

(62) df d(ϕz0 ◦ Φ)ẋ(0) = df ẋ(0).

The left hand side of this equality equals d
dt

∣∣
t=0

(
f̃ ◦Φ◦x

)
. Furthermore,

by the first inequality in (59), the right-hand side of (62) is positive.
Hence the second inequality in (100) Therefore, all the hypotheses of
Lemma 28 are satisfied. Applying this lemma, the statement of Claim
1 follows. �
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Claim 1 implies that

(63) ‖Φ‖M,ω ≥ lim sup
tց0

e(ψt(X0),M, ω).

Since this holds for every Φ ∈ Ham(M,ω) satisfying (61), inequality
(60) follows. This proves Lemma 14. �

The next result provides a large class of examples of rigidifying pairs
(X,α). Let X, Y, Y ′ be smooth manifolds and f ∈ C∞(X, Y ) and
f ′ ∈ C∞(X, Y ′) maps. We say that f factors through f ′ iff there exists
a map g ∈ C∞(Y ′, Y ) satisfying f = g ◦ f ′. Let (M,ω) be a symplectic
manifold, X0 ⊆M a subset, and f ∈ C∞(M,R).

Lemma 15. The pair (X0, df) is rigidifying, provided that there exist

symplectic manifolds (M̃, ω̃) and (M ′, ω′), a connected Lie group G,

a Hamiltonian action of G on M̃ , an moment map µ : M̃ → g
∗ for

the action, and a symplectomorphism ψ : M̃ → M ×M ′ such that the
following holds. (Note that by definition, µ is equivariant.) We denote
by pr : M ×M ′ → M the canonical projection. Then the composition
f ◦ pr ◦ψ factors through µ, and we have

(64) X0 = pr ◦ψ(µ−1(0)).

The proof of Lemma 15 is based on the following result. Let (M,ω)
be a symplectic manifold, ϕ a symplectomorphism on M , and G a
connected Lie group. We denote by g the Lie algebra of G and fix
a Hamiltonian action of G on M and an (equivariant) moment map
µ :M → g

∗.

Lemma 16. Assume that ϕ(µ−1(0)) = µ−1(0) and the restriction of ϕ
to µ−1(0) is G-equivariant. Then we have

(65) d(µ ◦ ϕ)(x) = dµ(x), ∀x ∈ µ−1(0).

In the proof of this lemma, for ξ ∈ g we denote by Xξ the vector
field on M generated by ξ.

Proof of Lemma 16. Let x ∈ µ−1(0), v ∈ TxM and ξ ∈ g. Then we
have

(66) 〈dµ(ϕ(x))dϕ(x)v, ξ〉 = ω
(
Xξ ◦ ϕ(x), dϕ(x)v

)
.

Since, by assumption, ϕ|µ−1(0) is G-equivariant, we have ϕ
(
exp(tξ)x

)
=

exp(tξ)ϕ(x), for every t ∈ R. Taking the derivative at t = 0, it follows
that

dϕ(x)Xξ(x) = Xξ ◦ ϕ(x).
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Combining this with equality (66) and using that ϕ is a symplectomor-
phism, it follows that

〈dµ(ϕ(x))dϕ(x)v, ξ〉 = 〈dµ(x)v, ξ〉.
Equality (65) follows. This proves Lemma 16. �

Proof of Lemma 15. Let M̃ etc. be as in the hypothesis. By a straight-

forward argument, we may assume without loss of generality that M̃ =

M × M ′ and ψ is the identity map on M̃ . Let ϕ : M → M be a
symplectomorphism satisfying

(67) ϕ|X0
= idX0

.

In order to show that equality (55) holds, we define ϕ̃ := ϕ × idM ′ :

M̃ → M̃ . By hypothesis there exists a map g ∈ C∞(g∗,R) such that

(68) f ◦ pr = g ◦ µ.
Using that ϕ ◦ pr = pr ◦ϕ̃, it follows that
(69) d(f ◦ ϕ)d pr = dg d(µ ◦ ϕ̃).
The map ϕ̃ is an ω ⊕ ω′-symplectomorphism. Furthermore, equalities
(67,64) imply that ϕ̃|µ−1(0) = idµ−1(0). Therefore, we may apply Lemma
16 with ϕ replaced by ϕ̃, and conclude that

d(µ ◦ ϕ̃)(x̃) = dµ(x̃), ∀x̃ ∈ µ−1(0).

Combining this with equalities (69,68), we obtain

d(f ◦ ϕ)d pr(x̃) = df d pr(x̃), ∀x̃ ∈ µ−1(0).

Using (64) and that pr is submersive, it follows that df dϕ(x) = df(x),
for every x ∈ X0. It follows that (X0, df) is rigidifying. This proves
Lemma 15. �

3.3. Proof of Theorem 6 (Relative Hofer diameter of a small
subset of a symplectic manifold). Both parts of this result are
proved along similar lines. The idea for the first part is to define X0 to
be the product of a circle and a sphere in R2n−2, each of radius 1/

√
2,

ϕ a certain linear unitary action of S1 on R
2n, X :=

⋃
z∈S1 ϕz(X0),

and ψt : R2n → R2n a map that expands the circle-factor by (1 + t).
It follows that X ⊆ S2n−1. We may then apply Lemmas 15 and 14,
obtaining inequality (60).
Since ψt(X0) is a regular coisotropic submanifold of R2n, we may

then use the key result, Theorem 13, to estimate the right-hand side
of inequality (60) from below by π

2
. The claimed inequality (23) is a

consequence of this and the following remark.
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Remark 17. Let (M,ω) be a symplectic manifold, X ⊆ Y ⊆ M closed
subsets and H ∈ C∞

(
[0, 1] × M,R

)
a function such that Y ⊆ D1

XH

(the domain of the flow ϕ1
H) and ϕt

H(X) = X, ϕt
H(Y ) = Y , for every

t ∈ [0, 1]. Then we have

‖ϕ1
H |X‖M,ω

X ≤ ‖ϕ1
H |Y ‖M,ω

Y .

This follows from a straight-forward argument. 2

Proof of Theorem 6(i). For k ∈ N and a > 0 we denote by S2k−1(a) ⊆
R2k the sphere of radius

√
a/π around 0. We define

X0 := S1(
π

2
)× S2n−3(

π

2
),

(Here we use the hypothesis that n ≥ 2.) Furthermore, we define the
map

(70) S1 × R
2n ∋ (z, x) 7→ ϕz(x) ∈ R

2n

as follows. Let z ∈ S1. We denote by Rz : R2 → R2 the rotation
by z. (Identifying R2 = C, it is given by the formula ϕz(q1 + iq2) :=
z(q1 + iq2).) We define ϕz : R2n = Cn = C2 × Cn−2 → Cn to be the
unique complex linear extension of the map

Rz × idRn−2 : Rn = R
2 × R

n−2 → R
n.

(Note that the identification of R2n with Cn here is not compatible
with the identification of R2 with C in the above formula for ϕz.) The
map (70) is a Hamiltonian S1-action on Cn. (It is generated by the
function H : Cn → R defined by H(q + ip) := q1p2 − q2p1.) We define
X :=

⋃
z∈S1 ϕz(X0). Since X0 ⊆ S2n−1 and ϕz is orthonormal, for every

z ∈ S1, it follows that X ⊆ S2n−1, and ϕz preserves X and S2n−1, for
every z ∈ S1. Therefore, by Remark 17, we have

(71) ‖ϕ−i|S2n−1‖R2n,ω0

S2n−1 ≥ ‖ϕ−i|X‖R
2n,ω0

X .

We define

(M,ω) := (Cn, ω0), z0 := i,

ψ : [0, 1]× C
n → C

n, ψt(y, y′) := ψ(t, y, y′) := ((1 + t)y, y′),

for t ∈ [0, 1] and (y, y′) ∈ Cn = C× Cn−1.

Claim 1. The hypotheses of Lemma 14 are satisfied.
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Proof of Claim 1. The condition (57) is clearly satisfied. We define
the map

f : Cn = C× C
n−1 → R, f(y, y′) := |y|2 − 1

2
.

By the next claim, we may apply Lemma 15, to conclude that (X0, df)
is rigidifying.

Claim 2. The pair (X0, f) satisfies the hypotheses of Lemma 15.

Proof of Claim 2. We define (M̃, ω̃) := (Cn, ω0),M
′ to be a point, G :=

S1×S1, the action of G on Cn = C×Cn−1 by (z, z′)·(y, y′) := (zy, z′y′),
the moment map

µ(y, y′) :=
i

2

(
1

2
− |y|2, 1

2
− |y′|2

)
∈ iR× iR = g ∼= g

∗,

and ψ to be the identity on M̃ =M×M ′. Then the hypotheses Lemma
15 are satisfied. This proves Claim 2. �

The next hypothesis of Lemma 14, the inclusions (58), follow from
the facts

(72) f(X0) = {0}, f ◦ ϕi(X0) ⊆ [−1

2
, 0].

(Here in the second condition we used that ϕi(y, y′′, y′′′) = (−y′′, y, y′′′),
for every (y, y′′, y′′′) ∈ C × C × Cn−2 = Cn.) We prove that the in-
equalities (59) are satisfied: Direct calculations show that

d

dt

∣∣∣∣
t=0

(
f ◦ ψt(y, y′)

)
= 2|y|2, d

dt

∣∣∣∣
t=0

(
f ◦ ϕi ◦ ψt(y, y′)

)
= 0,

for every (y, y′) ∈ Cn = C × Cn−1. Since every x = (y, y′) ∈ X0

satisfies 2|y|2 = 1, (59) follows. Hence all the hypotheses of Lemma 14
are satisfied. This proves Claim 1. �

By Claim 1 we may apply Lemma 14, to conclude that inequality (60)
holds.
Let now t ∈ [0, 1]. Then we have ψt(X0) = S1

(
(1+ t)2 π

2

)
×S2n−3(π

2
).

This is a closed regular coisotropic submanifold of R2n. Therefore,
applying Theorem 13, inequality (54) holds with N := ψt(X0). Remark
21 and Proposition 22 below imply that

A×

(
R

2n, ω0, ψ
t(X0)

)
≥ min

{
(1 + t)2

π

2
,
π

2

}
=
π

2
.
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Combining this with (71,60,54), it follows that

‖ϕ−i|S2n−1‖R2n,ω0

S2n−1 ≥ π

2
.

Recalling the definition (17) of diam(X, Y, ω), inequality (23) follows.
This proves statement (i) of Theorem 6. �

Remark 18. In [Zi1] the second author proved a result (Theorem 1)
similar to Theorem 13. That result states a positive lower bound on
the number of leafwise fixed points of the given Hamiltonian diffeomor-
phism. Hence its conclusion is stronger than that of Theorem 13.
The hypotheses of both results are the same, except that in [Zi1,

Theorem 1] it is assumed that ‖ϕ‖ω < A(N), rather than ‖ϕ‖ω <
A×(N). (The former condition is simpler and stronger than the latter.)
Since for ψt and X0 as in the above proof of Theorem 6(i), we have

A(ψt(X0)) → 0, as tց 0,

[Zi1, Theorem 1] is not suitable for this proof. We really need the
refinement given in the present article. The same holds for the proof
of Theorem 6(ii) (see below).

Outline of the proof of the second part of Theorem 6: This is
a refinement of the technique used in the proof of part (i). The idea is
as follows: We choose ℓ ≥ 2 and k1, . . . , kℓ ∈ N, such that

ℓ∑

i=1

ki = k(n, d),

and there exist integers n1, . . . , nℓ as in the definition of k(n, d). With-
out loss of generality we may assume that n1 = mini ni. Assume first
that

(73)
ℓ∑

i=1

kini = n.

For every pair k,m ∈ N satisfying k ≤ m, and a > 0, we define the
Stiefel manifold of area a to be

V (k, n, a) :=
{
Θ ∈ C

k×n
∣∣ΘΘ∗ =

a

π
1k

}
.

We define a := π
k(n,d)

and

X0 := ×ℓ
i=1V (ki, ni, a) ⊆ ×ℓ

i=1C
ki×ni = C

n.
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Here rescaling the standard Stiefel manifolds ensures that X0 ⊆ B
2n
.

The second part of condition (21) guarantees that the dimension of X0

is bounded above by d.
We choose a linear unitary action S1 × Cn ∋ (z, x) 7→ ϕz(x) ∈

Cn which for a given tuple of matrices (Θ1, . . . ,Θℓ) ∈ X0 intertwines
the first row of Θ1 with part of the first row of Θ2. (This makes
sense because of our assumption that n1 = mini ni.) The set X :=⋃

z∈S1 ϕz(X0) has the properties required in statement (ii): That X ⊆
B

2n
follows from the fact X0 ⊆ B

2n
and the orthogonality of the action

ϕ. Furthermore, since dimX0 ≤ d, the Hausdorff dimension of X is
bounded above by d+ 1.
The main task is to show that inequality (24) holds. We will prove

this by showing that the restriction of the map ϕ−i : Cn → C
n to X

has relative Hofer semi-norm bounded below by the right-hand side of
(24). The proof of this bound is based on the Lemmas 14 and 15. The
remainder of the argument is now analogous to the argument for part
(i).
If the integers ℓ, k1, . . . , kℓ, n1, . . . , nℓ cannot be chosen such that

the equality (73) holds, then the idea is to “project away” the extra
(
∑

i kini) − n complex dimensions. This means that we construct a
suitable surjective linear map

Ψ : ×ℓ
i=1C

ki×ni → C
n,

and define

X0 := Ψ
(
×ℓ

i=1V (ki, ni, a)
)
⊆ C

n.

We may then carry out a modified version of the above argument.

Proof of Theorem 6(ii). We choose ℓ ∈ {2, 3, . . .} and k1, . . . , kℓ ∈ N as
in the definition of k(n, d) such that

(74)

ℓ∑

i=1

ki = k(n, d).

We also choose integers n1, . . . , nℓ such that the conditions (20,21,22)
are satisfied. Reordering the pairs (ki, ni), we may assume that n1 =
mini ni. We choose an injective map

(L,K,N) : {n1 + n2 + 1, . . . , n} → {1, . . . , ℓ} × N× N
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satisfying

K(i) ≤ kL(i), N(i) ≤ nL(i),(75)

(L,K)(i) 6= (1, 1) or (2, 1),(76)

for every i ∈ {n1+n2+1, . . . , n}. (Our convention is that {m, . . . , n} :=
∅ if m > n.) To see that we may choose this map to be injective, note
that the number of allowed choices of (L,K,N) is

(k1 − 1)n1 + (k2 − 1)n2 +

ℓ∑

L=3

kLnL =

ℓ∑

L=1

kLnL − n1 − n2.

(The first and second term are obtained by considering L = 1, 2, and
the other terms by considering L ≥ 3.) By the first condition in (21)
the right-hand side of this equality is bounded below by

n− n1 − n2 =
∣∣{n1 + n2 + 1, . . . , n

}∣∣.

It follows that we may choose the map (L,K,N) to be injective. We
extend (L,K,N) to {1, . . . , n} by defining

(L,K,N)(i) := (1, 1, i), ∀i ∈ {1, . . . , n1},(77)

(L,K,N)(i) := (2, 1, i− n1), ∀i ∈
{
n1 + 1, . . . ,min{n1 + n2, n}

}
.(78)

(Since 2n1 = 2mini ni ≤ n, (77) makes sense.) We define the map
Ψ : ×ℓ

i=1C
ki×ni → Cn by

(79) Ψi(Θ1, . . . ,Θℓ) := (ΘL(i))
K(i)
N(i), ∀i ∈ {1, . . . , n},

where for a matrix Θ the number Θi
j ∈ C denotes its (i, j)-th entry. It

follows from the inequalities (75) (holding for i ∈ {n1 +n2 +1, . . . , n})
and (77,78) that this definition makes sense. We define

a := π
k(n,d)

,(80)

X0 := Ψ
(
×ℓ

i=1V (ki, ni, a)
)
⊆ Cn.(81)

Furthermore, we define the map

(82) S1 × C
n ∋ (z, x) 7→ ϕz(x) ∈ C

n

as follows. Let z ∈ S1. We denote by Rz : R2 → R2 the rotation by z,
and define

T z : Rn1 × R
n1 → R

n1 × R
n1, T z(q, q′) := (Q,Q′),
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where (Qi, Q
′
i) := Rz(qi, q

′
i), for every i ∈ {1, . . . , n1}. We define ϕz :

Cn = C2n1 × Cn−2n1 → Cn to be the unique complex linear extension
of the map

T z × idRn−2n1 : Rn = R
2n1 × R

n−2n1 → R
n.

(The conditions (22) and n1 = mini ni guarantee that this makes sense.)
The map (82) is a Hamiltonian S1-action on Cn. (It is generated by the
function H : Cn → R defined by H(q + ip) :=

∑n1

i=1 qipn1+i − qn1+ipi.)

Claim 1. The set

X :=
⋃

z∈S1

ϕz(X0)

satisfies the conditions of statement (ii).

Proof of Claim 1: Since the Stiefel manifolds are compact, the set

X0 and hence X is compact. To see thatX is contained in B
2n
, note

that |Ψ(Θ)| ≤ |Θ| ≤ 1, for every Θ = (Θ1, . . . ,Θℓ) ∈ ×iV (ki, ni, a). It

follows that X0 ⊆ B
2n
. Since ϕz is orthonormal, for every z ∈ S1, this

implies that X ⊆ B
2n
. To see that X has Hausdorff dimension at

most d+ 1, observe that

(83) dim
(
×ℓ

i=1V (ki, ni, a)
)
=

ℓ∑

i=1

ki(2ni − ki) ≤ d,

where in the second step we used the second inequality in (21). Note
that X is the image of S1 × ×ℓ

i=1V (ki, ni, a) under the smooth map
(z,Θ1, . . . ,Θℓ) 7→ ϕz ◦ Ψ(Θ1, . . . ,Θℓ). Combining this with (83), a
standard result (cf. [Fed, p. 176]) implies that X has Hausdorff dimen-
sion at most d+ 1.
Recalling that a = π/k(n, d), inequality (24) is a consequence of

the definition (17) and the following claim.

Claim 2. We have

(84) ‖ϕ−i|X‖R
2n,ω0

X ≥ a.

Proof of Claim 2: We define (M,ω) := (Cn, ω0), z0 := π
2
and the

map [0, 1]× C
n ∋ (t, x) 7→ ψt(x) ∈ C

n by

(85) (ψt(x))i :=

{
(1 + t)xi, if L(i) = 1,
xi, otherwise.

Claim 3. The hypotheses of Lemma 14 are satisfied.
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Proof of Claim 3. The condition (57) clearly holds. We define

(86) f : Cn = C
n1 × C

n−n1 → R, f(y, y′) := |y|2 − 1

k(n, d)
,

That the pair (X0, df) is rigidifying, is a consequence of the following
claim.

Claim 4. The hypothesis of Lemma 15 is satisfied.

Proof of Claim 4. We define

(M̃, ω̃) :=
(
×ℓ

i=1C
ki×ni, ω0

)
, (M ′, ω′) := (kerΨ, ω0|M ′), G := ×ℓ

i=1U(ki),

where Ψ is defined as in (79) and U(k) ⊆ Ck×k denotes the unitary

group. Furthermore, we define the action of G on M̃ by

(87) (U1, . . . , Uℓ) · (Θ1, . . . ,Θℓ) :=
(
U1Θ1, . . . , UℓΘℓ

)
.

Moreover, we identify the Lie algebra g of G with its dual via the inner
product given by the trace, and we define the map µ : ×ℓ

i=1C
ki×ni →

g
∗ ∼= g by

µ(Θ1, . . . ,Θℓ) :=

(
i

2

( 1

k(n, d)
1k1 −Θ1Θ

∗
1

)
, . . . ,

i

2

( 1

k(n, d)
1kℓ −ΘℓΘ

∗
ℓ

))
.

Finally, we define Ψ′ : M̃ → M ′ ⊆ M̃ to be the projection along M ′ω0

(the symplectic complement of the linear symplectic subspace M ′ of

M̃), and

(88) Ψ̃ := (Ψ,Ψ′) : M̃ → M ×M ′.

We show that the conditions of Lemma 15 are satisfied with ψ := Ψ̃:
The action (87) is Hamiltonian, and µ is a moment map. We denote
by pr :M ×M ′ →M the canonical projection. Condition (64) follows

from the facts µ−1(0) = ×iV (ki, ni, a) and pr ◦Ψ̃ = Ψ, and (81).
Furthermore, we define g : g → R by g(ξ1, . . . , ξℓ) := 2i(ξ1)

1
1. Using

(86,77,79) and the fact pr ◦Ψ̃ = Ψ, it follows that g ◦ µ = f ◦ pr ◦Ψ̃.

This proves that µ factors through f ◦ pr ◦Ψ̃ and completes the proof
of Claim 4. �

Claim 5. The inclusions (58) hold.

Proof of Claim 5. Let x := (y, y′) ∈ X0. By (81) this means that there
exists a tuple Θ := (Θ1, . . . ,Θℓ) ∈ ×iV (ki, ni, a) such that Ψ(Θ) =
(y, y′). To see the first inclusion in (58), observe that by (77,79), y is
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the first row of Θ1. Using (86), it follows that f(y, y′) = 0. This proves
the first inclusion.
To see that the second inclusion holds, we denote y′ =: (y′′, y′′′) ∈

Cn1 × Cn−2n1. Using (82,86), we have

(89) f ◦ ϕi(y, y′′, y′′′) = f(−y′′, y, y′′′) = |y′′|2 − 1

k(n, d)
.

It follows from (78,79) that |y′′| is bounded above by the norm of the

first row of Θ2, i.e., 1/
√
k(n, d). Combining this with (89), we have

f ◦ϕ−i(x) ≤ 0. The second inclusion in (58) follows. This proves Claim
5. �

We check the last hypothesis of Lemma 14:

Claim 6. For every x ∈ X0 ⊆ Cn the inequalities (59) hold.

Proof of Claim 6. To see that the first inequality holds, we denote
x =: (y, y′) ∈ Cn1×Cn−n1. By (81) there exists a tuple Θ := (Θ1, . . . ,Θℓ) ∈
×iV (ki, ni, a) such that Ψ(Θ) = x. It follows from (77,85,86) that

(90)
d

dt

∣∣∣∣
t=0

(f ◦ ψt(x)) = 2|y|2.

Furthermore, (77,79) imply that y is the first row of Θ1, and therefore

has norm 1/
√
k(n, d). Combining this with (90), it follows that the

first inequality in (59) hold.
We show that the second inequality holds: Using (78,79,85), we

have
(
ϕi ◦ ψt(x)

)j
= xn1+j, for every j ∈ {1, . . . , n1}, and therefore,

d

dt

∣∣∣∣
t=0

(
f ◦ ϕi ◦ ψt(x)

)
= 0.

Hence the second inequality in (59) is satisfied. This proves Claim
6. �

Hence all hypotheses of Lemma 14 are satisfied. This completes the
proof of Claim 3. �

By Claim 3, we may apply Lemma 14, to conclude that inequality (60)
holds.
Let now t ∈ [0, 1]. We define

N t := V
(
k1, n1, (1 + t)2a

)
××ℓ

i=2V (ki, ni, a).
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We denote by pr : Cn × ker Ψ → Cn the canonical projection. Recall

the definition (88) of Ψ̃. Using (77,79,81,85), we have pr ◦Ψ̃(N t) =
Ψ(N t) = ψt(X0). Hence it follows from Remark 23 below that

(91) e
(
ψt(X0),C

n, ω0

)
≥ e

(
Ψ̃(N t),Cn × ker Ψ, ω0

)
.

Furthermore, by an elementary argument, the map Ψ̃ is a (linear) sym-
plectomorphism, and therefore,

(92) e
(
Ψ̃(N t),Cn × kerΨ, ω0

)
= e

(
N t,×iC

ki×ni, ω0

)
.

Note that N t is a closed regular coisotropic submanifold of ×iC
ki×ni.

Hence applying Theorem 13, it follows that

(93) e
(
N t,×iC

ki×ni, ω0

)
≥ A×

(
×iC

ki×ni, ω0, N
t
)
.

It follows from Remark 21 and Proposition 22 below that

(94) A×

(
×iC

ki×ni , ω0, N
t
)
≥ min{(1 + t)2a, a} = a.

Combining this with (in-)equalities (60,91,92,93), inequality (84) fol-
lows. This proves Claim 2 and hence Claim 1, and completes the proof
of statement (ii) and therefore of Theorem 6. �

Appendix A. Auxiliary results

A.1. (Pre-)symplectic geometry. The following lemma was used
in the proof of Proposition 12.

Lemma 19. Let (M,ω) be a symplectic manifold, N ⊆M a symplectic
submanifold, and r :M → N a smooth retraction such that ker dr(x) =
TxN

ω (as defined in (41)), for every x ∈ N . Let H ∈ C∞(N,R). Then
we have, for every x ∈ N ,

(95) Xω
H◦r(x) = X

ω|N
H (x).

For the proof of Lemma 19 we need the following. Let (V, ω) be a
symplectic vector space and W ⊆ V a linear subspace. Assume that
W is a symplectic subspace. We denote by prW the linear projection
from V onto W , along W ω.

Remark 20. Let v ∈ V and w ∈ W be vectors such that ω(v, ·) =
ω|W (w, prW ·). Then we have v = w. This follows from a straight-
forward argument. 2

Proof of Lemma 19. Let x ∈ N . We have

ω
(
Xω

H◦r(x), ·) = d(H ◦ r)(x) = dH(x)dr(x) = ω|N
(
X

ω|N
H (x), dr(x) ·

)
.
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Since r is a retraction onto N , the map dr(x) : TxM → TxM is a
projection onto TxN . By hypothesis its kernel is TxN

ω. Hence equality
(95) follows from Remark 20. This proves Lemma 19. �

We used the following remark in the proof of Theorem 6.

Remark 21. Let (M,ω) and (M ′, ω′) be symplectic manifolds, and
N ⊆M and N ′ ⊆ M ′ coisotropic submanifolds. Then

S
(
M ×M ′, ω ⊕ ω′, N ×N ′

)
= S(M,ω,N) + S(M ′, ω′, N ′).

This follows from a straight-forward argument. 2

The next result was used in the proof of Theorem 6. For k, n ∈ N

satisfying k ≤ n we denote

V (k, n) :=
{
Θ ∈ C

k×n
∣∣ΘΘ∗ = 1k

}
.

Proposition 22. The Stiefel manifold V (k, n) has minimal area

A(R2kn, ω0, V (k, n)) = π.

Proof. For a proof we refer to [Zi1, Proposition 1.3]. �

We used the next remark in the proof of Theorem 6(ii). Recall the
definition (53) of the displacement energy.

Remark 23. Let (M,ω) and (M ′, ω′) be symplectic manifolds and X ⊆
M a subset. Then we have

e
(
X ×M ′,M ×M ′, ω ⊕ ω′

)
≤ e(X,M, ω).

This follows from a straight-forward argument. 2

The next lemma was used in the proof of Proposition 2(ii). For
a proof see [SZ, Lemma 35]. We denote by Hamc(M,ω) the group
of Hamiltonian diffeomorphisms of M generated by a compactly sup-
ported function, and by ‖ · ‖M,ω

c the compactly supported Hofer norm
on this group.

Lemma 24 ([SZ]). Let (M,ω) be a symplectic manifold, K ⊆ M
a compact subset, ϕ ∈ Ham(M,ω), and ε > 0. Then there exists
ψ ∈ Hamc(M,ω) such that

(96) ψ|K = ϕ|K , ‖ψ‖M,ω
c ≤ ‖ϕ‖M,ω + ε.

(Here our convention is that ∞+ ε := ∞.)
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A.2. Topology and manifolds. In Section 2.1 we used the following
remark. Let M be a C∞-manifold and V a time-dependent vector field
on M , i.e., a smooth map [0, 1]×M ∈ (t, x) 7→ V t(x) ∈ TM such that
π ◦ V t = idM , where π : TM → M denotes the canonical projection.
We denote by DV ⊆ [0, 1]×M the domain of the flow of V , and by ϕV

the flow of V .

Remark 25. The set DV is open, and for every t ∈ [0, 1], the map

ϕt
V : Dt

V :=
{
x ∈M

∣∣ (t, x) ∈ DV

}
→M

is injective and an immersion. (This follows for example from [Le,
Theorem 17.15, p. 451, and Problem 17-15, p. 463].)

The following lemma was used in the proof of Proposition 12.

Lemma 26. Let M be a smooth manifold and Ai ⊆ M a closed
subset, for i = 0, 1. If A0 ∩ A1 = ∅ then there exists a function
f ∈ C∞(M, [0, 1]) such that f |Ai

≡ i, for i = 0, 1.

Proof of Lemma 26. This follows from a C∞-version of Urysohn’s Lemma
for Rn (see for example Theorem 1.1.3, p. 4 in [KP]) and a partition
of unit argument. �

For the proof of Proposition 12 we need the following result. Let M
be a smooth manifold, N ⊆ M a submanifold, and E ⊆ TM |N a
subbundle such that TM |N is the direct sum of TN and E. For x ∈ N
we denote by Ex the fiber of E over x.

Proposition 27. Assume that N is closed as a subset of M . Then
there exists an embedding ψ : E → M such that, identifying N with
the zero section of E, we have

ψ|N = idN ,(97)

dψ(x)v = v, ∀v ∈ Tx(Ex) = Ex, x ∈ N.(98)

Proof of Proposition 27. This follows from a standard argument, along
the lines of the proof of Theorem 5.2 in the book [Hi]. �

The following lemma was used in the proof of Lemma 14.

Lemma 28. Let M be a C1-manifold, X0 ⊆ M a compact subset,
ϕ ∈ C1(M,M) and [0, 1] × M ∋ (t, x) 7→ ψt(x) ∈ M a C1-map.
Assume that ψ0 = id and there exists a function f ∈ C∞(M,R) such
that

f(X0) ⊆ (−∞, 0], f ◦ ϕ(X0) ⊆ [0,∞),(99)
d
dt

∣∣
t=0

(f ◦ ψt)(x) ≤ 0, d
dt

∣∣
t=0

(f ◦ ϕ ◦ ψt)(x) > 0, ∀x ∈ X0.(100)
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Then there exists t0 > 0 such that for every t ∈ (0, t0], we have

ϕ ◦ ψt(X0) ∩ ψt(X0) = ∅.
In the proof of this result, we will use the following remark:

Remark 29. Let X be a compact topological space and [0, 1] × X ∋
(t, x) 7→ f t(x) ∈ R a function. Assume that the partial derivative
∂tf : [0, 1]×X → R exists and is continuous. Then we have

lim
tց0

1

t
max
x∈X

∣∣f t(x)− f 0(x)− t∂t|t=0f
t(x)

∣∣ = 0.

This follows from an elementary argument.

Proof of Lemma 28. Using that ψ0 = id and that X0 is compact, it
follows from Remark 29 that

(101) lim
tց0

1

t
max
x∈X0

∣∣∣∣f ◦ ψt(x)− f(x)− t
d

dt

∣∣∣∣
t=0

(f ◦ ψt(x))

∣∣∣∣ = 0.

Furthermore, defining the function g : [0, 1]×M → R by

g(t, x) := f ◦ ϕ ◦ ψt(x)− f ◦ ϕ(x)− t
d

dt

∣∣∣∣
t=0

(
f ◦ ϕ ◦ ψt(x)

)
,

the same remark implies that

(102) lim
tց0

1

t
max
x∈X0

|g(t, x)| = 0.

We denote

c := min
x,y∈X0

(
d

dt

∣∣∣∣
t=0

(f ◦ ϕ ◦ ψt)(y)− d

dt

∣∣∣∣
t=0

(f ◦ ψt)(x)

)
,

d(t) :=
1

t
min

x,y∈X0

(
f ◦ ϕ ◦ ψt(y)− f ◦ ψt(x)

)
.

It follows from (99,101,102) that

lim inf
tց0

d(t) ≥ c.

Hence there exists t0 ∈ (0, 1] such that for t ∈ (0, t0] we have d(t) ≥ c
2
.

Compactness of X0 and (100) imply that c > 0. It follows that for
every t ∈ (0, t0] and x, y ∈ X0, we have f ◦ ψt(x) 6= f ◦ ϕ ◦ ψt(y), and
therefore, ψt(x) 6= ϕ ◦ ψt(y). It follows that ψt(X0) ∩ ϕ ◦ ψt(X0) = ∅,
for every t ∈ (0, t0]. This proves Lemma 28. �

The next lemma implies that the Hofer semi-norm given by (4) is well-
defined.
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Lemma 30. Let X be a topological space and f : [0, 1] × X → R be
a continuous function. Assume that there exists a sequence of compact
subsets Kν ⊆ X, ν ∈ N such that

⋃
ν Kν = X. Then the map

[0, 1] ∋ t 7→ sup
x∈X

f(t, x)

is Borel measurable.

Proof. This follows from an elementary argument. �
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Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel, Boston, Berlin, 1994.

[KP] St. G. Krantz, H. R. Parks, The Geometry of domains in space, Birkhäuser
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