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STABILITY OF SASAKI-EXTREMAL METRICS UNDER

COMPLEX DEFORMATIONS

CRAIG VAN COEVERING

Abstract. We consider the stability of Sasaki-extremal metrics under de-
formations of the transversal complex structure of the Sasaki foliation Fξ ,
induced by the Reeb vector field ξ. Let g be a Sasaki-extremal metric on M ,
G a compact connected subgroup of the automorphism group of the Sasaki
structure, and suppose the reduced scalar curvature satisfies sGg = 0. And

consider a G-equivariant deformation (Fξ , J̄t)t∈B of of the transversely holo-
morphic foliation preserving Fξ as a smooth foliation. Provided the Futaki
invariant relative to G of g is nondegenerate, the existence of Sasaki-extremal
metrics is preserved under small variations of t ∈ B and of the Reeb vector
ξ ∈ z in the center of g. If G = T ⊆ Aut(g, ξ) is a maximal torus, the nonde-
generacy of the Futaki invariant is automatic. So such deformations provide
the easiest examples.

When the initial metric g is Sasaki-Einstein this result can be improved

using known properties of the Futaki invariant Although the relative Futaki
invariant is useless in this case, non-trivial deformations can be obtained when
G = T ⊆ Aut(g, ξ) is a maximal torus. Then a slice of the above family of
Sasaki-extremal metrics is Sasaki-Einstein. Thus for each t ∈ B there is a ξt ∈ z

so that the Sasaki-extremal metric with Reeb vector field ξt is Sasaki-Einstein.
We apply this to deformations of toric 3-Sasaki 7-manifolds to obtain new
families of Sasaki-Einstein metrics on these manifolds, which are deformations
of 3-Sasaki metrics.

1. Introduction

Recall that a polarization on a complex manifoldM is and element Ω ∈ H1,1(M)∩
H2(M,R) such that Ω can be represented by a Kähler form ωg of a Kähler metric g
on M . In the hope of finding a canonical metric in the polarization E. Calabi [7, 8]
defined a natural Riemannian functional on this space of Kähler metrics. Denote
by MΩ the space of Kähler metrics representing the polarization. Calabi proposed
that one should seek critical points of the functional

(1) MΩ
C−→ R

g 7→
∫

M
s2g dµg

where sg is the scalar curvature of g and dµg the volume form. He called the
critical points of this functional extremal Kähler metrics and showed that g is
extremal if and only if the gradient of sg is a real holomorphic vector field. In
particular, a constant scalar curvature metric is extremal, but many examples of
extremal metrics are known which are not constant scalar curvature. An extremal
Kähler metric is of constant scalar curvature if and only if the Futaki invariant
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vanishes [14, 8]. Many examples are known of extremal metrics of both constant
and nonconstant scalar curvature

One way of producing new examples is to start with a known extremal metric
and try to deform the solution as either the Kähler class or complex structure
varies. This has been done with considerable success by C. LeBrun and S. R.
Simanca [19, 20], where it was shown that there is no obstruction to deforming
extremal metrics as the Kähler class is varied, whereas a nondegeneracy condition on
the Futaki invariant is sufficient to guarantee that a constant scalar curvature metric
can be deformed through extremal metrics as the complex structure is deformed.
The nondegeneracy of the Futaki invariant is necessary as deforming the complex
structure can result in a reduction of the size of the automorphism group. Later Y.
Rollin, S. R. Simanca, and C. Tipler [25] generalized the later result to the case of
equivariant deformations of the complex structure, where the sufficient condition
becomes the nondegeneracy of the relative Futaki invariant.

This article gives analogous results for Sasaki manifolds. Similar results as in [25]
are proved, although the a polarization of a Sasaki manifold is given by a choice
of Reeb vector field, rather than a Kähler class. Thus the notions of the Sasaki
polarization and nondegeneracy of the relative Futaki invariant involve varying the
Reeb vector field.

1.1. Main result. Sasaki geometry sits between two Kähler geometries. If (M, g)
has is Sasaki then the metric cone (C(M) = R>0 ×M, ḡ = dr2 + r2g) is Kähler for
some almost complex structure. Furthermore, a Sasaki structure is contact and the
foliation Fξ generated by the Reeb vector field ξ is transversely Kähler, i.e. locally
the transversal space to the leaves has a complex structure J̄ so that the induced
metric gT is Kähler. Alternatively, J̄ is an integrable almost complex structure on
ν(Fξ) = TM/τ(Fξ), where τ(Fξ) ⊂ TM is the subbundle tangent to the leaves.

So it is not surprising that the notion of extremal metric can be defined analo-
gously for Sasaki metrics using the same functional (1) defined on the space M(ξ, J̄)
of metrics arising from Sasaki structures with Reeb vector field ξ and transversal
complex structure J̄ . This program was carried out in [5]. See also [6]. Not surpris-
ingly, critical points are Sasaki metrics g with the gradient of sg a transversally real
holomorphic vector field. One notable difference from the Kähler case is the role
of the polarization Ω is taken by the Reeb vector field ξ. The stability of extremal
solutions under variations of ξ was proved by C. P. Boyer, K. Galicki, and S. R.
Simanaca [5].

The goal of this article is to give a similar stability result for Sasaki-extremal
metrics under equivariant deformations of the transversal complex structure to the
Reeb foliation. The results we obtain are similar to those in [25] in the Kähler case.
Let (g, η, ξ,Φ) is a Sasaki-extremal structure on M . Then as in the Kähler case [8],
it was shown in [5] that the identity component of automorphism group of the
Sasaki structure Aut(g, η, ξ,Φ)0 is a maximal compact subgroup of Fol(M,Fξ, J̄)0,
the identity component of the group of transversely holomorphic automorphisms
of the foliation Fξ. Let G ⊆ G′ = Aut(g, η, ξ,Φ)0 be a connected subgroup with
Lie algebras g ⊆ g′ so that ξ ∈ g. Then g′/{ξ} ⊆ hT (ξ, J̄)0, where hT (ξ, J̄)0 is
the subspace of transversely holomorphic vector fields modulo those tangent to the
leaves, in τ(Fξ), that have holomorphy potentials, i.e. are of the form ∂#φ := (∂̄φ)#

for a basic function φ. Let z = Z(g) be the center of g and z′ = Cg′(g) the centralizer
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of g in g′. Also define p = Ng′(g) to be the normalizer of g in g′. It will turn out
that p/g = z′/z.

Denote the space of G-invariant smooth functions by C∞(M)G. A transversal

deformation of the Sasaki structure (g, η, ξ,Φ) is a Sasaki structure (g̃, η̃, ξ, Φ̃) with
η̃ = η+dcφ for φ ∈ C∞(M)G and transversal Kähler form ω̃T = ωT + 1

2dd
cφ, while

the Reeb vector field and transversal complex structure J̄ remain unchanged. We
can then introduce the notion of the reduced scalar curvature sGg for any G-invariant
Sasaki structure, and the Futaki invariant relative to G

FG,ξ : p/g → R,

where p is the normalizer of g in g′, which is independent of the Sasaki structure
with Reeb vector field ξ and transversal complex structure J̄ . This space of Sasaki
structure we denote S(ξ, J̄). On the space of G-invariant structures S(ξ, J̄)G the
condition sGg = 0 is equivalent to g being Sasaki-extremal and FG,ξ ≡ 0.

The connected component of the identity of the center is a torus T r ⊆ G, and
the contact structure defines a moment map on the cone C(M) = R>0 ×M ,

(2) µη : C(M) → z∗,

where µη(x, r)(X) = r2ηx(Xx), with X ∈ z and Xx the induced vector at x ∈ M .
The image of (2) is a convex polyhedral cone C

∗
z ⊂ z∗ ([10]). Although µη obvious

depends on η, the image C∗
z is the same for any transversal deformation η̃ = η+dcφ,

for φ ∈ C∞(M)G, and turns out to be independent of a choice of Reeb vector fields
in z. Define z+ = {ζ ∈ z : η(ζ) > 0}. If ζ ∈ z+, then ηζ = η(ζ)−1η is easily seen to

be a contact form of a Sasaki structure with the same CR structure as (ξ, η̃, Φ̃, g̃)
and with Reeb vector field ζ. Fakas’ theorem says the dual cone Cz to C∗

z is a convex
polyhedral cone, and from (2) we see that

z+ =
◦
Cz.

Differentiating the relative Futaki invariant with ξ varying in z induces a linear
map

(3) p/g → z∗,

and we say that the Futaki invariant FG,ξ relative to G is nondegenerate if it is
injective.

We consider G-equivariant deformations of the transversal complex structure of
the Reeb foliation (Fξ, J̄). We fix the smooth structure of Fξ, so a deformation is
given by (Fξ, J̄t)t∈B. The holomorphic structure on Fξ has a versal deformation
space [12, 17], with tangent space

H1
∂̄b
(A0,•), where A

0,k = Γ
(

Λ0,k
b ⊗ ν(Fξ)

1,0
)

denotes the basic (0, k)-forms with values in ν(Fξ)
1,0 and

0 −→ A
0,0 ∂̄b−→ A

0,1 ∂̄b−→ · · ·
is the basic Dolbeault complex with values in the transverse holomorphic bun-
dle ν(Fξ)

1,0. Then H1
∂̄b
(A0,•)G is the tangent space to the G-equivariant defor-

mations of (Fξ, J̄). By [11] the transversely Kähler property of (Fξ, J̄) is sta-
ble under small deformations. But the existence of a compatible Sasaki structure



4 CRAIG VAN COEVERING

may be obstructed. The obstruction, due to H. Nozawa [22], is reviewed in Sec-
tion 3.1. An unobstructed deformation (Fξ, J̄t)t∈B is said to be of (1, 1)-type. If B
is smooth, after possibly restricting to a neighborhood of zero in B, there is a family
(gt, ηt, ξ,Φt) ∈ S(ξ, J̄t), t ∈ B. And if (Fξ, J̄t)t∈B is G-equivariant, we may assume
that the family (gt, ηt, ξ,Φt), t ∈ B is G-equivariant. In particular, if Ricg > 0 then
the obstruction vanishes on a neighborhood of zero in any deformation.

Associated to the family (Fξ, J̄t)t∈B for sufficiently small φ ∈ C∞(M)G we
consider the Sasaki metrics gt,α,φ with transverse Kähler form

ωT
t,α,φ = ωT

t,α +
1

2
ddcφ,

with Reeb vector field ξ+α ∈ z+, ηt,α,φ = ηt,ξ+α + dcφ and ωT
t,α = 1

2dηt,ξ+α. Thus
we have a family of Sasaki metrics parametrized by a neighborhood of (0, 0, 0) ∈
B× z×C∞(M)G. Assuming that g0,0,0 is Sasaki-extremal and satisfies sGg0,0,0 = 0,

we seek solutions to sGgt,α,φ
= 0 for (t, α, φ) close to zero. Using suitable Banach

spaces, an application of the implicit function theorem gives the main theorem.

Theorem 1. Let (g, ξ, η,Φ) be a Sasaki-extremal structure satisfying sGg = 0. Sup-

pose G ⊆ G′ = Aut(ξ, η,Φ, g)0 is a connected compact subgroup and (Fξ, J̄t)t∈B

a G-equivariant deformation of (1, 1)-type. If the Futaki invariant relative to G is
nondegenerate g, then there is a small neighborhood of zero W ⊂ B× z×C∞(M)G

and a smooth closed submanifold V ⊂W , with dimV = dimR B+dim z so that for
(t, α, φ) ∈ V there is Sasaki metric gt,α,φ satisfying sGgt,α,φ

= 0. Therefore, there is
a space of Sasaki-extremal metrics parametrized by V . Furthermore, the projection
π : V → B is a submersion with fibers of dimension dim z.

Unfortunately, the nondegeneracy of the relative Futaki invariant is not an easy
condition to work with, and from (3) we see that z must be sufficiently large in g

for it to hold. Fortunately, if G = T ⊂ G′ is a maximal torus, then the relative
Futaki invariant is trivially nondegenerate as p/g = 0.

Corollary 2. Let (g, η, ξ,Φ) be a Sasaki-extremal structure satisfying sGg = 0.

Suppose that (Fξ, J̄t)t∈B is a G-equivariant deformation of (1, 1)-type, where G ⊆
G′ = Aut(g, η, ξ,Φ)0 is a maximal torus. Then there is a neighborhood of zero
W ⊂ B × g, so that for (t, α) ∈ W there is Sasaki metric gt,α,φt,α

satisfying

sGgt,α,φt,α
= 0. So for each fixed t ∈ B close to zero, the space of extremal metrics is

locally parametrized by a neighborhood of zero in g.

Just as in the Kähler-Einstein case [19] the linear map (3) is always trivial when
(g, η, ξ,Φ) is Sasaki-Einstein. Fortunately, Corollary 2 is still useful in obtaining
new examples of Sasaki-Einstein metrics when G is a maximal torus. In this case
one can use the nondegeneracy of the Futaki invariant on g [21, 16] to show that
there is a neighborhood W ⊂ B× g so that for each (t, 0) ∈ W there is a αt ∈ g so
that gt,αt,φt

is Sasaki-Einstein.

Corollary 3. Let (g, η, ξ,Φ) be a Sasaki-Einstein structure, and suppose that (Fξ, J̄t)t∈B

is a G-equivariant deformation, where G ⊆ G′ = Aut(g, η, ξ,Φ)0 is a maximal torus.
Then there is a neighborhood U ⊂ B so that for t ∈ U there is a unique αt ∈ g and
a φt ∈ C∞(M)G so that gt,αt,φt

is Sasaki-Einstein.
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In the final section Corollary 3 is applied to give a new family of Sasaki-Einstein
metrics by deforming the underlying Sasaki-Einstein metric on toric 3-Sasaki 7-
manifolds. These manifolds were studied in [4] as torus 3-Sasaki quotients of spheres
where it was proved that there are infinitely many of each Betti number b2(M) ≥ 1.
Note that they are not toric as Sasaki-Einstein manifolds. If b2(M) ≥ 2, then for a
fixed Sasaki structure G = T 3 = Aut(g, ξ, η,Φ)0 is a 3-torus. It was calculated by

the author in [29] that H1
∂̄b
(A0,•) = H1

∂̄b
(A0,•)T

3

= b2(M)−1 giving a smooth versal

deformation space. Thus Corollary 2 gives a neighborhoodW ⊂ Cb2(M)−1×g of zero
parametrizing a space of Sasaki-extremal metrics. And furthermore, Corollary 3
gives a slice of Sasaki-Einstein metrics. There is a neighborhood U ⊂ Cb2(M)−1

so that for t ∈ U there is an αt ∈ g and φt ∈ C∞(M)G so that gt,αt,φt
is Sasaki-

Einstein and contained in a real 3-dimensional space of Sasaki-extremal metrics.
Note that the Einstein metrics in this family have three different isometry groups
as shown in Figure 1.

These examples provide the first examples, to the author’s knowledge, of defor-
mations of 3-Sasaki metrics to metrics which are Sasaki-Einstein but not 3-Sasaki.
These are also examples of Einstein manifolds admitting 3 Killing spinors with de-
formations to Einstein metrics admitting only 2 Killing spinors. More details will
appear in [29].

1.2. Acknowledgements. I would like to thank the Max Planck Institute for
Mathematics for their hospitality and excellent research environment that I enjoyed
while writing this article.

2. Background

2.1. Sasaki manifolds.

Definition 4. A Riemannian manifold (M, g) is a Sasaki manifold, or has a com-
patible Sasaki structure, if the metric cone (C(M), ḡ) = (R>0 ×M,dr2 + r2g) is
Kähler with respect to some complex structure I, where r is the usual coordinate on
R>0.

Thus M is odd and denoted n = 2m + 1, while C(M) is a complex manifold
with dimC C(M) = m+ 1.

Although, this is the simplest definition, Sasaki manifolds were originally defined
as a special type of metric contact structure. See the monograph [3] or [16] for more
details on the properties of Sasaki manifolds that we summarize below. We will
identify M with the {1}×M ⊂ C(M). Let r∂r be the Euler vector field on C(M),
then it is easy to see that ξ = Ir∂r is tangent to M . Using the warped product
formulae for the cone metric ḡ [24] it is easy check that r∂r is real holomorphic, ξ is
Killing with respect to both g and ḡ, and furthermore the orbits of ξ are geodesics
on (M, g). Define η = 1

r2 ξ y ḡ, then we have

(4) η = −I
∗dr

r
= dc log r,

where dc =
√
−1(∂̄ − ∂). If ω is the Kähler form of ḡ, i.e. ω(X,Y ) = ḡ(IX, Y ),

then Lr∂r
ω = 2ω which implies that

(5) ω =
1

2
d(r∂r yω) =

1

2
d(r2η) =

1

4
ddc(r2).
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From (5) we have

(6) ω = rdr ∧ η + 1

2
r2dη.

We will use the same notation to denote η and ξ restricted toM . Then (6) implies
that η is a contact form with Reeb vector field ξ, since η(ξ) = 1 and Lξη = 0. Let
D ⊂ TM be the contact distribution which is defined by

(7) Dx = ker ηx

for x ∈M . Furthermore, if we restrict the almost complex structure toD, J := I|D,
then (D, J) is a strictly pseudoconvex CR structure on M . We have a splitting of
the tangent bundle TM

(8) TM = D ⊕ Lξ,

where Lξ is the trivial subbundle generated by ξ. It will be convenient to define a
tensor Φ ∈ End(TM) by Φ|D = J and Φ(ξ) = 0. Then

(9) Φ2 = −1 + η ⊗ ξ.

Since ξ is Killing, we have

(10) dη(X,Y ) = 2g(Φ(X), Y ), where X,Y ∈ Γ(TM),

and Φ(X) = ∇Xξ, where ∇ is the Levi-Civita connection of g. Making use of (9)
we see that

g(ΦX,ΦY ) = g(X,Y )− η(X)η(Y ),

and one can express the metric by

(11) g(X,Y ) =
1

2
(dη)(X,ΦY ) + η(X)η(Y ).

We will denote a Sasaki structure on M by (g, η, ξ,Φ). Although, the reader
can check that merely specifying (g, ξ), (g, η), or (η,Φ) is enough to determine the
Sasaki structure, it will be convenient to denote the remaining structure.

The Reeb foliation Fξ onM generated by the action of ξ will be important in the
sequel. Note that it has geodesic leaves and is a Riemannian foliation, that is has
a ξ invariant Riemannian metric on the normal bundle ν(Fξ). But in general the
leaves are not compact. If the leaves are compact, or equivalently ξ generates an
S1-action, then (g, η, ξ,Φ) is said to be a quasi-regular Sasaki structure, otherwise
it is irregular. If this S1 action is free, then (g, η, ξ,Φ) is said to be regular. In this
last case M is an S1-bundle over a manifold Z, which we will see below is Kähler.
If the structure if merely quasi-regular, then the leaf space has the structure of
a Kähler orbifold Z. In general, in the irregular case, the leaf space is not even
Hausdorff but we will make use of the transversally Kähler property of the foliation
Fξ which we discuss next.

2.2. Transverse Kähler structure. We now describe a transverse Kähler struc-
ture on Fξ. The vector field ξ−

√
−1Iξ = ξ+

√
−1r∂r is holomorphic on C(M). If

we denote by C̃∗ the universal cover of C∗, then ξ+
√
−1r∂r induces a holomorphic

action of C̃∗ on C(M). The orbits of C̃∗ intersect M ⊂ C(M) in the orbits of the
Reeb foliation generated by ξ. We denote the Reeb foliation by Fξ. This gives Fξ

a transversely holomorphic structure.
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The foliation Fξ together with its transverse holomorphic structure is given by
an open covering {Uα}α∈A and submersions πα : Uα → Wα ⊂ Cm such that when
Uα ∩ Uβ 6= ∅ the map

φβα = πβ ◦ π−1
α : πα(Uα ∩ Uβ) → πβ(Uα ∩ Uβ)

is a biholomorphism.
Not that on Uα the differential dπα : Dx → Tπα(x)Wα at x ∈ Uα is an iso-

morphism taking the almost complex structure Jx to that on Tπα(x)Wα. Since

ξ y dη = 0 the 2-form 1
2dη descends to a form ωT

α on Wα. Similarly, gT = 1
2dη(·,Φ·)

satisfies Lξg
T = 0 and vanishes on vectors tangent to the leaves, so it descends to

an Hermitian metric gTα on Wα with Kähler form ωT
α . The Kähler metrics {gTα}

and Kähler forms {ωT
α} on {Wα} by construction are isomorphic on the overlaps

φβα : πα(Uα ∩ Uβ) → πβ(Uα ∩ Uβ).

We will use gT , respectively ωT , to denote both the Kähler metric, respectively
Kähler form, on the the local charts and the globally defined pull-back on M .

If we define ν(Fξ) = TM/Lξ to be the normal bundle to the leaves, then we
can generalize the above concept. A tensor Ψ ∈ Γ

(

(ν(Fξ)
∗)⊗p

⊗

ν(Fξ)
⊗q

)

is
basic if LV Ψ = 0 for any vector field V ∈ Γ(Lξ). It is sufficient to check this for
V = ξ. Then gT and ωT are such tensors on ν(Fξ). We will also make use of the
bundle isomorphism π : D → ν(Fξ), which induces an almost complex structure
J̄ on ν(Fξ) so that (D, J) ∼= (ν(Fξ), J̄) as complex vector bundles. Clearly, J̄ is
basic and is mapped to the almost complex structure by local charts dπα : Dx →
Tπα(x)Wα.

To work on the Kähler leaf space we define the Levi-Civita connection of gT by

(12) ∇T
XY =

{

πξ(∇XY ) if X,Y are smooth sections of D,

πξ([V, Y ]) if X = V is a smooth section of Lξ,

where πξ : TM → D is the orthogonal projection onto D. Then ∇T is the unique
torsion free connection on D ∼= ν(Fξ) so that ∇T gT = 0. Then for X,Y ∈ Γ(TM)
and Z ∈ Γ(D) we have the curvature of the transverse Kähler structure

(13) RT (X,Y )Z = ∇T
X∇T

Y Z −∇T
Y ∇T

XZ −∇T
[X,Y ]Z,

and similarly we have the transverse Ricci curvature RicT and scalar curvature sT .
We will denote the transverse Ricci form by ρT .

The following follows from O’Neill tensor computations for a Riemannian sub-
mersion. See [23] and [1, Ch. 9].

Proposition 5. Let (M, g, η, ξ,Φ) be a Sasaki manifold of dimension n = 2m+1,
then

(i) Ricg(X, ξ) = 2mη(X), for X ∈ Γ(TM),

(ii) RicT (X,Y ) = Ricg(X,Y ) + 2gT (X,Y ), for X,Y ∈ Γ(D),
(iii) sT = sg + 2m.

Definition 6. A Sasaki-Einstein manifold (M, g, η, ξ,Φ) is a Sasaki manifold with

Ricg = 2mg.
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Note that by (i) the Einstein constant must be 2m, and the transverse Kähler
metric is also Einstein

(14) RicT = (2m+ 2) gT .

Conversely, if one has a Sasaki structure (g, η, ξ,Φ) with RicT = τ gT with τ >
0, then after a D-homothetic transformation one has a Sasaki-Einstein structure
(g′, η′, ξ′,Φ), where η′ = aη, ξ′ = a−1ξ, and g′ = ag+a(a−1)η⊗η, with a = τ

2m+2 .

Let S(ξ) be the space of Sasaki structures (g̃, η̃, ξ̃, Φ̃) on M with ξ̃ = ξ. For any

(g̃, η̃, ξ̃, Φ̃) ∈ S(ξ) the 1-form β = η̃− η is basic, so [dη̃]b = [dη]b, where [ · ]b denotes
the basic cohomology class of a basic closed form. Thus [ωT ]b ∈ H2

b (M/Fξ,R) is
the same for every Sasaki structure in S(ξ). Thus, as first observed in [5], fixing
the Reeb vector field is the closest analogue to a polarization in Kähler geometry,
and we say that the Reeb vector field ξ polarizes the Sasaki manifold.

For a fixed Reeb vector field ξ, we consider a fixed transversal complex structure
on Fξ which is equivalent to fixing J̄ on ν(Fξ). We define S(ξ, J̄) ⊂ S(ξ) to be the
subset of Sasaki structures inducing the same complex normal bundle (ν(Fξ), J̄), in

other words, the set of (g̃, η̃, ξ, Φ̃) ∈ S(ξ) such that the following diagram commutes

(15)

TM
Φ̃−−−−→ TM





y





y

ν(Fξ)
J̄−−−−→ ν(Fξ).

We will consider three different deformations of a Sasaki structure. First we
consider transverse Kähler deformations.

Lemma 7 ([3, 5]). The space S(ξ, J̄) of all Sasaki structures with Reeb vector field ξ
and transverse holomorphic structure J̄ is an affine space modeled on C∞

b (M)/R×
C∞

b (M)/R × H1(M,R). If (g, η, ξ,Φ) ∈ S(ξ, J̄) is a fixed Sasaki structure then

another structure (g̃, η̃, ξ̃, Φ̃) ∈ S(ξ, J̄) is determined by real basic functions φ and
ψ and an harmonic, with respect to g, 1-form α such that

η̃ = η + dcφ+ dψ + α,

Φ̃ = Φ− ξ ⊗ η̃ ◦ Φ,

g̃ =
1

2
dη̃ ◦ (1 ⊗ Φ̃) + η̃ ⊗ η̃,

(16)

and the transversal Kähler form becomes ω̃T = ωT + 1
2dd

cφ.

Proof. We give only a sketch. See [3] for details. The 1-form γ = η̃−η is basic, and

since dγ ∈ Γ(Λ1,1
b ) and γ is real, dcdγ = 0. And we have the Hodge decomposition

(17) γ = dcφ+ dψ + α,

with respect to the transversal Kähler metric gT , where α ∈ H1
gT is harmonic. But

note that H1
R,gT = H1

R,g, where the latter is the space of real harmonic 1-forms on

(M, g). This is because a β ∈ Γ(Λ1(M)) satisfying dβ = 0 and Lξβ = 0 must be
basic. �

Remark 2.8. It is easy to check that the parameter ψ in (16) changes the structure
only by a gauge transformation along the leaves. That is, if ψ ∈ C∞

b (M), then
exp(ψξ)∗η = η + dψ.
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2.3. transversely extremal metrics. Given a basic φ ∈ C∞
b (M,C), we define

∂#g φ to be the (1, 0) component of the gradient, that is

(18) g(∂#g φ, ·) = ∂̄φ.

In order for ∂#g φ to be transversely holomorphic we need in addition ∂̄∂#g φ = 0.
This is equivalent to the fourth-order transversally elliptic equation

(19) Lb
gφ := (∂̄∂#g )∗∂̄∂#g φ.

As in the Kähler case we have

(20) Lb
gφ =

1

4

(

∆2
b + (ρT , ddcφ) + 2(∂sT ) y ∂#g φ

)

.

We define the space of holomorphy potentials to be Hb
g := kerLb

g.

We denote by M(ξ, J̄) the metrics associated with Sasaki structures in S(ξ, J̄).
We define the Calabi functional just as in (1) by

(21) M(ξ, J̄)
C−→ R

g 7→
∫

M
s2g dµg

We seek critical points of C. Because C only depends on the deformation of the
transversal Kähler metric ω̃T = ω+ 1

2dd
cφ and not the other parameters in Lemma 7

and Proposition 5. iii these critical points are the transversely extremal metrics. The
Euler-Lagrange equation for C was worked out in [5].

Proposition 9 ([5]). The fist derivative of C at g along the path ωT
t = ωT +t 12dd

cφ
is

d

dt
C(gt)|t=0 = −4

∫

M

sg (L
b
gφ) dµg.

Definition 10. A Sasaki metric g ∈ M(ξ, J̄) is extremal if it is a critical point of
(21). Equivalently, the basic vector field ∂#g sg is transversely holomorphic.

2.4. automorphism groups. We consider the relevant automorphism groups and
Lie algebras associated to a Sasaki structure (g, η, ξ,Φ).

Consider first the strictly pseudo convex CR structure (D, J). We denote the
group of CR automorphisms by CR(D, J) and its Lie algebra by cr(D, J). A
fundamental result of [26] classifies strictly pseudoconvex CR manifolds for which
CR(D, J) acts nonproperly. We only need the result for compact M .

Theorem 11 ([26]). Let (M,D, J) be a compact strictly pseudoconvex CR manifold.
If CR(D, J) is not compact, then (M,D, J) is CR diffeomorphic to S2m+1 with the
standard CR structure, in which case CR(D, J) = PSU(m+ 1, 1).

It is useful to have the following alternative characterization of Sasaki structures.

Proposition 12. Let (M,D, J) be a strictly pseudoconvex manifold. If ξ ∈ cr(D, J)
is everywhere transversal to D, then, after possibly changing sign to −ξ, there is a
unique Sasaki structure (g, η, ξ,Φ) with Reeb vector field ξ.

Proof. Let η be the unique 1-form with ker η = D and η(ξ) = 1. After possibly
changing signs on ξ and η we have dη|D > 0. Since ξ preserves the distribution D,
Lξη = 0 and ξ is the Reeb vector field of η. Then one can define Φ by Φ|D = J and
Φ(ξ) = 0, and one has LξΦ = 0. This latter condition and the integrability of (D, J)
implies that (g, η, ξ,Φ) with g defined in (11) is Sasaki. See [3] for details. �
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We have the subgroup of the diffeomorphism group preserving the foliation Fξ

Fol(M,Fξ) = {φ ∈ Diff(M) : φ∗Fξ ⊂ Fξ},
with Lie algebra

fol(M,Fξ) = {X ∈ X− (M) : [X, ξ] ⊂ Γ(Lξ)}.
Note that Fol(M,Fξ) is infinite dimensional as every X ∈ Γ(Lξ) is in fol(M,Fξ).
Any φ ∈ Fol(M,Fξ) induces a map of bundles φ∗ : ν(Fξ) → ν(Fξ). The subgroup
of transversely holomorphic automorphism of Fξ can be characterized as those
which induce an automorphism of the complex bundle (ν(Fξ), J̄)

Fol(M,Fξ, J̄) := {φ ∈ Fol(M,Fξ) : φ∗ ◦ J̄ = J̄ ◦ φ∗}.
Note that this group is also infinite dimensional, since any section in Lξ has a 1-
parameter group in Fol(M,Fξ, J̄). We will denote the projection of X ∈ X− (M) to
a section of ν(Fξ) by X̄ ∈ Γ(ν(Fξ)).

2.4.1. Transversely holomorphic vector fields. The Lie algebra fol(M,Fξ, J̄) of Fol(M,Fξ, J̄)
will be called the space of transversely holomorphic vector fields. A transversely
holomorphic vector field can be characterized more succinctly.

Proposition 13. Let (g, η, ξ,Φ) be any Sasaki structure with Reeb vector field
ξ and transversely holomorphic structure J̄ . Thus Φ satisfies (15). Then X ∈
fol(M,Fξ, J̄) if and only if

(22) [X,ΦY ] = J̄ [X,Y ],

for all Y ∈ X− (M).

Note that (22) implies that X ∈ fol(M,Fξ); that is, it is automatically foliate.
Also, condition (22) is equivalent to the (1, 0) vector field

(23) Ξ =
1

2
(X̄ −

√
−1J̄X̄) ∈ Γ(ν(Fξ))

satisfying the transverse Cauchy-Riemann equations.
Since fol(M,Fξ, J̄) is infinite dimensional we define holT (ξ, J̄) to be the image

of

(24)
fol(M,Fξ, J̄)

π−→ Γ(ν(Fξ))
X 7→ X̄

which is a finite dimensional complex Lie algebra. We will use holT (ξ, J̄) to denote
both transversally holomorphic (1, 0) vector fields as in (23), or transversally real
holomorphic vector fields depending on the context.

The subspace holT (ξ, J̄)0 ⊆ holT (ξ, J̄) of sections with a zero will turn out to be
a Lie subalgebra. As remarked in the proof of Lemma 7

H1,0
b (M/Fξ)⊕H0,1

b (M/Fξ) = H
1
gT = H

1
g,

where on the left we have the basic Dolbeault cohomology, and we see thatH1(M,Z) ⊂
(H1,0

b )∗ is a lattice. As in Kähler geometry, we have the Albanese variety

Alb(M, ξ, J̄) = (H1,0
b )∗/H1(M,Z) = H0

b (M,Ω1
b)

∗/H1(M,Z),

and associated map

µ :M → Alb(M, ξ, J̄),
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which is a transversely holomorphic map if one considers Alb(M, ξ, J̄) to have the
trivial foliation with the points as leaves. Explicitly, if p0 ∈M is a fixed point and
β1, . . . βk ∈ H0

b (M,Ω1
b) are a basis then

(25) µ(p) =
(

∫ p

p0

β1, . . . ,

∫ p

p0

βk

)

for any path γ from p0 to p.
Arguing just as in [19, Thm. 1] we see that the image of

(26) ∂#g : Hb
g → holT (ξ, J̄)

is precisely holT (ξ, J̄)0. Furthermore, (25) induces a group homomorphism µ :

Fol(M,Fξ, J̄) → Aut(Alb(M, ξ, J̄)), with holT (ξ, J̄)0 ⊆ holT (ξ, J̄) the ideal given
by the kernel.

Similar to the Kähler case we have the following.

Lemma 14. If X ∈ holT (ξ, J̄)0, then X = ∂#g f for an imaginary function f ∈√
−1C∞

b (M) if and only if ReX is Killing for gT . If this is so, then V = ReX ∈
Γ(ν(Fξ)) lifts to a vector field Ṽ ∈ aut(g, η, ξ,Φ). Conversely, if Ṽ ∈ aut(g, η, ξ,Φ),

then V = π(Ṽ ) = Re ∂#g f , for the imaginary valued function f =
√
−1η(Ṽ ).

Proof. Suppose V = Re ∂#g f with f imaginary valued. Then
√
−1
2 J̄∗df = V y gT ,

so
√
−1
2 df = V yωT , which implies that LV ω

T = 0 and V is Killing.

Suppose V is Killing and ∂#g f = V −
√
−1J̄V , where f = u +

√
−1v. Then

1
2 (du− J̄∗dv) = V y gT , which implies 1

2 (−J̄∗du − dv) = V yωT . Since LV ω
T = 0,

we have ddcu = 0 and u must be constant.
If V = Re∂#g f with f imaginary valued, choose Ṽ ∈ X− (M) with π(Ṽ ) = V and

η(Ṽ ) = −
√
−1f . Then

LṼ η = d(η(Ṽ )) + Ṽ y dη = −
√
−1df + Ṽ y dη = 0.

�

2.4.2. Real holomorphy potentials. It will be useful to have a description of real
holomorphic transversal vector fields and potentials. Given a real X ∈ holT (ξ, J̄),
let β = X♭. If ∇−β denotes the J̄-anti-invariant component of ∇Tβ. Then a basic
X ∈ Γ(ν(Fξ)) is transversally holomorphic if and only if ∇−X = 0. It follows that
ddcβ = 0, and we have the Hodge decomposition

(27) β = βh + duX + dcvX ,

where βh is harmonic, uX and vX are real functions, and dcvX is coclosed. We have
X ∈ holT (ξ, J̄)0, when βh = 0 in which case fX = uX +

√
−1vX is the holomorphy

potential of X1,0, i.e. X1,0 = ∂#g fX . Note that X is Killing for gT if and only if
uX is constant.

We define the real operator Lb
g by

Lb
gf = (∇−d)∗(∇−d)f.

Then a real basic function f satisfies Lb
gf = 0 if and only if gradf is real holo-

morphic. And every X ∈ holT (ξ, J̄)0 Killing with respect to gT can be written
X = J̄ grad f for such an f . As shown in [25] we have

(28) Lb
gf =

1

2
∆2

bf +
1

2
(ρT , ddcf) +

1

2
(df, dsg),
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and comparing with (20) is related to Lb
g by

(29) 2Lb
gf = Lb

gf +

√
−1

2
LJ̄ grad sgf.

Lemma 15 ([25]). The space of real basic solutions of Lb
g coincides with the space

of real basic solutions of Lb
g.

As in Lemma 14 we have the correspondence

(30)
Hb

g ∩ C∞
b (M,R)

∼−→ aut(g, η, ξ,Φ)
v 7−→ X s.t. η(X) = v, and π(X) = 1

2 J̄ gradv.

2.4.3. Automorphisms of Sasaki-extremal manifolds. We recall the structure of
holT (ξ, J̄) when (g, η, ξ,Φ) is Sasaki-extremal [5] as it will important to what follows.
The result is similar to the theorem of Calabi [8] on the automorphism group of a
Kähler manifold with an extremal metric.

Theorem 16. Let (g, η, ξ,Φ) ∈ S(ξ, J̄) be a Sasaki-extremal structure. Then we
have the semidirect sum decomposition

(31) holT (ξ, J̄) = a⊕ holT (ξ, J̄)0,

where a is the Lie algebra of parallel, with respect to gT , sections of ν(Fξ). And
we also have

(32) holT (ξ, J̄)0 = k⊕ J̄k⊕
(

⊕

λ>0

hλ
)

,

where k = aut(g, η, ξ,Φ)/ξ is the image under ∂#g of the imaginary valued functions

in Hb
g and hλ = {X̄ ∈ holT (ξ, J̄)0 : [∂#g sg, X̄] = λX̄} and k⊕J̄k = CholT (ξ,J̄)0(∂

#
g sg),

the centralizer of ∂#g sg.
Furthermore, the connected component of the identity G = Aut(g, η, ξ,Φ)0 ⊂

Fol(M,Fξ, J̄) is a maximal compact connected subgroup. And any other maximal
compact connected subgroup is conjugate to G in Fol(M,Fξ, J̄).

Proof. Everything but the final statement is proved in [5]. The last statement
was proved in [8] in the Kähler case, and easily follows from the theory of finite
dimensional Lie groups. It is not as simple in this case as Fol(M,Fξ, J̄) is infi-
nite dimensional, and furthermore is not even known to have a Fréchet Lie group
structure.

Let G′ ⊂ Fol(M,Fξ, J̄) be any maximal connected compact subgroup with Lie
algebra g′. By applying the familiar averaging argument using a Haar measure on
G′ to (g, η, ξ,Φ) we get a Sasaki structure (g̃, η̃, ξ̃, Φ̃) with G′ = Aut(g̃, η̃, ξ̃, Φ̃)0.

It is proved in [22] that there exist an f ∈ Fol(M,Fξ, J̄) so that f∗η̃(ξ) = c ∈
R>0. This follows from a leaf wise version of Moser’s argument which can be used
to prove f∗η̃|Lξ

= cη|Lξ
. But since the averaging preserves the volume

Vol(M, g̃) =
1

m!

∫

M

f∗η̃ ∧ (
1

2
f∗dη̃)m

=
1

m!

∫

M

cm+1η ∧ (
1

2
dη)m

= cm+1 Vol(M, g),

(33)
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so c = 1. The second equality follows because f∗η̃−cη is a basic form and an appli-
cation of Stokes theorem. Therefore f applied to (g̃, η̃, ξ̃, Φ̃) gives a Sasaki structure
(g′, η′, ξ,Φ′) ∈ S(ξ, J̄) with Aut(g′, η′, ξ,Φ′)0 conjugate to G′ in Fol(M,Fξ, J̄).

We have the continuous group homomorphism

Υ : Fol(M,Fξ, J̄) → Aut(holT (ξ, J̄)0),

with Υ(φ)X̄ = φ∗X̄, where Fol(M,Fξ, J̄) is given the topology as a closed subgroup
of the diffeomorphism group. By considering 1-parameter subgroups generated
by X such that X̄ ∈ holT (ξ, J̄)0, one sees that the adjoint group of Lie algebra

holT (ξ, J̄)0, H = Inn(holT (ξ, J̄)0) ⊆ Aut(holT (ξ, J̄)0), is in the image of Υ. Note

that the Lie algebra h of H = Inn(holT (ξ, J̄)0) is hol
T (ξ, J̄)0/Z(hol

T (ξ, J̄)0).
Let G = Aut(g, η, ξ,Φ)0 for a Sasaki-extremal structure, then by (32) it is easy

to see G is maximal connected compact. Let G′ ⊂ Fol(M,Fξ, J̄) be any other
connected maximal compact subgroup with Lie algebra g′. As shown above we
may assume, up to conjugation, that G′ = Aut(g′, η′, ξ,Φ′)0, for (g′, η′, ξ,Φ′) ∈
S(ξ, J̄). Let ḡ′ := π(g′) = g′/ξ ⊂ holT (ξ, J̄)0. Then g′ has image under Υ given

by Υ∗g
′ = ḡ′/ḡ′ ∩ Z(holT (ξ, J̄)0). Since Υ∗g ⊆ h is the Lie algebra of a maximal

compact subgroup of H , there exists an h ∈ H so that Ad(h)∗Υ∗g
′ ⊆ Υ∗g.

Let φ ∈ Fol(M,Fξ, J̄) be such that Υ(φ) = h. Then ĝ = Ad(φ)∗(g
′) satisfies

Υ∗ĝ ⊆ Υ∗g. Since π(g) contains Z(holT (ξ, J̄)0), we have π(ĝ) ⊆ π(g). Applying
φ to (g′, η′, ξ,Φ′) and then a transformation as f above, we get a Sasaki structure

(g̃, η̃, ξ, Φ̃) with Aut(g̃, η̃, ξ, Φ̃)0 = G̃ conjugate to G′ in Fol(M,Fξ, J̄) and with
π(g̃) ⊆ π(g).

From Lemma 7 we have η = η̃+dψ+dcφ+α, with ψ, φ basic and α g̃ harmonic.
So ωT = ω̃T + 1

2dd
cφ. After a gauge transformation (See Remark 8) we may assume

that ψ = 0. Any X̄ ∈ π(g̃) ⊆ π(g) is both gT and g̃T Killing. Since

0 = LX̄dd
cφ = ddcX̄φ,

X̄φ is constant, and thus X̄φ = 0. If X ∈ g̃, then d(η̃(X)) = −X y dη̃. We have

d(η(X)) = d(η̃(X) + dcφ(X) + α(X))

= −X y dη̃ + d(dcφ(X))

= −X y dη̃ − (X y ddcφ)

= −X y dη,

(34)

where the second equality is because α is harmonic and the third because LXd
cφ =

0. Therefore g̃ ⊆ g. Since G̃ is maximal, we must have G̃ = G. Therefore G′ is
conjugate to G in Fol(M,Fξ, J̄). �

Remark 2.17. If we have two Sasaki-extremal structures (gi, ηi, ξ,Φi) ∈ S(ξ, J̄), i =

1, 2, then there is a φ ∈ Fol(M,Fξ, J̄) so that φ∗(g2, η2, ξ,Φ2) = (ĝ, η̂, ξ, Φ̂) satisfies

Aut(ĝ, η̂, ξ, Φ̂)0 = Aut(g1, η1, ξ,Φ1)0. One should be able to extend the proof of
uniqueness of extremal Kähler metrics [9] to the Sasaki case.

From now on G′ ⊂ Fol(M,Fξ, J̄) will be a fixed maximal connected compact
subgroup, and G ⊆ G′ a connected compact subgroup with Lie algebras {ξ} ⊆ g ⊆
g′. As seen above there is a Sasaki structure (g, η, ξ,Φ) with G′ = Aut(g, η, ξ,Φ)0.
We define several Lie algebras:

• z = Z(g), the center of g,
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• z′ = Cg′(g), the centralizer of g in g′,

• z′′ = CholT (ξ,J̄)0(g), the centralizer of g in holT (ξ, J̄)0,

• p = Ng′(g), the normalizer of g in g′,

• q = NholT (ξ,J̄)0(g), the normalizer of g in holT (ξ, J̄)0.

We denote by Hs
g ⊆ Hb

g the corresponding space of holomorphy potentials where
s is one of the above Lie algebras. Note that

H
z
g ⊆ H

z′

g ⊆ H
p
g ⊆ H

g′

g

consist of purely imaginary functions, and Hz
g (respectively Hz′

g ) consist of G-

invariant functions in H
g
g (respectively H

g′

g ).
We also have the following whose proof is just as in [25].

Lemma 18. We have the isomorphisms of Lie algebras induced by the injections

z′/z ∼= p/g, z′′/z ∼= q/g.

2.5. Relative Futaki invariant.

2.5.1. Reduced scalar curvature. We let L2
k(M) denote the kth real Sobolev space.

We assume k > m+1, where dimM = 2m+1, so that L2
k(M) is a Banach algebra.

Denote L2
k,G(M) to be the subspace of G-invariant functions in L2

k(M), which is

also a Hilbert space and Banach algebra. Note that L2
k,G(M) are basic functions

since we assume that ξ ⊂ g. The L2-inner product is defined using the metric of
the G-invariant Sasaki structure.

We have an orthogonal decomposition

L2
k,G(M) =

√
−1Hz

g ⊕Wg,k,

with the projections

πG
g : L2

k,G(M) →
√
−1Hz

g and πW
g : L2

k,G(M) →Wg,k.

Associated to a G-invariant Sasaki structure (g, η, ξ,Φ) we define the reduced scalar
curvature

(35) sGg = πW
g (sg).

The condition sGg = 0 is equivalent to sg ∈
√
−1Hz

g ⊂ Hb
g, so this implies that g is

Sasaki-extremal.

2.5.2. Reduced Ricci form and Ricci potential. As in [27, 28] we define the reduced

Ricci form and Ricci potential. Let L2
k,G(Λ

1,1
b M) be the space of basic G-invariant

(1, 1)-forms in L2
k. As in [28] one can define a projection

ΠG
g : L2

k,G(Λ
1,1
b M) → L2

k,G(Λ
1,1
b M),

by

ΠG
g γ = γ + ddcf,

where f = Gg(π
W (ωT , γ)). This projection intertwines the trace with πG

g , that is

(ωT ,ΠG
g γ) = πG

g (ωT , γ).
We obtain the reduced Ricci form [28] by

(36) ρG = ΠG
g ρ

T ,
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and the related identity

(37) ρG = ρT +
1

2
ddcψG

g .

One has ψG
g = 2Gg(π

W (ωT , ρT )) and ρG = ρT if and only if sGg = 0.

2.5.3. Relative Futaki invariant. Suppose we have a G-invariant Sasaki structure
(g, η, ξ,Φ) on M . We define the relative Futaki invariant

(38) FG,ξ(X) =

∫

M

dcψG
g (X) dµg,

where X ∈ holT (ξ, J̄) is any real transversely holomorphic vector field and ψG
g

is the Ricci potential (37) of g. Though defined in terms of the metric, (38) is
independent of the G-invariant Sasaki structure in S(ξ, J̄). See [25], and also [5]
and [16] for the Sasaki-Futaki invariant, where ψG

g is replaced by the usual Ricci-

potential ψg = 2Gg((ω
T , ρT )− (ωT , ρT )0), with

(ωT , ρT )0 =

∫

M (ωT , ρT ) dµg
∫

M dµg

=

∫

M
sTg dµg

∫

M
dµg

=
4mπc1(Fξ) ∪ [ωT ]m−1

[ωT ]m
.

the average of the scalar curvature.
In terms of the Hodge decomposition (27) of the dual 1-form X♭ = X♭

h + duX +
dcvX we have

FG,ξ(X) =

∫

M

(J∗X♭
h + J∗duX + J∗dcvX , dψ

G
g ) dµg

=

∫

M

(J∗X♭
h − dcuX + dvX , dψ

G
g ) dµg

=

∫

M

(dvX , dψ
G
g ) dµg

=

∫

M

(vX ,∆gψ
G
g ) dµg

=

∫

M

vXs
G
g dµg.

(39)

The third equality follows because J∗X♭
h is harmonic and dcuX is coclosed.

It follows from (39) that if X ∈ g then FG,ξ(X) = 0. Thus we have the R-linear
character

(40) FG,ξ : q/g → R.

A G-invariant Sasaki-extremal structure in S(ξ, J̄) has sGg = 0 if and only if (40)
vanishes.
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3. Deformations of Sasaki structures

Besides the transversal Kähler deformations of a Sasaki structure (g, η, ξ,Φ)
considered in Lemma 7 we will consider two other deformations. First, we will
consider deformations of the transversal complex structure J̄ on Fξ. In particular,
we will consider deformations equivariant with respect to the compact group G.
Second, we will also consider deformations of the Reeb vector field ξ. Together
these give a subspace of the versal deformation space of (Fξ, J̄) as a transversely
holomorphic foliation.

3.1. Deformation of foliations.

3.1.1. Kuranishi space. We consider the deformations of the transversely holomor-
phic foliation (Fξ, J̄). In particular, we are interested in the deformations of (Fξ, J̄)
that preserve its structure as a smooth foliation. The existence of a versal space for
deformations, which fix the smooth foliation structure, was proved in [12], and the
universal property of the versal space was strengthened in [17]. Note this requires
an assumption on the foliation, of which being transversally Hermitian is sufficient,
which is clearly the case for (Fξ, J̄).

We denote by A0,k = Γ(Λ0,k
b ⊗ ν(F )1,0) the space of smooth basic forms of type

(0, k) with values in ν(F )1,0, and we have the Dolbeault complex

(41) 0 → A
0,0 ∂̄b−→ A

0,1 ∂̄b−→ · · · .
The tangent space to the versal space is the first cohomology of (A0,•, ∂̄b) denoted
H1

∂̄b
(A0,•).

The versal space V is the germ of θ−1(0) where θ is an analytic map

(42) H1
∂̄b
(A0,•)

θ→ H2
∂̄b
(A0,•).

Thus there exists a family of transverse holomorphic structures on Fξ parametrized
by V, (Fξ, J̄t)t∈V, such that any other deformation is given by a pull-back via a
map to V.

As above, we consider a compact group G acting on (Fξ, J̄). One can consider

the complex of G-invariant forms A0,k
G = Γ(Λ0,k

b ⊗ ν(F )1,0)G,

(43) 0 → A
0,0
G

∂̄b−→ A
0,1
G

∂̄b−→ · · · .
By considering Hodge theory for transversally elliptic operators one can show that
the cohomology of (43) is naturally identified with Hk

∂̄b
(A0,•)G, the cohomology

classes fixed by G of (41). The tangent space of the subspace VG ⊆ V of G-
equivariant deformations is H1

∂̄b
(A0,•)G.

3.1.2. Sasaki structures. Suppose we have a family of G-invariant transversal com-
plex structures (Fξ, J̄t), t ∈ B ⊆ VG, with B a smooth subspace. By the results
of [11], which extend the stability result of Kodaira and Spencer on deformations
of Kähler manifolds to deformations of foliations fixing the differentiable structure,
we have transverse Kähler structures ωT

t on (Fξ, J̄t) with t,∈ B, after possibly
shrinking B. Although the transversely Kähler property is stable, there is a fur-
ther obstruction to the existence of a Sasaki structure compatible with (Fξ, J̄t) for
t ∈ B. The necessary and sufficient condition for the existence of a Sasaki structure
were obtained in [22] for more general deformations, not necessarily preserving the
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smooth structure of F . But for our purposes, we will only consider deformations
of (Fξ, J̄) preserving the smooth foliation structure.

Definition 19. A deformation (Fξ, J̄t), t ∈ B ⊆ V of the underlying foliation of a
Sasaki structure (g, η, ξ,Φ) is of (1, 1)-type if for all t ∈ B the (0, 2)-component of

the Euler class [dη0,2] ∈ H0,2
b,t (M/Fξ) is zero, where H0,2

b,t (M/Fξ) = H2
∂̄b,t

(Γ(Λ0,•
b ))

is the basic Dolbeault cohomology for the transversal complex structure J̄t.

Theorem 20 ([22]). Let (Fξ, J̄t), t ∈ B ⊆ V be a deformation of the Reeb foliation
of (g, η, ξ,Φ). Then there exists a smooth family of (gt, ηt, ξ,Φt) ∈ S(ξ, J̄t), t ∈ V ⊂
B of compatible Sasaki structures, where V is a neighborhood of zero in B, if and
only if the deformation is of (1, 1)-type restricted to V .

An application of a transversal Kodaira-Nakano vanishing theorem gives the
following which is basically Corollary 1.4 of [22].

Proposition 21. Let (Fξ, J̄t), t ∈ B be a deformation of the underlying foliation of
a Sasaki structure (g, η, ξ,Φ), and suppose the first Chern class cb1(Fξ) =

1
2π [ρ

T ] ∈
H2

b (M/Fξ,R) is representable by a basic positive (1, 1)-form, then after restricting
to a neighborhood of zero V ⊂ B the deformation is of (1, 1)-type.

Remark 3.22. In particular, the proposition is applicable if (g, η, ξ,Φ) is Sasaki-

Einstein or more generally RicT > 0. But in order to apply Kodaira-Nakano vanish-
ing to prove H0,2

b,t (M/Fξ) for t ∈ V we only need that the transverse anti-canonical

bundle
∧m,0

ν(Fξ) is positive.

Example 3.23 Let Za = C2/Λ be the complex torus given by the lattice Λ =
Z{λ1, . . . , λ4} ⊂ C2 with λ1 = (1, 0), λ2 = (0, 1), λ3 = (i, 0), λ4 = (a, i) where
a ∈ C. Let x1, . . . , x4 be dual real coordinates to the lattice vectors λ1, . . . , λ4.
Then

ω = dx1 ∧ dx3 + dx2 ∧ dx4
is integral, [ω] ∈ H2(Z,Z), and so defines a smooth S1 bundle L with total space
M . Let z1, z2 be the standard holomorphic coordinates on C2. Then a routine
calculation gives

ω =
i

2
dz1 ∧ dz̄1 +

i

2
dz2 ∧ dz̄2 +

a

4
dz̄1 ∧ dz2 +

ā

4
dz1 ∧ dz̄2 −

ā

4
dz1 ∧ dz2 −

a

4
dz̄1 ∧ dz̄2

and [ω0,2] = −a
4 [dz̄1 ∧ dz̄2] is nonzero in H0,2(Z) for a 6= 0. When a = 0 as a

C-bundle L has a natural holomorphic structure and polarizes Z0, and M has a
natural Sasaki structure with transversal Kähler form ω and Reeb foliation Fξ

given by the S1 bundle L with leaf space Z0. But for a 6= 0 there is no complex
structure on the C-bundle L and no compatible Sasaki structure on M with Fξ

given by L with leaf space Za.
In fact, one can prove that for a ∈ C \Q+ iQ there is no integral nondegenerate

(1, 1)-form on Za. Thus Za is not algebraic for a ∈ C \ Q + iQ. ♦

If we have a G-equivariant deformation of (1, 1)-type (Fξ, J̄t), t ∈ B ⊆ VG,
then the family (gt, ηt, ξ,Φt), t ∈ B of Theorem 20 can be taken to be G-invariant
by averaging ηt by the G-action. In the following we will assume the deformed
structures (gt, ηt, ξ,Φt) are G-invariant.
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3.2. Sasaki cone.

3.2.1. Deforming the Reeb vector field in the Sasaki cone. We have a G-invariant
Sasaki structure (g, η, ξ,Φ), where G has Lie algebra g with center z with ξ ∈ z.

Definition 24. We define the Sasaki cone of z ⊆ aut(g, η, ξ,Φ) to be z+ = {ζ ∈ z :
η(ζ) > 0}, which is clearly open in z.

If ζ ∈ z+, then ηζ = η(ζ)−1η is a contact form for D = ker η with Reeb vector
field ζ. It follows from Proposition 12 that (gζ , ηζ , ζ,Φζ) is a Sasaki structure with
the same underlying CR structure, where Φζ(X) = Φ(X) − ηζ(X)Φ(ζ) and gζ is
defined in (11).

Let T r ⊆ G be the connected component of the identity of the center. We get an
alternative description of z+ if we consider the moment map for the Hamiltonian
action on the cone C(M) = R>0 ×M . In fact the moment map for the symplectic
action of T r on C(M) is given in terms of the contact form by

(44) µη : C(M) → z∗,

where µη(x, r)(X) = r2ηx(X) with X ∈ z also denoting the vector field induced on
C(M). The image of (44) is a strongly convex rational polyhedral cone C∗

z ⊂ z∗

([10]). Although the map µη depends on the contact form η, the image C∗
z is

independent of transversal Kähler deformations, considered in Lemma 7, and the
deformations of the Reeb vector field ξ ∈ z+ considered above.

By Farkas’ theorem, the dual cone Cz to C∗
z is also a strongly convex polyhedral

cone. From the definition of µη we see that

(45) z+ =
◦
Cz.

We will consider deformations of the Sasaki structures (gt, ηt, ξ,Φt) ∈ S(ξ, J̄t), t ∈
B of the previous section. Given φ ∈ L2

k,G(M), with k > m+5, and ξα = ξ+α ∈ z+

we consider the Sasaki structure (gt,α,φ, ηt,α,φ, ξα,Φt,α,φ) ∈ S(ξα, J̄t) with

ηt,α,φ = ηt,ξα + dcφ,(46)

Φt,α,φ = Φt,ξα − (ξα ⊗ (ηt,ξα,φ − ηt,ξα) ◦ Φt,ξα ,(47)

and gt,α,φ defined from (46) and (47) as in (11). Therefore we have a space of
Sasaki structures parametrized by (t, α, φ) ∈ B × z × L2

k,G(M), in a neighborhood
of zero. The restriction k > m+ 5 ensures that the curvature tensors of gt,α,φ are
well defined.

3.2.2. Nondegeneracy of the relative Futaki invariant. As the notation in (38) sug-
gests the dependence of FG,ξα on ξα = ξ+α ∈ z+ will be important. In a following
section we will compute the derivative

DgFG,ξ+tα(α) =
d

dt
FG,ξ+tα|t=0.

Note that one must be careful that as ξα varies in z+ one cannot assume that
holT (ξα, J̄) is unchanged because we are changing the foliation. We assume that our
starting structure (g, η, ξ,Φ) has G′ = Aut(g, η, ξ,Φ)0 a maximal compact subgroup
of Fol(Fξ, J̄). We restrict FG,ξα to p/g and differentiate with respect to α ∈ z at
α = 0 to get

(48) DgFG,ξ : p/g ∼= z′/z → z∗.
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Definition 25. The Futaki invariant relative to G is said to be G′-nondegenerate
if (48) is injective.

4. Proof of main theorem

The proof of the main theorem will depend on variation formulae as we vary the
Sasaki structure as in (46).

For X ∈ holT (ξ, J̄)1,00 the normalized potential fX ∈ Hb
g can be written in terms

of the Green’s function Gg

fX = −
√
−1Gg

(

∂̄∗b (X y dη)
)

,

though this will not be used.

4.1. Variation formulae. We will consider the first order variations of holomor-
phy potentials and the reduced scalar curvature with respect to varying the Sasaki
structure in (46), more precisely, the derivative with respect to φ ∈ L2

k,G(M) or
α ∈ z. In the following Dg will denote the derivative with respect to variations of
the Sasaki structure at (g, η, ξ,Φ). The proof of the first lemma is easy.

Lemma 26. Let X ∈ holT (ξ, J̄)1,00 with holomorphy potential fX = ux +
√
−1vX .

Then

DgfX(φ) = Xφ,

and if X = V −
√
−1J̄V real components are DguX(φ) = V φ, DgvX(φ) = −J̄V φ.

If X̄ = V̄ −
√
−1J̄ V̄ with V ∈ g′ and α ∈ Cg′(X), then a non-normalized

holomorphy potential is fX =
√
−1η(V ). And

DgfX(α) = −
√
−1η(α)η(V ).

Lemma 27. Let (g, η, ξ,Φ) be a G-invariant Sasaki structure. The variation of sGg
in the direction φ ∈ L2

k,G(M) is

(49) Dgs
G
g (φ) = −2Lgφ+ (dφ, dsGg ).

If sGg = 0, then the variation of sGg in the direction α ∈ Cg′(g) is given by

(50) Dgs
G
g (α) = (1 − πG

g )
(

η(α)(2sg − s0 + 2m)− 2(m+ 1)∆bη(α)
)

Proof. The formula (49) was proved in [28]. More precisely, it is proved that

Dg(π
GsG)(φ) = ∂#g (πG

g sg) y ∂φ =
1

2
(dφ, d(πG

g sg))

from which (49) follows.
For (50) we consider the variation of Sasaki structures ξt = ξ+tα with α ∈ Cg′(ξ),

ηt = η(ξt)
−1η, and fixing the CR structure. Let ft = η(ξt)

−1, then ωT
t |D =

ftω
T |D, which is just a conformal change. But the calculation of the variation of

the curvature is more subtle as the foliation with respect to which the transverse
connection, t∇T , is defined is changing. One calculates, with X,Y ∈ Γ(D)

t∇T
XY = ∇T

XY +
1

2

(

d log f(X)Y + d log f(Y )X − gT (X,Y )(d log f)#
)

+ f
(

gT (Φ(X), Y )πξ(ξt)− g(ξt, Y )Φ(X)− g(ξt, X)Φ(Y )
)

,
(51)
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where πξ : TM → D is the orthogonal projection with respect to g and f = ft.
And

∇̇T
XY =

d

dt
t∇T

XY |t=0 =∇T
XY +

1

2

(

dḟ(X)Y + dḟ(Y )X − gT (X,Y )(dḟ )#
)

+ gT (Φ(X), Y )πξ(α) − g(α, Y )Φ(X)− g(α,X)Φ(Y )
)

.

(52)

Using (52) one calculates, via a long but routine calculation the derivative at t = 0

of the transverse curvature ṘT (X,Y )Z. And contracting the result gives

d

dt
sTt |t=0 = −ḟsTg + 2(m+ 1)∆bḟ

= η(α)(sg + 2m)− 2(m+ 1)∆Bη(α).
(53)

It remains to differentiate πG
g . We let πG

t : L2
k,G(M) →

√
−1Hz

gt ⊂ L2
k,G(M)

be the projection defined by the above Sasaki structure with ξt = ξ + tα and
fixed CR structure. Since sGg = (1 − πG

g )sg = 0, it is sufficient to compute (1 −
πG
g )(

d
dtπ

G
t |t=0)sg. We claim that

(54) (1 − πG
g )(

d

dt
πG
t |t=0)sg = (1 − πG

g )(−η(α)(sg − s0)).

Wemay assume that ∂#g sg 6≡ 0, otherwise both sides vanish. Let {X0 = ξ,X1, . . . , Xr}
be a basis of z with X1 chosen so that J̄X̄1+

√
−1X̄1 = ∂#g sg and η(X1) = sg − s0.

Then p0t = 1, p1t = ηt(X1), . . . , p
r
t = ηt(Xr) is a basis of Hz

gt for small t. By

the Gramm-Schmidt procedure, using the L2 inner product induced by g, we ob-
tain an orthonormal basis {f0

t , . . . , f
r
t } from {pjt}. In terms of this basis we have

πG
t sg =

∑r
j=0〈f

j
t , s〉L2f j

t . Thus we have

(55) (1 − πG
g )(

d

dt
πG
t |t=0)sg = (1 − πG

g )

r
∑

j=0

〈f j
0 , s〉L2

d

dt
f j
t |t=0,

because each f j
0 is in the kernel of (1 − πG

g ).
Note that only the j = 0, 1 terms in (55) are possibly non-trivial. We have

p1t = η(ξ+ tα)−1η(X1) = η(ξ+ tα)−1(sg − s0), and f
0
t = (Vol(gt))

−1/2. So we have

(56) f1
t =

p1t − 〈p1t , f0
t 〉L2f0

t

‖p1t − 〈p1t , f0
t 〉L2f0

t ‖L2

.

Since d
dtf

0
t |t=0 is a constant function, (55) is

(1 − πG
g )(

d

dt
πG
t |t=0)sg = ‖sg − s0‖L2(1 − πG

g )
d

dt
f1
t |t=0.

Again, because constant functions and p10 are annihilated by (1 − πG
g ),

d

dt
f1
t |t=0 =

−η(α)(sg − s0)

‖sg − s0‖L2

mod ker(1 − πG
g ),

and (54) follows. �

Lemma 27 and (39) has the following consequence
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Proposition 28. Suppose (g, η, ξ,Φ) be a G-invariant Sasaki structure satisfying
sGg = 0. Then the derivative of the relative Futaki invariant is

DgFG,ξ,X(α) =

∫

M

vX(1 − πG
g )(η(α)(2sg − s0 + 2m)− 2(m+ 1)∆bη(α)) dµg ,

where X ∈ z′ has potential
√
−1vX and α ∈ z.

This has the following consequence.

Corollary 29. Let (g, η, ξ,Φ) be a G-invariant Sasaki-Einstein structure. Then if
p/g ∼= z′/z nonzero, the relative Futaki invariant is degenerate.

Proof. By the Lichnerowicz-Matsushima theorem the Killing potentials η(α), when
normalized to have zero integral, vα = η(α)− η(α)0 satisfy ∆bvα = 4(m+ 1)vα. It
is then easy to see that the integrand in Proposition 28 vanishes. �

4.2. Main theorem.

4.2.1. Proof of main theorem. A Sasaki metric gt,α,φ as in (46) with φ ∈ L2
k+4,G(M),

k > m + 1, is G-invariant. We have the space of holomorphy potentials H
g
t,α,φ

for gt,α,φ, and the subspace of G-invariant potentials H
z
t,α,φ ⊆ H

g
t,α,φ. Using the

metric gt,α,φ to define the L2 inner product on φ ∈ L2
k,G(M) we have the orthogonal

decomposition

L2
k,G(M) =

√
−1Hz

t,α,φ ⊕Wk,t,α,φ,

and the projections

πG
t,α,φ : L2

k,G(M) →
√
−1Hz

t,α,φ, and π
W
t,α,φ : L2

k,G(M) →Wk,t,α,φ.

The reduced scalar curvature of gt,α,φ is given by

(57) sGt,α,φ = πW
t,α,φ(st,α,φ) = (1 − πG

t,α,φ)(st,α,φ)

We are looking for solutions of the equation

(58) sGt,α,φ = 0.

For (t, α, φ) ∈ U ⊂ B × z × L2
k+4,G(M) with U a small enough neighborhood of

(0, 0, 0) the associated Sasaki structure (46) is well defined and πW
0 : Wk,t,α,φ →

Wk,o is an isomorphism.
Let V = U ∩B× z×Wk+4,0. Then we define a map

(59)
S : V → B×Wk,0

(t, α, φ) 7→
(

t, πW
0 (sGt,α,φ)

)

Lemma 30. The map S is C1 and its differential is Fredholm. Assume that the
Sasaki structure (g, η, ξ,Φ) at (0, 0, 0) ∈ V has vanishing reduced scalar curvature
sGg = 0, then the differential of S at (t, α, φ) = (0, 0, 0) is

[

1 0 0
∗ SGg

]

where

S
G
g (α̇, φ̇) = −2Lgφ̇+ πW

0 (ṡGg )(α))

= −2Lgφ̇+ πW
0

(

η(α)(2sg − s0 + 2m)− 2(m+ 1)∆bη(α))
)

.
(60)
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Proof. Since the reduced scalar curvature sGt,α,φ is C1 in (t, α, φ), the map S is C1.

The formula for SGg (α̇, φ̇) follows from Lemma 27. �

Proposition 31. Suppose that (g, η, ξ,Φ) at (0, 0, 0) ∈ V had vanishing reduced
scalar curvature sGg = 0, then the Fréchet derivative of S , defined in (59), at
(t, α, φ) = (0, 0, 0) has index dim z and is an submersion if and only if the relative
Futaki invariant FG,ξ is nondegenerate at ξ.

Proof. Note that DgS is a compact perturbation of

B× z×Wk+4,0 ∋ (s, α̇, φ̇) 7→ (s,−2Lgφ̇) ∈ B×Wk,0.

Since the index of Lg :Wk+4,0 →Wk,0 is zero, the index of DgS must be dim ζ.
If DgS is not surjective, there is a ψ ∈Wk,0 in the cokernel. We have from (60)

〈Lgφ̇, ψ〉 = 0, and 〈πW
0 (ṡGg )(α)), ψ〉 = 0,

for all φ̇ ∈ Wk+4,0. The first equation implies ψ ∈
√
−1Hz′

g , so X = J̄ gradψ ∈ z′.
Thus

(61)

∫

M

ψπW
0 (ṡGg (α̇)) dµg =

∫

M

ψṡGg (α̇) dµg = DgFG,ξ,X(α̇),

where the second equality uses (39) and that sGg = 0. If FG,ξ is nondegenerate,

then this implies X ∈ z and ψ ∈
√
−1Hz

g contradicting ψ ∈Wk,0. �

Theorem 32. Let (Fξ, J̄t), t ∈ B, be a G-equivariant (1, 1)-type deformation with
B smooth and fixing the smooth structure of Fξ, where G is a compact connected
group with ξ ∈ g. Suppose (g, η, ξ,Φ) ∈ S(ξ, J̄0) has vanishing reduced scalar curva-
ture sGg = 0. If the relative Futaki invariant FG,ξ is nondegenerate at ξ, then there

is a neighborhood V of (0, 0, 0) ∈ B× z× C∞
b (M)G so that

E = {(t, α, φ) ∈ V : (gt,α,φ, ηt,α,φ, ξ + α,Φt,α,φ) has s
G
t,α,φ = 0},

is a smooth manifold of dimension dimR B+ dimR z.
Furthermore, the map ̟ : E → B, ̟(t, α, φ) = t is a submersion with fibers of

dimension dimR z. And any (t, α, φ)) ∈ E has φ ∈ C∞
b (M)G.

Proof. By Proposition 31 the map (60) is a submersion at (0, 0, 0). Let K =
kerDgS ⊂ T0B × z ×Wk+4,0. We identify B ⊂ T0B as a Euclidean space. Let
π : V = U∩B× z×Wk+4,0 → K be the orthogonal projection. Then the differential
at zero of

S × π : V → B×Wk,0 ×K,

is an isomorphism. The inverse function theorem provides an inverse, and B×K ∋
(t, s) 7→ (S × π)−1(t, 0, s), parametrizes E.
̟ is a submersion because S is orthogonal to B × {0} × {0}. If (t, α, φ) ∈ E,

then gTt,α,φ is transversely extremal. The regularity result of [20], applied in a local

foliation chart, shows that φ ∈ C∞
b (M)G. �

4.2.2. Maximal torus case. The case in which G = T r ⊆ G′ is a maximal torus
gives a somewhat stronger result than in general. Furthermore, it is easier to
find examples, because the nondegeneracy of the Futaki invariant holds trivially.
In this section G = T r is a maximal torus in the maximal compact subgroup
G′ ⊂ Fol(M,Fξ, J̄). Note that we have z = z′ = g.

The proof of the following is obvious.
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Lemma 33. Suppose G′ ⊂ Fol(M,Fξ, J̄) is maximal compact and G = T r ⊆ G′

is a maximal torus. Then p/g = z′/z = 0.

Corollary 34. Let (Fξ, J̄t), t ∈ B, be a G-equivariant deformation of (1, 1)-type
with B smooth and fixing the smooth structure of Fξ, where G = T r is a maximal
torus of G′ = Aut(g, η, ξ,Φ)0, and suppose (g, η, ξ,Φ) ∈ S(ξ, J̄0) has vanishing
reduced scalar curvature sGg = 0. Then there is a neighborhood of zero V ⊂ B×g so

that for (t, α) ∈ V there is smooth Sasaki metric gt,α,φt,α
satisfying sGgt,α,φt,α

= 0. So

that for each fixed t ∈ B close to zero, the space of extremal metrics is parametrized
by a neighborhood of zero in g.

Proof. By the Lemma the relative Futaki invariant is nondegenerate. As above,
define K = kerDgS . Suppose (0, 0, φ̇) ∈ K, then by (60) we have Lgφ̇ = 0.

So φ̇ ∈
√
−1Hz′

g = Hz
g, and φ̇ = 0 since φ̇ ∈ Wk+4,0. Therefore the projection

̟ : K → g, ̟(t, α, φ) = α is an isomorphism. We consider the map

S ×̟ ◦ π : V → B×Wk,0 × g,

whose differential at zero is an isomorphism. The proof then follows from the inverse
function theorem as in Theorem 32. �

4.3. Sasaki-Einstein case.

4.3.1. Necessary condition for a Sasaki-Einstein structure. Because of Corollary 29
we might as well assume G = T r and T r ⊆ G′ is a maximal torus. We recall the
necessary condition for (g, η, ξ,Φ) to admit a transverse Kähler deformation to
a Sasaki-Einstein structure, or rather a structure which is transversally Kähler-
Einstein, RicT = τgT , τ > 0. The following necessary conditions are well known.
See [16] or [21].

Proposition 35. The following conditions are equivalent.

(i) τ
2π [ω

T ] = cb1(Fξ) in H
2
b (M/Fξ) for τ > 0.

(ii) The class cb1(Fξ) is represented by a positive (1, 1) basic form and c1(D) = 0.

(iii) There exists a nowhere vanishing holomorphic (m+1, 0)-form Ω ∈ Γ(Λ1,1C(M))
for which LξΩ =

√
−1 τ

2Ω. If M is not simply connected, then we may have

to take Ω to be multi-valued, or Ω ∈ Γ(Λ1,1C(M))⊗ℓ.

Remark 4.36. Note that the conditions imply π1(M) must be finite. The trans-
verse Calabi-Yau theorem [13] implies the existence of a transverse Kähler defor-

mation to transversal metric with RicT > 0. After a possible homothety, this lifts
to a Sasaki structure with Ricg > 0, and the claim follows from Myers’ Theorem.

Proof. In order to prove the equivalence of (i) and (ii) consider the Gysin se-
quence [3, Ch. 7]

(62) 0 → H0
b (M/Fξ)

δ−→ H2
b (M/Fξ)

ι−→ H2(M,R) → · · · ,
where δα = [αdη]b. If we have (i), then ι(c

b
1(Fξ)) = 0. But this represents c2(D). If

(ii) holds, then again ι(cb1(Fξ)) = 0, so there exists an α ∈ R with δ(α) = 2α[ωT ] =
cb1(Fξ. But by assumption we must have α > 0.
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Supposing (iii) we have

(63)
(

√
−1

2

)m+1

(−1)m(m+1)/2Ω ∧ Ω̄ = exp(h)
1

(m+ 1)!
ωm+1,

with ω the Kähler form of (C(M), ḡ) and h ∈ C∞(C(M)). Taking the Lie derivative
Lξ of (63), we see the condition in (iii) implies Lξh = 0. We make a homothetic
deformation (ga, ηa, ξa,Φ) of (g, η, ξ,Φ) with a = τ

2m+2 , i.e. ηa = aη, ξa = 1
aξ and

ga = ag + (a2 − a)η ⊗ η. We use our original notation for this homothetic Sasaki
structure, then we have LξΩ =

√
−1(m + 1)Ω. Then applying Lr∂r

to (63), with
the new Sasaki structure, since Lr∂r

ω = 2ω, we have Lr∂r
h = 0. Thus h ∈ C∞

b (M)
is basic, and the Ricci form ρ of (C(M), ḡ) is

(64)
√
−1∂∂̄h = ρ = ρT − (2m+ 2)ωT ,

which implies (i) with τ = 2m+ 2.
Conversely, assuming (i) we make a homothetic transformation so that τ =

2m+2. Then the basic cohomology class [ρT − (2m+2)ωT ]b = 0, so the transverse
∂∂̄-Lemma [13] gives an h ∈ C∞(M)b satisfying (64). Define an Hermitian metric
on Λ1,1C(M) by

(65) ‖Ω‖h :=
(

√
−1

2

)m+1

(m+ 1)!(−1)m(m+1)/2 exp(−h)Ω ∧ Ω̄

ωm+1
.

The curvature of the Chern connection of ‖ · ‖h is
√
−1∂∂̄h− ρ = 0. Therefore the

universal cover ̟ : M̃ → M has a parallel section Ω ∈ Λ1,1C(M̃). �

Suppose Proposition 35 holds for (g, η, ξ,Φ) with G ⊆ Aut(g, η, ξ,Φ)0. We as-
sume τ = 2m + 2 for simplicity. Since G is connected (i) is preserved by G, and
in (64) we may take h ∈ C∞

b (M) to be G-invariant. Thus the metric ‖ · ‖h is
G-invariant. Because g∗Ω is parallel and ‖g∗Ω‖h = 1 for g ∈ G, g∗Ω = χ(g)Ω with
χ(g) ∈ U(1). And

(66) χ : G→ U(1),

is a character.
For the remainder of the section we suppose that G = T ⊂ G′ = Aut(g, η, ξ,Φ)

is a maximal torus. Then of course, z = z′ = g.

Definition 37. We define the characteristic hyperplane of a Sasaki structure
(g, η, ξ,Φ) satisfying Proposition 35 to be the hyperplane P = {X ∈ g : χ∗X =√
−1(m+ 1)} ⊂ g containing ξ.
And define Q = P − ξ = {X ∈ g : kerχ∗} ⊂ g to be the corresponding linear

space.

For any ξα = ξ + α ∈ P ∩ g+ the Sasaki structure (gα, ηα, ξα,Φα) with Reeb
vector field ξα defined in (46) and (47) satisfies Proposition 35.

4.3.2. Volume functional and Futaki invariant. We will consider the space of Sasaki
structures on M considered in Section 3.2.1 depending on (ξα, φ) ∈ z+ ×C∞(M)G

with Reeb vector field ξα = ξ+α ∈ z+ and ηα,φ = ηξα+d
cφ. These Sasaki structures

correspond to a space of Kähler cone metrics on (C(M), I) with G contained in the
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isometry group. We denote this space of Sasaki structures on M by S(G, I). Just
as in [21] we consider the volume functional

(67) S(G, I)
Vol−→ R

(gα,φ, ηα,φ, ζα,Φα,φ) 7→
∫

M dµgα,φ
,

where it can be shown that Vol(gα,φ) =
1
m!

∫

M ηα,φ ∧ (12dηα,φ)
m depends only on

the Reeb vector field ξα. See also [16]. Thus (67) defines a functional

(68) Vol : g+ → R.

We will need the first and second variation formulae of Vol which were first
calculated in [21]. Let {(g(t), ηt, ξt,Φt}−ǫ<t<ǫ be a 1-parameter family of Sasaki

structures in S(G, I) with g(0) = g and ξ̇0 = X , then

(69) Dg Vol(X) =
d

dt
Vol(g(t))|t=0 = −(m+ 1)

∫

M

η(X) dµg.

For the second derivative, let {(g(t), ηt, ξt,Φt}−ǫ<t<ǫ be a 1-parameter family of

Sasaki structures in S(G, I) with g(0) = g and ξ̇0 = Y , then

D2
g Vol(X,Y ) = −(m+ 1)

d

dt

(

∫

M

ηt(X) dµgt

)

|t=0

= (m+ 1)(m+ 2)

∫

M

η(X)η(Y ) dµg.

(70)

Therefore, Vol : g+ ∩ P → R is strictly convex function on a convex polytope
g+ ∩ P. Moreover, one can show that the integral in (67) goes to infinity as ξα
approaches the boundary of Cz = g+.

Proposition 38. Let (g′, η′, ξ′,Φ′) ∈ S(G, I) have ξ′ ∈ P. Then ξ′ is a critical point
for Vol : g+ ∩ P → R if and only if the Futaki invariant restricted to g vanishes,
Fξ′ |g ≡ 0.

Proof. We consider the following set of potentials for the transversely holomorphic
vector fields π(g)1,0 ⊆ holT (ξ′, J̄)0. Define

H̃g′ := {
√
−1η′(X) |X ∈ Q} ⊂ H

g
g′ .

We define the operator appearing in [15], with h given in (64) and �b = 1
2∆b

the complex Laplacian,

(71) �
h
bu := �bu− ∂#u y ∂h.

Note that �h
b is self adjoint with respect to a weighted volume on M ,

∫

M

�
h
buve

hdµg′ =

∫

M

u�h
b ve

hdµg′

We say that a holomorphy potential uX is normalized if

(72)

∫

M

uX ehdµg′ = 0.

We will need the following result from [15] and [16].

Theorem 39. Suppose (g′, η′, ξ′,Φ′) satisfies Proposition 35 and �
h
b defined in

(71). The eigenspace {u ∈ C∞
b (M,C) |�h

bu = (2m + 2)u} is isomorphic to the
space of normalized holomorphy potentials.
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Let X ∈ Q, and apply LIX to (63) to get

0 = (IX)h+
1

2
∆C(M)r2η′(X)

= (IX)h+
1

2

( 1

r2
∆M

b − ∂2

∂r2
− (2m+ 1)

r

∂

∂r

)

r2η′(X)

= (IX)h+
1

2
∆M

b η
′(X)− (2m+ 2)η′(X)

= �
h
bu− (2m+ 2)u.

(73)

And it follows that the space of normalized holomorphy potentials for π(g)1,0 ⊆
holT (ξ′, J̄)0 is H̃g′ .

We have 1
2 J̄ gradη′(X) = X and

Fξ′(X) =

∫

M

dch(X) dµg′

=

∫

M

−J̄Xh− 1

2
∆bη

′(X) dµg′

= −(2m+ 2)

∫

M

η′(X) dµg′ ,

(74)

from which the Proposition follows. �

4.3.3. Deformations of Sasaki-Einstein structures. We now consider aG-equivariant
deformation (Fξ, J̄t)t∈B. It is useful that the Kuranishi space of Section 3.1.1 is
always smooth because of the following.

Proposition 40. Suppose that the conditions of Proposition 35 hold, or more gen-
erally, cb1 > 0. Then H2

∂̄b
(A0,•) = 0. Thus the Kuranishi space V and the submani-

fold of G-equivariant deformations VG are smooth.

Proof. Using harmonic theory for the Laplacian ∆∂̄b
= ∂̄b∂̄

∗
b + ∂̄

∗
b ∂̄b associated with

the complex (41) one can prove Serre duality using the same arguments as in [18]
to get

H2
∂̄b
(A0,•) ∼= Hm−2

∂̄b
(Am,• ⊗ Λ1,0

b )

∼= Hm−2
∂̄b

(A1,• ⊗ Λm,0
b )

(75)

By our assumption Λm,0
b admits a connection with negative curvature. Again using

harmonic representatives, the proof of Kodaira-Nakano vanishing in [18] works in
this situation and we get the last term in (75) is zero because (m− 2)+1 < m. �

Recall that by Proposition 21 the existence of Sasaki structures on a deformation
in this case is unobstructed. We have a family (gt, ηt, ξ,Φt) ∈ S(ξ, J̄t), t ∈ B of
compatible Sasaki structures with (g0, η0, ξ0,Φ0) satisfying Proposition 35, with
τ = 2m + 2. Since cb1(Fξ, J̄t) is unchanged under deformation of J̄t, condition (i)
of the Proposition holds for all t ∈ B. We can define ht ∈ C∞

b (M) depending
smoothly on t ∈ B by

ht = 2GgT
t
(ωT

t , ρ
T
t − (2m+ 2)ωT

t )gT
t
= 2GgT

t
(sTt − sT0 ),

where GgT
t

is the Green’s function of gTt . By taking parallel displacement from a

fixed point with respect to the flat Chern connection of ‖ · ‖ht
on Λm+1,0

(

C(M)
)

,
we get a smooth family of holomorphic (m+ 1, 0)-forms Ωt on the family of cones
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C(Mt) = (C(M), It). Then for each t ∈ B as in (66) we have a character χt : G→
U(1). Since the characters on G is discrete lattice, χt is independent of t ∈ B. It
follows that the characteristic hyperplane P ⊂ g is independent of t ∈ B.

Corollary 41. Let (g, η, ξ,Φ) be a Sasaki-Einstein structure, and suppose that
(Fξ, J̄t)t∈B is a G-equivariant deformation, where G ⊆ G′ = Aut(g, η, ξ,Φ)0 is a
maximal torus. Then there is a neighborhood U ⊂ B so that for t ∈ U there is a
unique αt ∈ Q ⊂ g and a φt ∈ C∞(M)G so that gt,αt,φt

is Sasaki-Einstein.

Proof. We modify the map (59) Let Ṽ = U ∩ B × Q ×Wk+4,0. Then we define a
map

(76)
S̃ : Ṽ → B× Q∗ ×Wk,0

(t, α, φ) 7→
(

t,F(α), πW
0 (sGt,α,φ)

)

,

where F(α) ∈ Q∗ is defined by F(α)(X) := −
∫

M
ηα,φ(X) dµgα,φ

. Then DgS̃ is
given by Lemma 30 with the exception of DgF(α̇) which is given by (70)

DgF(α̇)(X) = (m+ 2)

∫

M

η(α̇)η(X) dµg, X ∈ Q.

It is routine to check that

DgS̃ : B× Q×Wk+4,0 → B× Q
∗ ×Wk,0

is an isomorphism. By the inverse function theorem there is a neighborhood U ⊂
B× Q∗ ×Wk,0 on which S̃ −1 is defined. Then with U = U ∩B× {0}× {0} we set

(t, αt, φt) = S̃ −1(t, 0, 0) for t ∈ U . And gt,αt,φt
is a Sasaki-extremal metric. Since

sGgt,αt,φt
= 0 for t ∈ U we have J̄t grad sgt,αt,φt

∈ π(g) ⊂ holT (ξ + αt, J̄t)0.

We denote the metric gt,αt,φt
by gt for brevity. Let ht ∈ C∞

b (M)G satisfy (64),
then ∆bht = sTgt − sT0 = sgt − s0, where s

T
0 = (2m+2)(2m) and s0 are the averages

of sTgt and sgt . By Proposition 38 the Futaki invariant Fξ+αt
|g ≡ 0, and with

X = J̄ grad sgt we have

0 = Fξ+αt
(X) =

∫

M

dcht(X) dµgt

=

∫

M

(dsgt , dht) dµgt

=

∫

M

(sgt ,∆bht) dµgt

=

∫

M

(sgt , sgt − s0) dµgt

=

∫

M

‖sgt − s0‖2 dµgt .

So sgt − s0 = 0 and ht is constant, therefore gt,αt,φt
is Sasaki-Einstein. �

5. Examples

We describe a family of examples of 7-manifolds on which we can apply Corol-
lary 34 and Corollary 41 to give new families of Sasaki-extremal and Sasaki-Einstein
metrics. More details will appear in [29]. These examples are deformations of 3-
Sasaki manifolds that first appeared in the work of C. Boyer, K. Galicki, B. Mann,
and E. Reese [4].
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Definition 42. A Riemannian manifold (M, g) is 3-Sasaki if the metric cone
(C(M), ḡ) is hyperkähler, i.e. ḡ admits compatible almost complex structures Jα, α =
1, 2, 3 such that (C(M), ḡ, J1, J2, J3) is a hyperkähler structure. Equivalently,
Hol(C(M)) ⊆ Sp(m).

A consequence of the definition is that (M, g) is equipped with three Sasaki
structures (ξi, ηi, φi), i = 1, 2, 3. The Reeb vector fields ξk, k = 1, 2, 3 are or-
thogonal and satisfy [ξi, ξj ] = 2εijkξk, where ε

ijk is anti-symmetric in the indices
i, j, k ∈ {1, 2, 3} and ε123 = 1.

The Reeb vector fields ξk, k = 1, 2, 3 generate an action of Sp(1) or SO(3). A
3-Sasaki manifold M comes with a family of related geometries. The maps are
labeled with their generic fibers.

M

M Z

C(M)

✲

�
�✠

❅
❅❘

❅
❅❘

�
�✠

R+ C
∗

S1

Sp(1)
SO(3)

CP 1

The leaf space Z is an orbifold with complex contact structure, while M is a
quaternionic-Kähler orbifold. This intimate relation with other more well known
geometries is probably the reason 3-Sasaki manifolds have not been studied as much
quaternionic-Kähler manifolds. For more details see [2]

A 3-Sasaki manifolds (M, g), dimM = 4m − 1, is toric if there is a Tm ⊆
Aut(M, g, ξ1, ξ2, ξ3). Toric 3-Sasaki manifolds have been constructed from 3-Sasaki
quotients by torus actions on S4n−1, with the 3-Sasaki structure given by right
multiplication by Sp(1). A subtorus T k ⊂ T n is determined by a weight matrix
Ωk,n ∈ Mat(k, n,Z). There are conditions on Ω [4] that imply the moment map
µ : S4n−1 → (tk)∗ ⊗ R3 is a submersion, and further that the quotient

MΩk,n
= S4n−1//T k = µ−1(0)/T k

is smooth.
When n = k + 2 it was shown in [4] that there are infinitely many weight

matrices in Mat(k, n,Z) for k ≥ 1 giving infinitely many 7-manifolds MΩk,n
for

each b2(MΩk,n
) = k ≥ 1.

If b2(M) ≥ 1, then the maximal torus of Sasaki automorphisms, T 3 ⊂ Aut(M, ξ1),
is 3-dimensional. And if b2(M) ≥ 2, then the connected component of the identity
of Isom(g) = T 2 × Sp(1) or T 2 × SO(3), where the second factor is generated by
{ξ1, ξ2, ξ3}.
Proposition 43 ([29]). Let (M, g) be a toric 3-Sasaki 7-manifold. Then after fixing
one of the Sasaki structures (g, η1, ξ1,Φ1) with foliation Fξ1 we have

H1
∂̄b
(A0,•) = H1

∂̄b
(A0,•)T

3

= b2(M)− 1 = k − 1.

By Proposition 40 there is a smooth Kuranishi space B of deformations of
(Fξ1 , J̄) equivariant with respect to T 3. One can further show that the family
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Cb2−1

Rb2−1

T 3

T 3 × Z2

T 2 × Sp(1)

Figure 1. Space of Sasaki-Einstein metrics

B is effective [29]. Let t denote the Lie algebra of T 3. By Corollary 34 there
is a neighborhood N ⊂ B × t parametrizing a space of dimension b2(M) + 2 of
Sasaki-extremal metrics. And by Corollary 41 there is a b2(M) − 1-dimensional
submanifold U ⊂ N parametrizing a space of Sasaki-Einstein metrics. Note that all
these Sasaki-extremal structures satisfy Proposition 35, while only the submanifold
U ⊂ N of Einstein metrics and their homotheties have constant scalar curvature
since the rest have non-vanishing Futaki invariant. See Figure 1 which shows the
isometry groups. Note that the origin is 3-Sasaki while the other metrics are just
Sasaki-Einstein. It is well known that 3-Sasaki structures are non-deformable, but
these are the first examples known to the author of 3-Sasaki structures contained
in families of Sasaki-Einstein structures.

Recall that a 3-Sasaki manifold M with dimM = 4m− 1 admits m+ 1 Killing
spinors whereas a simply connected Sasaki-Einstein, non-3-Sasaki, metric admits 2.
So these families give examples of Einstein metrics admitting 3 Killing spinors with
deformations to Einstein metrics admitting only 2. These properties are explored
further in [29].
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[13] Aziz El Kacimi-Alaoui. Opérateurs transversalement elliptiques sur un feuilletage riemannien

et applications. Compositio Math., 73(1):57–106, 1990.
[14] A. Futaki. An obstruction to the existence of Einstein Kähler metrics. Invent. Math.,

73(3):437–443, 1983.
[15] Akito Futaki. Kähler-Einstein metrics and integral invariants, volume 1314 of Lecture Notes

in Mathematics. Springer-Verlag, Berlin, 1988.
[16] Akito Futaki, Hajime Ono, and Guofang Wang. Transverse Kähler geometry of Sasaki man-

ifolds and toric Sasaki-Einstein manifolds. J. Differential Geom., 83(3):585–635, 2009.
[17] J. Girbau. A versality theorem for transversely holomorphic foliations of fixed differentiable

type. Illinois J. Math., 36(3):428–446, 1992.
[18] Phillip Griffiths and Joseph Harris. Principles of algebraic geometry. Wiley-Interscience [John

Wiley & Sons], New York, 1978. Pure and Applied Mathematics.
[19] C. LeBrun and S. R. Simanca. Extremal Kähler metrics and complex deformation theory.

Geom. Funct. Anal., 4(3):298–336, 1994.
[20] Claude LeBrun and Santiago R. Simanca. On the Kähler classes of extremal metrics. In

Geometry and global analysis (Sendai, 1993), pages 255–271. Tohoku Univ., Sendai, 1993.
[21] Dario Martelli, James Sparks, and Shing-Tung Yau. Sasaki-Einstein manifolds and volume

minimisation. Comm. Math. Phys., 280(3):611–673, 2008.

[22] Hiraku Nozawa. Deformation of sasakian metrics. arXiv:0809.4699v5, Oct 2011.
[23] Barrett O’Neill. The fundamental equations of a submersion. Michigan Math. J., 13:459–469,

1966.
[24] Barrett O’Neill. Semi-Riemannian geometry, volume 103 of Pure and Applied Mathematics.

Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1983. With applica-
tions to relativity.

[25] Yann Rollin, Santiago R. Simanca, and Carl Tipler. Stability of extremal metrics under
complex deformations. arXiv:1107.0456v4, July 2011.

[26] R. Schoen. On the conformal and CR automorphism groups. Geom. Funct. Anal., 5(2):464–
481, 1995.

[27] Santiago R. Simanca. A K-energy characterization of extremal Kähler metrics. Proc. Amer.
Math. Soc., 128(5):1531–1535, 2000.

[28] Santiago R. Simanca. Heat flows for extremal Kähler metrics. Ann. Sc. Norm. Super. Pisa
Cl. Sci. (5), 4(2):187–217, 2005.

[29] Craig van Coevering. Deformations of the Killing spinor equation on Sasaki-Einstein and
3-Sasaki manifolds. to appear, 2012.

Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn Germany

E-mail address: craigvan@mpim-bonn.mpg.de

http://arxiv.org/abs/0809.4699
http://arxiv.org/abs/1107.0456

	1. Introduction
	1.1. Main result
	1.2. Acknowledgements

	2. Background
	2.1. Sasaki manifolds
	2.2. Transverse Kähler structure
	2.3. transversely extremal metrics
	2.4. automorphism groups
	2.5. Relative Futaki invariant

	3. Deformations of Sasaki structures
	3.1. Deformation of foliations
	3.2. Sasaki cone

	4. Proof of main theorem
	4.1. Variation formulae
	4.2. Main theorem
	4.3. Sasaki-Einstein case

	5. Examples
	References

