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A PROOF OF THE CLASSIFICATION THEOREM OF OVERTWISTED CONTAC T
STRUCTURES VIA CONVEX SURFACE THEORY

YANG HUANG

ABSTRACT. In [2], Y. Eliashberg proved that two overtwisted contact structures on a closed oriented
3-manifold are isotopic through contact structures if and only if they are homotopic as 2-plane fields.
We provide an alternative proof of this theorem using the convex surface theory and bypasses.
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A contact manifold (M, ξ) is a smooth manifold with a contact structureξ, i.e., a maximally
non-integrable codimension 1 tangent distribution. In particular, if the dimension of the manifold
is three, it was realized through the work of D. Bennequin andY. Eliashberg in [1], [3] that contact
structures fall into two classes:tight or overtwisted. Since then, dynamical systems and foliation
theory of surfaces embedded in contact 3-manifolds have been studied extensively to analyze this
dichotomy. Based on these developments, Eliashberg gave a classification of overtwisted contact
structures in [2], which we now explain.

Let M be a closed oriented manifold and△ ⊂ M be an oriented embedded disk. Furthermore,
we fix a pointp ∈ △. We denote byContot(M,△) the space of cooriented, positive, overtwisted
contact structures onM which are overtwisted along△, i.e., the contact distribution is tangent to△
along∂△. Let Distr(M,△) be the space of cooriented 2-plane distributions onM which are tangent
to△ at p. Both spaces are equipped with theC∞-topology.

Theorem 0.1 (Eliashberg). Let M be a closed, oriented 3-manifold. Then the inclusion j:
Contot(M,△)→ Distr(M,△) is a homotopy equivalence.

In particular, we have:

Theorem 0.2. Let M be a closed, oriented 3-manifold. Ifξ and ξ′ are two positive overtwisted
contact structures on M, then they are isotopic if and only ifthey are homotopic as 2-plane fields.
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Consequently, overtwisted contact structures are completely determined by the homotopy classes
of the underlying 2-plane fields. On the other hand, the classification of tight contact structures is
much more subtle and contains more topological informationabout the ambient 3-manifold.

The goal of this paper is to provide an alternative proof of Theorem 0.2 based on convex sur-
face theory. Convex surface theory was introduced by E. Giroux in [8] building on the work
of Eliashberg-Gromov [4]. Given a closed oriented surfaceΣ, we consider contact structures on
Σ × [0, 1] such thatΣ × {0, 1} is convex. By studying the “film picture” of thecharacteristic foli-
ationsonΣ × {t} ast goes from 0 to 1, Giroux showed in [9] that, up to an isotopy, there are only
finitely many levelsΣ × {ti}, 0 < t1 < · · · < tn < 1, which are not convex. Moreover, for small
ǫ > 0, the characteristic foliations onΣ × {ti − ǫ} andΣ × {ti + ǫ}, i = 1, 2, · · · , n, change by a
bifurcation. In [10], K. Honda gave an alternative description of the bifurcation of characteristic
foliations in terms ofdividing sets. Namely, he defined an operation, called thebypass attachment,
which combinatorially acts on the dividing set. It turns outthat a bypass attachment is equivalent
to a bifurcation on the level of characteristic foliations.Hence, in order to study contact structures
onΣ × [0, 1] with convex boundary, it suffices to consider the isotopy classes of contact structures
given by sequences of bypass attachments. In particular, wewill study sequences of (overtwisted)
bypass attachments onS2 × [0, 1], which is the main ingredient in our proof of Theorem 0.2.

This paper is organized as follows. In Section 1 we recall some basic knowledge in contact
geometry, in particular, convex surface theory and the definition of a bypass. Section 2 gives an
outline of our approach to the classification problem. Section 3 is devoted to establishing some
necessary local properties of the bypass attachment. Usingtechniques from previous sections, we
show in Section 4 that how to isotop homotopic overtwisted contact structures so that they agree in
a neighborhood of the 2-skeleton. Section 5, 6 and 7 are devoted to studying overtwisted contact
structures onS2 × [0, 1] which is the technical part of this paper. We finally finish the proof of
Theorem 0.2 in Section 8.

1. PRELIMINARIES

Let M be a closed, oriented 3-manifold. Throughout this paper, weonly consider cooriented,
positive contact structuresξ on M, i.e., those that satisfy the following conditions:

(1) there exists a global 1-formα such thatξ = ker(α).
(2) α ∧ dα > 0, i.e., the orientation induced by the contact formα agrees with the orientation

on M.
A contact structureξ is overtwistedif there exists an embedded diskD2 ⊂ M such thatξ is

tangent toD2 on ∂D2. Otherwise,ξ is said to betight. We will focus on overtwisted contact
structures for the rest of this paper.

Let Σ ⊂ M be a closed, embedded, oriented surface inM. Thecharacteristic foliationΣξ onΣ
is by definition the integral of the singular line fieldΣξ(x) ≔ ξx ∩ TxΣ. One way to describe the
contact structure nearΣ is to look at its characteristic foliation.

Proposition 1.1 (Giroux). Let ξ0 and ξ1 be two contact structures which induce the same char-
acteristic foliation onΣ. Then there exists an isotopyφt : M → M, t ∈ [0, 1] fixing Σ such that
φ0 = id and(φ1)∗ξ0 = ξ1.

Possibly after aC∞-small perturbation, we can always assume thatΣ ⊂ M is convex, i.e., there
exists a vector fieldv transverse toΣ such that the flow ofv preserves the contact structure. Using
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this transverse contact vector fieldv, we define thedividing setonΣ to beΓΣ ≔ {x ∈ Σ | vx ∈ ξx}.
Note that the isotopy class ofΓΣ does not depend on the choice ofv. We refer to [8] for a more
detailed treatment of basic properties of convex surfaces.The significance of dividing sets in
contact geometry is made clear byGiroux’s flexibility theorem.

Theorem 1.2(Giroux). AssumeΣ is convex with characteristic foliationΣξ, contact vector field v,
and dividing setΓΣ. LetF be another singular foliation onΣ divided byΓΣ. Then there exists an
isotopyφt : M → M, t ∈ [0, 1] such that

(1) φ0 = id andφt|ΓΣ = id for all t.
(2) v is transverse toφt(Σ) for all t.
(3) φ1(Σ) has characteristic foliationF .

We now look at contact structures onΣ× [0, 1] with convex boundary. The first important result
relating to this problem is the following theorem due to Giroux.

Theorem 1.3(Giroux). Let ξ be a contact structure on W= Σ × [0, 1] so thatΣ × {0, 1} is convex.
There exists an isotopy relative to the boundaryφs : W → W, s∈ [0, 1], such that the surfaces
φ1(Σ × {t}) are convex for all but finitely many t∈ [0, 1] where the characteristic foliations satisfy
the following properties:

(1) The singularities and closed orbits are all non-degenerate.
(2) The limit set of any half-orbit is either a singularity or a closed orbit.
(3) There exists a single “retrogradient” saddle-saddle connection, i.e., an orbit from a nega-

tive hyperbolic point to a positive hyperbolic point.

In the light of Giroux’s flexibility theorem, one should expect a corresponding “film picture” of
dividing sets on convex surfaces. It turns out that the correct notion corresponding to a bifurcation
is thebypass attachment, which we now describe.

Definition 1.4. Let Σ be a convex surface andα be a Legendrian arc inΣ which intersectsΓΣ in
three points, two of which are endpoints ofα. A bypassis a convex half-disk D with Legendrian
boundary, where D∩ Σ = α, D ⋔ Σ, and tb(∂D) = −1. We callα an admissible arc, and D a
bypass alongα onΣ.

Remark1.5. The admissible arcα in the above definition is also known as thearc of attachment
for a bypass in literature.

Remark1.6. We do not distinguish isotopic admissible arcsα0 andα1, i.e., if there exists a path of
admissible arcsαt, t ∈ [0, 1] connecting them.

The following lemma shows how a bypass attachment combinatorially acts on the dividing set.

Lemma 1.7 (Honda). Following the terminology from Definition 1.4, let D be a bypass alongα
onΣ. There exists a neighborhood ofΣ ∪ D ⊂ M diffeomorphic toΣ × [0, 1], such thatΣ × {0, 1}
are convex, andΓΣ×{1} is obtained fromΓΣ×{0} by performing thebypass attachmentoperation as
depicted in Figure 1 in a neighborhood ofα.

It is worthwhile to mention that there are two distinguishedbypasses, namely, the trivial bypass
and the overtwisted bypass as depicted in Figure 2. The effect of a trivial bypass attachment is iso-
topic to anI -invariant contact structure where no bypass is attached, while the overtwisted bypass



4 YANG HUANG

(a) (b)

FIGURE 1. A bypass attachment alongα. (a) The dividing set onΣ× {0} before the
bypass is attached. (b) The dividing set onΣ × {1} after the bypass is attached.

attachment immediately introduces an overtwisted disk in the local model, hence, for example, is
disallowed in tight contact manifolds.

−→ −→

(a) (b)

FIGURE 2. (a) The trivial bypass attachment. (b) The overtwisted bypass attachment.

2. OUTLINE OF THE PROOF

Let ξ andξ′ be two overtwisted contact structures onM, homotopic to each other as 2-plane
field distributions. Our approach to Theorem 0.2 has three main steps.

Step 1.Fix a triangulationT of M. Isotopξ andξ′ through contact structures such thatT becomes
an overtwisted contact triangulationin the sense that the 1-skeletonT(1) is a Legendrian graph,
the 2-skeletonT(2) is convex and each 3-cell is an overtwisted ball with respectto both contact
structures. We first show that ife(ξ) = e(ξ′) ∈ H2(M;Z), then one can isotopξ andξ′ so that they
agree in a neighborhood ofT(2).

Step 2.We can assume that there exists a ballB3 ⊂ M such thatξ andξ′ agree onM \ B3. Tak-
ing a small Darboux ballB3

std ⊂ B3, observe thatξ|B3 andξ′|B3 can both be realized as attaching
sequences of bypasses toB3

std. In section 5, we will define the notion of astable isotopy. Then
we show that both of sequences of bypass are stably isotopic to some power of thebypass trian-
gle attachment. Moreover, the boundary relative homotopy classes ofξ|B3 andξ′|B3, measured by
the Hopf invariant, are uniquely determined by the number ofbypass triangles attached according
to [11].

Step 3.By elementary obstruction theory, the Hopf invariants ofξ|B3 andξ′|B3 are not necessarily
the same, but they can at most differ by an integral multiple of the divisibility of the Euler class of
eitherξ or ξ′. See Section 8 for the definition of the divisibility. We showthat this ambiguity can
be resolved by further isotoping the contact structures in aneighborhood ofT(2). This finishes the
proof of Theorem 0.2.
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3. LOCAL PROPERTIES OF BYPASS ATTACHMENTS

Let M be an overtwisted contact 3-manifold. LetΣ ⊂ M be a closed convex surface with dividing
setΓΣ. For convenience, we choose a metric onM and denoteM \Σ the metric closure of the open
manifold M − Σ. In this paper, we restrict ourself to the case that each connected component of
M \ Σ is overtwisted1. In order to isotop convex surfaces through bypasses freely, we must show
that there are enough bypasses. In fact, bypasses exist along any admissible Legendrian arc onΣ
provided that the contact structure is overtwisted. This isthe content of the following lemma.

Lemma 3.1. Suppose that M\ Σ is overtwisted. For any admissible arcα ⊂ Σ, there exists a
bypass alongα in M \ Σ. If Σ separates M into two overtwisted components, then there exists such
a bypass in each component.

Proof. The technique for proving this lemma is essentially due to Etnyre and Honda [5], and in-
dependently Torisu [12]. We construct a bypassD alongα as follows. LetD̃ ⊂ M \ Σ be an
overtwisted disk.

First we push the interior ofα slightly into M \Σ with the endpoints ofα fixed to obtain another
Legendrian arc ˜α, such thatα andα̃ cobound a convex bigonB with tb(∂B) = −2. Next, take a
Legendrian arcγ connecting ˜α and∂D̃ in the complement ofΣ∪ D̃∪B, namely, the two endpoints
of γ are contained in ˜α and∂D̃ respectively and the interior ofγ is disjoint fromΣ ∪ D̃ ∪ B as
depicted in Figure 3. SupposeN(γ) � γ × [−ǫ, ǫ] is a band with the coreγ × {0} identified withγ,

B

D̃

γ

α

FIGURE 3. The Legendrian arcγ connecting∂B and∂D̃.

such that the characteristic foliation is non-singular andis given byγ×{t}, t ∈ [−ǫ, ǫ]. In particular
γ×{−ǫ} andγ×{ǫ} are both Legendrian. We want to glueN(γ) to D̃ andB so that the characteristic
foliations match along the common boundary. In order to do so, we recall the following lemma
first observed by Fraser [6].

Lemma 3.2.Let S be an embedded disk in a contact manifold(M, ξ) with a characteristic foliation
ξ|S which consists only of one positive elliptic singularity p and unstable orbits from p which exit
transversely from∂S . If δ1, δ2 are two unstable orbits meeting at p, andδi ∩ S = pi, then, after
a C∞-small perturbation of S fixing∂S , we obtain S′ whose characteristic foliation has exactly

1In general it is possible that all components ofM \ Σ are tight even ifM is overtwisted.
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one positive elliptic singularity p′ and unstable orbits from p′ exiting transversely from∂S , and
for which the orbits passing through p1, p2 meet tangentially at p′.

We first glueN(γ) to D̃ as follows. Letp1 = γ ∩ ∂D̃. By the Flexibility Theorem we may
suppose thatp1 is a half-elliptic singular point of the characteristic foliation ξ|D̃ on D̃. Consider a
slightly larger diskD̃′ ⊃ D̃ such thatp1 is an elliptic singularity ofξ|D̃′. Let S ⊂ D̃′ be a small disk
neighbothood ofp1, which satisfies the conditions in Lemma 3.2. Applying Lemma3.2, we can
perturbS to get a diskD̂ on which the characteristic foliation (in a neighbothood ofp1) looks like
the one depicted in Figure 4.

p1

D̂

FIGURE 4.

Now we can glueN(γ) to D̂ in the obvious way such that the characteristic foliations match
along the common boundary. We can apply the same trick to glueN(γ) to B. In the end we obtain
a half disk, which we denote bỹD ∪ N(γ) ∪ B by abuse of notation, on which the characteristic
foliation is as depicted in Figure 5.

α

p1 p2
+ − + +

−

−

−

−

−

−

−

−

−

FIGURE 5. The preferred characteristic foliation onD̃ ∪ N(γ) ∪ B.

Note that since the characteristic foliation contains a flowline from the negative half-elliptic-
half-hyperbolic singularity to the positive half-elliptic-half-hyperbolic singularity, the half disk
D̃ ∪ N(γ) ∪ B is not convex. However we can perform aC∞-small perturbation in a neighborhood
of p1 andp2 to obtain a new half diskD such that the singularitiesp1 andp2 are eliminated. The
characteristic foliation onD is given by Figure 6, which is easily seen to be of Morse-Smaletype.
ThereforeD is convex with Legendrian boundary. The dividing setΓ on D has to separate the
positive and negative singularities and to be transverse tothe characteristic foliation. SoΓ is, up to
isotopy, the half-circle as depicted in Figure 6 as desired,and thereforeD is a bypass alongα. �

We then show the triviality of the trivial bypass, i.e., attaching a trivial bypass does not change
the isotopy class of the contact structure in a neighborhoodof the convex surface. The proof
essentially follows the lines of the proof of Proposition 4.9.7 in Geiges [7]. Here the contact
structure may be either overtwisted or tight.



A PROOF OF THE CLASSIFICATION THEOREM OF OVERTWISTED CONTACT STRUCTURES 7

α

+ +

−

−

−

−

−

−

−

−

−

FIGURE 6. The bypassD alongα.

Lemma 3.3. Let (Σ × [0, 1], ξ) be a contact manifold with the contact structureξ obtained by
attaching a trivial bypass on(Σ × {0}, ξ|Σ×{0}). Then there exists another contact structureξ̃, which
is isotopic toξ relative to the boundary, such thatΣ×{t} is convex with respect tõξ for all t ∈ [0, 1].

Proof. Since this is a local problem, we may assume thatΣ × [0, 1] is a neighborhood of the
trivial bypass attachment. By Theorem 1.2, any Morse-Smaletype characteristic foliation adapted
to ΓΣ×{0} can be realized as the characteristic foliation of a contactstructure isotopic toξ in a
neighborhood ofΣ × {0}. In particular, we can assume that the characteristic foliation onΣ × {0}
looks exactly the same as in Figure 7(a) such thate− does not connect to any negative hyperbolic
point other thanh− along the flow line.

e− h− h+ e− h− h+

(a) (b)

FIGURE 7. (a) The characteristic foliation onΣ×{0}. The trivial bypass is attached
along the Legendrian arc in dash line. (b) The characteristic foliation onΣ × {1}
after attaching the trivial bypass. Heree± (resp. h±) denote the±-elliptic (resp.
±-hyperbolic) singular points of the foliation.

Look at the characteristic foliations onΣ × {t} ast goes from 0 to 1. Generically we can assume
that the Morse-Smale condition fails at one single level, say, Σ × {1/2}, where an unstable saddle-
saddle connection has to appear as shown in Figure 8(a).

Let Ω ⊂ Σ × {1/2} be an open neighborhood of the flow line fromh− to e− as depicted in
Figure 8(a). Observe that the characteristic foliation insideΩ is of Morse-Smale type, and therefore
stable in thet-direction. According to the proof of Proposition 4.9.72 in Geiges [7], for a small
δ > 0, there exists an isotopyφs : Σ × [0, 1] → Σ × [0, 1], s ∈ [0, 1], compactly supported in
Ω × (1/2− 2δ, 1/2+ 2δ) ⊂ Σ × [0, 1] andφ0 = id, such that̃ξ = (φ1)∗ξ satisfies the following:

2This is a stronger version of the usual Elimination Lemma.
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e− h− h+

Ω Ω

(a) (b)

FIGURE 8. (a) The characteristic foliation onΣ×{1/2}, where a saddle-saddle con-
nect fromh− to h+ exists. The regionΩ contains exactly two singular points{e−, h−}
which are in elimination position. (b) The nonsingular characteristic foliation onΩ
after the elimination.

(1) The characteristic foliation onΩ× {t} with respect tõξ is isotopic to the one in Figure 8(b)
for t ∈ [1/2− δ, 1/2+ δ]. In particular, it is nonsingular.

(2) For t ∈ (1/2 − 2δ, 1/2 − δ) ∪ (1/2 + δ, 1/2 + 2δ), The characteristic foliation onΩ × {t}
with respect toξ̃ is almost Morse-Smale except that there may exist a half-elliptic-half-
hyperbolic point.

We remark here that the above conditions are achieved in [7] by isotoping surfacesΣ × {t}, t ∈
[1/2− 2δ, 1/2+ 2δ] while fixing the contact structureξ, but this is equivalent to isotopingξ while
fixing Σ × {t}. We will switch between these two equivalent point of view again in the proof of
Proposition 4.3.

Now we can makeΣ × {t} convex fort ∈ [1/2 − δ, 1/2 + δ] because the only unstable saddle-
saddle connection is eliminated and therefore the characteristic foliation becomes Morse-Smale.
For t < [1/2− δ, 1/2+ δ], there may exist half-elliptic-half-hyperbolic singular points, but we can
as well construct a contact structure realizing this type ofsingularity so that eachΩ × {t} stays
convex. Hencẽξ constructed above is as required. �

Remark3.4. Let (Σ × [0, 1], ξ) be a contact manifold such thatξ|Σ0 = ξ|Σ1 andΣ × {t} is convex for
all t ∈ [0, 1]. If Σ , S1×S1 andξ is tight, then it is a standard fact thatξ is isotopic to anI -invariant
contact structure relative to the boundary. However, if eitherΣ = S1 × S1 or ξ is overtwisted, then
the above fact is not true anymore. We will study this phenomenon in detail in the case when
Σ = S2 andξ is overtwisted in Section 6.

4. ISOTOPING CONTACT STRUCTURES UP TO THE2-SKELETON

We are now ready to take the first main step towards the proof ofTheorem 0.2. Since we will
isotop contact structures skeleton by skeleton, we start with the following definition.

Definition 4.1. Let (M, ξ) be an overtwisted contact manifold, and T be a triangulationof M. The
triangulation T is called anovertwisted contact triangulationif the following conditions hold:

(1) The 1-skeleton is a Legendrian graph.
(2) Each 2-simplex is convex with Legendrian boundary.



A PROOF OF THE CLASSIFICATION THEOREM OF OVERTWISTED CONTACT STRUCTURES 9

(3) Each 3-simplex is an overtwisted ball.

Remark4.2. The overtwisted contact triangulation defined above is different from the usualcontact
triangulationwhere the 3-simplexes are assumed to be tight.

The goal for this section is to prove the following Proposition.

Proposition 4.3. Let M be a closed, oriented 3-manifold with a fixed triangulation T. Letξ and
ξ′ be homotopic overtwisted contact structures on M. Then theyare isotopic up to the 2-skeleton,
i.e., there exists an isotopyφt : M → M, t ∈ [0, 1], φ0 = id such that(φ1)∗ξ = ξ′ in a neighborhood
of T(2).

Proof. Before we go into details of the proof, observe that ifφt : M → M, t ∈ [0, 1], φ0 = id is an
isotopy, then (M, φ1(ξ),T) and (M, ξ, φ−1

1 (T)) carries the same contact information. In fact, we will
isotop the skeletons of the triangulationT and think of them as isotopies of contact structures.

By aC0-small perturbation of the 1-skeletonT(1), we can assume thatT(1) is a Legendrian graph
with respect toξ andξ′. Performing stabilizations to edges ofT(1) if necessary, we can further
assume thatξ = ξ′ in a neighborhood ofT(1). For each 2-simplexσ2 in T(2), we can always
stabilize the Legendrian unknot∂σ2 sufficiently many times so thattb(∂σ2) < 0. Therefore aC∞-
small perturbation ofσ2 relative to∂σ2 makes it convex with respect toξ (resp.ξ′) with dividing
setΓξ

σ2 (resp.Γξ
′

σ2). BothΓξ
σ2 andΓξ

′

σ2 are proper 1-submanifolds ofσ2 and generically the endpoints
are contained in the interior of the 1-simplexes. See Figure9 for an example.

In order to makeT an overtwisted contact triangulation forξ andξ′, we still need to make sure
that all 3-simplexes are overtwisted. We do this forξ, and the same argument applies toξ′. Take
an overtwisted discD in (M, ξ). We can assume thatD is contained in a 3-simplexσ3

1. Letσ3
2 be

another 3-simplex which shares a 2-face withσ3
1, i.e.,σ3

1 ∩ σ
3
2 = σ

2 is a 2-simplex. We claim that
by isotopingσ2 relative to∂σ2 if necessary, we can make bothσ3

1 andσ3
2 overtwisted. The fact that

M is closed immediately implies that a finite steps of such isotopies will makeT an overtwisted
contact triangulation. To prove the claim, we first take a parallel copy of the overtwisted diskD
in an I -invariant neighborhood ofD, denoted byD′. Pick an arcγ connectingD′ to σ2 insideσ3

1.
Let σ̃2 be another 2-simplex obtained by isotopingσ2 acrossD′ alongγ, i.e., σ̃2 satisfying the
following conditions:

(1) ∂σ̃2
= ∂σ2.

(2) σ2 ∪ σ̃2 bounds a neighborhood ofD′ ∪ γ.
(3) σ̃2 is convex.

By replacingσ2 with σ̃2, we obtain two new 3-simplexes, each of which contains an overtwisted
disk in the interior as claimed.

FIGURE 9. An example of the dividing set on a 2-simplex.
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Now by Giroux’s flexibility theorem, it suffices to isotopξ andξ′ so that they induce isotopic
dividing sets on each 2-simplex relative toT(1). To achieve this goal, we define the difference
2-cocycleδ by assigning to each oriented 2-simplexσ2 an integerχ(R+(Γ

ξ′

σ2)) − χ(R−(Γ
ξ′

σ2)) −

χ(R+(Γ
ξ

σ2)) + χ(R−(Γ
ξ

σ2)). Sinceξ is homotopic toξ′ as 2-plane fields, [δ] = e(ξ) − e(ξ′) = 0 ∈
H2(M,Z). Hence there exists an integral 1-cocycleθ so that 2dθ = δ since the Euler class is always
even.3 One should think ofθ as an element inHom(C1(M),Z).

Let σ2 ∈ T(2) be an oriented convex 2-simplex andσ1 ⊂ ∂σ2 be an oriented 1-simplex with the
induced orientation. We study the effect of stabilizing the1-simplexσ1 to the overtwisted contact
triangulation. If we positively stabilizeσ1 once and isotopσ2 accordingly to obtain a new 2-
simplexσ̃2, then the dividing setΓξ

σ̃2 onσ̃2 is obtained fromΓξ
σ2 by adding a properly embedded arc

contained in the negative region with both endpoints on the interior ofσ1 as depicted in Figure 10.
Similarly, if we negatively stabilizeσ1 once and isotopσ2 accordingly as before, then the dividing
set on the isotopedσ2 is obtained fromΓξ

σ2 by adding a properly embedded arc contained in the
positive region and with both endpoints on the interior ofσ1.

−

+ −

+

−

−

+
−

+ +

−

(a) (b)

FIGURE 10. (a) The dividing set onσ2 divides it into±-regions. The bottom edge
isσ1. (b) One possible dividing set on ˜σ2 after positively stabilizingσ1 once.

Note that in general, the new overtwisted contact triangulation obtained by±-stabilizing a 1-
simplexσ1 is not unique. In fact, different choices may give non-isotopic dividing sets on the
isotopedσ2 in the new triangulation. However, for our purpose, we only care about the quantity
χ(R+) − χ(R−) on each 2-simplex and it is easy to see that different choices give the same value
to this quantity. Thus we will ignore this ambiguity by arbitrarily choosing an isotopy of the
2-simplex.

We denote the overtwisted contact triangulation obtained by ±-stabilizingσ1 once in (M, ξ) by
S±
σ1(ξ). As remarked at the beginning of the proof, one should thinkof S±

σ1(ξ) as isotopies ofξ. It

is easy to see thatS±
σ1(ξ) changesχ(R+(Γ

ξ

σ2)) − χ(R−(Γ
ξ

σ2)) by ±1 for any 2-simplexσ2 ∈ T(2) so
thatσ1 ⊂ ∂σ2 as an oriented boundary edge. The same holds forξ′ as well.

Now we argue that one can isotopξ and ξ′ so thatχ(R+(Γ
ξ

σ2)) − χ(R−(Γ
ξ

σ2)) = χ(R+(Γ
ξ′

σ2)) −

χ(R−(Γ
ξ′

σ2)) on each 2-simplexσ2. This can be done as follows. For each oriented 1-simplex
σ1 ∈ T(1), the 1-cocycleθ sends it to an integern = θ(σ1). We performn times the isotopyS+

σ1(ξ)
to ξ andn times the isotopyS−

σ1(ξ
′) to ξ′ at the same time. If we perform such operation to every

1-simplex inT, it is easy to see that the following properties are satisfied:

3More precisely, if we fix a trivialization ofT M and consider the Gauss map associated to the contact distribution,
then the Euler class of the contact distribution is exactly twice the Poincaré dual of the Pontryagin submanifold of the
Gauss map.



A PROOF OF THE CLASSIFICATION THEOREM OF OVERTWISTED CONTACT STRUCTURES 11

(1) ξ = ξ′ in a neighborhood ofT(1).
(2) χ(R+(Γ

ξ

σ2)) − χ(R−(Γ
ξ

σ2)) = χ(R+(Γ
ξ′

σ2)) − χ(R−(Γ
ξ′

σ2)), ∀σ
2 ∈ T(2).

The second property implies thatΓξ
′

σ2 can be obtained fromΓξ
σ2 by attaching a sequence of by-

passes for each 2-simplexσ2. Recall thatT is an overtwisted contact triangulation and in particular
each 3-simplex is an overtwisted ball. Hence bypasses existalong any admissible arc inσ2 inside
any 3-simplex withσ2 as a 2-face by Lemma 3.1. Therefore by isotoping 2-simplexesthrough
bypasses, we can assume thatξ andξ′ induce isotopic dividing sets on each 2-simplex relative to
its boundary. The conclusion now follows immediately from Giroux’s flexibility theorem. �

5. BYPASS TRIANGLE ATTACHMENTS

In this section we study the effect of attaching a bypass triangle to the contact structure, in
particular, we give an alternative definition of the bypass triangle attachment. We start with the
definition of the bypass triangle attachment.

Notation: Let Σ be a convex surface andα ⊂ Σ be an admissible arc. We denote the bypass
attachment alongα onΣ byσα. Letβ be another admissible arc on the convex surface obtained by
attaching the bypass alongα onΣ. We denote the composition of bypass attachments byσα ∗ σβ,
where the composition rule is to attach the bypass alongα first, then attach the bypass alongβ in
the same direction. If (M, ξ) is a contact manifold with convex boundary, thenξ ∗ σα denotes the
contact structure obtained by attaching a bypass alongα to (M, ξ).

Remark5.1. In general, bypass attachments are not commutative unless the attaching arcs are
disjoint.

Definition 5.2. Let Σ be a convex surface andα ⊂ Σ be an admissible arc. Abypass triangle
attachmentalongα is the composition of three bypass attachments along admissible arcsα, α′ and
α′′ in a neighborhood ofα as depicted in Figure 11. We denote the bypass triangle attachment
alongα by△α = σα ∗ σα′ ∗ σα′′ .

Remark5.3. The second admissible arcα′ in the bypass bypass triangle is also known as thearc
of anti-bypass attachmenttoσα.

Warning: When we define a bypass attachmentσα alongα on (Σ, ΓΣ), there are several choices
involved. Namely, we need to choose a multicurve, i.e., a 1-submanifold ofΣ, representing the iso-
topy class ofΓΣ, an admissible arc representing the isotopy class ofα, a neighborhood ofα where
σα is supported. Since the space of choices ofα and its neighborhood is contractible according to
Theorem 1.2, we can neglect this ambiguity. However the space of choices of multicurves repre-
sentingΓΣ is not necessarily contractible. This point will be made clear in the next section. For the
rest of this paper,ΓΣ always means a multicurve onΣ rather than its isotopy class.

Remark5.4. If Σ = S2 andΓΣ = S1, then the space of choices of multicurve is simply-connected
since there is a unique tight contact structure in a neighborhood ofS2 up to isotopy.

Observe that, up to an isotopy supported in a neighborhood ofthe admissible arcα, the bypass
triangle attachment does not changeΓΣ.
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(a) (b)

(c)

α
α′

α′′

σα

σα′σα′′

FIGURE 11. (a) A neighborhood ofα on Σ, along which the first bypassσα is
attached. (b) The second bypassσα′ is attached along the dotted arcα′. (c) The
third bypassσα′′ is attached along the dotted arcα′′ and finishes the bypass triangle.

In what follows we look at bypass triangle attachments alongdifferent admissible arcs, which
leads to our alternative definition of the bypass triangle attachment.

Lemma 5.5. Let ξα andξβ be two (overtwisted) contact structures on S2 × [0, 1], whereα andβ
are admissible arcs on S2 × {0}, such that

(1) S2 × {0, 1} is convex with respect to bothξα andξβ.
(2) ξα = ξβ in a neighborhood of S2 × {0} and#Γξα

S2×{0}
= #Γξβ

S2×{0}
= 1.

(3) ξα is obtained by attaching a bypass triangle△α to ξα|S2×{0}, andξβ is obtained by attaching
a bypass triangle△β to ξβ|S2×{0}.

Thenξα is isotopic toξβ relative to the boundary.

Proof. Up to isotopy, there are only two different admissible arcs on (S2 × {0}, ξα|S2×{0}) (or, (S2 ×

{0}, ξβ|S2×{0})). Namely, one gives the trivial bypass and the other gives the overtwisted bypass. We
may assume without loss of generality thatα is not isotopic toβ, andσα is the trivial bypass and
σβ is the overtwisted bypass. We complete the bypass triangles△α and△β as depicted in Figure 12.

α
α′

α′′

β β′

β′′

σα σα′ σα′′

σβ σβ′ σβ′′

FIGURE 12.
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Observe thatα′ is isotopic toβ, α′′ is isotopic toβ′ and bypass attachments alongα andβ′′ are
trivial according to Lemma 3.3, we have the following isotopies:

△α = σα ∗ σα′ ∗ σα′′

≃ σα′ ∗ σα′′

≃ σβ ∗ σβ′

≃ σβ ∗ σβ′ ∗ σβ′′ = △β.

SinceS2×{0, 1} are convex, we can make sure that the isotopies above are supported in the interior
of S2 × [0, 1]. �

Definition 5.6. A minimal overtwisted ball (B3, ξot) is an overtwisted ball where∂B3 has a tight
neighborhood, and the contact structureξot is obtained by attaching a bypass triangle to the stan-
dard tight ball(B3, ξstd).

Remark5.7. By Lemma 5.5, the minimal overtwisted ball is well-defined even if we do not specify
the admissible arc along which the bypass triangle is attached.

With the above preparation, we can now redefine the bypass triangle attachment which is more
convenient for our purpose. Let (M, ξ) be a contact 3-manifold with convex boundary∂M = Σ.
Identify a collar neighborhood of∂M with Σ × [−1, 0] such that∂M = Σ × {0} and the contact
vector field transverse to∂M is identified with the [−1, 0]-direction. Letα ⊂ ∂M be an admissible
arc along which the bypass triangle is attached. Pushα into the interior ofM to obtain another
admissible arc, parallel toα, contained inΣ×{−1/2}, which we still denote byα. Let N be a neigh-
borhood ofα in Σ × {−1/2}. Consider the ball with cornersN × [−2/3,−1/3] ⊂ M. By rounding
the corners, we get a smoothly embedded tight ball (B3

1, ξ|B3
1
) ⊂ (M, ξ), in particular,∂B3

1 has a tight
neighborhood in (M, ξ). Let (B3

2, ξot) be a minimal overtwisted ball. We construct a new contact
manifold (M, ξ̃) = (M \ B3

1, ξ) ∪φ (B3
2, ξot), whereφ is an orientation-reversing diffeomorphism

identifying the standard tight neighborhoods of∂B3
1 and∂B3

2. It is easy to see that̃ξ is isotopic to
the contact structure obtained by attaching a bypass triangle to (M, ξ) alongα.

Remark5.8. The uniqueness of the tight contact structure on 3-ball, dueto Eliashberg, guarantees
that the bypass triangle attachment described above is well-defined.

Using the above alternative description of the bypass triangle attachment, we prove the following
generalization of Lemma 5.5.

Lemma 5.9. Let (M, ξ) be a contact 3-manifold with convex boundary, and letα, β be two admis-
sible arcs on∂M. Let ξα (resp. ξβ) be the contact structure on M obtained by attaching a bypass
triangle△α (resp.△β) alongα (resp.β) to (M, ξ). Thenξα is isotopic toξβ relative to the boundary.

Proof. Without loss of generality, we can assume thatα andβ are disjoint. If not, we take another
admissible arcγ which is disjoint fromα andβ. We then show thatξα ≃ ξγ andξβ ≃ ξγ, which
impliesξα ≃ ξβ.

As before, since∂M is convex, we can pushα andβ slightly into the manifoldM, which we still
denote byα andβ. Now let B3

α ⊂ M andB3
β ⊂ M be smoothly embedded tight balls containing

α andβ respectively. Take a Legendrian arcτ connectingB3
α andB3

β, i.e., the endpoints ofτ are
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contained in∂B3
α and∂B3

β, respectively, and the interior ofτ is disjoint fromB3
α andB3

β. Moreover,
we can assume thatτ ∩ ∂B3

α ∈ Γ∂B3
α

andτ ∩ ∂B3
β ∈ Γ∂B3

β
. Let N(τ) be a closed tubular neighborhood

of τ. By rounding the corners ofB3
α ∪ B3

β ∪ N(τ), we get a smoothly embedded ballB3 ⊂ M
with tight convex boundary. Using our cut-and-paste definition of the bypass triangle attachment,
it is easy to see that (B3, ξα|B3) and (B3, ξβ|B3) are isotopic, relative to the boundary, to the contact
boundary sums (B3, ξot)#b(B3, ξstd) and (B3, ξstd)#b(B3, ξot), respectively. Hence both are isotopic
to the minimal overtwisted ball. One simply extends the isotopy by identity to the rest ofM to
conclude thatξα ≃ ξβ on M. �

According to Lemma 5.9, the isotopy class of the contact structure obtained by attaching a
bypass triangle does not depend on the choice of the attaching arcs. We shall write△ for a bypass
triangle attachment along an arbitrary admissible arc. An immediate consequence of this fact is
that the bypass triangle attachment commutes with any bypass attachment. This is the content of
the following corollary:

Corollary 5.10. Let (M, ξ) be contact 3-manifold with convex boundary, andα be an admissible
arc on∂M. Thenξ ∗ σα ∗ △ ≃ ξ ∗ △ ∗ σα.

Proof. By Lemma 5.9, we can arbitrarily choose an admissible arcβ ⊂ ∂M along which the bypass
triangle△ is attached. In particular, we require thatβ is disjoint fromα. Hence a neighborhood of
β where△β is supported in is also disjoint fromα. Thus we have the following isotopies:

ξ ∗ σα ∗ △ ≃ ξ ∗ σα ∗ △β

≃ ξ ∗ △β ∗ σα

≃ ξ ∗ △ ∗ σα.

which proves the commutativity. �

Corollary 5.11. Let (S2×[0, 1], ξ) be a contact manifold with convex boundary, whereξ is isotopic
to a sequence of bypass attachmentsσ1 ∗ σ2 ∗ · · · ∗ σn, i.e., there exists0 = t0 < t1 < · · · < tn = 1
such that S2 × {ti} are convex for0 ≤ i ≤ n and S2 × [ti−1, ti] with the restricted contact structure
is isotopic to the bypass attachmentσi. Thenξ ∗ △ is isotopic toξk for 0 ≤ k ≤ n, whereξk is the
contact structure isotopic to a sequence of bypass attachmentsσ1 ∗ · · · ∗ σk ∗ △ ∗ σk+1 · · · ∗ σn.

Proof. This is an iterated application of Corollary 5.10. �

However, observe that subtracting a bypass triangle is in general not well-defined. So we need
the following definition.

Definition 5.12. Two contact structuresξ andξ′ on S2×[0, 1] arestably isotopic, denoted byξ ∼ ξ′,
if they become isotopic after attaching finitely many bypasstriangles to S2 × {1} simultaneously,
i.e.,ξ ∗ △n ≃ ξ′ ∗ △n for some n∈ N.

6. OVERTWISTED CONTACT STRUCTURES ONS2 × [0, 1] INDUCED BY ISOTOPIES.

Let ξ be an overtwisted contact structure onS2× [0, 1] such thatS2×{0} andS2×{1} are convex
spheres. In general, any suchξ can be represented by a sequence of bypass attachments. More
precisely, by Theorem 1.3, there exists an increasing sequence 0= t0 < t1 < · · · < tn = 1 such
that S2 × {ti} is convex andξ|S2×[ti−1,ti ] is isotopic to a bypass attachmentσi for i = 1, · · · , n. In
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this section, we consider a special class of overtwisted contact structures onS2 × [0, 1] such that
S2 × {t} is convex fort ∈ [0, 1], in other words, there is no bypass attached.

Let ξ0 be anI -invariant contact structure onS2 × [0, 1] with dividing setΓ0 on S2 × {0}. Let
φt : S2 → S2, t ∈ [0, 1], be an isotopy such thatφ0 = id. We define a new contact structure
ξΓ0,Φ = Φ∗(ξ0) on S2 × [0, 1], whereΦ : S2 × [0, 1] → S2 × [0, 1] is defined by (x, t) 7→ (φt(x), t).
Observe thatS2 × {t} is convex with respect toξΓ0,Φ for all t ∈ [0, 1] by construction. Hence we
get a smooth family of dividing setsΓS2×{t} for t ∈ [0, 1]. Conversely, a smooth family of dividing
setsΓS2×{t}, t ∈ [0, 1] defines a unique contact structure onS2 × [0, 1], which is isotopic toξΓ0,Φ

constructed above for some isotopyφt, t ∈ [0, 1]. In practice, it is usually easier to keep track of
the dividing sets rather than the isotopy.

Definition 6.1. A contact structureξ on S2 × [0, 1] is induced by an isotopyif S2 × {t} is convex
for all t ∈ [0, 1], or, equivalently, there exists an isotopyΦ : S2 × [0, 1]→ S2× [0, 1] such thatξ is
isotopic toξΓ0,Φ as constructed above.

It is convenient to have the following lemma.

Lemma 6.2. Let ξ, ξ′ be two contact structures on S2 × [0, 1] induced by isotopies and letΓt, Γ′t
be dividing sets on S2 × {t}, 0 ≤ t ≤ 1, with respect toξ, ξ′ respectively. IfΓ0 = Γ

′
0, Γ1 = Γ

′
1 and

there exists a path of smooth families of multicurvesΓs
t , 0 ≤ s≤ 1 satisfying the following:

(1) Γs
t is a multicurve, i.e., a finite disjoint union of simple closed curves, contained in S2 × {t}

for 0 ≤ s≤ 1, 0 ≤ t ≤ 1.
(2) Γ0

t = Γt, Γ1
t = Γ

′
t for 0 ≤ t ≤ 1,

(3) Γs
0 = Γ0, Γs

1 = Γ1 for 0 ≤ s≤ 1.
thenξ is isotopic toξ′ relative to the boundary.

Proof. By Giroux’s flexibility theorem, the pathΓs
t , 0 ≤ s≤ 1 of multicurves determines a path of

contact structuresξs onS2× [0, 1] such thatξ0 = ξ, ξ1 = ξ′. Henceξ is isotopic toξ′ relative to the
boundary by Gray’s stability theorem. �

We first consider a bypass attachment to the contact structures onS2 × [0, 1] induced by an
isotopy.

Lemma 6.3. Let ξΓ0,Φ be a contact structure on S2 × [0, 1/2] induced by an isotopyφt : S2→ S2,
t ∈ [0, 1/2], and(S2× [1/2, 1], σα) be a bypass attachment along an admissible arcα ⊂ S2×{1/2}.
Then there exists an admissible arcα̃ ⊂ S2×{0} such that(S2×[0, 1], ξΓ0,Φ∗σα) is isotopic, relative
to the boundary, to(S2 × [0, 1], σα̃ ∗ ξΓ′0,Φ), whereΓ′0 is the dividing set obtained by attaching a
bypass alongα to Γ0.

Proof. We basically re-foliate the contact manifold (S2×[0, 1], ξΓ0,Φ∗σα). Recall thatσα attaches a
bypassD onS2 × {1/2} so that∂D = α∪ β is the union of two Legendrian arcs, wheretb(α) = −1,
tb(β) = 0. We extendD to a new bypass̃D on S2 × {0} through the isotopyφt : S2 → S2,
t ∈ [0, 1/2], by definingD̃ = D ∪ Φ(α̃ × [0, 1/2]), whereα̃ = φ−1

1/2(α) ⊂ S2 × {0} is the new
admissible arc along which̃D is attached, andΦ : S2 × [0, 1/2] → S2 × [0, 1/2] is defined by
(x, t) 7→ (φt(x), t). By attaching the new bypass̃D on S2 × {0}, observe that the rest ofS2 × [0, 1]
can be foliated by convex surfaces, and the contact structure is also induced byΦ. HenceξΓ0,Φ ∗σα
is isotopic toσα̃ ∗ ξΓ′0,Φ as desired. �
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Definition 6.4. The admissible arc̃α constructed in Lemma 6.3 is called apush-downof α. Con-
versely, we callα a pull-upof α̃.

The rest of this section is rather technical and can be skipped at the first time reading. The only
result needed for our proof of Theorem 0.2 is Proposition 6.15.

We consider a subclass of the contact structures onS2×[0, 1] induced by isotopies which we will
be mainly interested in. Fix a metric onS2. Without loss of generality, we assume that there exists
a small diskD2

ǫ (y) ⊂ S2 centered aty of radiusǫ and a codimension 0 submanifoldΓ̃S2×{0} of ΓS2×{0}

such that̃ΓS2×{0} ⊂ D2
ǫ (y) andD2

ǫ (y)∩ΓS2×{0} = Γ̃S2×{0}. Letγ(s) ⊂ S2×{0}, s ∈ [0, 1] be an embedded
oriented loop such thatγ(0) = γ(1) = y. Let A(γ) be an annulus neighborhood ofγ containing
D2
ǫ (y) and disjoint from other components of the dividing set as depicted in Figure 13. We define

an isotopyφt : S2 → S2, t ∈ [0, 1], supported inA(γ) which parallel transportsD2
ǫ (y) alongγ in

A(γ). More precisely, by applying the stereographic projection map, we can identifyA(γ) with an
annulus inR2. Then the parallel transportation is given by an affine mapφt : x 7→ x+ γ(t) − γ(0)
for anyx ∈ D2

ǫ (y) andt ∈ [0, 1].

Γ̃ Γ \ Γ̃ Γ \ Γ̃

γ

A(γ)

FIGURE 13.

Definition 6.5. With the small disk D2ǫ (y) ⊃ Γ̃S2×{0} such thatΓ̃S2×{0} ∩ ∂D2
ǫ (y) = ∅, the annulus

A(γ) ⊃ γ and the isotopyφt : S2 → S2 chosen as above, we say that the contact structureξΓS2×{0},Φ

on S2 × [0, 1] is induced by apure braid of the dividing set, whereΦ : S2 × [0, 1] → S2 × [0, 1]
is induced byφt as before. We denote such contact structures byξΓ,Φ(Γ̃,D2

ǫ (y),γ). When there is no
confusion, we also abbreviate it byξΓ̃,D2

ǫ ,γ
.

Remark6.6. For any simply connected regionD ⊂ S2 × {0} containingΓ̃S2×{0}, one can isotop so
thatD becomes a round disk with small radius as required in Definition 6.5. The isotopy class of
the contact structure onS2 × [0, 1] induced by a pure braid of the dividing set only depends on the
choice ofD ⊃ Γ̃S2×{0} and the isotopy class ofγ.

Remark6.7. If ξ is a contact structure onS2 × [0, 1] induced by a pure braid of the dividing set,
thenΓS2×{0} = ΓS2×{1}.

Before we give a complete classification of contact structures onS2 × [0, 1] induced by pure
braids of the dividing set, we make a digression into the study of its homotopy classes using a
generalized version of the Pontryagin-Thom construction for manifolds with boundary. See [11]
for more discussions on the generalized Pontryagin-Thom construction.

We can always assume that the isotopyφt(Γ̃,D2
ǫ (y), γ) : S2→ S2, t ∈ [0, 1], discussed in Defini-

tion 6.5 is supported in a diskD2 ⊂ S2. Trivialize the tangent bundle ofD2× [0, 1] by embedding it
intoR3 so thatD2 is contained in thexy-plane. Consider the Gauss mapG : (D2× [0, 1], ξΓ̃,D2

ǫ ,γ
)→
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S2. By Lemma 6.2, we can assume without loss of generality that the dividing set is a disjoint union
of round circles inD2×{t} for all 0 ≤ t ≤ 1, andp = (1, 0, 0) ∈ S2 ⊂ R3 is a regular value. Suppose
the number of connected components #ΓD2×{0} = m, then the Pontryagin submanifoldB = G−1(p)
is an oriented framed monotone braid in the sense thatB transversely intersectsD2×{t} in mpoints
for any 0≤ t ≤ 1, and each connected component of the dividing set containsexactly one point.
It is easy to check that the pull-back framing is the blackboard framing, and consequently the
self-linking number ofB is exactlywrithe(B). It follows from the generalized Pontryagin-Thom
construction that the homotopy class of a contact structureon D2 × [0, 1] relative to the boundary
is uniquely determined by the relative framed cobordism class of its Pontryagin submanifoldB,
and hence is uniquely determined bywrithe(B) sinceH1(D2 × [0, 1], ∂(D2 × [0, 1]);Z) = 0. One
may think ofwrithe(B) as a relative version of the Hopf invariant associated withboundary relative
homotopy classes of mapsD2 × [0, 1] ≃ B3→ S2.

Example 6.8. If ΓD2×{0} is the disjoint union of two isolated circles, andΓ̃D2×{0} = S1 ⊂ D2
ǫ (y) is

the circle on the left as depicted in Figure 14. The isotopyφt parallel transportsD2
ǫ (y) along the

oriented loopγ. We compute the homotopy class of the contact structureξΓ̃,D2
ǫ ,γ

.

(a) (b)

p1 p2

p1 p2

p1 p2

p1 p2

+

+

− −

− −

D2 × [0, 1]

γ

FIGURE 14. (a) The contact structure onS2 × [0, 1] induced by a full twist of the
dividing circles, where{p1, p2} are pre-images of the regular valuep = (1, 0, 0) ∈
S2. (b) The oriented braid with the blackboard framingB as the Pontryagin sub-
manifold.

According to the Pontryagin-Thom construction, sincewrithe(B) = −2, the homotopy class of
ξΓ̃,D2

ǫ ,γ
is in general different from theI -invariant contact structure, and the difference is measured

by decreasing the Hopf invariant by 2.4

Example 6.9. If ΓD2×{0} is the disjoint union of three circles, andΓ̃D2×{0} = S1 ⊂ D2
ǫ (y) is the circle

on the left as depicted in Figure 15. The isotopyφt parallel transportsD2
ǫ (y) along the oriented loop

γ. We compute the homotopy class of the contact structureξΓ̃,D2
ǫ ,γ

.
In this case, one computes thatwrithe(B) = 0, henceξΓ̃,D2

ǫ ,γ
is homotopic to theI -invariant

contact structure.

Now we are ready to classify the contact structures induced by pure braids of the dividing set
up to stable isotopy in the sense of Definition 6.5. One goal isto establish an isotopy equivalence

4However, if the divisibility of the Euler class is 2, thenφt gives a contact structure which is homotopic to the
I -invariant contact structure. We will discuss the divisibility of the Euler class in detail in Section 8.
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p1 p2 p3

p1 p2 p3

(a) (b)
D2 × [0, 1] p1 p2 p3

p1 p2 p3

+ − + −

+ − + −

γ

FIGURE 15. (a) A braiding by a full twist of the left-hand side dividing circle along
γ, where{p1, p2, p3} = G−1(p) is the pre-image of the regular valuep = (1, 0, 0) ∈
S2. (b) The oriented framed braidB as the Pontryagin submanifold.

relation between a pure braid of the dividing set and the bypass triangle attachment. To start with,
we consider the contact structures induced by two special pure braids of the dividing set as depicted
in Figure 16. In Figure 16(a), the dividing setΓ̃ ⊂ D2

ǫ (y) is a single circle, and the dividing set
contained in the disk bounded byγ and disjoint fromΓ̃ is also a single circle. In Figure 16(b),
the dividing set̃Γ ⊂ D2

ǫ (y) consists ofm isolated circles nested in another circle, and the dividing
set contained in the disk bounded byγ and disjoint fromΓ̃ consists ofn isolated circles nested in
another circle. We also assume that eithermor n is not zero. For technical reasons, it is convenient
to have the following definitions.

Definition 6.10. Given two disjoint embedded circlesγ, γ′ ⊂ D2, we sayγ < γ′ if and only ifγ is
contained in the disk bounded byγ′.

Definition 6.11. Let Γ ⊂ D2 be a finite disjoint union of embedded circles. Thedepthof Γ is
the maximum length of chainsγ1 < γ2 < · · · < γr , whereγi ⊂ Γ is a single circle for any
i ∈ {1, 2, · · · , r}.

Observe that the depth of the dividing set in Figure 16(a) is 1, and the depth of the dividing set
in Figure 16(b) is 2. It turns out that to study the contact structure induced by an arbitrary pure
braid of the dividing set, it suffices to consider a finite composition of these two special cases.

(a) (b)

γ γ

Γ
′

Γ
′ ︸︷︷︸ ︸︷︷︸

m n

FIGURE 16.

Lemma 6.12. If (S2× [0, 1], ξΓ̃,D2
ǫ ,γ

) is a contact manifold with contact structure induced by a pure
braid of the dividing set wherẽΓ ⊂ D2

ǫ andγ are chosen as in Figure 16(a), then(S2× [0, 1], ξΓ̃,D2
ǫ ,γ

)
is isotopic relative to the boundary to(S2 × [0, 1],△2), where△2 denotes the contact structure
obtained by attaching two bypass triangles on(S2 × {0}, ξΓ̃,D2

ǫ ,γ
|S2×{0}).

Proof. Let α be an admissible arc as depicted in Figure 17(b). Suppose that both bypass triangles
are attached alongα.
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(a) (b)

γ

α

αξΓ̃,D2
ǫ ,γ

△α

△α

FIGURE 17. (a) The contact structure is induced by parallel transporting Γ̃ ⊂ D2
ǫ

alongγ. (b) Attaching two bypass triangles along the admissible arc α.

Observe that△α = σα ∗ σα′ ∗ σα′′, whereσα, σα′ andσα′′ are all trivial bypass attachments.
Hence the contact manifold (S2 × [0, 1],△2

α) can be foliated by convex surfaces by Lemma 3.3. In
other words, it is induced by an isotopy. By Theorem 0.55 in [11], we know that attaching two
bypass triangles△2

α decreases the Hopf invariant by 2. In Example 6.8, we checkedby Pontryagin-
Thom construction thatξΓ̃,D2

ǫ ,γ
also decreases the Hopf invariant by 2. Observe that the isotopy

class relative to the boundary of a 2-strand oriented monotone braid with blackboard framing is
uniquely determined by its self-linking number, which is equal to the Hopf invariant. Hence△2

α

is isotopicΦΓ̃,D2
ǫ ,γ

in the region where both operations are supported. By extending the isotopy by
identity to the rest ofS2, we conclude that (S2 × [0, 1], ξΓ̃,D2

ǫ ,γ
) is isotopic relative to the boundary

to (S2 × [0, 1],△2). �

Lemma 6.13. If (S2× [0, 1], ξΓ̃,D2
ǫ ,γ

) is a contact manifold with contact structure induced by a pure
braid of the dividing set wherẽΓ ⊂ D2

ǫ andγ are chosen as in Figure 16(b), then(S2× [0, 1], ξΓ̃,D2
ǫ ,γ

)
is stably isotopic to(S2 × [0, 1],△2(m−1)(n−1)).

Proof. Let α ⊂ S2 × {1} be an admissible arc as depicted in the left-hand side of Figure 18(a). By
Lemma 6.3, ifα̃ is the push-down ofα, thenξΓ,Φ(Γ̃,D2

ǫ ,γ) ∗σα ≃ σα̃ ∗ ξΓ′,Φ, whereΓ′ is obtained from
Γ by attaching a bypass alongα. We remark here thatξΓ,Φ(Γ̃,D2

ǫ ,γ) andξΓ′,Φ are contact structures
induced by the same isotopy, but are push-forwards of different contact structures onS2 × [0, 1].
ChoosẽΓ′ ⊂ D2′

ǫ to be them isolated circles on the left andγ′ be an oriented loop as depicted in the
right-hand side of Figure 18(a). Letξ

Γ̃′,D2′
ǫ ,γ

′ be the contact structure induced by an isotopy which
parallel transports̃Γ′ ⊂ D2′

ǫ alongγ′. Then Lemma 6.2 implies thatξΓ′,Φ is isotopic, relative to
the boundary, toξΦ̃ ∗ ξΓ̃′,D2′

ǫ ,γ
′, whereΦ̃ is induced by an isotopy that rounds the outmost dividing

circle. An iterated application of Lemma 6.12 implies thatξ
Γ̃′,D2′

ǫ ,γ
′ ≃ △

2m(n−1).
We next isotop the contact structureσα̃∗ξΦ̃. Consider then isolated circles nested in a larger cir-

cle. LetΓ̃′′ ⊂ D2′′
ǫ be the leftmost circle among then circles andγ′′ be an oriented loop as depicted

in the right-hand side of Figure 18(b). We pull up ˜α through an isotopy which parallel transports
Γ̃
′′ ⊂ D2′′

ǫ alongγ′′, and observe that the pull-up of ˜α is isotopic toα. By using Lemma 6.3 one
more time, we get the isotopy of contact structuresσα̃ ∗ ξΦ̃ ≃ ξΓ̃′′,D2′′

ǫ ,γ
′′ ∗ σα. It is left to determine

5The 3-dimensional obstruction classo3 used in Theorem 0.5 in [11] is by definition the relative version of the Hopf
invariant which we have discussed above.
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the isotopy class of the contact structureξ
Γ̃′′,D2′′

ǫ ,γ
′′ . Sinceγ′′ is oriented counterclockwise, by ap-

plying Lemma 6.12 (n− 1) times, we get a stable isotopyξ
Γ̃′′,D2′′

ǫ ,γ
′′ ∼ △

2(1−n), i.e.,ξ
Γ̃′′,D2′′

ǫ ,γ
′′ ∗ △

2(n−1)

is isotopic to theI -invariant contact structure.

(a)

(b)

≃

≃

σα̃
ξ
Γ̃′′,D2′′

ǫ ,δ
′′

σα

α̃
γ′′

α

ξΓ̃,D2
ǫ ,γ

△α

γ

α

σα̃

ξ
Γ̃′,D2′

ǫ ,γ
′

σα′ ∗ σα′′

α̃

γ′

Γ̃

Γ̃
′

Γ̃
′′

FIGURE 18. (a) Pushing down the bypass attachmentσα. (b) Pulling up the bypass
attachmentσα̃.
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To summarize what we have done so far, we have the following (stable) isotopies of contact
structures:

ξΓ̃,D2
ǫ ,γ
∗ △α = ξΓ,Φ(Γ̃,D2

ǫ ,γ) ∗ σα ∗ σα′ ∗ σα′′

≃ σα̃ ∗ ξΓ′,Φ ∗ σα′ ∗ σα′′

≃ σα̃ ∗ ξΦ̃ ∗ ξΓ̃′,D2′
ǫ ,γ

′ ∗ σα′ ∗ σα′′

≃ σα̃ ∗ ξΦ̃ ∗ △
2m(n−1) ∗ σα′ ∗ σα′′

≃ ξ
Γ̃′′,D2′′

ǫ ,γ
′′ ∗ σα ∗ △

2m(n−1) ∗ σα′ ∗ σα′′

∼ △2(1−n) ∗ σα ∗ △
2m(n−1) ∗ σα′ ∗ σα′′

≃ △2(m−1)(n−1) ∗ σα ∗ σα′ ∗ σα′′

= △2(m−1)(n−1) ∗ △α.

Note that the third equation from the bottom is only a stable isotopy so that the (possibly)
negative power of the bypass triangle attachment makes sense. See Definition 5.12. We will use
the same trick in the proof of the following Proposition 6.14without further mentioning. Hence
by definition,ξΓ̃,D2

ǫ ,γ
is stably isotopic to△2(m−1)(n−1) as desired. �

We now completely classify contact structures onS2 × [0, 1] induced by pure braids of the
dividing set.

Proposition 6.14. If (S2 × [0, 1], ξΓ̃,D2
ǫ ,γ

) is a contact manifold with contact structure induced by a
pure braid of the dividing set, thenξΓ̃,D2

ǫ ,γ
is stably isotopic to(S2 × [0, 1],△l) for some l∈ N.

Proof. Recall thatΓ̃ ⊂ D2
ǫ is a codimension 0 submanifold ofΓS2×{0}, andγ is an oriented loop

in the complement ofΓS2×{0} as in Definition 6.5. Let̃Γ′ be the union of components ofΓS2×{0}

contained in a disk bounded byγ and outside ofA(γ). We may choose the disk so that−γ is the
oriented boundary. Since the contact structureξΓ̃,D2

ǫ ,γ
is induced by a pure braid of the dividing

set, we haveΓS2×{0} = ΓS2×{1}. Hence we also view̃Γ andΓ̃′ as dividing sets onS2 × {1}. Choose
pairwise disjoint admissible arcsα1, α2, · · · , αr , αr+1, · · · , αk on S2 × {1} such that the following
conditions hold:

(1) α1, α2, · · · , αr−1 are admissible arcs contained inD2
ǫ such that by attaching bypasses along

these arcs, the depth ofΓ̃ becomes at most 2.
(2) αr , αr+1, · · · , αk are admissible arcs contained in the disk bounded byγ and outside ofA(γ)

such that by attaching bypasses along these arcs, the depth of Γ̃′ becomes at most 2.

Observe that we chooseα1, α2, · · · , αk such that the isotopy class of eachαi is invariant under
the time-1 mapφ1 which is supported inA(γ) \ D2

ǫ . Hence, by abuse of notation, we do not
distinguishαi and its push-down throughφt(Γ̃,D2

ǫ , γ). By Lemma 6.3, we have the isotopy of
contact structuresξΓ̃,D2

ǫ ,γ
∗ σα1 ∗ · · · ∗ σαk ≃ σα1 ∗ · · · ∗ σαk ∗ ξΦ, whereξΦ is the contact structure

induced by a finite composition of special pure braids of the dividing set considered in Lemma 6.12
and Lemma 6.13, ThereforeξΦ is stable isotopic to a power of the bypass triangle attachment, say
△l for somel ∈ N. To summarize, we have the following (stable) isotopies of contact structures,
relative to the boundary.
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ξΓ̃,D2
ǫ ,γ
∗ △k ≃ ξΓ̃,D2

ǫ ,γ
∗ △α1 ∗ · · · ∗ △αk

= ξΓ̃,D2
ǫ ,γ
∗ (σα1 ∗ σα′1 ∗ σα

′′
1
) ∗ · · · ∗ (σαk ∗ σα′k ∗ σα

′′
k
)

≃ (ξΓ̃,D2
ǫ ,γ
∗ σα1 ∗ · · · ∗ σαk) ∗ (σα′1 ∗ σα′′1 ) ∗ · · · ∗ (σα′k ∗ σα′′k )

≃ (σα1 ∗ · · · ∗ σαk ∗ ξΦ) ∗ (σα′1 ∗ σα′′1 ) ∗ · · · ∗ (σα′k ∗ σα′′k )

∼ (σα1 ∗ · · · ∗ σαk ∗ △
l) ∗ (σα′1 ∗ σα′′1 ) ∗ · · · ∗ (σα′k ∗ σα′′k )

≃ △l ∗ (σα1 ∗ σα′1 ∗ σα
′′
1
) ∗ · · · ∗ (σαk ∗ σα′k ∗ σα

′′
k
)

= △l ∗ △k. �

HenceξΓ̃,D2
ǫ ,γ

is stably isotopic to△l by definition.

To conclude this section, we prove the following technical result which asserts that under certain
assumptions and up to possible bypass triangle attachments, one can separate two bypasses.

Proposition 6.15.Let (S2, Γ) be a convex sphere with dividing setΓ andα ⊂ (S2, Γ) be an admis-
sible arc such that the bypass attachmentσα increases#Γ by 2. Suppose that(S2, Γ′) is the new
convex sphere obtained by attachingσα to (S2, Γ) and supposeβ ⊂ (S2, Γ′) is another admissible
arc such that the bypass attachmentσβ decreases#Γ′ by 2. Then there exists an admissible arc
β̃ ⊂ (S2, Γ) disjoint fromα, a mapΦ : S2 × [0, 1] → S2 × [0, 1] induced by an isotopy, and an
integer l∈ N such thatσα ∗ σβ ∼ σα ∗ σβ̃ ∗ △

l ∗ ξΦ relative to the boundary.

Proof. Let δ be the arc of anti-bypass attachment toσα contained in (S2, Γ′) as discussed in Re-
mark 5.3. Thenδ intersectsΓ′ in three points{p1, p2, p3} as depicted in Figure 19(b). Letδ1 and
δ2 be subarcs ofδ from p1 to p2 and fromp2 to p3 respectively. Observe that, in order to find an
admissible arc̃β ⊂ (S2, Γ) which is disjoint fromα and satisfy all the conditions in the lemma,
it suffices to find an admissible arc on (S2, Γ′), which we still denote bỹβ, and which is disjoint
from δ and also satisfies the conditions in the lemma. In fact, by symmetry, we only need̃β to be
disjoint fromδ1. Without loss of generality, we can assume thatβ intersectsδ transversely and the
intersection points are different fromp1, p2 andp3.

α

δ

p1

p2

p3

(a) (b)

FIGURE 19. (a) The convex sphere (S2, Γ) with an admissible arcα. (b) The convex
sphere (S2, Γ′) obtained by attaching a bypass alongα, whereδ is the arc of the anti-
bypass attachment.
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Claim: Up to isotopy and possibly a finite number of bypass triangle attachments, one can arrange
so thatβ andδ1 do not cobound a bigon B on S2 as depicted in Figure 20(a).

δ1

β γ

β̃

(a) (b) (c)
FIGURE 20. (a) The admissible arcβ together withδ1 bound a minimal bigon,
which contains other components of the dividing set in the interior. (b) Choose a
diskD2

ǫ containing all the dividing sets̃Γ in the bigon and an oriented loopγ so that
it intersectsβ in exactly one point. (c) The pull-up ofβ through the contact structure
ξΓ̃,D2

ǫ ,γ
bounds a trivial bigon withδ1.

To verify the claim, note that ifB is a trivial bigon, i.e., it contains no component of the dividing
set in the interior, then we can easily isotopβ to eliminateB. If otherwise, we consider a minimal
bigon bounded byβ andδ1 in the sense that the interior of the bigon does not intersectwith β.
Take a diskD2

ǫ ⊂ B containing all components of the dividing setΓ̃ in B, namely,Γ′ ∩ D2
ǫ = Γ̃

andΓ′ ∩ (B \ D2
ǫ ) = ∅. By our assumption, the bypass attachmentσβ decreases #Γ′ by 2, soβ

must intersectΓ′ in three points which are contained in three different connected components ofΓ′

respectively. One can find an oriented loopγ : [0, 1] → S2 \ Γ′ with γ(0) = γ(1) ∈ D2
ǫ such thatγ

intersectsβ in one point. Orientγ in such a way that it goes fromγ ∩ β to γ(1) in the interior ofB
as depicted in Figure 20(b). Suppose thatΦ : S2 × [0, 1] → S2 × [0, 1] is induced by an isotopy
φt which parallel transportsD2

ǫ alongγ. By pulling up the the bypass attachmentσβ throughξΓ′,Φ,
we get the following isotopy of contact structures (cf. proof of Lemma 6.13):

σβ ∗ ξΓ′′,Φ(D2
ǫ ,γ) ≃ ξΓ′,Φ(Γ̃,D2

ǫ ,γ) ∗ σβ̃

whereΓ′′ is obtained fromΓ′ by attaching a bypass alongβ, and β̃ is the pull-up ofβ which is
isotopic to the one depicted in Figure 20(c).

Sinceβ̃ andδ1 cobound a trivial bigon, a further isotopy ofβ̃ will eliminate the bigon so thatβ′

does not intersectδ1 in this local picture. By Proposition 6.14, the contact structureξΓ′,Φ(Γ̃,D2
ǫ ,γ) is

stably isotopic to△n for somen ∈ N. DefineΦ−1 : S2 × [0, 1]→ S2 × [0, 1] by (x, t) 7→ (φ−1
t (x), t),

then it is easy to see thatξΓ′′,Φ(D2
ǫ ,γ)∗ξΓ′′,Φ−1(D2

ǫ ,γ) is isotopic, relative to the boundary, to anI -invariant
contact structure. Since we will use this trick many times, we simply writeξΦ−1 for ξΓ′′,Φ−1(D2

ǫ ,γ) when
there is no confusion. To summarize, we have

σβ ≃ ξΓ′,Φ(Γ̃,D2
ǫ ,γ) ∗ σβ̃ ∗ ξΓ′′,Φ−1(D2

ǫ ,γ)

∼ △n ∗ σβ̃ ∗ ξΓ′′,Φ−1(D2
ǫ ,γ)

≃ σβ̃ ∗ △
n ∗ ξΓ′′,Φ−1(D2

ǫ ,γ)
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By applying the above argument finitely many times, we can eliminate all bigons bounded byβ
andδ1. Hence the claim is proved.

Let us assume thatβ intersectsδ1 nontrivially, andβ andδ1 do not cobound any bigon onS2.
We consider the following two cases separately.

Case 1.Supposeβ does not intersect any of the three components of the dividing set generated by
the bypass attachmentσα. Let Γ1, Γ2 andΓ3 be the three dividing circles which intersect withβ.
If β intersectsδ1 in exactly one point as depicted in Figure 21(a), then we choose a diskD2

ǫ ⊃ Γ1

Γ1

Γ2

Γ3

β

γ β̃

(a) (b) (c)

FIGURE 21. (a) The convex sphere (S2, Γ′) with an admissible arcβ intersecting
δ1 in exactly one point. (b) Choose a diskD2

ǫ containingΓ1 and an oriented loopγ,
along which we apply the isotopy. (c) The pull-up ofβ through the contact structure
ξΓ1,D2

ǫ ,γ
bounds a trivial bigon withδ1.

and an oriented loopγ in the complement of the dividing set as depicted in Figure 21(b) such that
σβ ≃ ξΓ′,Φ(Γ1,D2

ǫ ,γ) ∗ σβ̃ ∗ ξΦ−1 ∼ △m ∗ σβ̃ ∗ ξΦ−1 by arguments as before for somem ∈ N, whereβ̃
intersectsδ1 in exactly two points and cobound a trivial bigon as depictedin Figure 21(c). Hence
an obvious further isotopy of̃β makes it disjoint fromδ1 as desired.

If β intersectsδ1 in more than one point, we orientβ so that it starts from the pointq = β ∩ Γ1

as depicted in Figure 22(a). Letq1 andq2 be the first and the second intersection points ofβ with
δ1 respectively. Note that since we assumeβ andδ1 do not cobound any bigon, there is no more
intersection pointβ ∩ δ1 alongδ1 betweenq1 andq2. Let −−→qq1,

−−→q1q and−−−→q1q2 be oriented subarcs
of β and−−−→q2q1 be an oriented subarc ofδ1. We obtain a closed, oriented (but not embedded) loop
γ = −−→qq1 ∪

−−−→q1q2 ∪
−−−→q2q1 ∪

−−→q1q by gluing the arcs together. To apply Proposition 6.14 in this case,
we take an embedded loop close toγ as depicted in Figure 22(b), which we still denote byγ. Let
D2
ǫ be a small disk containingΓ1 as usual. Again by pulling up the bypass attachmentσβ through
ξΓ′,Φ(Γ1,D2

ǫ ,γ), we have (stable) isotopies of contact structuresσβ ≃ ξΓ′,Φ(Γ1,D2
ǫ ,γ)∗σβ̃∗ξΦ−1 ∼ △r∗σβ̃∗ξΦ−1

for somer ∈ N, whereβ̃ andδ1 bound a trivial bigon. Hence an obvious further isotopy eliminates
the trivial bigon and decreases #(β∩δ1) by 2. By applying the above argument finitely many times,
we can reduce to the case whereβ intersectsδ1 in exactly one point, but we have already solved the
problem in this case. We conclude that under the hypothesis at the beginning of this case, there ex-
ists aβ̃ disjoint withδ1 such thatσα∗σβ ∼ σα∗σβ̃∗△

l ∗ξΦ for some isotopyΦ and an integerl ∈ N.

Case 2. Supposeβ nontrivially intersects the union of the three components of the dividing set
generated by the bypass attachmentσα. Without loss of generality, we pick an intersection pointr
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Γ1
q

q1

q2

β
γ

β′

(a) (b) (c)

FIGURE 22. (a) The convex sphere (S2, Γ′) with an admissible arcβ intersecting
δ1 in at least two points, say,q1 andq2. (b) The embedded, oriented loopγ approx-
imating the broken loop~qq1 ∪ ~q1q2 ∪ ~q2q1 ∪ ~q1q. (c) The pull-up ofβ through the
contact structureξΓ1,D2

ǫ ,γ
bounds a trivial bigon withδ1.

r
p1

r1

γβ

β̃

(a) (b) (c)

FIGURE 23. (a) The admissible arcβ, the dividing setΓ′ andδ1 cobound a topolog-
ical triangle△rr 1p1, which may contain other components of the dividing set in the
interior. (b) Choose the diskD2

ǫ to contain all the components of the dividing set in
the topological triangle△rr 1p1, and an oriented loopγ which intersectsβ in exactly
one point. (c) By applying the isotopy alongγ, the admissible arcβ becomesβ′

which bounds a trivial triangle with the dividing set andδ1.

as depicted in Figure 23(a). Orientβ so that it starts fromr. Let r1 be the first intersection point of
β andδ1. Thenβ, δ1 andΓ′ bound a triangle△rr 1p1. By the assumption that there exists no bigon
bounded byβ andδ1, the interior of the triangle△rr 1p1 does not intersect withβ. If the interior of
the triangle△rr 1p1 contains no components of the dividing set, then it is easy toisotopβ so that
#(β∩ δ1) decreases by 1. If otherwise, take a small diskD2

ǫ ⊂ △rr 1p1 containing all components of
the dividing set̃Γ in △rr 1p1, i.e.,△rr 1p1\D2

ǫ does not intersect with the dividing setΓ′. Letγ be an
oriented loop based at a point inD2

ǫ which does not intersect with the dividing set, and intersectsβ
exactly once. By pulling up the bypass attachmentσβ throughξΦ(Γ̃,D2

ǫ ,γ), we have (stable) isotopies
of contact structuresσβ ≃ ξΓ′,Φ(Γ̃,D2

ǫ ,γ) ∗ σβ̃ ∗ ξΦ−1 ∼ σβ̃ ∗ △
n ∗ ξΦ−1 so thatβ̃, δ1 andΓ′ bound a

trivial triangle in the sense that the interior of the triangle does not intersect with the dividing set.
Hence we can further isotop̃β to eliminate the trivial triangle and hence decrease #(β̃ ∩ δ1) by 1.
By applying such isotopies finitely many times, we get an admissible arc̃β such that #(̃β ∩ δ1) = 0
and satisfy all the conditions of the proposition. �
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7. CLASSIFICATION OF OVERTWISTED CONTACT STRUCTURES ONS2 × [0, 1]

We have established enough techniques to classify overtwisted contact structures onS2 × [0, 1].

Proposition 7.1. Let ξ be an overtwisted contact structure on S2 × [0, 1] such that S2 × {0, 1} is
convex withΓS2×{0} = ΓS2×{1} = S1. Thenξ ∼ △n for some n∈ N, where△n denotes the contact
structure on S2× [0, 1] obtained by attaching n bypass triangles to S2× {0} with the standard tight
neighborhood.

Proof. By Giroux’s criterion of tightness, bothS2×{0} andS2×{1} have neighborhoods which are
tight. Take an increasing sequence 0= t0 < t1 < · · · < tn = 1 such thatξ is isotopic to a sequence
of bypass attachmentsσα0 ∗ σα1 ∗ · · · ∗ σαn−1, whereαi ⊂ S2 × {ti} are admissible arcs along which
a bypass is attached. Define the complexity of a bypass sequence to bec = max0≤i≤n #ΓS2×{ti }. The
idea is to show that ifc > 3, then we can always decreasec by 2 by isotoping the bypass sequence
and suitably attaching bypass triangles.

To achieve this goal, we divide the admissible arcs on (S2, Γ) into four types (I), (II), (III) and
(IV), according to the number of components ofΓ intersecting the admissible arc as depicted in
Figure 24, where we only draw the dividing set which intersects the admissible arc. Observe that
bypass attachment of type (I) increases #Γ by 2, bypass attachment of type (II) and (III) do not
change #Γ, and bypass attachment of type (IV) decreases #Γ by 2. Hence the complexity of a
sequence of bypass attachments changes only if the types of bypasses in the sequence change. By
repeated application of Lemma 6.3, we may assume that contact structures induced by isotopies
are contained in a neighborhood ofS2 × {1}. By assumption,S2 × {1} has a tight neighborhood.
Hence according to Remark 5.4, we shall only consider sequences of bypass attachments modulo
contact structures induced by isotopies.

α α

α α

(I) (II) (III) (IV)

FIGURE 24. Four types of admissible arcsα on (S2, Γ).

Claim 1: We can isotop the sequence of bypass attachments such that only bypasses of type (I) and
(IV) appear.

To prove the claim, we first show that a bypass attachment of type (III) can be eliminated. Take
an admissible arcα of type (III). If the bypass attachment alongα is trivial, then by Lemma 3.3,
the bypass attachmentσα is induced by an isotopy. Otherwise there exists an admissible arcβ
disjoint fromα as depicted in Figure 25(a)6 such that if one attaches a bypass alongα, followed by
a bypass attached alongβ, then the later bypass attachment is trivial.

6In literature, we sayβ is obtained fromα by left rotation.
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α

β

α

σβ

α

β

α

σβ

(a) (b)

FIGURE 25.

By the disjointness of admissible arcsα andβ, we get the following isotopies of contact struc-
tures,

σα ≃ σα ∗ σβ

≃ σβ ∗ σα.

Observe thatσβ ∗σα is a composition of type (I) and type (IV) bypass attachments. Hence a finite
number of such isotopies will eliminate all bypass attachments of type (III) in a sequence.

Similarly suppose thatσα is the bypass attachment of type (II) in a sequence and is nontrivial.
Then there must exist other components of the dividing set asshown in Figure 25(b). Choose an
admissible arcβ disjoint from α as depicted in Figure 25(b) such that if one attaches a bypass
alongα, followed by a bypass attached alongβ, then the later bypass attachment is trivial. By the
disjointness ofα andβ again, we get the following isotopies of contact structures:

σα ≃ σα ∗ σβ

≃ σβ ∗ σα.

Observe thatσβ ∗ σα is a composition of bypass attachments both of type (III), hence by a further
isotopy will turnσα into a composition of bypass attachments of type (I) and (IV). A finite number
of such isotopies will eliminate bypasses of type (II). The claim follows.

From now on, we assume that any bypass attachment inσα0 ∗ σα1 ∗ · · · ∗ σαn−1 either increases
or decreases #Γ by 2.

Assume that the complexity of the bypass sequence is achieved at levelS2 × {tr} for some
r ∈ {0, 1, · · · , n} and is at least 5, i.e., #ΓS2×{tr } = c ≥ 5. Then it is easy to see thatσαr−1 is type
(I) andσαr is type (IV). By Proposition 6.15, we can always assume thatαr is disjoint fromαr−1

modulo finitely many bypass triangle attachments. Hence we can view bothαr−1 andαr as admissi-
ble arcs onS2×{tr−1}. To finish the proof of the proposition, it suffices to prove the following claim.

Claim 2: We can isotop the composition of bypass attachmentsσαr−1 ∗ σαr such that the local
maximum of #Γ at S2 × {tr} decreases by at least 2.

To prove the claim, letγ ⊂ ΓS2×{tr−1} be the dividing circle which nontrivially intersectsαr−1. We
do a case-by-case analysis depending on the number of pointsαr intersecting withγ.

Case 1: If αr intersectsγ in at most one point, then one easily check that by applying isotopy
σαr−1 ∗ σαr ≃ σαr ∗ σαr−1 to the sequence of bypass attachments, #ΓS2×{tr } decreases by 4.
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Case 2: If αr intersectsγ in exactly two points, then once again we apply the isotopyσαr−1 ∗σαr ≃

σαr ∗σαr−1 to the sequence of bypass attachments. Now observe thatσαr ∗σαr−1 is a composition of
bypass attachments of type (III). In the proof of the claim above, we see that any bypass attachment
of type (III) is isotopic to a composition of a bypass attachment of type (IV) followed by a bypass
attachment of type (I). Such an isotopy also decreases the local maximum of #Γ by 4.

Case 3: If αr also intersectsγ in three points, we consider a diskD bounded byγ andαr−1 as de-
picted in Figure 26(a). IfD contains no component of the dividing set in the interior, thenσαr−1∗σαr

is isotopic to a bypass triangle attachment, more precisely, there exists a trivial bypass along an
admissible arcδ on S2 × {tr} such thatσαr−1 ∗ σαr ∗ σδ is a bypass triangle attachment alongαr−1.
SupposeD contains at least one connected component of the dividing set. Let β be an admissible
arc onS2 × {tr−1} disjoint fromαr−1 andαr such that it intersectsγ in two points and the dividing
set contained inD in one point as depicted in Figure 26(b).

αr−1 αr−1
αr αr

D

γ γ

β

(a) (b)

FIGURE 26.

We have the following isotopies of contact structures due toLemma 5.9 and the disjointness of
admissible arcs:

σαr−1 ∗ σαr ∗ △ ≃ σαr−1 ∗ σαr ∗ △β

= σαr−1 ∗ σαr ∗ σβ ∗ σβ′ ∗ σβ′′

≃ σβ ∗ σαr−1 ∗ σαr ∗ σβ′ ∗ σβ′′

One can check that the last five bypass attachments above are all of type (III). Hence we can
further isotop as before to eliminate type (III) bypass attachments to decrease the local maximum
of #Γ by 2.

To summarize, we have proved that any sequence of bypass attachmentsσα0 ∗ σα1 ∗ · · · ∗ σαn−1

on S2 × [0, 1] is stably isotopic to another sequence of bypass attachments whose complexity is at
most 3, which is clearly isotopic to a power of bypass triangle attachments. Thus the proposition
is proved. �

8. PROOF OF THE MAIN THEOREM

Now we are ready to finish the proof of Theorem 0.2.
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Proof of Theorem 0.2.By Proposition 4.3, we can isotopξ andξ′ so that they agree in a neighbor-
hood of the 2-skeleton. Without loss of generality, we can furthermore assume that there exists an
embedded closed ballB3 ⊂ M such that

(1) ∂B3 is convex and has a tight neighborhood inM with respect to bothξ andξ′.
(2) ξ = ξ′ in M \ B3.
(3) The restriction ofξ andξ′ to M \ B3 and toB3 are all overtwisted.

Take a small ballB3
ǫ ⊂ B3 in a Darboux chart so that bothξ|B3

ǫ
andξ′|B3

ǫ
are tight. We identify

B3 \ B3
ǫ with S2 × [0, 1] and represent the contact structuresξ|B3\B3

ǫ
andξ′|B3\B3

ǫ
by two sequences

of bypass attachments. By Proposition 7.1, bothξ|B3\B3
ǫ

andξ′|B3\B3
ǫ

are stably isotopic to some
power of the bypass triangle attachment, in other words, there are isotopies of contact structures
ξ|B3\B3

ǫ
∗△r ≃ △n+r andξ′|B3\B3

ǫ
∗△s ≃ △m+s for somen,m, r, s∈ N. By assumption, the restriction ofξ

andξ′ to M\B3 are overtwisted, so there exist bypass triangle attachments along any admissible arc
on ∂B3 according to Lemma 3.1. By simultaneously attaching sufficiently many bypass triangles
to ξ|B3\B3

ǫ
andξ′|B3\B3

ǫ
, we can further assume thatξ|B3\B3

ǫ
≃ △n, ξ′|B3\B3

ǫ
≃ △m andξ = ξ′ on M \ B3.

Let d be the largest integer such that the Euler classe(ξ) = e(ξ′) ∈ H2(M;Z) divided byd is still
an integral class. Such ad is known as the divisibility of the Euler class. Combining Proposition
2.11 and Theorem 0.5 in [11], we haved|(m−n). To complete the proof of the theorem, we need to
show thatξ|M\B3 is isotopic toξ|M\B3∗△d relative to the boundary. Sinced = g.c.d.{e(Σ)|Σ ∈ H2(M)},
it suffices to prove the following more general fact.

Lemma 8.1. Let Σ be a closed surface of genus g andη be an I-invariant contact structure on
Σ × [0, 1]. Thenη ∗ △l is stably isotopic toη relative to the boundary, where l= e(η)(Σ).

Proof. Since we only consider stable isotopies of contact structures, one can prescribe any dividing
setΓΣ on Σ such that the Euler class evaluates onΣ to l. In particular, we consider the dividing
set onΣ as depicted in Figure 27, namely, there areg + 1 circlesγ1 ∪ · · · ∪ γg+1 dividing Σ into
two punctured disks, in each of which there arep andq isolated circles respectively. We call the
left most circles in the sets ofp andq isolated circlesΓ0 andΓ1 respectively. We also choose
admissible arcs{α1, α2, · · · , αp−1} and{β1, β2, · · · , βq−1}, and orientγi, 1 ≤ i ≤ g+ 1, in a way as
depicted in Figure 27.

γ1 γ2 γg+1

α1 α2
αp−1

. . .

β1

βq−1

. . .

. . .

−

+

+ + + +

− − −
Σ

Γ0

Γ1

FIGURE 27.

An easy calculation shows thatl = 2(p − q). Choose small disksD2
ǫ,0, D2

ǫ,1 in Σ such that
D2
ǫ,0 ∩ ΓΣ = Γ0 and D2

ǫ,1 ∩ ΓΣ = Γ1. Observe that the bypass triangle attachment along anyαi

andβ j consists of three trivial bypass attachments, hence is isotopic to contact structures induced
by a pure braid of the dividing set. More precisely, letγ−i , i = 1, 2, · · · , g + 1, be an oriented
loop in the negative region which is parallel toγi. We have the following isotopies of contact
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structures△2
α1
∗ · · · ∗ △2

αp−1
≃ ηΦ(Γ0,D2

ǫ,0,γ
−
1∪···∪γ

−
g+1) ≃ ηΦ(Γ0,D2

ǫ,0,γ
−
1 ) ∗ · · · ∗ ηΦ(Γ0,D2

ǫ,0,γ
−
g+1), where we think of

γ−1 ∪ · · ·∪γ
−
g+1 as an oriented loop homologous to the union of theγi ’s. Similarly one can study the

bypass triangle attachments along theβ j ’s, but with an opposite orientation. Letγ+i be an oriented
loop in the positive region which is parallel toγi for 1 ≤ i ≤ g+ 1. We have the following (stable)
isotopies of contact structures△−2

β1
∗ · · · ∗△−2

βq−1
∼ ηΦ(Γ1,D2

ǫ,1,γ
+

1∪···∪γ
+

g+1) ≃ ηΦ(Γ1,D2
ǫ,1,γ

+

1 ) ∗ · · · ∗ηΦ(Γ1,D2
ǫ,1,γ

+

g+1).
Here we only have a stable isotopy because of our choice of theorientation ofγi. To summarize
the computations above, we get the following (stable) isotopies of contact structures:

η ∗ △l ≃ η ∗ (△2
α1
∗ · · · ∗ △2

αp−1
) ∗ (△−2

β1
∗ · · · ∗ △−2

βq−1
)

≃ η ∗ (ηΦ(Γ0,D2
ǫ,0,γ

−
1 ) ∗ · · · ∗ ηΦ(Γ0,D2

ǫ,0,γ
−
g+1)) ∗ (ηΦ(Γ1,D2

ǫ,1,γ
+

1 ) ∗ · · · ∗ ηΦ(Γ1,D2
ǫ,1,γ

+

g+1))

≃ η ∗ (ηΦ(Γ0,D2
ǫ,0,γ

−
1 ) ∗ ηΦ(Γ1,D2

ǫ,1,γ
+

1 )) ∗ · · · ∗ (ηΦ(Γ0,D2
ǫ,0,γ

−
g+1) ∗ ηΦ(Γ1,D2

ǫ,1,γ
+

g+1))

where the last step follows from the fact that isotopies thatparallel transportD2
ǫ,0 and D2

ǫ,1 are
disjoint.

Now it suffices to prove thatηΦ(Γ0,D2
ǫ,0,γ

−
i ) ∗ ηΦ(Γ1,D2

ǫ,1,γ
+

i ) is stably isotopic to anI -invariant contact

structure for 1≤ i ≤ g + 1. To see this, take an annular neighborhoodAi of γi containingD2
ǫ,0

andD2
ǫ,1 and an admissible arcδi which intersectsΓ0, Γ1, andγi as depicted in Figure 28. We can

assume that the isotopiesΦ(Γ0,D2
ǫ,0, γ

−
i ) andΦ(Γ1,D2

ǫ,1, γ
+

i ) are supported inAi. For simplicity of
notation, we denote the compositionηΦ(Γ0,D2

ǫ,0,γ
−
i ) ∗ ηΦ(Γ1,D2

ǫ,1,γ
+

i ) by ηγi .

Γ0 Γ1

γi

δi

+

−

+ −

FIGURE 28. An annulus neighborhoodAi of γi containingΓ0 andΓ1.

By pushing down the bypass attachmentσδi throughηγi , we have the following isotopies of
contact structures:

ηγi ∗ △δi = ηγi ∗ σδi ∗ σδ′i ∗ σδ′′i
≃ σδ̃i ∗ ηΦ(γi ) ∗ σδ′i ∗ σδ

′′
i

≃ σδi ∗ σδ′i ∗ σδ
′′
i
= △δi

whereδ̃i is the push-down ofδi which is isotopic toδi, and theηΦ(γi ) is easily seen to be isotopic to
anI -invariant contact structure. The argument works for alli ∈ {1, 2, · · · , g+1}, hence we establish
the stable isotopy as desired. �

Acknowledgements. The author is very grateful to Ko Honda for inspiring conversations throughout
this work. The author also thank MSRI for providing an excellent environment for mathematical
research during the academic year 2009-2010.



A PROOF OF THE CLASSIFICATION THEOREM OF OVERTWISTED CONTACT STRUCTURES 31

REFERENCES

[1] D. Bennequin,Entrelacements et́equations de Pfaff, Astérisque,107-108(1983), 87-161.
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