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A PROOF OF THE CLASSIFICATION THEOREM OF OVERTWISTED CONTAC T
STRUCTURES VIA CONVEX SURFACE THEORY

YANG HUANG

ABSTRACT. In[2], Y. Eliashberg proved that two overtwisted contantstures on a closed oriented
3-manifold are isotopic through contact structures if anly @ they are homotopic as 2-plane fields.
We provide an alternative proof of this theorem using thevegrsurface theory and bypasses.

CONTENTS

1. Preliminaries

2. Outline of the proof

3. Local properties of bypass attachments

4. Isotoping contact structures up to the 2-skeleton

5. Bypass triangle attachments

6. Overtwisted contact structures 8Ax [0, 1] induced by isotopies.
7. Classification of overtwisted contact structuresSérx [0, 1]

8. Proof of the main theorem

References

Eﬁgglﬂmmmm

A contact manifold i, £) is a smooth manifold with a contact structutei.e., a maximally
non-integrable codimension 1 tangent distribution. Irtipalar, if the dimension of the manifold
is three, it was realized through the work of D. Bennequinérieliashberg in[[1],[[3] that contact
structures fall into two classesight or overtwisted Since then, dynamical systems and foliation
theory of surfaces embedded in contact 3-manifolds have steelied extensively to analyze this
dichotomy. Based on these developments, Eliashberg gaessification of overtwisted contact
structures in[[2], which we now explain.

Let M be a closed oriented manifold andc M be an oriented embedded disk. Furthermore,
we fix a pointp € A. We denote byConf(M, a) the space of cooriented, positive, overtwisted
contact structures oMl which are overtwisted along, i.e., the contact distribution is tangent4o
alongoa. LetDistr(M, A) be the space of cooriented 2-plane distributiongbwhich are tangent
to A at p. Both spaces are equipped with t©&-topology.

Theorem 0.1 (Eliashberg) Let M be a closed, oriented 3-manifold. Then the inclusion |
ConfY(M, A) — Distr(M, o) is a homotopy equivalence.

In particular, we have:

Theorem 0.2.Let M be a closed, oriented 3-manifold. 4fand £’ are two positive overtwisted
contact structures on M, then they are isotopic if and ontiaély are homotopic as 2-plane fields.
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Consequently, overtwisted contact structures are coelgléetermined by the homotopy classes
of the underlying 2-plane fields. On the other hand, the fleagon of tight contact structures is
much more subtle and contains more topological informadioout the ambient 3-manifold.

The goal of this paper is to provide an alternative proof oédien{ 0.2 based on convex sur-
face theory. Convex surface theory was introduced by E.Riia [8] building on the work
of Eliashberg-Gromo\ |4]. Given a closed oriented surfaceve consider contact structures on
¥ x [0, 1] such thak& x {0, 1} is convex. By studying the “film picture” of theharacteristic foli-
ationson X x {t} ast goes from 0 to 1, Giroux showed inl[9] that, up to an isotopgr¢hare only
finitely many levels x {t}, 0 < t; < --- < t, < 1, which are not convex. Moreover, for small
€ > 0, the characteristic foliations anx {tj — €} andX x {t; + €}, i = 1,2,---,n, change by a
bifurcation In [10], K. Honda gave an alternative description of thautiftion of characteristic
foliations in terms oflividing sets Namely, he defined an operation, called blypass attachment
which combinatorially acts on the dividing set. It turns that a bypass attachment is equivalent
to a bifurcation on the level of characteristic foliatioikence, in order to study contact structures
onX x [0, 1] with convex boundary, it suffices to consider the isotolagses of contact structures
given by sequences of bypass attachments. In particularilv&udy sequences of (overtwisted)
bypass attachments &% x [0, 1], which is the main ingredient in our proof of Theoreml0.2.

This paper is organized as follows. In Section 1 we recall esdasic knowledge in contact
geometry, in particular, convex surface theory and the digfimof a bypass. Section 2 gives an
outline of our approach to the classification problem. ®&c8 is devoted to establishing some
necessary local properties of the bypass attachment. tsthgiques from previous sections, we
show in Section 4 that how to isotop homotopic overtwisteatact structures so that they agree in
a neighborhood of the 2-skeleton. Section 5, 6 and 7 are eévotstudying overtwisted contact
structures or? x [0, 1] which is the technical part of this paper. We finally finisie oroof of
TheoreniO.R in Section 8.

1. PRELIMINARIES

Let M be a closed, oriented 3-manifold. Throughout this paperomlg consider cooriented,
positive contact structurgson M, i.e., those that satisfy the following conditions:

(1) there exists a global 1-formsuch that = ker(a).
(2) @ Ada > 0, i.e., the orientation induced by the contact farragrees with the orientation
onM.

A contact structurg is overtwistedif there exists an embedded diE€ ¢ M such that¢ is
tangent toD? on 9D?. Otherwise,¢ is said to betight. We will focus on overtwisted contact
structures for the rest of this paper.

LetX c M be a closed, embedded, oriented surfacklinThecharacteristic foliationz, on X
is by definition the integral of the singular line field(x) := &x N T,Z. One way to describe the
contact structure nearis to look at its characteristic foliation.

Proposition 1.1 (Giroux). Let & and &; be two contact structures which induce the same char-
acteristic foliation onX. Then there exists an isotopy : M — M, t € [0, 1] fixing £ such that
¢o = id and(¢1).&o = &1

Possibly after &£*-small perturbation, we can always assume that M is convexi.e., there
exists a vector field transverse t& such that the flow of preserves the contact structure. Using
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this transverse contact vector fialdwe define thalividing setonX to bels := {X € £ | vy € &}.
Note that the isotopy class 6f does not depend on the choicevofWe refer to[[8] for a more
detailed treatment of basic properties of convex surfacBse significance of dividing sets in
contact geometry is made clear Gyroux’s flexibility theorem

Theorem 1.2(Giroux). Assume is convex with characteristic foliatiof,, contact vector field v,
and dividing sel’s. Let.# be another singular foliation o divided byl's. Then there exists an
isotopye; : M — M, t € [0, 1] such that

(1) ¢o = id and¢|r, = id for all t.

(2) vis transverse t@(X) for all t.

(3) ¢1(X) has characteristic foliatiorn7 .

We now look at contact structures &rx [0, 1] with convex boundary. The first important result
relating to this problem is the following theorem due to Gixo

Theorem 1.3(Giroux). Leté be a contact structure on W X x [0, 1] so thatX x {0, 1} is convex.
There exists an isotopy relative to the boundagy. W — W, se€ [0, 1], such that the surfaces
¢1(Z x {t}) are convex for all but finitely many« [0, 1] where the characteristic foliations satisfy
the following properties:

(1) The singularities and closed orbits are all non-degenerate

(2) The limit set of any half-orbit is either a singularity or aosled orbit.

(3) There exists a single “retrogradient” saddle-saddle coatian, i.e., an orbit from a nega-

tive hyperbolic point to a positive hyperbolic point.

In the light of Giroux’s flexibility theorem, one should exgt@ corresponding “film picture” of
dividing sets on convex surfaces. It turns out that the cbmetion corresponding to a bifurcation
is thebypass attachmentvhich we now describe.

Definition 1.4. LetX be a convex surface andbe a Legendrian arc ix which intersectd’s in
three points, two of which are endpointsaf A bypasss a convex half-disk D with Legendrian
boundary, where Dh X = «, D i X, and tdD) = —-1. We calla an admissible arc, and D a
bypass alongr onX.

Remarkl.5. The admissible are in the above definition is also known as the of attachment
for a bypass in literature.

Remarkl.6. We do not distinguish isotopic admissible angsanday, i.e., if there exists a path of
admissible arcsay, t € [0, 1] connecting them.

The following lemma shows how a bypass attachment combiadioacts on the dividing set.

Lemma 1.7 (Honda) Following the terminology from Definitidn_1.4, let D be a bgpalonga
onZX. There exists a neighborhood®fu D c M diffeomorphic ta x [0, 1], such tha& x {0, 1}
are convex, and's,y, is obtained fronT's,q by performing thébypass attachmermperation as
depicted in Figur€ll in a neighborhood of

It is worthwhile to mention that there are two distinguistggasses, namely, the trivial bypass
and the overtwisted bypass as depicted in Figure 2. Theteffedrivial bypass attachment is iso-
topic to anl-invariant contact structure where no bypass is attachbile whe overtwisted bypass
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FIGURE 1. A bypass attachment along (a) The dividing set o x {0} before the
bypass is attached. (b) The dividing set®r {1} after the bypass is attached.

attachment immediately introduces an overtwisted diskéldcal model, hence, for example, is
disallowed in tight contact manifolds.

NN ey (Q?
- - =]
(b)

(@)
FIGURE 2. (a) The trivial bypass attachment. (b) The overtwistegosg attachment.

2. OUTLINE OF THE PROOF

Let £ and ¢’ be two overtwisted contact structures bl homotopic to each other as 2-plane
field distributions. Our approach to Theoreml0.2 has threia staps.

Step 1.Fix a triangulationT of M. Isotopé and¢’ through contact structures such thiabecomes
an overtwisted contact triangulatiom the sense that the 1-skelet®f!) is a Legendrian graph,
the 2-skeletorT @ is convex and each 3-cell is an overtwisted ball with respedtoth contact
structures. We first show thaté{¢) = e(¢’) € H%(M; Z), then one can isotapandé’ so that they
agree in a neighborhood ®f?.

Step 2.We can assume that there exists a Billc M such that and¢’ agree orM \ B3. Tak-
ing a small Darboux balB? ; c B3, observe tha|g: andé’|gs can both be realized as attaching
sequences of bypassesBg,. In section 5, we will define the notion ofstable isotopy Then
we show that both of sequences of bypass are stably isotg@mte power of theypass trian-
gle attachmentMoreover, the boundary relative homotopy classeggpfandé’|gs, measured by
the Hopf invariant, are uniquely determined by the numbdyygiass triangles attached according

to [11].

Step 3.By elementary obstruction theory, the Hopf invariantg|gf and¢’|g: are not necessarily
the same, but they can at most differ by an integral multipt&e divisibility of the Euler class of
eitheré or &, See Section 8 for the definition of the divisibility. We shtvat this ambiguity can
be resolved by further isotoping the contact structuresrigighborhood of . This finishes the
proof of Theoren 0]2.
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3. LOCAL PROPERTIES OF BYPASS ATTACHMENTS

Let M be an overtwisted contact 3-manifold. Bt M be a closed convex surface with dividing
setl's. For convenience, we choose a metricMrand denotéM \ X the metric closure of the open
manifold M — X. In this paper, we restrict ourself to the case that eachexded component of
M\ZXis overtwistell. In order to isotop convex surfaces through bypasses freelynust show
that there are enough bypasses. In fact, bypasses exigtahgyradmissible Legendrian arc Bn
provided that the contact structure is overtwisted. Thikéscontent of the following lemma.

Lemma 3.1. Suppose that M X is overtwisted. For any admissible atc c X, there exists a
bypass along in M \ X. If £ separates M into two overtwisted components, then thes¢sestich
a bypass in each component.

Proof. The technique for proving this lemma is essentially due toykt and Hondd ]5], and in-
dependently Torisu [12]. We construct a byp&sslonga as follows. LetD ¢ M\ X be an
overtwisted disk.

First we push the interior af slightly into M \ X with the endpoints od fixed to obtain another
Legendrian arar, such thatr anda’ cobound a convex bigoB with tb(0B) = —2. Next, take a
Legendrian arg connectingr'anddD in the complement af U D U B, namely, the two endpoints
of y are contained inr anddD respectively and the interior of is disjoint from= U D U B as
depicted in Figurél3. Suppodiy) = y x [—e, €] is a band with the core x {0} identified withy,

(0

FIGURE 3. The Legendrian arg connectingdB andaD.

such that the characteristic foliation is non-singular srgiven byy x {t}, t € [—¢, €]. In particular
vx{—e} andy x {e} are both Legendrian. We want to gihé¢y) to D andB so that the characteristic
foliations match along the common boundary. In order to donsorecall the following lemma
first observed by Fraser|[6].

Lemma 3.2.Let S be an embedded disk in a contact manifvids) with a characteristic foliation
¢|s which consists only of one positive elliptic singularity pdaunstable orbits from p which exit
transversely frondS . If 64, 6, are two unstable orbits meeting at p, asidh S = p;, then, after
a C*-small perturbation of S fixingS, we obtain Swhose characteristic foliation has exactly

lin general it is possible that all component\f, = are tight even iM is overtwisted.
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one positive elliptic singularity ‘pand unstable orbits from’gexiting transversely fromS , and
for which the orbits passing through o, meet tangentially at’p

We first glueN(y) to D as follows. Letp; = y N dD. By the Flexibility Theorem we may
suppose thap, is a half-elliptic singular point of the characteristicifdlon £|s on D. Consider a
slightly larger diskD’ > D such thaip, is an elliptic singularity of|s,. LetS c D’ be a small disk
neighbothood ofp;, which satisfies the conditions in Leminal3.2. Applying Lenfdi we can
perturbS to get a diskD on which the characteristic foliation (in a neighbothooggflooks like
the one depicted in Figuké 4.

PN

.

FIGURE 4.

Now we can glueN(y) to D in the obvious way such that the characteristic foliatioratah
along the common boundary. We can apply the same trick toNfyueto B. In the end we obtain
a half disk, which we denote by U N(y) U B by abuse of notation, on which the characteristic
foliation is as depicted in Figuté 5.

S/

FIGURE 5. The preferred characteristic foliation Bnu N(y) U B.

Note that since the characteristic foliation contains a litesvfrom the negative half-elliptic-
half-hyperbolic singularity to the positive half-ellipthalf-hyperbolic singularity, the half disk
D U N(y) U Bis not convex. However we can perfornC&-small perturbation in a neighborhood
of p; and p, to obtain a new half disb such that the singularitigs, andp, are eliminated. The
characteristic foliation o is given by Figuréls, which is easily seen to be of Morse-Srade.
ThereforeD is convex with Legendrian boundary. The dividing §ebn D has to separate the
positive and negative singularities and to be transvertigetcharacteristic foliation. Sois, up to
isotopy, the half-circle as depicted in Figlte 6 as desmed,therefor® is a bypass along. 0O

We then show the triviality of the trivial bypass, i.e., atiang a trivial bypass does not change
the isotopy class of the contact structure in a neighborhafatie convex surface. The proof
essentially follows the lines of the proof of Propositio®.4.in Geiges[[7]. Here the contact
structure may be either overtwisted or tight.



A PROOF OF THE CLASSIFICATION THEOREM OF OVERTWISTED CONTACSTRUCTURES 7

FIGURE 6. The bypas® alonga.

Lemma 3.3. Let (£ x [0, 1], &) be a contact manifold with the contact structurebtained by
attaching a trivial bypass ofZ X {0}, £lsx(0)- Then there exists another contact structgrevhich
is isotopic taf relative to the boundary, such tha {t} is convex with respect tofor all t € [0, 1].

Proof. Since this is a local problem, we may assume that [0, 1] is a neighborhood of the
trivial bypass attachment. By Theoréml1.2, any Morse-Siyale characteristic foliation adapted
to I's«0; can be realized as the characteristic foliation of a cord&rcicture isotopic t@ in a
neighborhood o& x {0}. In particular, we can assume that the characteristictioliconX x {0}
looks exactly the same as in Figlide 7(a) such ¢éhatoes not connect to any negative hyperbolic
point other tharh_ along the flow line.

() (b)

FIGURE 7. (a) The characteristic foliation &ix {0}. The trivial bypass is attached
along the Legendrian arc in dash line. (b) The characteristiation onX x {1}
after attaching the trivial bypass. Heee (resp. h.) denote thet-elliptic (resp.
+-hyperbolic) singular points of the foliation.

Look at the characteristic foliations @nx {t} ast goes from 0 to 1. Generically we can assume
that the Morse-Smale condition fails at one single level, 5 {1/2}, where an unstable saddle-
saddle connection has to appear as shown in Figure 8(a).

Let Q c X x {1/2} be an open neighborhood of the flow line frdm to e_ as depicted in
Figure8(a). Observe that the characteristic foliatiorde8 is of Morse-Smale type, and therefore
stable in the-direction. According to the proof of Proposition 4[im Geiges|[7], for a small
6 > 0, there exists an isotop#s : X x [0,1] — X x [0,1], s € [0, 1], compactly supported in
Qx(1/2-26,1/2+ 26) c £ x [0,1] andgg = id, such that = (¢,).¢ satisfies the following:

’Thisis a stronger version of the usual Elimination Lemma.
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(b)

FIGURE 8. (a) The characteristic foliation &ix {1/2}, where a saddle-saddle con-
nect fromh_ to h, exists. The regiof contains exactly two singular poins , h_}
which are in elimination position. (b) The nonsingular cweristic foliation orf2
after the elimination.

(1) The characteristic foliation of x {t} with respect t@ is isotopic to the one in Figufé 8(b)
forte[1/2-6,1/2+ 6]. In particular, it is nonsingular.

(2) Fort € (1/2-26,1/2-6) U (1/2+ 6,1/2 + 25), The characteristic foliation of2 x {t}
with respect tcf is almost Morse-Smale except that there may exist a haftieHhalf-
hyperbolic point.

We remark here that the above conditions are achieved iny[7$dioping surfaceX x {t}, t €
[1/2 - 26,1/2 + 25] while fixing the contact structurg but this is equivalent to isotopirgwhile
fixing £ x {t}. We will switch between these two equivalent point of vievaiagin the proof of
Propositioni 4.8.

Now we can make x {t} convex fort € [1/2 - 6,1/2 + §] because the only unstable saddle-
saddle connection is eliminated and therefore the chaistitefoliation becomes Morse-Smale.
Fort ¢ [1/2-6,1/2 + 6], there may exist half-elliptic-half-hyperbolic singulaoints, but we can
as well construct a contact structure realizing this typsinfularity so that eack x {t} stays
convex. Hencé constructed above is as required. |

Remark3.4. Let (Z x [0, 1], £) be a contact manifold such thgt, = &[5, andX x {t} is convex for
all't € [0, 1]. If = # Stx S and¢ is tight, then it is a standard fact thiis isotopic to ar -invariant
contact structure relative to the boundary. However, HaniE = S x S? or ¢ is overtwisted, then
the above fact is not true anymore. We will study this phenuonein detail in the case when
T = S? and¢ is overtwisted in Section 6.

4. ISOTOPING CONTACT STRUCTURES UP TO THRB-SKELETON

We are now ready to take the first main step towards the prodhebreni0.2. Since we will
isotop contact structures skeleton by skeleton, we sténtthve following definition.

Definition 4.1. Let (M, ¢) be an overtwisted contact manifold, and T be a triangulatbM. The
triangulation T is called arovertwisted contact triangulatiohthe following conditions hold:

(1) The 1-skeleton is a Legendrian graph.
(2) Each 2-simplex is convex with Legendrian boundary.
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(3) Each 3-simplex is an overtwisted ball.

Remark4.2 The overtwisted contact triangulation defined above i®diffit from the usuaontact
triangulationwhere the 3-simplexes are assumed to be tight.

The goal for this section is to prove the following Propasiti

Proposition 4.3. Let M be a closed, oriented 3-manifold with a fixed triangatT . Let¢é and
& be homotopic overtwisted contact structures on M. Thenadhneysotopic up to the 2-skeleton,
i.e., there exists an isotogy : M — M, t € [0, 1], ¢o = id such thai(¢,).£ = & in a neighborhood
of T@,

Proof. Before we go into details of the proof, observe thatif M — M, t € [0, 1], ¢o = id is an
isotopy, then 4, ¢1(¢), T) and (M, &, ¢;(T)) carries the same contact information. In fact, we will
isotop the skeletons of the triangulatibrand think of them as isotopies of contact structures.

By aCP-small perturbation of the 1-skeletd@i®, we can assume that? is a Legendrian graph
with respect taf and¢’. Performing stabilizations to edges BfY if necessary, we can further
assume thaf = ¢ in a neighborhood of®. For each 2-simplex? in T®, we can always
stabilize the Legendrian unknét-? sufficiently many times so thab(do?) < 0. Therefore &*-
small perturbation of? relative todo? makes it convex with respect to(resp.&’) with dividing
setrfr2 (resp.r‘;'z). Bothrfr2 andr‘i2 are proper 1-submanifolds of and generically the endpoints
are contained in the interior of the 1-simplexes. See Fi@ifor an example.

In order to makel' an overtwisted contact triangulation foand¢’, we still need to make sure
that all 3-simplexes are overtwisted. We do thisfpand the same argument appliesto Take
an overtwisted dis® in (M, ¢). We can assume thétis contained in a 3-simplex3. Let o be
another 3-simplex which shares a 2-face withi.e.,o N o3 = o2 is a 2-simplex. We claim that
by isotopings-? relative todo? if necessary, we can make batfiando overtwisted. The fact that
M is closed immediately implies that a finite steps of suchoigias will makeT an overtwisted
contact triangulation. To prove the claim, we first take aapjer copy of the overtwisted disk
in anl-invariant neighborhood db, denoted byD’. Pick an arey connectingd’ to o2 insidecs.
Let 62 be another 2-simplex obtained by isotoping acrossD’ alongy, i.e., 72 satisfying the
following conditions:

(1) 062 = do2.
(2) 02 U 52 bounds a neighborhood &F U y.
(3) 62 is convex.

By replacingo? with 52, we obtain two new 3-simplexes, each of which contains anwisted

disk in the interior as claimed.

°r

FIGURE 9. An example of the dividing set on a 2-simplex.
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Now by Giroux’s flexibility theorem, it suffices to isot@pandé&’ so that they induce isotopic
dividing sets on each 2-simplex relative T6". To achieve this goal, we define the difference
2-cocycles by assigning to each oriented 2-simple an integery(R.(I*,)) — x(R.(I*,)) -
x(R.(T,)) + x(R(T,)). Sinceé is homotopic to¢’ as 2-plane fields o] = e(¢) — e(¢) = 0 €
H2(M, Z). Hence there exists an integral 1-cocy@ko that 210 = ¢ since the Euler class is always
everll One should think of as an element irlom(C.(M), Z).

Let o2 € T®@ be an oriented convex 2-simplex andl c do? be an oriented 1-simplex with the
induced orientation. We study the effect of stabilizing theimplexo! to the overtwisted contact
triangulation. If we positively stabilize once and isotopr? accordingly to obtain a new 2-
simplexa?, then the dividing seIt':;2 ong? is obtained frorrffr2 by adding a properly embedded arc
contained in the negative region with both endpoints onrkerior ofo! as depicted in Figuife10.
Similarly, if we negatively stabilize-* once and isotop-? accordingly as before, then the dividing
set on the isotoped? is obtained fror‘ri'fr2 by adding a properly embedded arc contained in the
positive region and with both endpoints on the interiooof

(b)

FIGURE 10. (a) The dividing set on? divides it into+-regions. The bottom edge
is ot. (b) One possible dividing set ar? after positively stabilizingr! once.

Note that in general, the new overtwisted contact triartgaiaobtained by+-stabilizing a 1-
simplexc?! is not unique. In fact, different choices may give non-igitadividing sets on the
isotopedo? in the new triangulation. However, for our purpose, we ordyecabout the quantity
x(Ry) — ¥(R)) on each 2-simplex and it is easy to see that different cagoee the same value
to this quantity. Thus we will ignore this ambiguity by arhitly choosing an isotopy of the
2-simplex.

We denote the overtwisted contact triangulation obtained-stabilizingo? once in (M, &) by
S2.(€). As remarked at the beginning of the proof, one should tbin&?, (¢) as isotopies of. It

is easy to see th&”, (¢) changes((&(riz)) —X(R(I‘;)) by +1 for any 2-simplex? € T® so
thato! c do? as an oriented boundary edge. The same holdg fas well.

Now we argue that one can isotgpand¢’ so thaty(R.(I,)) - x(R(I%,)) = x(R.(I%,)) -
X(FL(I‘;)) on each 2-simplex?. This can be done as follows. For each oriented 1-simplex
ot e TW, the 1-cocycle sends it to an integar = 6(c). We performn times the isotopy”, (&)

to ¢ andn times the isotopys_,(¢£7) to ¢” at the same time. If we perform such operation to every
1-simplexinT, it is easy to see that the following properties are satisfied

SMore precisely, if we fix a trivialization of M and consider the Gauss map associated to the contact aliistnip
then the Euler class of the contact distribution is exagtigé the Poincaré dual of the Pontryagin submanifold of the
Gauss map.
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(1) &£ = ¢ in a neighborhood of .
(2) X(R.(T,)) — x(R.(T,)) = x(R.(T,)) — x(R(TY,)), Vo2 € TA.

The second property implies thﬁ‘i2 can be obtained frorﬁfr2 by attaching a sequence of by-
passes for each 2-simpleX. Recall thafl is an overtwisted contact triangulation and in particular
each 3-simplex is an overtwisted ball. Hence bypassesalgist) any admissible arc in? inside
any 3-simplex witho? as a 2-face by Lemmia3.1. Therefore by isotoping 2-simpléxesigh
bypasses, we can assume thand¢’ induce isotopic dividing sets on each 2-simplex relative to
its boundary. The conclusion now follows immediately fronnd@x’s flexibility theorem. |

5. BYPASS TRIANGLE ATTACHMENTS

In this section we study the effect of attaching a bypassigi@to the contact structure, in
particular, we give an alternative definition of the bypagmple attachment. We start with the
definition of the bypass triangle attachment.

Notation: Let ¥ be a convex surface and c ¥ be an admissible arc. We denote the bypass
attachment along onX by o,,. Letg be another admissible arc on the convex surface obtained by
attaching the bypass aloagon ~. We denote the composition of bypass attachments by o,
where the composition rule is to attach the bypass atofigst, then attach the bypass algfin

the same direction. IfN, £) is a contact manifold with convex boundary, théen o, denotes the
contact structure obtained by attaching a bypass alaig(M, £).

Remark5.1 In general, bypass attachments are not commutative urfiesattaching arcs are
disjoint.

Definition 5.2. Let X be a convex surface and c X be an admissible arc. Aypass triangle
attachmenalonga is the composition of three bypass attachments along athtesscsa, o’ and

a” in a neighborhood ofr as depicted in Figure11. We denote the bypass triangle lattant
alonga by, =0, x 0y x 0y

Remark5.3. The second admissible as¢ in the bypass bypass triangle is also known asatice
of anti-bypass attachmett o,.

Warning When we define a bypass attachmentalonga on (,I's), there are several choices
involved. Namely, we need to choose a multicurve, i.e., adrsnifold ofX, representing the iso-
topy class ofy, an admissible arc representing the isotopy class afneighborhood at where

o, is supported. Since the space of choicea ahd its neighborhood is contractible according to
Theoren 1R, we can neglect this ambiguity. However theespéchoices of multicurves repre-
sentingls is not necessarily contractible. This point will be madeclea the next section. For the
rest of this papelfs always means a multicurve @hrather than its isotopy class.

Remark5.4. If £ = S?2 andI'y = S?, then the space of choices of multicurve is simply-conriecte
since there is a unique tight contact structure in a neididomat ofS? up to isotopy.

Observe that, up to an isotopy supported in a neighborhotitecidmissible ara, the bypass
triangle attachment does not chafige
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FIGURE 11. (a) A neighborhood of on X, along which the first bypass, is
attached. (b) The second bypass is attached along the dotted art (c) The
third bypassr,~ is attached along the dotted ar¢ and finishes the bypass triangle.

In what follows we look at bypass triangle attachments aldiffgrent admissible arcs, which
leads to our alternative definition of the bypass triangiacitment.

Lemma 5.5. Let&, and&; be two (overtwisted) contact structures of8[0, 1], wheree andg

are admissible arcs on®x {0}, such that
(1) S?x {0, 1} is convex with respect to bo#h andé;.
(2) &, = &5 in a neighborhood of 3x {0} and#r‘;‘gx{o} = # g = L
(3) &, is obtained by attaching a bypass trian@lgto &,|s2«0, andés is obtained by attaching
a bypass triangle\s to &slsz(g)-

Thené, is isotopic tog; relative to the boundary.

Proof. Up to isotopy, there are only two different admissible ane{S7 x {0}, £,ls2x(0,) (OF, (82 x

{0}, &sls2x(0)))- Namely, one gives the trivial bypass and the other giketertwisted bypass. We
may assume without loss of generality thaits not isotopic tg3, ando, is the trivial bypass and
oy is the overtwisted bypass. We complete the bypass trianglaada,; as depicted in Figufe12.

o Ty fog
- - - N

O O

£

&) @

E

&) @
&) €

FIGURE 12.
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Observe that’ is isotopic toB, «” is isotopic tos” and bypass attachments alangndg” are
trivial according to Lemmga_3l3, we have the following isatsp

Ny = Og % Tg * Ogr
~ Oy kO g
20'ﬂ*0'ﬁ/
20’5*0"3/ *O'lg// :Alg.

SinceS?x {0, 1} are convex, we can make sure that the isotopies above arersegn the interior
of S? x [0, 1]. O

Definition 5.6. A minimal overtwisted ball B2, £4) is an overtwisted ball wheréB? has a tight
neighborhood, and the contact structudigis obtained by attaching a bypass triangle to the stan-
dard tight ball (B3, £gq).

Remarks.7. By Lemmd5.b, the minimal overtwisted ball is well-define@ef we do not specify
the admissible arc along which the bypass triangle is agthch

With the above preparation, we can now redefine the bypassggta attachment which is more
convenient for our purpose. Lel( &) be a contact 3-manifold with convex bound@iyl = X.
Identify a collar neighborhood aIM with X x [-1, 0] such thattM = X x {0} and the contact
vector field transverse @M is identified with the 1, 0]-direction. Leta ¢ dM be an admissible
arc along which the bypass triangle is attached. Rustto the interior ofM to obtain another
admissible arc, parallel @, contained irk x {—1/2}, which we still denote by. LetN be a neigh-
borhood ofe in £ x {—1/2}. Consider the ball with corneid x [-2/3,-1/3] c M. By rounding
the corners, we get a smoothly embedded tight tﬁllgﬂBi) c (M, &), in particulardB3 has a tight

neighborhood inN1, ). Let (B3, &) be a minimal overtwisted ball. We construct a new contact
manifold M, &) = (M \ B3,¢) Uy (B3, &), Whereg is an orientation-reversing diffeomorphism
identifying the standard tight neighborhoodso®@ anddBs3. It is easy to see thdtis isotopic to
the contact structure obtained by attaching a bypass teaagM, &) alonga.

Remarks.8. The uniqueness of the tight contact structure on 3-ball tdig#iashberg, guarantees
that the bypass triangle attachment described above isdegtied.

Using the above alternative description of the bypassdteattachment, we prove the following
generalization of Lemna3.5.

Lemma 5.9. Let (M, £) be a contact 3-manifold with convex boundary, andvgt be two admis-
sible arcs oM. Leté, (resp. &) be the contact structure on M obtained by attaching a bypass
triangle A, (resp.Ag) alonga (resp.p) to (M, £). Thené, is isotopic taé; relative to the boundary.

Proof. Without loss of generality, we can assume tl@ndg are disjoint. If not, we take another
admissible ares which is disjoint frome: andg. We then show thaf, ~ &, andé; =~ &,, which
impliesé, = &;.

As before, sincéM is convex, we can pushandg slightly into the manifoldV, which we still
denote byw ands. Now letB3 ¢ M and Bg c M be smoothly embedded tight balls containing

a andp respectively. Take a Legendrian arconnecting3 and B}j, i.e., the endpoints of are
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contained irB? andaBg, respectively, and the interior efis disjoint fromB2 and Bg. Moreover,
we can assume thain 9B2 € I'yg: andr N 882 € Fasg- Let N(7) be a closed tubular neighborhood

of 7. By rounding the corners d} U B} U N(7), we get a smoothly embedded baift ¢ M
with tight convex boundary. Using our cut-and-paste dedinibf the bypass triangle attachment,
it is easy to see thaBg, &,|z:) and B3, &lg:) are isotopic, relative to the boundary, to the contact
boundary sumsB®, &.)#,(B3, £sd) and B, £si)#o (B3, &or), respectively. Hence both are isotopic
to the minimal overtwisted ball. One simply extends theapgtby identity to the rest oM to
conclude that, ~ &; on M. |

According to Lemmd_519, the isotopy class of the contactctiine obtained by attaching a
bypass triangle does not depend on the choice of the atthahiis. We shall write. for a bypass
triangle attachment along an arbitrary admissible arc. ‘Ameédiate consequence of this fact is
that the bypass triangle attachment commutes with any Byg#éechment. This is the content of
the following corollary:

Corollary 5.10. Let (M, ¢) be contact 3-manifold with convex boundary, ande an admissible
arc onoM. Thené « o, x A = & x A x 0.

Proof. By Lemmd5.9, we can arbitrarily choose an admissiblggar@M along which the bypass
trianglea is attached. In particular, we require tigas disjoint froma. Hence a neighborhood of
B wherex, is supported in is also disjoint from Thus we have the following isotopies:

ExOo*x A= E*x0y* N
=& x Ag*x 0y
> Ex A x 0y,
which proves the commutativity. O
Corollary 5.11. Let(S?x[0, 1], ¢) be a contact manifold with convex boundary, wheigisotopic
to a sequence of bypass attachments o - -- « o, i.e., thereexist® = to < t; < --- <t, =1
such that $ x {t;} are convex fo0 < i < nand £ x [t_,, t;] with the restricted contact structure

is isotopic to the bypass attachment Thené = A is isotopic toé, for 0 < k < n, whereé is the
contact structure isotopic to a sequence of bypass attaotsog s« - - -« o * A % Oyyp - -+ * O

Proof. This is an iterated application of Corolldry 5110. O

However, observe that subtracting a bypass triangle ismeig not well-defined. So we need
the following definition.

Definition 5.12. Two contact structuresandé’ on S*x[0, 1] are stably isotopicdenoted by ~ &/,
if they become isotopic after attaching finitely many bypeasgles to $ x {1} simultaneously,
i.e.,&x A"~ ¢ « A" for some ne N.

6. OVERTWISTED CONTACT STRUCTURES ONS? x [0, 1] INDUCED BY ISOTOPIES

Let& be an overtwisted contact structure®fix [0, 1] such tha? x {0} andS? x {1} are convex
spheres. In general, any suéltan be represented by a sequence of bypass attachments. More
precisely, by Theorein 1.3, there exists an increasing segue= t, < t; < --- < t, = 1 such
that S? x {t;} is convex and|szyqy, , 1] IS iSotopic to a bypass attachmentfori = 1,---,n. In
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this section, we consider a special class of overtwistedacbistructures os? x [0, 1] such that
S? x {t} is convex fort € [0, 1], in other words, there is no bypass attached.

Let & be anl-invariant contact structure o®? x [0, 1] with dividing setl’y on S? x {0}. Let
¢ : S* — S?%,t € [0,1], be an isotopy such that = id. We define a new contact structure
éro = D.(&0) onS? x [0, 1], whered : S2 x [0,1] — S? x [0, 1] is defined by . t) = (¢(X), t).
Observe thaB? x {t} is convex with respect tér, o for all t € [0, 1] by construction. Hence we
get a smooth family of dividing sefssz,, fort € [0, 1]. Conversely, a smooth family of dividing
setsI'sz,qy, t € [0, 1] defines a unique contact structure 8hx [0, 1], which is isotopic ter, o
constructed above for some isotopyt € [0, 1]. In practice, it is usually easier to keep track of
the dividing sets rather than the isotopy.

Definition 6.1. A contact structurg on S x [0, 1] is induced by an isotopif S? x {t} is convex
forallt € [0, 1], or, equivalently, there exists an isotopy. S? x [0, 1] — S?x [0, 1] such that is
isotopic toér, ¢ as constructed above.

It is convenient to have the following lemma.

Lemma 6.2. Leté&, & be two contact structures o [0, 1] induced by isotopies and I&t, T
be dividing sets on5x {t}, 0 < t < 1, with respect t&, ¢ respectively. Iy = I';, I'y = I'; and
there exists a path of smooth families of multiculg® < s < 1 satisfying the following:

(1) T?is a multicurve, i.e., a finite disjoint union of simple cldsrirves, contained in%x {t}

for0<s<10<t<1

2 I0=T,ITt=T;for0<t<1,

(3) FS =T, Fi = FlfOFOS s<1
thené is isotopic tog” relative to the boundary.

Proof. By Giroux’s flexibility theorem, the pathg, 0 < s < 1 of multicurves determines a path of
contact structures® on S? x [0, 1] such that® = &, ¢! = ¢’. Hencef is isotopic to¢” relative to the
boundary by Gray’s stability theorem. |

We first consider a bypass attachment to the contact stesctumS? x [0, 1] induced by an
isotopy.

Lemma 6.3. Letér, o be a contact structure on?x [0, 1/2] induced by an isotopy, : S? — S?,

t € [0,1/2], and(S?x[1/2, 1], o,) be a bypass attachment along an admissiblenarc S? x {1/2}.
Then there exists an admissible @« S2x {0} such tha{S?x[0, 1], &0 *0,) iS isotopic, relative
to the boundary, t¢S? x [0, 1], o * ér o), Wherely is the dividing set obtained by attaching a
bypass alongy to I'y.

Proof. We basically re-foliate the contact manifo8?(x [0, 1], &0 *0,). Recall thatr, attaches a
bypassD onS? x {1/2} so thatdD = a U B is the union of two Legendrian arcs, whebéx) = -1,
tb(8) = 0. We extendD to a new bypas® on S? x {0} through the isotopy, : S* — S?,
t € [0,1/2], by definingD = D U ®(@ x [0,1/2]), wherea” = ¢;7,(a) ¢ S* x {0} is the new
admissible arc along whicB is attached, and : S*x[0,1/2] — S* x [0,1/2] is defined by
(x,1) = (¢(X),t). By attaching the new bypa&son S? x {0}, observe that the rest & x [0, 1]
can be foliated by convex surfaces, and the contact stei@so induced b. Henceér, ¢ * o,
is isotopic too; * éry o As desired. O
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Definition 6.4. The admissible aré@ constructed in Lemnia 8.3 is callecbash-dowrof . Con-
versely, we calér a pull-up of a.

The rest of this section is rather technical and can be skipp#he first time reading. The only
result needed for our proof of Theorém]0.2 is Propos[tioB6.1

We consider a subclass of the contact structure®’m:j0, 1] induced by isotopies which we will
be mainly interested in. Fix a metric @%. Without loss of generality, we assume that there exists
a small diskD?(y) c S? centered ay of radiuse and a codimension 0 submanifdlg,q, 0f I'szy(g)
such thal sz, o) € D2(y) andD2(y)NT'szx(o) = Lsexo)- Lety(s) € S2x{0}, s € [0, 1] be an embedded
oriented loop such that(0) = y(1) = y. Let A(y) be an annulus neighborhood pfcontaining
D?(y) and disjoint from other components of the dividing set gsicted in Figuré_13. We define
an isotopyg; : S? — S2,t € [0, 1], supported iPA(y) which parallel transport®?(y) alongy in
A(y). More precisely, by applying the stereographic projectizap, we can identifiA(y) with an
annulus inR?. Then the parallel transportation is given by an affine mapx — x + y(t) — y(0)
for anyx € D?(y) andt € [0, 1].

FIGURE 13.

Definition 6.5. With the small disk By) > ['szo such thatl'sz, o N dDA(y) = 0, the annulus
A(y) o y and the isotopy, : S? — S? chosen as above, we say that the contact strucitre, o
on $ x [0, 1] is induced by gure braid of the dividing setvhere® : S? x [0, 1] — S? x [0, 1]
is induced by as before. We denote such contact structureglyr pz,) ,)- When there is no
confusion, we also abbreviate it By ,.

Remark6.6. For any simply connected regidh c S? x {0} containingf"szx{o}, one can isotop so
thatD becomes a round disk with small radius as required in Defimifi.5. The isotopy class of
the contact structure 08¢ x [0, 1] induced by a pure braid of the dividing set only dependshen t
choice ofD > 'z and the isotopy class of

Remark6.7. If £ is a contact structure o®? x [0, 1] induced by a pure braid of the dividing set,
thenrszx{o} = rszx{l}.

Before we give a complete classification of contact strestonS? x [0, 1] induced by pure
braids of the dividing set, we make a digression into theystfdts homotopy classes using a
generalized version of the Pontryagin-Thom construct@mifanifolds with boundary. See [11]
for more discussions on the generalized Pontryagin-Thamsteaction.

We can always assume that the isotggy, D2(y),y) : S? — S2?,t € [0, 1], discussed in Defini-
tion[6.3 is supported in a didk? c S?. Trivialize the tangent bundle @? x [0, 1] by embedding it
into R® so thatD? is contained in they-plane. Consider the Gauss m@p (D? x [0, 1], &7 p2,) —
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S?. By Lemmd®6.2, we can assume without loss of generality Headividing set is a disjoint union
of round circles irD? x {t} forall 0 <t < 1, andp = (1,0, 0) € S? c R3is a regular value. Suppose
the number of connected componenify#,,, = M, then the Pontryagin submanifalti= G™(p)

is an oriented framed monotone braid in the sensegtieEnsversely intersecB? x {t} in mpoints
forany 0<t < 1, and each connected component of the dividing set coneéaestly one point.
It is easy to check that the pull-back framing is the blackddaaming, and consequently the
self-linking number ofB is exactlywrithe(8). It follows from the generalized Pontryagin-Thom
construction that the homotopy class of a contact strucinf@? x [0, 1] relative to the boundary
is uniquely determined by the relative framed cobordisns<laf its Pontryagin submanifold,
and hence is uniquely determined Wyithe(8) sinceH;(D? x [0, 1], 8(D? x [0, 1]); Z) = 0. One
may think ofwrithe(8) as a relative version of the Hopf invariant associated imthndary relative
homotopy classes of majp¥ x [0,1] ~ B3 — S2.

Example 6.8. If 'z is the disjoint union of two isolated circles, aﬁgzx{o} = St c D¥(y) is
the circle on the left as depicted in Figlird 14. The isotppgarallel transport®?(y) along the

oriented loopy. We compute the homotopy class of the contact strucitie, .
P1 P2

J

4

D2 x [0, 1] P1 P2
(a) (b)
FIGURE 14. (a) The contact structure @t x [0, 1] induced by a full twist of the
dividing circles, wherdp,, p,} are pre-images of the regular valpe= (1,0,0) €
S?. (b) The oriented braid with the blackboard framiigas the Pontryagin sub-
manifold.

According to the Pontryagin-Thom construction, simaé&he(8) = -2, the homotopy class of
&t p2,, Is in general different from the-invariant contact structure, and the difference is mesur

by decreasing the Hopf invariant b)ﬁZ.

Example 6.9.If I'pz2,q, is the disjoint union of three circles, alﬁdzx{o} = St c D(y) is the circle
on the left as depicted in Figurel15. The isotgpparallel transport®?(y) along the oriented loop
y. We compute the homotopy class of the contact struciuse, .

In this case, one computes thatithe(B) = O, hencefz 2, is homotopic to thd -invariant
contact structure.

Now we are ready to classify the contact structures indugepluoe braids of the dividing set
up to stable isotopy in the sense of Definition| 6.5. One gowl establish an isotopy equivalence

“However, if the divisibility of the Euler class is 2, them gives a contact structure which is homotopic to the
[-invariant contact structure. We will discuss the divikipiof the Euler class in detail in Section 8.
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/\ pr P2 P3
P AN - -
+ O @)
D2 x[0,1] P P2 ps

(a) (b)
FIGURE 15. (@) A braiding by a full twist of the left-hand side dividj circle along
¥, where{ps, p2, ps} = G™1(p) is the pre-image of the regular valpe= (1,0,0) €
S2. (b) The oriented framed braifl as the Pontryagin submanifold.

relation between a pure braid of the dividing set and the ypa@angle attachment. To start with,
we consider the contact structures induced by two speciallpaids of the dividing set as depicted
in Figure[16. In Figuré_16(a), the dividing setc ngy) is a single circle, and the dividing set
contained in the disk bounded hyand disjoint fromI" is also a single circle. In Figuie 116(b),
the dividing sef ¢ D2(y) consists ofnisolated circles nested in another circle, and the dividing
set contained in the disk boundedywand disjoint froml” consists of isolated circles nested in
another circle. We also assume that eitimear n is not zero. For technical reasons, it is convenient
to have the following definitions.

Definition 6.10. Given two disjoint embedded circlgsy’ c D?, we sayy < ¥’ if and only ify is
contained in the disk bounded b

Definition 6.11. LetI" c D? be a finite disjoint union of embedded circles. Tdepthof I' is
the maximum length of chaing < y, < --- < v, wherey; c T is a single circle for any
ef{l1,2,---,r}.

Observe that the depth of the dividing set in Figure 16(a) sntl the depth of the dividing set
in Figure[16(b) is 2. It turns out that to study the contaaictire induced by an arbitrary pure
braid of the dividing set, it suffices to consider a finite casifion of these two special cases.

@O
() (b)

FIGURE 16.

Lemma 6.12.1f (S?x [0, 1], &2 ,) Is a contact manifold with contact structure induced by agpur
braid of the dividing set whelE c DZ andy are chosen as in Figufe 16(a), thé€a*x [0, 1], & )

is isotopic relative to the boundary &2 x [0, 1], A 2) where A? denotes the contact structure
obtained by attaching two bypass triangles(&3 x {0}, &;. D2 yl52%(0})-

Proof. Let @ be an admissible arc as depicted in Fidure 17(b). Supposbdttabypass triangles
are attached along,
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(a) (b)
FIGURE 17. (a) The contact structure is induced by parallel trartsppl” c D?
alongy. (b) Attaching two bypass triangles along the admissilderar

Observe that, = o, * 0y * 0o», Whereo,, o, ando,. are all trivial bypass attachments.
Hence the contact manifol&¢ x [0, 1], o2) can be foliated by convex surfaces by Lenima 3.3. In
other words, it is induced by an isotopy. By Theorenﬁ@rﬁ[lﬂ] we know that attaching two
bypass trianglea2 decreases the Hopf invariant by 2. In Exaniplé 6.8, we chelsydtbntryagin-
Thom construction thagi 2, also decreases the Hopf invariant by 2. Observe that thepgot
class relative to the boundary of a 2-strand oriented mareobyaid with blackboard framing is
uniquely determined by its self-linking number, which isuatjto the Hopf invariant. Hence?
is isotopic®; 2, in the region where both operations are supported. By ekigrtle isotopy by
identity to the rest 052, we conclude that§? x [0, 1], & pz,) is isotopic relative to the boundary
to (S? x [0, 1], A2). O

Lemma 6.13.1f (S?x [0, 1], &2 ,) is a contact manifold with contact structure induced by agour
braid of the dividing set whei c D? andy are chosen as in Figufe16(b), thé®?x [0, 1], & p D2)
is stably isotopic tqS? x [0, 1], A2 )y,

Proof. Let @ ¢ S? x {1} be an admissible arc as depicted in the left-hand side of €g8(a). By
Lemmad 6.8, if’is the push-down af, thenér ¢ ¢ p2 ) * 00 = 0 * &m0, Wherel” is obtained from

I" by attaching a bypass alormg We remark here that- o pz,) andér o are contact structures
induced by the same isotopy, but are push-forwards of diffecontact structures a7 x [0, 1].
Choosd” c D? to be themisolated circles on the left and be an oriented loop as depicted in the
right-hand S|de of Flgur‘e__18(a) L&t o2, be the contact structure induced by an isotopy which
parallel transport” c D? alongy’. Then Lemma 6]2 implies that- ¢ is isotopic, relative to
the boundary, t&; * & pz where® is induced by an isotopy that rounds the outmost dividing
circle. An iterated appllcatlon of Lemnia 6112 implies that,y ,, ~ A2™"1),

We next isotop the contact structurg+&;. Consider the |solated circles nested in a larger cir-
cle. Letl” c D?’ be the leftmost circle among timecircles andy” be an oriented loop as depicted
in the right-hand side of Figute 118(b). We pull uthirough an isotopy which parallel transports
I c D? alongy”, and observe that the pull-up ofi§ isotopic toa. By using Lemma&6l3 one
more time, we get the isotopy of contact structures: &5 ~ & pzv ,» * 0. Itis left to determine

5The 3-dimensional obstruction clagsused in Theorem 0.5 i [11] is by definition the relative vensif the Hopf
invariant which we have discussed above.
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the isotopy class of the contact structgfep.- .. Sincey” is oriented counterclockwise, by ap-
plying Lemmd6.IR1{ - 1) times, we get a stable isotogy, pz+ ,» ~ A2, i.e.,&., pzr 0 % A2
is isotopic to thd -invariant contact structure.
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FIGURE 18. (a) Pushing down the bypass attachnaent(b) Pulling up the bypass
attachmentr;.
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To summarize what we have done so far, we have the followitadpls) isotopies of contact
structures:

ff“,DE,y * Do = fl",(l)(f“,Dg,y) ¥ 0o * Oy * Oy
>0 *xEp g * Oy * Ogr
~ g5 x &g * ff"/,D?’,y/ * Oy % O g
~ g x &g * GUL U Oy * O
=~ ffw Dg” Y * Oy * AZI'T\(I’I—].) * O g * Ogr
A2(l—n) * Oy A2m(n—l)
~ A2(m—l)(n—1)

* Tg * O g

*O-Q’*O-a’/ *O-Q’”
_ A2(m—l)(n—1) % A

Note that the third equation from the bottom is only a stabtdpy so that the (possibly)
negative power of the bypass triangle attachment makeg s&ge Definition 5.12. We will use
the same trick in the proof of the following Proposition 6 \Without further mentioning. Hence
by definition.& 2, is stably isotopic tan™0-1) as desired. O

We now completely classify contact structures $hx [0, 1] induced by pure braids of the
dividing set.

Proposition 6.14.1f (S? x [0, 1], &rpz,) Is @ contact manifold with contact structure induced by a
pure braid of the dividing set, thefs p2, is stably isotopic tqS? x [0, 1], A" for some le N.

Proof. Recall thatl” c D? is a codimension 0 submanifold 8., andy is an oriented loop
in the complement of sz, @s in Definition 6.5. Lef” be the union of components () SN
contained in a disk bounded hyand outside ofA(y). We may choose the disk so thay is the
oriented boundary. Since the contact structyre is induced by a pure braid of the dividing
set, we havé'sz, o, = I's2,1. Hence we also view andI” as dividing sets 0$2 x {1}. Choose
pairwise disjoint admiSS|bIe ares, as, - -+ ,ar, Ay, - - -, 0N S? x {1} such that the following
conditions hold:

(1) a1, az,- -+, ;1 are admissible arcs containedDdd such that by attaching bypasses along
these arcs, the depth Bfbecomes at most 2.

(2) ar,ar41,- -+, ax are admissible arcs contained in the disk boundeg &nyd outside of(y)
such that by attaching bypasses along these arcs, the ddpgthecomes at most 2.

Observe that we choosg, a,, - - - , ax such that the isotopy class of eaghis invariant under
the time-1 mapp; which is supported imA(y) \ D2. Hence, by abuse of notation, we do not
distinguishe; and its push-down through (", D2 ,y) By Lemmal6.B, we have the isotopy of
contact Structureéy pz, * 0y * +++ % Toy = 0oy * - % T * o, WheEreéy is the contact structure
induced by a finite composition of special pure braids of thiglthg set considered in Lemma 6]12
and Lemm& 6.13, Therefogg is stable isotopic to a power of the bypass triangle attaciysay
A' for somel € N. To summarize, we have the following (stable) isotopiesasftact structures,
relative to the boundary.
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k
é:f",Dg,y * AT = ff",Dg,y ¥ Dgy 00k Dy
= gf“,Df,y * (O-Ck’l * O-Ct’l * O-a/l’) ook (O-Q’k * O-a(( * O-a((’)
= (é:f",Dg,y ¥ O ¥ % O-[l/k) * (O-a/l * O-cl’l/) Fooeo ok (O-a/k * O-Q’k/)
= (Oay o % Oy E0) * (Tap % Tay) -+ % (0ay * Tap)
|
N(0-01*"'*O-ak*A)*(O-a’l*o-a’l’)*"'*(o-a’k*o'a{(’)
|
= A (0-&1 * O-Q'l * O-a/l’) ook (O-Qk * O-a/k * O-a/k’)
SN O
Henceé; 2, is stably isotopic tax by definition.

To conclude this section, we prove the following techniealit which asserts that under certain
assumptions and up to possible bypass triangle attachpogret€an separate two bypasses.

Proposition 6.15. Let(S?,T’) be a convex sphere with dividing $eanda c (S?%,T) be an admis-
sible arc such that the bypass attachmentincreasesf” by 2. Suppose thg62,I") is the new
convex sphere obtained by attaching to (S, I') and supposg c (S2,I") is another admissible
arc such that the bypass attachmentdecrease#1” by 2. Then there exists an admissible arc
B c (S2,T) disjoint froma, a map® : S2 x [0,1] — S? x [0, 1] induced by an isotopy, and an
integer le N such thatr, * o ~ 07, * 0 % Al x £, relative to the boundary.

Proof. Let ¢ be the arc of anti-bypass attachmenttpcontained in $2,17) as discussed in Re-
mark[5.3. Thers intersectd” in three pointgps, p,, ps} as depicted in Figude 19(b). Lét and

6, be subarcs o from p; to p, and fromp, to ps respectively. Observe that, in order to find an
admissible ar@ c (S2T') which is disjoint frome and satisfy all the conditions in the lemma,
it suffices to find an admissible arc 084 I"), which we still denote by, and which is disjoint
from ¢ and also satisfies the conditions in the lemma. In fact, bynsgtry, we only neeg to be
disjoint fromé;. Without loss of generality, we can assume fhattersects transversely and the
intersection points are different from, p, and ps.

(b)

FIGURE 19. (a) The convex sphersi, I') with an admissible are. (b) The convex
sphere §2,1") obtained by attaching a bypass alengvheres is the arc of the anti-
bypass attachment.
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Claim: Up to isotopy and possibly a finite number of bypassigie attachments, one can arrange
so thatg ands; do not cobound a bigon B or*@s depicted in Figure 20(a)

(a) (b) (©)
FIGURE 20. (a) The admissible ag together withs; bound a minimal bigon,
which contains other components of the dividing set in theriar. (b) Choose a
disk D2 containing all the dividing sefSin the bigon and an oriented loggso that
it intersectss in exactly one point. (c) The pull-up gfthrough the contact structure
& p2,, bounds a trivial bigon witla; .

To verify the claim, note that iB is a trivial bigon, i.e., it contains no component of the divig
set in the interior, then we can easily iso@o eliminateB. If otherwise, we consider a minimal
bigon bounded by and¢; in the sense that the interior of the bigon does not intensébt 5.
Take a diskD? c B containing all components of the dividing defn B, namely,I” n D? =
andI” N (B\ D?) = 0. By our assumption, the bypass attachmentlecreasesF# by 2, sog
must intersecl” in three points which are contained in three different catedcomponents af
respectively. One can find an oriented lopp(0, 1] — S?\ I with ¥(0) = y(1) € D? such thaty
intersectg in one point. Orieny in such a way that it goes fromn g to y(1) in the interior ofB
as depicted in Figule 20(b). Suppose tat S? x [0,1] — S? x [0, 1] is induced by an isotopy
¢« which parallel transport®? alongy. By pulling up the the bypass attachmentthroughér o,
we get the following isotopy of contact structures (cf. frobLemmal6.18):

Op* §F”,®(D§,y) = frf,¢(f,D§,y) *0p

whereI” is obtained fronl” by attaching a bypass alogy andg is the pull-up of8 which is
isotopic to the one depicted in Figuirel 20(c). N

Sincep andd; cobound a trivial bigon, a further isotopy @will eliminate the bigon so thad’
does not intersedt; in this local picture. By Propositidn 6.114, the contact stiweér o p2 ) IS
stably isotopic ta" for somen € N. Define®™! : S2 x [0,1] — S? x [0, 1] by (X, t) - (¢;1(X), 1),
then itis easy to see thit 4pz.,) *ér o-1p2.,) IS ISOtOpIC, relative to the boundary, to Bimvariant
contact structure. Since we will use this trick many times simply write&q,-1 for &r, ¢-1p2 ) When
there is no confusion. To summarize, we have

Tp = & (. 02y) * T * &1 0-4(D2y)
n -
~ AT O S0y (D2y)

~ . n
- O-,B * Ak §F’/,<D*1(D§,y)
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By applying the above argument finitely many times, we camielate all bigons bounded g/
andés;. Hence the claim is proved.

Let us assume that intersectss; nontrivially, andg andés, do not cobound any bigon do8?.
We consider the following two cases separately.

Case 1.Suppose does not intersect any of the three components of the diyiskn generated by
the bypass attachmeant,. LetT'y, I'; andI'; be the three dividing circles which intersect with
If B intersectss; in exactly one point as depicted in Figlrd 21(a), then we sh@diskD? > T’y

%

(b)

FIGURE 21. (a) The convex spher&%,I") with an admissible arg intersecting
&1 in exactly one point. (b) Choose a diBK containingl’; and an oriented loop,
along which we apply the isotopy. (c) The pull-upsthrough the contact structure
ér,.pz,, bounds a trivial bigon witld; .

and an oriented loop in the complement of the dividing set as depicted in Figuig@p4uch that
Op = Eporpiy * Tp * o1 ~ AM % 0 x 91 Dy @arguments as before for somee N, wherep
intersects)* in exactly two points and cobound a trivial bigon as depicteBligure[21(c). Hence
an obvious further isotopy ¢@f makes it disjoint fromd; as desired.

If B intersectsy; in more than one point, we orieftso that it starts from the poimt= g NI,
as depicted in Figufe 22(a). Let andqg, be the first and the second intersection pointg wifith
6, respectively. Note that since we assugnands; do not cobound any bigon, there is no more
intersection poing N &, alongés; betweent, anda,. Let o, 9: andd:p be oriented subarcs
of B and@,q; be an oriented subarc 6f. We obtain a closed, oriented (but not embedded) loop
y = Q0 U 0ulp U Go0n U Gaq by gluing the arcs together. To apply Proposifion b.14 is tfise,
we take an embedded loop closeytas depicted in Figufe 22(b), which we still denotejbyet
D2 be a small disk containinb; as usual. Again by pulling up the bypass attachneenthrough
&r a(ry.p2,) WE have (stable) isotopies of contact structurgs: & o, p2,)*0j#éa-1 ~ AT x0 €1
for somer € N, whereB ands; bound a trivial bigon. Hence an obvious further isotopy @liates
the trivial bigon and decrease#(d,) by 2. By applying the above argument finitely many times,
we can reduce to the case whgriatersects; in exactly one point, but we have already solved the
problem in this case. We conclude that under the hypothesie &eginning of this case, there ex-
ists gg disjoint with¢; such thatr, x o ~ o-(,*o-[;*A' x &g for some isotopyb and an integelre N.

Case 2. Supposes nontrivially intersects the union of the three componeritthe dividing set
generated by the bypass attachmentWithout loss of generality, we pick an intersection paint
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(a) (b) (©)
FIGURE 22. (a) The convex spher&%,I") with an admissible arg intersecting
61 in at least two points, sag; andd,. (b) The embedded, oriented lop@mpprox-
imating the broken loopgd, U g1, U 0201 U g1g. (c) The pull-up of3 through the
contact structurér, pz,, bounds a trivial bigon witla; .

(@ g

—
o e
N

(o

(a) (b) (©)
FIGURE 23. (a) The admissible af; the dividing sef” andé; cobound a topolog-
ical trianglearr,p;, which may contain other components of the dividing set @ th
interior. (b) Choose the disR? to contain all the components of the dividing set in
the topological trianglearr, p;, and an oriented loop which intersectg in exactly
one point. (c) By applying the isotopy along the admissible ar6 becomeg’
which bounds a trivial triangle with the dividing set afid

as depicted in Figurle 23(a). Orighso that it starts from. Letr; be the first intersection point of
B andé;. Theng, 6; andI” bound a trianglexrr 1 p;. By the assumption that there exists no bigon
bounded by andé,, the interior of the trianglerr,p; does not intersect witB. If the interior of
the trianglearr,p; contains no components of the dividing set, then it is easgdmps so that
#(BNo1) decreases by 1. If otherwise, take a small d$kc arrqp; containing all components of
the dividing sef" in arrypy, i.e.,arryp; \ D? does not intersect with the dividing 9&t Lety be an
oriented loop based at a pointDf which does not intersect with the dividing set, and inteisgéc
exactly once. By pulling up the bypass attachmenthroughé, i pz,,), We have (stable) isotopies
of contact structuresy =~ &p g pzy) * 05 * ot ~ 0p * A % Eg1 SO that, 6, andI” bound a
trivial triangle in the sense that the interior of the trilmdoes not intersect with the dividing set.
Hence we can further isotgpto eliminate the trivial triangle and hence decreaser#6;) by 1.
By applying such isotopies finitely many times, we get an asible arg3 such that #§ N 61) = 0
and satisfy all the conditions of the proposition. |
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7. CLASSIFICATION OF OVERTWISTED CONTACT STRUCTURES 082 x [0, 1]

We have established enough techniques to classify ovéetvi®ntact structures @& x [0, 1].

Proposition 7.1. Let & be an overtwisted contact structure oA $[0, 1] such that S x {0, 1} is
convex Withl'sz, 0, = I'szqyy = S*. Thené ~ A" for some ne N, wherea" denotes the contact
structure on $ x [0, 1] obtained by attaching n bypass triangles 680} with the standard tight
neighborhood.

Proof. By Giroux’s criterion of tightness, bot®? x {0} andS? x {1} have neighborhoods which are
tight. Take an increasing sequence @ < t; < --- < t, = 1 such that is isotopic to a sequence
of bypass attachments,, * o, * - - * 0, ,, Wherea; C S? x {t;} are admissible arcs along which
a bypass is attached. Define the complexity of a bypass segt@mec = maxi<n #l s25,). The
idea is to show that i€ > 3, then we can always decreasky 2 by isotoping the bypass sequence
and suitably attaching bypass triangles.

To achieve this goal, we divide the admissible arcs ®h ) into four types (1), (I1), (Ill) and
(IV), according to the number of componentslbintersecting the admissible arc as depicted in
Figure[24, where we only draw the dividing set which intetsélce admissible arc. Observe that
bypass attachment of type (I) increas@&shy 2, bypass attachment of type (Il) and (lll) do not
change ¥, and bypass attachment of type (IV) decreadedyt 2. Hence the complexity of a
sequence of bypass attachments changes only if the typgpa$ses in the sequence change. By
repeated application of Lemnha 6.3, we may assume that dasttactures induced by isotopies
are contained in a neighborhood $f x {1}. By assumptionS? x {1} has a tight neighborhood.
Hence according to Remdrk .4, we shall only consider semseof bypass attachments modulo
contact structures induced by isotopies.

(0 (I (1 (V)

FIGURE 24. Four types of admissible areson (S2,T).

Claim 1 We can isotop the sequence of bypass attachments sucinthatpasses of type (1) and
(IV) appear.

To prove the claim, we first show that a bypass attachmentpef ¢i1) can be eliminated. Take
an admissible ara of type (lll). If the bypass attachment alongs trivial, then by Lemma 313,
the bypass attachment, is induced by an isotopy. Otherwise there exists an adnigssite 3
disjoint froma as depicted in Figu@S@uch that if one attaches a bypass alantpllowed by
a bypass attached aloggthen the later bypass attachment is trivial.

8In literature, we say is obtained fromw by left rotation
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FIGURE 25.

(b)

By the disjointness of admissible aresandg, we get the following isotopies of contact struc-
tures,

Oo = 0q *0p
= Op* 0.

Observe thatr; * o, is a composition of type (I) and type (IV) bypass attachmedtnce a finite
number of such isotopies will eliminate all bypass attachismef type (lll) in a sequence.

Similarly suppose that, is the bypass attachment of type (ll) in a sequence and iginiaht
Then there must exist other components of the dividing sehawn in Figuré 25(b). Choose an
admissible ar@ disjoint from « as depicted in Figure_25(b) such that if one attaches a bypass
alonga, followed by a bypass attached algfighen the later bypass attachment is trivial. By the
disjointness ofr andg again, we get the following isotopies of contact structures

O = 0y % 0p
= Op* Oq.

Observe thatr; * o, is @ composition of bypass attachments both of type (llihdecby a further
isotopy will turno-, into a composition of bypass attachments of type (1) and.(Afjnite number
of such isotopies will eliminate bypasses of type (II). Thera follows.

From now on, we assume that any bypass attachment.in o, * - - - * 0, , either increases
or decreasesl#by 2.

Assume that the complexity of the bypass sequence is achi@véevel S? x {t,} for some
re{0,1---,n}andis at least 5, i.e. ¥z, = ¢ > 5. Then it is easy to see that, , is type
() and o, is type (IV). By Propositioi 6.15, we can always assume ¢has disjoint froma,_;
modulo finitely many bypass triangle attachments. Henceamevew bothy,_; anda, as admissi-
ble arcs or5?x{t,_}. To finish the proof of the proposition, it suffices to prove thllowing claim.

Claim 2: We can isotop the composition of bypass attachments * o, such that the local
maximum of # at S? x {t,} decreases by at least 2.

To prove the claim, ley c I'sz,yy,_,, be the dividing circle which nontrivially interseats_;. We
do a case-by-case analysis depending on the number of peimigrsecting withy.

Case 1 If a; intersectsy in at most one point, then one easily check that by applyintpsy
o, ¥ 0o, = 0y, * 04, , 10 the sequence of bypass attachments; # , decreases by 4.
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Case 2 If o, intersects in exactly two points, then once again we apply the isotopy, * o, =~

oo * 0o, , t0 the sequence of bypass attachments. Now observe thatr,, , is a composition of
bypass attachments of type (lII). In the proof of the clairo\ad) we see that any bypass attachment
of type (lIl) is isotopic to a composition of a bypass attaemtof type (IV) followed by a bypass
attachment of type (I). Such an isotopy also decreases taérnmaximum of # by 4.

Case 3 If a, also intersecty in three points, we consider a difkbounded byy anda,_; as de-
picted in Figuré 26(a). ID contains no component of the dividing set in the intericenttn,, , o,

is isotopic to a bypass triangle attachment, more pregitiedye exists a trivial bypass along an
admissible aré on S? x {t,} such thatr,, , = o, * o is a bypass triangle attachment alang; .
SupposeD contains at least one connected component of the dividind-s&s be an admissible
arc onS? x {t,_} disjoint froma,_, anda, such that it intersectg in two points and the dividing
set contained i in one point as depicted in Figurel26(b).

FIGURE 26.

We have the following isotopies of contact structures duegtmmd’5.D and the disjointness of
admissible arcs:

O-G’r—l * O-CYr *A O-G’r—l * O-G’r * Aﬁ
:O-Clrfl*o-ar *O‘ﬁ*O‘ﬂ/*O‘ﬂu
X OR* Ty, % Tg *Tp % Opgr
One can check that the last five bypass attachments abovédl afayge (l1l). Hence we can
further isotop as before to eliminate type (lll) bypassdttaents to decrease the local maximum
of #I" by 2.
To summarize, we have proved that any sequence of bypasbragatsr,, « o, * -+ * 0y, ,
on S? x [0, 1] is stably isotopic to another sequence of bypass attactsmeérose complexity is at

most 3, which is clearly isotopic to a power of bypass trieregtachments. Thus the proposition
is proved. O

8. PROOF OF THE MAIN THEOREM

Now we are ready to finish the proof of Theorem|0.2.
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Proof of Theorerh 012By Propositiori 4.3, we can isot@pandé’ so that they agree in a neighbor-
hood of the 2-skeleton. Without loss of generality, we catiiermore assume that there exists an
embedded closed ba@ c M such that

(1) oB? is convex and has a tight neighborhoodvinwith respect to botl§ andé’.
(2) £=¢inM\ B
(3) The restriction of andé’ to M \ B® and toB? are all overtwisted.

Take a small balB? c B® in a Darboux chart so that botffgs andé’|g: are tight. We identify
B\ B2 with S? x [0, 1] and represent the contact structufgs gs and¢’|gs s by two sequences
of bypass attachments. By Propositlon 7.1, hjfa gz and¢’|gs gz are stably isotopic to some
power of the bypass triangle attachment, in other wordsethee isotopies of contact structures
Elgagex A" = A™T andé|gs g+ A° = A™ S for somen, m,r, s€ N. By assumption, the restriction &f
and¢’ to M\ B2 are overtwisted, so there exist bypass triangle attactswadmng any admissible arc
on B2 according to Lemma3.1. By simultaneously attaching seffity many bypass triangles
t0 &|gs g2 @NAE’|gs\ g2, We can further assume thilgs gz ~ A", &|gs\gz = A™ and¢é = & onM \ B,

Letd be the largest integer such that the Euler ctsp= e(¢’) € H3(M; Z) divided byd is still
an integral class. Suchdiis known as the divisibility of the Euler class. Combiningppwosition
2.11 and Theorem 0.5 ih 1], we hagigm—n). To complete the proof of the theorem, we need to
show thatt|y,gs is isotopic tag|y, gs =A% relative to the boundary. Since= g.c.d.{&(Z)|Z € Hy(M)},
it suffices to prove the following more general fact.

Lemma 8.1. Let X be a closed surface of genus g amdbe an I-invariant contact structure on
T x [0, 1]. Thenn = Al is stably isotopic tg relative to the boundary, whered e(n7)(Z).

Proof. Since we only consider stable isotopies of contact strastuone can prescribe any dividing
setl's on X such that the Euler class evaluatesto I. In particular, we consider the dividing
set onX as depicted in Figure 27, namely, there gre 1 circlesy; U - - - U yg,1 dividing X into
two punctured disks, in each of which there arandq isolated circles respectively. We call the
left most circles in the sets g andq isolated circled’y andI'; respectively. We also choose
admissible arcay, as, - - -, ap-1} and{B1, B2, - - - ,Bg-1}, and orienty;, 1 <i < g+ 1, in away as
depicted in Figuré 27.

FIGURE 27.

An easy calculation shows that= 2(p — q). Choose small diskﬁ)zo, D2 in ¥ such that
DE0 NIy = TpandD?, NIy = I'1. Observe that the bypass triangle attachment alongrany
and,fg’J consists of three trivial bypass attachments, hence |ep$mto contact structures induced
by a pure braid of the dividing set. More precisely, jet i = -,g+ 1, be an oriented
loop in the negative region which is parallel o We have the foIIowing isotopies of contact
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2 2 ~ ~
StrUCthG%al koeee ok Aap,l o~ nq>(r0’D§,o’71U"'U7§+1) = No(r,,D?

Sy ke kT 2 -y, where we think of
co71) (D(FO’De,o’Vg+1)

¥1 Y-+ Uyg,, as an oriented loop homologous to the union ofjttee Similarly one can study the
bypass triangle attachments along giys, but with an opposite orientation. Lgt be an oriented
loop in the positive region which is parallel 4pfor 1 <i < g+ 1. We have the following (stable)
ISOtOpIeS Of contact Structura%lz Hoeee 3k Al‘ngd ~ nq)(rl’Dil’yIU"'Uyaﬂ) = nq)(Fl’Dil’yI) Koeowe 3k nq)(rl’Dil’yaﬂ)'
Here we only have a stable isotopy because of our choice ajfrtbatation ofy;. To summarize
the computations above, we get the following (stable) igi@®of contact structures:

I 2 2 -2 -2
n*A_n*(Aal*“'*Aap,l)*(Aﬂl*"'*Aﬁq,l)
=nx* (nd)(Fo,Dio,yI) Kook n@(FO,Dg’O,y§+1)) * (77<1>(r1,02 )Rk ﬂ@(rl,Dg‘l,ygﬂ))

11
= 1% (Ma(ro,07gy7) * Mors02,90) * % (Maro.0?gyz ) * Mors,02,4, )

where the last step follows from the fact that isotopies fiatllel transporD?, and D?, are
disjoint.

Now it suffices to prove th%(ro,ogo,y;) * (02,7 IS stably isotopic to am-invariant contact
structure for 1< i < g+ 1. To see this, take an annular neighborh@paf y; containingDiO
and Dil and an admissible a& which intersect$, I';, andy; as depicted in Figufle 28. We can

assume that the isotopidgI'y, D2, y;) and®(I';, D?,, y") are supported ir\. For simplicity of
notation, we denote the compositigfr, oz ,-) * Nowry.02,,+) BY 1y

el

FIGURE 28. An annulus neighborhoo¥ of y; containingl’p andI';.

By pushing down the bypass attachment throughn,,, we have the following isotopies of
contact structures:
My * Bg =1y * O * Og * O
=05 * o) * O * Oy
=05 %05 %O = Ag,
wheres; is the push-down of; which is isotopic tas;, and thene,,) is easily seen to be isotopic to

anl-invariant contact structure. The argument works for alf1, 2, - - - , g+ 1}, hence we establish
the stable isotopy as desired. |
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