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ON ADDITIVE INVARIANTS OF ACTIONS OF ADDITIVE AND

MULTIPLICATIVE GROUPS

WENCHUAN HU

Abstract. The additive invariants of an algebraic variety is calculated in
terms of those of the fixed point set under the action of additive and multiplica-
tive groups, by using Bia lynicki-Birula’s fixed point formula for a projective
algebraic set with a Gm-action or Ga-action.

The method is also generalized to calculate certain additive invariants for
Chow varieties. As applications, we obtain the Hodge polynomial of Chow
varieties in characteristic zero and the number of points for Chow varieties
over finite fields.

As applications, we obtain the l-adic Euler-Poincaré characteristic for the
Chow varieties of certain projective varieties over an algebraically closed field
of arbitrary characteristic. Moreover, we show that the virtual Hodge (p, 0)
and (0, q)-numbers of the Chow varieties and affine group varieties are zero for
all p, q positive.
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1. Introduction

In this paper we generalize a method of Bia lynicki-Birula (cf. [B-B1]) in studying
the fixed point schemes under actions of additive and multiplication group schemes
and apply it to calculate additive invariants of projective varieties admitting one of
these actions, especially to affine group varieties and Chow varieties.
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2 WENCHUAN HU

Recall that an additive invariant λ on the category V arK of algebraic varieties
(a variety means a reduced and irreducible scheme) over a field K with values in a
ring R, is a map

λ : V arK → R

such that 




λ(X) = λ(X ′) for X ∼= X ′,
λ(X) = λ(Y ) + λ(X − Y ) for Y closed in X ,
λ(X × Y ) = λ(X) · λ(Y ) for every X and Y .

Examples of additive invariants includes the Euler characteristic, the l-adic
Euler-Poincaré characteristic, the Hodge polynomial, counting points, etc. For
more examples and details on additive invariants, the reader is referred to Loeser’s
lecture [Lo].

Our motivation comes from the computation of the Euler characteristic of the
Chow variety of complex projective spaces by Lawson and Yau (cf. [LY]). More
precisely, it is from the calculation of the Euler characteristic of the complex Chow
variety Cp,d(Pn

C) (or simply Cp,d(Pn) if there is no confusion) parameterizing effec-
tive p-cycles of degree d in the complex projective space Pn. The following formula
was shown to hold:

Theorem 1.1 (The Lawson-Yau formula). For all n, p, d ≥ 0, one has

χ(Cp,d(Pn)) = (
vp,n+d−1

d ),

where vp,n = (n+1
p+1 ) and χ(M) is the Euler characteristic of M .

Lawson and Yau use a fixed point formula of a weakly holomorphic S1-action
in their computation for the Euler characteristic of Chow varieties. We observe
that it would work nicely for other interesting additive invariants once we have
corresponding fixed point formulas. The basic tool we will use in our proof is
a mild generalized version of the following fixed point formula for l-adic Euler-
Poincaré characteristic, as proved by Bialynicki-Birula.

Let X be a projective algebraic subset over a field K with a Gm-action. Note
that Gm

∼= SpecK[t, t−1]. That is, there is a morphism φ : Gm ×X → X such that
φ(1, x) := x and φ(t1t2, x) = φ(t1, φ(t2, x)).

Theorem 1.2 (Bia lynicki-Birula, [B-B1]). Let X be a projective algebraic subset
over an algebraically closed field K with a Gm-action. Then

χ(X, l) = χ(F, l),

where F is the fixed point set of this action.

The first main result in this paper is the following statement.

Theorem 1.3 (Corollary 2.4). Let λ : V arK → R be an additive invariant satisfy-
ing λ(Gm) = 0 (resp. λ(Ga) = 0). Then λ(X) = λ(XGm) (resp. λ(X) = λ(XGa)).

Note that K is not required to be algebraically closed in this theorem.
By applying this to the Chow variety Cp,d(Pn)K parametrizing effective p-cycles

of degree d in the projective space Pn
K over an algebraically closed field K, we obtain

the following result.
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Theorem 1.4. Let λ : V arK → R be an additive invariant satisfying λ(Gm) = 0
and λ(SpecK) = 1. Then

λ(Cp,d(Pn)K) = (
vp,n+d−1

d ) ∈ R.

In particular, if λ(−) = χ(−, l) is the l-adic Euler-Poincaré characteristic and
R = Z, then we obtain the l-adic Euler-Poincaré characteristic for Cp,d(Pn)K .

Corollary 1.5.

(1) χ(Cp,d(Pn)K , l) = (
vp,n+d−1

d ).

In particular, we obtain the following results on the virtual Hodge numbers and
the virtual Betti numbers of the Chow variety Cm,d(Pn

K) parameterizing algebraic
m-cycles of degree d in Pn

K .

Theorem 1.6. Let K be an algebraically closed subfield of C. For integers n ≥
m ≥ 0 and d ≥ 0, the virtual Hodge (p, 0) and (0, q)-numbers of the Chow variety
Cm,d(Pn

K) are zero for all integers p, q > 0. Moreover, the virtual Hodge (p, q)-

numbers h̃p,q(Cm,d(Pn
K)) of Cm,d(Pn

K) satisfies the following equation:
∑

p−q=i

h̃p,q(Cm,d(Pn
K)) = 0

for all i 6= 0 and
∑

p≥0

h̃p,p(Cm,d(Pn
K)) = χ(Cm,d(Pn

K)).

The method in proving Theorem 1.4 is applied to obtain additive invariants for
the Chow varieties of general toric varieties as well as the Chow varieties parametriz-
ing irreducible cycles in the product of arbitrary many projective spaces.

Acknowledgement. I would like to thank professor V. Voevodsky for his interest-
ing and helpful comments on an earlier version of the paper.

2. A generalization of Bia lynicki-Birula’s method to additive

invariants

Let A be a fixed algebraic variety over a field K of arbitrary characteristic.
An algebraic scheme Y is said to be simply equivalent to an algebraic scheme X
if Y is isomorphic to a closed subscheme X ′ of X and there is an isomorphism
f : X − X ′ → Z × A for some algebraic scheme Z. The smallest equivalence
relation containing the relation of simple A-equivalence is called the A-equivalence.

Lemma 2.1. Let X, Y and A be algebraic varieties over K and let λ : V arK → R
be an additive invariant. Suppose that X is A-equivalent to Y . If λ(A) = 0 ∈ R,
then λ(X) = λ(Y ) ∈ R.

Proof. It is enough to consider the case that X is simply A-equivalent to Y since
λ is an additive invariant. By definition, there is an open quasi-projective scheme
U of X such that X − U is isomorphic to Y and an isomorphism f : U → U ′ ×A,
where U ′ is an algebraic scheme. In this case, we have λ(X) = λ(Y ) + λ(U) =
λ(Y ) + λ(U ′)λ(A) = λ(Y ). This completes the proof of the lemma. �
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Theorem 2.2. Let G = Gm and suppose that G acts on a reduced and irreducible
algebraic scheme X. Then X is A-equivalent to XG, where XG denotes the fixed
point set of the G-action and A = Spec(K[x, x−1]). Likewise, if X admits the
action of the additive group G = Ga and A = Spec(K[x]), then X is A-equivalent
to XG.

Proof. In the following G is either Ga or Gm. The case is clear if X = XG.
Suppose that X 6= XG. We will show that there exists a G-invariant non-empty
open subscheme U of X isomorphic to Z × A, for some scheme Z. To see this,
let U ′ be a non-empty open irreducible subscheme of X such that the quotient
φ : U ′ → U ′/G exists. The te generic fiber F of φ is an algebraic scheme over
the field of rational functions K(U ′/G) = K(U ′)G. Moreover, the fiber F with the
action of G is homogeneous. Hence there exists a K(U ′/G)-rational point in F and
F is isomorphic to G/H for some algebraic group subscheme over K(U ′)G of G,
where the action of G on G/H is induced by translations. By our assumption, the
group scheme G/H is isomorphic to G. Hence X is birationally G-equivalent to some
product U ′

1 × G. Therefore, X contains an open G-invariant subscheme U which
is isomorphic to non-empty open subscheme of U ′

1 × G. Note that a G-invariant
open subscheme of U ′

1 × G is of the form U1 × G for some open subscheme U1 of
U ′
1. Thus X is A-equivalent to X − U . If X − U = (X − U)G, then XG = X − U

and so X is A-equivalent to XG. Otherwise, X − U 6= (X − U)G then we repeat
the above step where X is replaced by X − U . Since X is noetherian, we obtain a
closed subscheme X0 of X such that X0 = XG

0 and X0 is A-equivalent to X . From
the construction of X0, we see that XG

0 = XG. Therefore, XG is A-equivalent to
X . �

Remark 2.3. The proof above follows from Bia lynicki-Birula’s argument, where
the base field he considered is an algebraically closed field. However, the proof works
for an arbitrary field.

Corollary 2.4. Let λ : V arK → R be an additive invariant satisfying λ(Gm) = 0
(resp. λ(Ga) = 0). Then λ(X) = λ(XGm) (resp. λ(X) = λ(XGa)).

For additive invariants λ defined on V arK to be interesting, we require that
λ(Spec(K)) = 1. In fact, it follows from the definition of additive invariants that
λ(Spec(K)) is either 0 or 1. Moreover, if λ(Spec(K)) = 0, then it follows from the
definition that λ ≡ 0. So we only consider non-trivial additive invariants λ below,
i.e., λ(Spec(K)) = 1.

Example 2.5. Let λ : V arK → Z be an additive invariant such that λ(Gm) = 0.
Then for X = X(∆) a (possible singular) toric variety associated to a fan ∆, we
have λ(X) = dn(∆), where dn(∆) is the number of n-dimensional cones in ∆ and
n is the dimension of X.

Proof. For X = X(∆) an arbitrary toric variety, we write X as the disjoint union of
its orbits Oτ under G×n

m . Each orbit Oτ is isomorphic to (Gm)×i. By assumption,
λ(Gm) = 0. This implies that λ((Gm)×i) = 0 for i > 0. The number of 0-
dimensional orbits is exactly the number of n-dimensional cones in ∆, i.e., dn(∆).

�

Note that the Euler characteristic of X(∆) is also dn(∆) (cf. [Fu, Ch.3]). This
is not surprising since the Euler characteristic χ is an additive invariant satisfying
χ(Gm) = 0 (see the next section).
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If a variety X admits a Gm-action with isolated fixed points, then for any additive
invariant λ : V arK → Z with λ(Gm) = 0, λ(X) coincides with the cardinality of
the fixed point set. In particular, the fixed point set of Gm-action on an algebraic
torus can not have isolated fixed points.

A variety is called cellular if there is a filtration ∅ = Y−1 ⊂ Y0 ⊂ Y1 ⊂ · · · ⊂
YN = Y such that Yi−Yi−1 is isomorphic to Cµi for all i (where 0 = µ0 ≤ µ1 ≤ · · · ).

Example 2.6. Let λ : V arK → Z be an additive invariant such that λ(Gm) = 0.
Then for a cellular variety Y as above, one has λ(Y ) = N .

Example 2.7. (cf. [B-B1, Cor.5]) Let λ : V arK → Z be an additive invariant such
that λ(Gm) = 0. For an algebraic connected reduced affine group scheme G, one
has λ(G) = 0 or 1. Moreover, λ(G) = 1 if and only if G is unipotent.

Proof. If G is not unipotent , then it contains a subgroup isomorphic to Gm. The
action of Gm

∼= H by left translations of G has no fixed point. By Corollary 2.4, we
have λ(G) = 0. If G is unipotent, then G is isomorphic to Kn. Hence λ(G) = 1. �

3. Examples of additive invariants

3.1. Euler characteristic. When K is a subfield of C, the Euler characteristic is
given by

χ(X) :=
∑

i

(−1)irankHi(X(C),C).

For more general K and a variety X over K, let Hi(X,Zl) be the l-adic coho-
mology group of X , where l is a positive integer prime to the characteristic char(K)
of K. Set Hi(X,Ql) := Hi(X,Zl) ⊗Zl

Ql. Denote by βi(X, l) := dimQl
Hi(X,Ql)

the i-th l-adic Betti number of X . The l-adic Euler characteristic is defined by

χ(X, l) :=
∑

i

(−1)iβi(X, l).

Similarly, let Hi
c(X,Zl) be the l-adic cohomology group of X with compact

support. Set βi
c(X, l) := dimQl

Hi
c(X,Ql) the i-th l-adic Betti number of X with

compact support and

χc(X, l) :=
∑

i

(−1)iβi
c(X, l)

the l-adic Euler-Poincaré characteristic with compact support. Note that χc(X, l)
is independent of the choice of l prime to char(K) (See, e.g., [K] or [I]).

Those χ, χc, χ(−, l) and χc(−, l) are additive invariants from V ark to Z, which
follows from the fact that χ = χc and χ(−, l) = χc(−, l) (cf. [Fu] for the case over
C, [Lau] for general cases).

From Corollary 2.4 and note that both χ(Gm) (in the case that k is a subfield
of C) and χ(Gm, l) are zero. So one gets Bia lynicki-Birula’s result.

Corollary 3.1 ([B-B1]). Suppose that X admits a Gm-action with the fixed point
set XGm . Then we have

(1) χ(X) = χ(XGm) if K is a subfield of C.
(2) χ(X, l) = χ(XGm , l) if char(K) is positive.
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3.2. Hodge polynomials. In this subsection, we assume that K is a field of char-
acteristic zero. Then there is an additive invariant H : V arK → Z[u, v], with the
properties:

(1) HX(u, v) :=
∑

p,q(−1)p+q dimHq(X,Ωp
X)upvq if X is nonsingular and pro-

jective (or complete).
(2) HX(u, v) = HU (u, v) + HY (u, v) if Y is a closed algebraic subset of X and

U = X − Y .
(3) If X = Y × Z, then HX(u, v) = HY (u, v) ·HZ(u, v).

The existence and uniqueness of such a polynomial follow from Deligne’s Mixed
Hodge theory(cf. [D1, D2]). The coefficient of upvq of HX(u, v) is called the

virtual Hodge (p, q)-number of X and we denote it by h̃p,q(X). Note that from the

definition, h̃p,q(X) coincides with the usual Hodge number (p, q)-number hp,q(X)
if X is a smooth projective variety. To apply the results in the last section, we
need suitable modifications. Since Gm

∼= Spec(K[x, x−1]), we have HGm
(u, v) =

uv − 1 6= 0. So Corollary 2.4 can not be applied directly to the additive invariant
H . However, if we take the values of H in the quotient Z[u, v]/〈uv − 1〉, i.e., the
composed map of H with the quotient homomorphism Z[u, v] → Z[u, v]/〈uv − 1〉,

then we get a new additive invariant H̃ : V arK → Z[u, v]/〈uv − 1〉 ∼= Z[u, u−1].

This modified additive invariant H̃ satisfies H̃(Gm) = 0. The following result is
from Corollary 2.4.

Corollary 3.2. Suppose that X admits a Gm-action with the fixed point set XGm .
Then

H̃X(u) = H̃XGm (u) ∈ Z[u, u−1].

Equivalently, Corollary 3.2 can be written in a different way as the following:

(2)
∑

p−q=i

h̃p,q(X) =
∑

p−q=i

h̃p,q(XGm).

In particular, if XGm is dimension zero over K, then H̃XGm (u) is independent of u

and so is H̃X(u). In this case, the virtual Hodge (p, q)-numbers of X satisfies the
the following relation:

(3)
∑

p−q=i

h̃p,q(X) = 0

for all i 6= 0 and ∑

p≥0

h̃p,p(X) = χ(X).

More generally, Equation (3) holds for all |i| > dimXGm . In the case that X

is smooth and projective over k, then h̃p,q(X) = hp,q(X) ≥ 0. So we obtain from
Equation (2) that

∑
p−q=i h

p,q(X) =
∑

p−q=i h
p,q(XGm). In particular, hp,q(X) =

h̃p,q(X) = 0 for all p, q such that |p−q| > dim(XGm). This is a pretty simpler proof
of a slight weaker version of Bia lynicki-Birula decomposition theorem (cf. [B-B2]).

For example, if X is nonsingular toric projective variety over C, then one has
hp,q(X) = 0 for all p 6= q and hp,p(X) = β2p(X). This follows from the fact that
a nonsingular projective toric variety admits a Gm-action with finite isolated fixed
points.
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Now we consider algebraic varieties admitting actions of the additive group Ga.
Since Ga

∼= Spec(K[x]), we have HGa
(u, v) = uv. To apply Corollary 2.4, we

need to take the value in Z[u, v]/〈uv〉. That is, the composed map of H with the
quotient map Z[u, v] → Z[u, v]/〈uv〉 gives us an additive invariant HX(u, v) such
that HGa

(u, v) = 0.

Corollary 3.3. Suppose that X admits a Ga-action with the fixed point set XGa .
Then

HX(u, v) = HXGa (u, v) ∈ Z[u, v]/〈uv〉.

Corollary 3.3 implies that the following equations

h̃p,0(X) = h̃p,0(XGm)

and

h̃0,q(X) = h̃0,q(XGm)

hold for p, q ≥ 0.
In the case that X is smooth and projective with a Ga-action, we have hp,0(X) =

h̃p,0(X) = 0 and h0,q(X) = h̃0,q(X) = 0 for p, q > dimXGa .
By applying Corollary 3.3 to an algebraic connected affine group variety, we have

the following result.

Corollary 3.4. Let G be an algebraic connected affine group variety. Then

h̃p,0(G) = h̃0,q(G) = 0

for all p, q > 0. In particular, the 1st virtual Betti number of G is zero.

Proof. If G is not a torus, then G contain a subgroup H isomorphic to Ga. The
action of Ga

∼= H by left translations of G has no fixed point. By Corollary
3.3, we get h̃p,0(G) = h̃0,q(G) = 0 for all p, q ≥ 0. If G = G×n

m , then we get
HG(u, v) = (uv−1)n since H is an additive invariant and HGm

(u, v) = uv−1. From

this formula we get immediately that h̃p,0(G) = h̃0,q(G) = 0 for all p, q > 0. �

3.3. Counting points. Let Fq be the finite field of q elements and let X be an
algebraic scheme defined over Fq. Let Nn(X) denote the number of closed points
in X(Fqn). Note that Nn defines an additive invariant on the category V arFq

of
algebraic varieties over the field Fq with integer values, is a map

Nn : V arFq
→ Z

such that 




Nn(X) = Nn(X ′) for X ∼= X ′,
Nn(X) = Nn(Y ) + Nn(X − Y ) for Y closed in X ,
Nn(X × Y ) = Nn(X) ·Nn(Y ) for every X and Y .

For example, if X = A1
Fq

= Spec(Fq[x]) the affine line over Fq, then Nn(X) = qn;

if X = Spec(Fq[x, x−1]), then Nn(X) = qn − 1.

Lemma 3.5. Let X, Y and A be algebraic varieties over Fq. Suppose that X is
A-equivalent to Y . Then

(1) if A = Spec(Fq[x]) then Nn(X) ≡ Nn(Y ) mod(q).
(2) if A = Spec(Fq[x, x−1]) then Nn(X) ≡ Nn(Y ) mod (q − 1).
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Proof. It is enough to consider the case that X is simply A-equivalent to Y since
Nn is an additive invariant. By definition, there is an open quasi-projective scheme
U of X such that X − U is isomorphic to Y and an isomorphism f : U → U ′ ×A,
where U ′ is an algebraic scheme. In this case, we have Nn(X) = Nn(Y ) +Nn(U) =
Nn(Y ) + Nn(U ′)Nn(A).

Case (1). If A = Spec(Fq[x]), then Nn(A) = qn ≡ 0 mod(q). Hence Nn(X) ≡
Nn(Y ) mod(q).

Case (2). If A = Spec(Fq[x, x
−1]), then Nn(A) = qn − 1 ≡ 0 mod(q − 1). Hence

Nn(X) ≡ Nn(Y ) mod(q − 1).
This completes the proof of the lemma. �

As an application of Theorem 2.2 and Lemma 3.5, we have the following result.

Corollary 3.6. Suppose that an algebraic scheme X admits G-action.

(1) If G = Ga, then Nn(X) ≡ Nn(XG) mod(q).
(2) If G = Gm, then Nn(X) ≡ Nn(XG) mod(q − 1).

Proof. This follows from the combination of Theorem 2.2 and Lemma 3.5. �

4. Additive invariants for Chow varieties

4.1. The Chow variety for projective spaces. In this section we give a direct
proof of Corollary 1.5 and Theorem 1.4, which not only is a simplification of Lawson
and Yau’s proof for Theorem 1.1 but also works for Chow varieties over arbitrary
algebraically closed field.

Now we give a proof of Corollary 1.5 by using Bia lynicki-Birula’s result.

The proof of Corollary 1.5. We consider the action of Gm on Pn+1
K given by setting

Φt([z0, ..., zn, zn+1]) = [z0, ..., zn, tzn+1],

where t ∈ Gm and [z0, ..., zn, zn+1] are homogeneous coordinates for Pn+1
K .

This action on Pn+1
K induces an action of Gm on Cp+1,d(Pn+1)K . From the

definition of the action Gm on Pn+1
K , it is pretty clear that any subvariety V of

dimV = p + 1 is invariant under the action Gm if the support of V is included in
the hyperplane (zn+1 = 0) ∼= Pn

K .
We also observe that if a (p + 1)-dimensional irreducible algebraic variety V is

defined by a collection of homogeneous polynomials Fλ on Pn+1
K , but those polyno-

mials are independent of the last coordinate zn+1, then V is invariant under Gm.
Geometrically, such a variety V is a cone of over an algebraic subvariety supported
in the hyperplane (zn+1 = 0).

Denote Q = [0 : · · · : 0 : 1] ∈ Pn+1
K and note that Q is Gm-fixed. Note that

only those varieties are irreducible invariant subvarieties of dimension p+1 in Pn+1
K

under this Gm-action. To see this, we first observe from the definition of the action
that if an irreducible variety V contains Q and another fixed point P on Pn

K , then

so does the projective line lPQ passing P and Q. Suppose V ⊆ Pn+1
K such that

V * (zn+1 = 0) ∼= Pn
K . Since both V and Pn

K are Gm-invariant, V ′ := V ∩ Pn
K is

Gm-invariant. The subvariety V corresponds to the fixed point set of the restriction
of the Gm-action on V when t → 0. Therefore, the cone ΣQV

′ is Gm-invariant.
Note that we must have Q ∈ V . The point Q corresponds to the fixed point set
of the restriction of the Gm-action on V when t → ∞. Hence we have ΣQV

′ ⊆ V .
Since dim ΣQV

′ = p + 1 = dim V and V is irreducible, we have ΣQV
′ = V .
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The fixed point set Cp+1,d(Pn+1)Gm

K of the induced action on Cp+1,d(Pn+1)K con-
tains cycles c of the form c =

∑
nkVk +

∑
mjWj of degree deg c :=

∑
nk degVk +∑

mj degWj = d, where Vk ⊂ Pn
K is irreducible and Wj = ΣQW

′
j for some irre-

ducible variety Wj ⊂ Pn
K of dimW ′

j = p. Therefore, we have

(4) Cp+1,d(Pn+1)Gm

K =
d∐

i=0

{Cp+1,i(P
n)K × ΣQCp,d−i(P

n)K}.

Since Σ : Cp,d−i(Pn)K → Cp,d−i(Pn+1)K induces a homeomorphism onto its image
in Cp,d−i(Pn+1)K , we have

(5)

χ(Cp+1,d(Pn+1)Gm

K , l) = χ(
∐d

i=0{Cp+1,i(Pn)K × ΣQCp,d−i(Pn)K}, l)

=
∑d

i=0 χ(Cp+1,i(Pn)K × ΣQCp,d−i(Pn)K , l)

=
∑d

i=0 χ(Cp+1,i(Pn)K , l) · χ(ΣQCp,d−i(Pn)K , l)

=
∑d

i=0 χ(Cp+1,i(Pn)K , l) · χ(Cp,d−i(Pn)K , l),

where the second equality follows from the exclusion-inclusion principle of the Euler-
Poincaré characteristic (cf. [Lau], [H]), the third equality follows from the Künneth
formula for l-adic cohomology.

From Theorem 1.2, we have

(6) χ(Cp+1,d(Pn+1)K , l) = χ(Cp+1,d(Pn+1)Gm

K , l).

The combination of Equation (5) and (6) gives us a recursive formula

(7) χ(Cp+1,d(Pn+1)K , l) =

d∑

i=0

χ(Cp+1,i(P
n)K , l) · χ(Cp,d−i(P

n)K , l).

The above idea also can be used to calculate the initial values χ(C0,d(Pn)K , l)
as follows. By definition, an element in C0,d(Pn+1)K means an effective cycle c on

Pn+1
K such that deg c = d. Since a point P is a fixed point of the Gm-action if and

only if P = Q or P ∈ (zn+1 = 0) ∼= Pn
K , we get c ∈ C0,d(Pn+1)Gm

K if and only if
c = mQ +

∑
niPi, where ni ≥ 0 and

∑
ni = d−m. Hence

(8) C0,d(Pn+1)Gm

K =
d∐

m=0

C0,d−m(Pn)K .

This together with Theorem 1.2 implies the following formula for the Euler-
Poincaré characteristics.

χ(C0,d(Pn+1)K , l) =
d∑

m=0

χ(C0,d−m(Pn)K , l).

From this recursive formula, we get

(9) χ(C0,d(Pn)K , l) = (n+d
d ).

The combination of Equation (7) and (9) completes the alternate proof of Corol-
lary 1.5. �

If we set

Qp,n(t) :=

∞∑

d=0

χ(Cp,d(Pn)K , l)td,
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then Corollary 1.5 may be restated as

Qp,n(t) =
( 1

1 − t

)(n+1

p+1
)

, where χ(Cp,0(Pn)K) := 1.

The proof of Theorem 1.4. Note that Bialynicki-Birula’s result in [B-B1, Th.2] and
the assumption λ(Gm) = 0 imply that if X is a projective algebrac set over K with
a Gm-action, then

λ(X) = λ(XGm),

where XGm is the fixed point set of this action.
This together with Equation (4) gives us the following recursive formula

(10) λ(Cp+1,d(Pn+1)K) =

d∑

i=0

λ(Cp+1,i(P
n)K) · λ(Cp,d−i(P

n)K).

By Equation (8) we get

λ(C0,d(Pn+1)K) =

d∑

m=0

λ(C0,d−m(Pn)K).

This recursive formula together with the assumption λ(SpecK) = 1 implies that

(11) λ(C0,d(Pn)K) = (n+d
d ).

By the same argument as in the proof of Corollary 1.5, we obtain the formula in
the theorem from Equation (10) and (11).

�

In the subsection below we will compute the virtual Hodge polynomial and num-
bers of the Chow varieties for projective spaces over an algebraically closed subfield
of C.

Corollary 4.1. Assume that char(K) = 0 and let H̃ : V arK → Z[u, u−1] be given
as above. Then we have

H̃(Cp,d(Pn)K) = (
vp,n+d−1

d ) ∈ Z[u, u−1].

Proof. It is easy to check from the definition of H̃ that H̃(SpecK) = 1 and

H(Gm) = uv − 1. So H̃(Gm) = 0. Now the corollary follows from Theorem
1.4. �

Remark 4.2. From Corollary 4.1, H̃(Cp,d(Pn)K) is independent of u. This implies
that the coefficients of both u and v in the Hodge polynomial H(Cp,d(Pn)K) vanish.

By applying Corollary 3.2 to the Chow variety Cm,d(Pn
K) parameterizing alge-

braic m-cycles of degree d in the projective space Pn
K , we have the following result.

Corollary 4.3. For integers n ≥ m ≥ 0 and d ≥ 0, the virtual Hodge (p, q)-number
of the Chow variety Cm,d(Pn

K) satisfies the following equations:
∑

p−q=i

h̃p,q(Cm,d(Pn
K)) = 0

for all i 6= 0 and ∑

p≥0

h̃p,p(Cm,d(Pn
K)) = χ(Cm,d(Pn

K)).
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Proof. Instead of proving that there is a Gm-action on Cp,d(Pn
K) such that the

fixed point set consists of isolated points, we show that there is a (Gm)×n-action
on Cp,d(Pn

K) such that whose fixed point set is finite. This is shown in the proof
of Corollary 1.5 by constructing a sequence of Gm-action on Cp,d(Pn

K) and its fixed
points set. The initial idea for such a construction over the complex number field is
from Lawson and Yau (cf. [LY]). Now the equation follows from Equation (12). �

By applying Corollary 3.3 to the Chow variety Cm,d(Pn
K), we get the following

result.

Corollary 4.4. For integers n ≥ m ≥ 0, d ≥ 0 and p, q > 0, the virtual Hodge
(p, 0)-number and (0, q)-number of the Chow variety Cm,d(Pn

K) vanish.

Proof. Note that Cm,d(Pn
K) admits an action of a unitriangular group J with exact

one fixed point (cf. [Ho, §7]). The general fact is that the group J contains a
subgroup isomorphic to Ga. Therefore, HCm,d(Pn

K
)(u, v) = 1 ∈ Z[u, v]/〈uv〉. This

implies that
HCm,d(Pn

K
)(u, v) = 1 + uvg(u, v) ∈ Z[u, v],

where g(u, v) ∈ Z[u, v]. Since h̃p,0
Cm,d(Pn

K
) is the coefficient of up in the Hodge poly-

nomial HCm,d(P
n
K
)(u, v), we obtain h̃p,0

Cm,d(Pn
K
) = 0 from the above explicit formula

for HCm,d(Pn
K
)(u, v). By the same reason, h̃0,q

Cm,d(Pn
K
) = 0. �

Note that for an algebraic variety over k, if we set β̃i(X) :=
∑

p+q=i h̃
p,q(X),

then we get the virtual Poincaré polynomial P̃X(t) =
∑

i β̃
i(X)ti (cf. [Fu, p.92])

and β̃i(X) is called the ith virtual Betti number of X .

From Corollary 4.4, we get β̃1(Cm,d(Pn
K)) = 0. It can not be obtained by the

vanishing of the usual 1st Betti number of Cm,d(Pn
C).

From Corollary 4.3, we have

(12)
∑

i≥1

β̃2i−1(Cm,d(Pn
K)) = 0

and ∑

i≥0

β̃2i(Cm,d(Pn
K)) = χ(Cm,d(Pn

K)).

In particular, if one could verify that β̃2i−1(Cm,d(Pn
K)) are nonnegative for all i,

then Equation (12) would imply that the vanishing of all odd virtual Betti numbers.

Remark 4.5. Note that the usual 1st Betti number of Cm,d(Pn
C) is zero. This is

implied by the fact that Cm,d(Pn
C) is simply connected (cf. [Ho] or [Law, Lemma

2.6]). However, The simply connectedness of an algebraically closed set X does not

imply the vanishing of the 1st Betti number of X. For example, let X = C(E)∪P2
C,

where C(E) is a projective cone of a smooth plane cubic E in the plane P2
C and

E = C(E) ∩ P2
C. The fact that π1(X) = 0 follows from a direct application of Van

Kampen theorem. An elementary calculation yields H̃X(u, v) = 1 + u + v + uv −

u2v − uv2 + 2u2v2 and so β̃1(X) = 2 6= 0.

The next result, as an application of the above theorem, we count points of
Cp,d(Pn)(Fqm) modulo (q − 1). Recall that the proof of Theorem 2 in [B-B1] does
not require K to be an algebraically closed field. When K = Fq, the map Nm :
X → |X(Fqm)| gives rise to an additive invariant Nm : V arK → Z.
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Corollary 4.6. Let Nm : X → |X(Fqm)| be given as above. For any integer m ≥ 1,
we have

Nm(Cp,d(Pn)Fqm
) ≡ (

vp,n+d−1
d ) mod(q − 1).

Proof. Since Nm(Gm) = qm−1 ≡ 0 mod(q−1) and Nm(SpecFq) = 1, the corollary
follows from Theorem 1.4. �

In particular, when X is the Chow variety Cm,d(Pn
K) over k, we get

(1)

Nn(Cm,d(Pn
K)) ≡ 1 mod(q).

(2)

Nn(Cm,d(Pn
K)) ≡ (

vp,n+d−1
d ) mod(q − 1), where vp,n = (n+1

p+1 ).

Proof. (1) follows from the fact that there is a sequence of Ga-actions on Cm,d(Pn
K)

and the last one has exactly one fixed point (cf. [Ho]). (2) follows from the fact
that there is a sequence of Gm-actions on Cm,d(Pn

K) while the last one has exactly

(
vp,n+d−1

d ) isolated fixed points (cf. the proof of Corollary 1.5). �

For example, the number of points on k-point on Cm,d(Pn
K) for k = F2 is always

odd.

4.2. The Chow variety for the product of projective spaces. In this section,
we deal with more general cases. Let XK be a projective variety over K (we omit
the subscript K below).

Let Cp(X) be the topological monoid of all effective p-cycles on X and let Πp(X)
be the monoid π0(Cp(X)) of connected component of Cp(X). For α ∈ Πp(X), let
Cα(X) be the space of effective algebraic cycles c on X which are in the same
connected component α.

Under this setting, if we consider the Gm-action on Pn+1 ×X by

Φt([z0, ..., zn, zn+1], x) = ([z0, ..., zn, tzn+1], x),

then for any α ∈ Πp+1(Pn+1 × X), the fixed point set of the induced Gm on
Cα(Pn+1 ×X) contains effective cycles of the form

c =
∑

nkVk +
∑

mjWj +
∑

liUi, nk,mj, li ≥ 0

whose class in Πp+1(Pn+1×X) is α, where Vk ⊂ Pn×X is irreducible, Wj = ΣQW
′
j

for some irreducible variety Wj ⊂ Pn×X of dimW ′
j = p and Uk ⊂ X is irreducible

of dimUk = p + 1. Therefore, we have

Cα(Pn+1 ×X)Gm =
∐

α=β+ΣQγ+γ′

{Cβ(Pn ×X) × ΣQCγ(Pn ×X) × Cγ′(X)},

where β ∈ Πp+1(Pn ×X), γ ∈ Πp(Pn ×X) and γ′ ∈ Πp+1(X). Hence we have
(13)

χ(Cα(P
n+1

×X)Gm , l) =
∑

α=β+ΣQγ+γ′

χ(Cβ(P
n
×X), l) · χ(Cγ(P

n
×X), l) · χ(Cγ′(X), l).

By Theorem 1.2, we have

χ(Cα(Pn+1 ×X), l) = χ(Cα(Pn+1 ×X)Gm , l)
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Therefore, by Equation (13) we have the following recursive formula

(14) χ(Cα(P
n+1

×X) =
∑

α=β+ΣQγ+γ′

χ(Cβ(P
n
×X), l) · χ(Cγ(P

n
×X), l) · χ(Cγ′(X), l).

From this we recover the Euler-Poincaré characteristic of Cα(Pn+1 × X) from
those of X . Therefore, we can obtain the Euler-Poincaré characteristic for arbi-
tray many products of projective spaces (cf. [H] for a computation without group
actions).

4.3. Toric varieties. The result in this subsection is a formula for the Euler-
Poincaré characteristic for the Chow variety of general toric varieties, which is
inspired by Elizondo [E]. For background on toric varieties, the reader is referred
to Fulton’s book [Fu].

Recall that a toric variety over K is an irreducible variety X containing the
algebraic group T = G×n

m as a Zariski open subset such that the action of G×n
m on

itself extends to an action on X .
The p-th Euler series of X is defined by the following formal power series

Ep(X) :=
∑

α∈Πp(X)

χ(Cα(X), l)α.

Since its simplicity, the proof of Theorem 4.7 is given below, which is almost
word by word translated from the case over complex number field (cf. [E, Th.
2.1]).

Theorem 4.7. Denote by V1, ..., VN the p-dimensional invariant irreducible sub-
varieties of X. Let e[Vi] be the characteristic function of the subset {[Vi], i =
1, 2, ..., N} of Πp(X), where [V ] denotes its class in Πp(X). Then

Ep(X) =
∏

1≤i≤N

( 1

1 − e[Vi]

)
.

Proof. Note first we have χ(Cα(X), l) = χ(Cα(X)T , l) by applying Theorem 1.2
inductively for n-times. Then Ep(X) =

∏
1≤i≤N fi, where fi(α) = 1 if α = n · [Vi]

and 0 otherwise. Note that 1 = (1 − e[Vi]) · fi since, by definition, fi(α) = (1 +

e[Vi] + e2[Vi]
+ · · · )(α) for all α ∈ Πp(X). �

One needs to know which irreducible subvariety V of a toric variety X is invariant
under the action of algebraic torus T . This has been answered in [E], i.e., the
closure of an orbit under the action T . Therefore, theoretically one can obtain the
Euler-Poincaré characteristic for any toric variety. One may need additional work
to get an explicit formula for Ep(X) in terms of the generators of Πp. Elizondo
has illuminated how to apply Theorem 4.7 to particular examples in complex case.
His methods also works for the algebraic case. Those examples include projective
spaces, the product of two projective spaces, Hirzebruch surfaces, the blowing up
of a projective space a point, etc.

Here we give a remark on the Euler-Chow series of certain projective bundles.
Let E1 and E2 be two algebraic vector bundle over a projective variety X . Let
P(E1) (resp. P(E2)) be the projectivization of E1 (resp. E2). Then, in complex
case, the Euler-Chow series Ep(P(E1 ⊕ E2)) can be computed in terms of that of
P(E1), P(E2) and P(E1)×X P(E2), where the last one is the fiber product of P(E1)
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and P(E2) over X (cf. [EL]). The proof there word for word works for the algebraic
analogue, except that the fixed point formula there is replaced by Theorem 1.2. As
an application, one can obtain the Euler-Chow series for Grassmannians and Flag
varieties over K.

The calculation of Euler-Poincaré characteristic for product of projective spaces,
or more generally, of toric varieties X works well for an additive invariant λ :
V arK → R satisfying λ(Gm) = 0 and λ(SpecK) = 1. For such a λ, the p-th
λ-series of X is defined to be the following formal power series

Λp(X) :=
∑

α∈Πp(X)

λ(Cα(X))α.

The same formula in Theorem 4.7 holds for Λp on any toric variety X .

Theorem 4.8. For a toric variety X in Theorem 4.7, we have

Λp(X) =
∏

1≤i≤N

( 1

1 − e[Vi]

)
.

4.4. Chow varieties parameterizing irreducible varieties. In this subsection,
we compute the l-adic Euler-Poincaré characteristic of the Chow varieties parame-
terizing irreducible subvarieties of a given dimension and degree in projective spaces.
Let Ip,d(Pn)K ⊂ Cp,d(Pn)K be the subset contains p-dimensional subvarieties of Pn

K

of degree d, i.e.,

Ip,d(Pn)K = {V ∈ Cp,d(Pn)K |V is irreducible of deg V = d }.

Note that Ip,1(Pn)K is the Grassmannian of p+ 1-plane in Pn
K , i.e., Ip,1(Pn)K =

G(p + 1, n + 1). For d > 1 each Ip,d(Pn)K is a finite union of quasi-projective
varieties. The following result is about the l-adic Euler-Poincaré characteristic of
Ip,d(Pn)K .

Theorem 4.9 ([H]). For (l, char(K)) = 1, we have

χ(Ip,d(Pn)K , l) =

{
(n+1
p+1 ) for d = 1,
0 for d > 1.

Proof. The proof here is similar to the case over the complex number field. Recall
that the action of the algebraic n-torus T n := Gn+1

m /Gm is given by

Φt([z0, z1, ..., zn]) = [t0z0, t1z1, ..., tnzn]

where t = (t0, ..., tn) and [z0, z1, ..., zn] are homogeneous coordinate for Pn
K . This

action on Pn induces an action of T on Ip,d(Pn)K and hence on its closure Īp,d(Pn)K
in Cp,d(Pn)K and Īp,d(Pn) − Ip,d(Pn). By Theorem 1.2, we have

(15) χ(Fp,d(Pn)K , l) = χ(Īp,d(Pn)K).

By induction on Theorem 1.2, we obtain that a p-dimensional T -invariant cycles
is a linear combination of p-planes, we get Fp,d(Pn)K ⊂ Īp,d(Pn)K − Ip,d(Pn)K
for d > 1, where Fp,d(Pn)K is the fixed point set of T -action on Īp,d(Pn)K . This
together with Theorem 1.2 implies that

(16) χ(Fp,d(Pn)K , l) = χ(Īp,d(Pn)K − Ip,d(Pn)K , l).

By the inclusion-exclusion property for l-adic Euler-Poincaré characteristic (cf.
[Lau]), we have χ(Īp,d(Pn)K−Ip,d(Pn)K , l) = χ(Īp,d(Pn)K , l)−χ(Ip,d(Pn)K , l). This
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together with Equation (15) and (16) implies Ip,d(Pn)K , l) = 0 for d > 1. This case

that d = 1 follows from the fact χ(Ip,1(Pn), l) = χ(G(p + 1, n + 1), l) = (n+1
p+1 ). �

Similarly, we have an alternative shorter proof of the following result.

Proposition 4.10. For (l, char(K)) = 1, we have

χ(Iα(Pn × Pm)K , l) =

{
(n+1
k+1 )(m+1

l+1 ), if α = [Pk
K × Pl

K ], where k + l = p,
0, otherwise.

Proof. The action of the algebraic torus T := T n × Tm on Pn
K × Pm

K is given as
the product of the actions on each factor defined in the above proof of Theorem
4.9. For each α ∈ Chp(Pn

K × Pm
K), where Chp(X) denotes the Chow group of p-

cycles on X , the action of T on Pn
K × Pm

K induces an action on Cα(Pn × Pm)K
and Iα(Pn × Pm)K since the rational equivalent class of an irreducible variety is
preserved by this action. Since the action is algebraic, it extends to the closure
Īα(Pn × Pm)K of Iα(Pn × Pm)K in Cα(Pn × Pm)K .

By Theorem 1.2, we have

χ(Fα(Pn × Pm)K , l) = χ(Īα(Pn × Pm)K , l),

where Fα(Pn × Pm)K the fixed point set of this action in Īα(Pn × Pm)K .
The T -invariant cycles in α are exactly finite sum of products of k-planes in Pn

K

and (p−k)-planes in Pm
K , where 0 ≤ k ≤ p. Hence if α 6= ek,l for all k+l = p, k, l ≥ 0,

then Fα(Pn ×Pm)K ⊂ Īα(Pn ×Pm))K − Iα(Pn ×Pm)K). Applying Theorem 1.2 to
Īα(Pn × Pm))K − Iα(Pn × Pm)K), we have

χ(Fα(Pn × Pm)K , l) = χ(Īα(Pn × Pm)K − Iα(Pn × Pm)K , l).

These two equations together the inclusion-exclusion property for l-adic Euler-
Poincaré characteristic imply that

χ(Iα(Pn × Pm)K , l) = 0.

If α = ek,l for some k, l ≥ 0, k + l = p, then Iα(Pn × Pm)K = G(k + 1, n + 1) ×
G(l + 1,m + 1) and so χ(Iα(Pn × Pm)K , l) = (n+1

k+1)(m+1
l+1 ).

The completes the proof of Proposition 4.10. �

From the proof of Theorem 4.9 and Proposition 4.10, we observe that it works
nicely for general additive invariants λ : V arK → R satisfying λ(Gm) = 0 and
λ(SpecK) = 1. That is, the following statement holds.

Proposition 4.11. For additive invariants λ : V arK → R satisfying λ(Gm) = 0
and λ(SpecK) = 1, we have

λ(Ip,d(Pn)K) =

{
(n+1
p+1 ) for d = 1,
0 for d > 1.

and

λ(Iα(Pn × Pm)K) =

{
(n+1
k+1 )(m+1

l+1 ), if α = [Pk
K × Pl

K ], where k + l = p,
0, otherwise.

This proposition has the following immediate corollary.

Corollary 4.12. The Hodge polynomial H(Ip,d(Pn)K) ∈ Z[u, v] (resp. H(Iα(Pn ×
Pm)K)) is in the ideal 〈uv−1〉 generated by uv−1 for d > 1(resp. α 6= [Pk

K ×Pl
K ]).
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