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The spectral flow for Dirac operators on compact
planar domains with local boundary conditions
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1 Introduction

This paper deals with Dirac type operators on compact planar domains. We consider
such operators with self-adjoint locally elliptic local boundary conditions1. The paper
is focused not on individual operators, but on paths in the space of such operators. We
consider only paths connecting two operators conjugate by a scalar gauge transformation
(so, they are loops up to a scalar gauge transformation). Such paths have a well known
invariant, the spectral flow, which counts with signs the number of eigenvalues passing
through zero from the start of the path to its end (the eigenvalues passing from negative
values to positive one are counted with the plus sign, and egenvalues passing in the
other direction are counted with the minus sign). The paper is devoted to the problem
of computation of the spectral flow in the situation when all the operators along the path
have the same symbol and the same boundary condition.

Because these results are potentially useful for the physics of condensed matter, the
author attempted to avoid advanced mathematical terminology and to explain the re-
sults and the ideas behind their proofs in a way accesible to non-mathematicians. By
the same reason, the author present the case of Dirac operators (Theorems 1 and 2) be-
fore dealing with the more general case of Dirac type operators on domains equipped
with an arbitrary metric. Note that physicists sometimes use more general boundary
conditions than the ones considered in this paper. For example, the so-called armchair
boundary conditions for graphen are of the type considered in this paper, but the zigzag
boundary conditions for graphen are not. While it is not completely obvious, boundary
conditions considered in this paper are just another forms of locally elliptic boundary
conditions used in physics, as explained in Section 9. Besides, we explain in Section
9 how the spectral flow can be computed in terms of general boundary problem for
two-dimensional spinors considered by Akhmerov and Beenakker in [1]. As illustration
we show that the spectral flow vanishes if boundary condition does not break the time
reversal symmetry.

We start with the following situation. Let X be a compact planar domain bounded
by m smooth curves (topologically it is a disk with m− 1 holes). Our operators act on
spinor (i. e. spinor-valued) functions, which we identify with column vectors of two
complex-valued functions:

u =

(
u+

u−

)
, u± : X→ C.

A Dirac operator acting on spinor functions has the form

D = D +

(
0 q̄(x)

q(x) 0

)
, D = −i

(
0 ∂1 − i∂2

∂1 + i∂2 0

)
,

where q is a smooth function from X to C, x = (x1, x2) ∈ X, ∂i = ∂/∂x
i. Our focus is on

1-parameter families Dt of such operators parametrized by t ∈ [0, 1]. In such a family

1In particular, boundary conditions defined by general pseudo-differential operators are not allowed.
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the first term D involving derivatives is always the same, but in the second term the
function q is allowed to continuously change with t, i. e. q = qt, where t ∈ [0, 1]. In
agreement with the above, we assume that D1 = µD0µ

−1 for some smooth scalar gauge
transformation µ : X→ U(1).

All operators Dt are considered with the same boundary condition of the form i(n1 +

in2)u
+ = B(x)u−, where n = (n1,n2) is the outward conormal to the boundary, and B

is a real-valued smooth function on the boundary of X without zeros. Our first main
result, Theorem 1, asserts that the spectral flow of such a family of operators is equal to
cm

∑m
j=1 bjµj, where cm is an integer constant depending on m only, µj is the degree of

the restriction of µ to j-th connected boundary component, bj = 1 if B is negative on the
j-th boundary component, and equal to 0 otherwise.

After considering this most special and very important situation, we turn our atten-
tion to the situation of Dirac operators acting on N-dimensional spinor functions

u =

(
u+

u−

)
, u± : X→ C

N,

where, as before, X is a compact planar domain bounded by m smooth curves. A Dirac
operator acting on N-dimensional spinor functions has the form

D = D +Q(x), D = −i (σ1∂1 + σ2∂2) ,

where

σ1 =

(
0 IN
IN 0

)
, σ2 =

(
0 −iIN
iIN 0

)
,

IN is N ×N unit matrix, and Q(x) is complex self-adjoint 2N × 2N matrix smoothly
dependent on x ∈ X. Again, our focus is on 1-parameter families Dt of such operators
parametrized by t ∈ [0, 1]. In such a family the first term D involving derivatives is
always the same, but in the second term the matrix Q is allowed to continuously change
with t, i. e. Q = Qt, where t ∈ [0, 1]. We assume that D1 = µD0µ

−1 for some smooth
scalar gauge transformation µ : X → U(1), where U(1) is considered as the subgroup of
U(2N) consisting of the diagonal matrices with equal diagonal elements.

All operators Dt are considered with the same boundary condition i(n1 + in2)u
+ =

B(x)u−, where B is a smooth map from the boundary to the space of complex self-adjoint
invertible N×N matrices. Note that a local boundary condition is locally elliptic if and
only if it can be written in such a form with B(x) invertible at any x; this boundary
condition is self-adjoint if and only if B(x) is self-adjoint at any x.

Our second main result, Theorem 2, asserts that the spectral flow of such a family of
operators is equal to cm

∑m
j=1 bjµj, where cm is the same constant as in Theorem 1 (in

particular, cm does not depend on the dimension N), µj is the degree of the restriction
of µ to j-th boundary component (this restriction gives us the map from the circle to
the circle because µ is a scalar gauge transformation), and bj is the number of negative
eigenvalues of B(x) (counting with multiplicities) on the j-th boundary component.
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Theorem 3 extends Theorem 2 to a still more general class of operators. These Dirac
type operators involve in their definition an arbitrary (not necessarily flat) metric on
X, and have the principal symbol defined by a Clifford multiplication which does not
necessarily agree with this metric. While considering arbitrary metric is important for
some physical applications, considering Clifford multiplication which does not agree
with the metric on X does not seem neseccary. Nevertheless, we take care of this more
general case because the proofs of our results crucially depend on its consideration.
Moreover, we cannot prove Theorems 1 and 2 without proving Theorem 3 first.

Notice that scalar gauge transformations µ : X → U(1) leave invariant every local
boundary condition, as well as the first term D of the operator D+Q(x): µ(D+Q)µ−1 =

D+Q ′ for some function Q ′(x). So any operator D0 can be connected with the conjugate
operator D1 = µD0µ

−1 by the path (D +Qt(x)) with fixed boundary condition. On the
contrary, non-scalar gauge transformations µ : X → U(2N) do not have such properties,
so the problem of computation of the spectral flow can not be stated in such a form as
described above. If we allow general non-scalar gauge transformations, then we have to
allow paths of operators (Dt) and of boundary conditions (Bt) with Bt and symbol of Dt
being dependent on t. Some results about this more general case are outlined in Section
8.

Note that in this paper the spectral flow is computed only up to multiplication by
an integer constant cm depending only on m. For a disk with one hole (m = 2) the
eigenvectors and hence the spectral flow are calculated explicitly in a special case; this
is sufficient to determine c2; it turns out that c2 = 1 (see Theorem 4). For the case m > 2
this method fails because Fourier transform gives no help here. Nevertheless, the author
expects that cm = 1 for all m; some reasons in favour of this conjecture are provided
after proving that c2 = 1.

Part I

The spectral flow for Dirac operators

2 The spectral flow

Let H be a complex separable Hilbert space, (At), t ∈ [0, 1] be a continuous 1-parameter
family of bounded self-adjoint (or, what is the same, Hermitian) Fredholm operators in
H. Near zero every At has discrete real spectrum, which changes continuously with the
variation of t. Hence one can count the net number of eigenvalues of At passing through
zero in positive direction as t runs from 0 to 1, that is, the difference between the numbers
of eigenvalues (counting multiplicities) crossing zero in positive and negative directions.
This net number is called the spectral flow sf (At). The description of this notion can be
found in [2, 3].

The case when A0 or A1 has zero eigenvalue requires some agreement on the count-
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ing procedure; we use the following convention: take a small ε > 0 such that A0, A1 have
no eigenvalues in the interval [−ε, 0), and define the spectral flow as the net number of
eigenvalues of At + εI which pass through zero.

Let now (At) be an 1-parameter family of (not necessarily bounded) self-adjoint Fred-
holm operators in H. For example, it can be a family of symmetric elliptic differential
operators At acting on sections of Hermitian bundle E over closed (that is, compact with-
out boundary) manifold X. The definition of the spectral flow can be adjusted to this
case, though more accurate consideration is needed, particularly due to the presence of
various natural topologies on the space of such operators [4, 5, 6].

When a manifold has non-empty boundary, we have to consider the family (At,Bt),
where At is a formally self-adjoint differential operator, and Bt is a “good” (self-adjoint
elliptic) boundary condition for At at any t. One can see the notion of self-adjoint elliptic
boundary value problem for operators of Dirac type in [3, 7], and for general first order
elliptic operators in [8].

Such differential operator At with boundary condition Bt defines the unbounded
self-adjoint Fredholm operator on L2(X,E), which has unbounded discrete real spectrum.
Intuitively, the spectrum of (At,Bt) changes continuously with the variation of t, so the
definition of the spectral flow works in this case as well [4, 6]. However, the proof that
the definition and the standard properties of the spectral flow are correct is considerably
more difficult in this case. The crucial ingredient is the continuity (in t) of the family
(At,Bt) in the space of unbounded self-adjoint Fredholm operators on L2(X,E) with an
appropriate metric. This was proved in [8] (see [8], Theorem 7.16). This continuity
property allows one to use the theory developed in [4, 5] in full force. Our proof of
Theorem 3 (see Part II) crucially depends on this theory, and, in particular, on Theorem
7.16 from [8]. The results of this theory needed for the proof of Theorem 3 are isolated
in Section 11 as properties (P0-P4).

Note that if the spectra of (A0,B0) and (A1,B1) are the same (isospectral operators),
which is the case in this paper, then there is another way to define the spectral flow of
(At,Bt). The set

{(t, λ) : λ is the eigenvalue of (At,Bt)}

can be uniquely represented as the union of the graphs of functions λi(t) such that
λi(t) 6 λj(t) for i 6 j. These functions give us the bijection (one-to-one correspondence)
of the spectrum of (A0,B0) to the spectrum of (A1,B1). If these spectra coincide as
subsets of R then this correspondence gives us the shift of the spectrum on the integer
number of positions. This number is the spectral flow of (At,Bt). It is worth to note
that for the isospectral case one can replace the level λ = 0 by any real number, and the
difference between eigenvalues crossing the level in positive and negative directions will
be the same [2].
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3 Dirac operators: the simplest case

Suppose X is a compact planar domain bounded by m smooth curves (topologically it is
a disk with m− 1 holes). We will use the notations x = (x1, x2) ∈ X, ∂i = ∂/∂x

i.
Let us consider the Dirac operator on X

(1) D = −i

(
0 ∂1 − i∂2

∂1 + i∂2 0

)
,

acting on a spinor function u : X→ C2, u =

(
u+

u−

)
.

A Dirac operator with non-zero vector potential has the form

D = D +Q(x), where Q(x) =

(
0 q̄(x)

q(x) 0

)
,

q is a smooth function from X to C.
Let µ : X→ U(1) be a gauge transformation; we suppose that µ(x) ∈ C, |µ(x)| ≡ 1 for

x ∈ X. Let us take a Dirac operator D0 = D +Q0(x) and connect it with the conjugate
operator

D1 = µD0µ
−1 = D +Q0 +

(
0 iµ−1 (∂1µ− i∂2µ)

iµ−1 (∂1µ+ i∂2µ) 0

)

by an one-parameter family of Dirac operators

(2) Dt = D +Qt, where Qt(x) =

(
0 qt(x)

qt(x) 0

)
,

qt is a smooth function from X to C continuously depending on t, t ∈ [0, 1],

q1 − q0 = iµ−1 (∂1µ+ i∂2µ) .

A self-adjoint locally elliptic2 local boundary condition for Dt has the form

(3) in(x)u+ = B(x)u− on ∂X,

where B : ∂X → R \ {0} is a smooth function defining the boundary condition, n =

(n1,n2) is the outward conormal to the boundary ∂X of X at point x, and we identify n
with the complex number n1 + in2 in (3).

Note that n1, n2 coincide with the components of the outward normal to ∂X for the
case of Euclidean metric considered both here and in the next section. In Section 5 we
consider a more general case of arbitrary metric on X, and the distinction between a
normal and a conormal becomes essential there.

2Another name for “locally elliptic boundary condition” is “Sapiro-Lopatinskii boundary condition”
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Remark. D +Q(x) is the Dirac operator on the trivial 2-dimensional complex vector
bundle over X with compatible unitary connection defined by the function q(x). So the
change of qt with t is equivalent to the change of the connection.

Boundary condition (3) is gauge invariant with respect to the conjugation by µ, while
D0 and D1 are conjugate by µ. So the operators D0, D1 with the same boundary con-
dition (3) are isospectral, and the spectral flow of the family Dt gives us the shift of the
spectrum of Dt when t runs from 0 to 1.

Theorem 1. The spectral flow of the family (Dt), t ∈ [0, 1], with boundary condition (3) is equal
to

cm

m∑

j=1

bjµj,

where cm is the integer constant depending on m only, µj is the degree of the restriction of µ to
∂Xj,

bj =

{
1, if B < 0 on ∂Xj
0, if B > 0 on ∂Xj

Here ∂Xj are the connected components of the boundary of X, equipped with the orientation in
such a way that the pair (outward normal to ∂Xj, positive tangent vector to ∂Xj) has the positive
orientation on the plane (x1, x2).

 

X

n

Figure 1: The case of two holes

Note that since B 6= 0, it has definite sign at each boundary component ∂Xj, so the
constants bj are correctly defined. The restriction of µ to j-th connected component of
∂X gives us the map from the circle ∂Xj to the circle U(1); µj is the degree of this map.

This theorem follows from more general result which we formulate below. The gener-
alization goes in two directions: (1) we allow arbitrary dimension of unknown complex
functions u−, u+, (2) we replace Dirac operator by operators of more general form. The
value of c2 is computed in Section 6.

Remark. Boundary condition (3) coincides with the boundary condition of Berry and
Mondragon for the “neutrino billiard” [9] up to replacement of B by B−1. In physical
terms, one-parameter family of Dirac operators (2) describes the situation of continu-
ously varying magnetic field so that the following two conditions are fullfiled:

7



(1) magnetic field at t = 1 coincides with magnetic field at t = 0 all over the interior
of X,

(2) the fluxes through j-th hole at t = 1 and at t = 0 differ by integer number µj in the
units of the flux quantum.

Let j = m corresponds to the outer boundary component and j = 1, . . . ,m− 1 enumerate

the holes. Considering that µm = −
∑m−1
j=1 µj, we can reformulate Theorem 1 as follow-

ing: the spectral flow of the operators family (2) with boundary condition (3) is equal
to

cm

m−1∑

j=1

(bj − bm)µj.

Thus the variation of magnetic field through j-th hole contributes to the value of the
spectral flow with coefficient cm(bj − bm).

If the signs of B are the same on all boundary components, then the spectral flow is
zero, no matter how magnetic field is varied (if only conditions (1-2) above are fullfiled).
In the contrary, if B takes positive values on some boundary component and negative
values on another, then we can vary magnetic field so that the spectral flow does not
vanish.

4 2N-dimensional Dirac operators

Let X be as in the previous section. The standard 2N-dimensional Dirac operator has the
form

(4) D = −i (σ1∂1 + σ2∂2) , where σ1 =

(
0 IN
IN 0

)
, σ2 =

(
0 −iIN
iIN 0

)
,

IN is N×N unit matrix.
We will consider operators of the form D = D +Q(x) acting on spinor functions

(5) u =

(
u+

u−

)
, u± : X→ C

N,

where Q is a smooth map from X to the space H(C2N) of complex self-adjoint (or, what
is the same, Hermitian) 2N× 2N matrices.

A self-adjoint local elliptic boundary condition for the operator D +Q has the form

(6) in(x)u+ = B(x)u− on ∂X,

where B is a smooth map from ∂X to the space of complex self-adjoint invertible N×N
matrices, n = (n1,n2) is the outward conormal to ∂X at point x, and we identify n with
the complex number n1 + in2.
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The equivalent way of imposing boundary condition (6) is

(7)

(
i (n1σ1 +n2σ2) +

(
B−1 0

0 −B

))
u = 0 on ∂X.

Theorem 2. Let Qt(x) be a continuous 1-parameter family of self-adjoint 2N× 2N matrices
smoothly dependent on x ∈ X such that D +Q1 = µ (D +Q0)µ

−1 for some smooth gauge
transformation µ : X → U(1). Let B be a smooth map from ∂X to the space of complex self-
adjoint invertible N×N matrices. Then the spectral flow of the family (D +Qt) with boundary
condition (6) is equal to

cm

m∑

j=1

bjµj,

where cm is the integer constant depending on m only, µj is the degree of the restriction of µ to
the j-th connected component ∂Xj of the boundary, bj is the number of negative eigenvalues of B
(counting multiplicities) on ∂Xj (this number is correctly defined due to nondegeneracy of B).

This result is the corollary of Theorem 3 from the following section.

5 Dirac type operators

Let X be a compact planar domain bounded by m smooth curves and equipped with a
Riemannian metric g (which is not necessarily flat).

We call a first order formally self-adjoint operator D over X a Dirac type operator if its
symbol has the form

(8) ρ =

(
ρ1

ρ2

)
= Φ(x)

(
σ1

σ2

)
,

where Φ is a smooth map from X to the group GL+(2, R) of real invertible 2× 2 matrices
with positive determinant, and the matrices σ1, σ2 are defined by formula (4).

In other words, Dirac type operator is the operator acting on spinor functions (5) and
having the following form:

(9) D = DΦ,Q = −i (ρ1(x)∂1 + ρ2(x)∂2) + iRΦ(x) +Q(x),

where Q is a smooth map from X to the space H(C2N) of complex self-adjoint 2N× 2N
matrices,

RΦ =
1

2

[
(ρ1∂1 + ρ2∂2) + (ρ1∂1 + ρ2∂2)

t
]

(superscript t denotes the operation of taking the formal adjoint operator). More ex-
plicitely,

RΦ(x) = −
1

2
[∂1 (

√
gρ1) + ∂2 (

√
gρ2)] ∈ H(C2N),

9



where
√
g =

√
det(gij), the matrix (gij) is inverse to the matrix (gij) = (

〈
dxi,dxj

〉
g
),

√
g dx1dx2 is the volume element on X (of course, gij, g

ij, and
√
g depend on x).

By D = DX,g,N we denote the space of all operators having the form (9) for fixed X,
g, N. Note that Dirac type operator (that is an element of DX,g,N) is uniquely defined
by the pair (Φ,Q).

A self-adjoint elliptic local boundary condition for Dirac type operator (9) has the
form

(10) in ′(x)u+ = B(x)u− on ∂X,

where B is a smooth map from ∂X to the space of complex self-adjoint invertible N×N
matrices, the complex-valued function n ′ on ∂X is defined by the formula n ′ = n ′

1 + in
′
2

with (n ′
1,n ′

2) = (n1,n2)Φ and n = (n1,n2) being the outward conormal to ∂X at x ∈ ∂X.
Recall that ni =

∑
gijn

j for the components
(
nj
)

of the normal to the boundary.

Remark. Equation (10) is just another form of the equation

(11) iρ+(x,n(x))u+ = B(x)u− on ∂X,

where

ρ(x, ξ) =

(
0 ρ−(x, ξ)

ρ+(x, ξ) 0

)

denotes the symbol ξ1ρ1(x) + ξ2ρ2(x) of the operator D in the direction of a covector
ξ = (ξ1, ξ2). Considering that in our case the operator ρ+(x, ξ) is scalar, and ρ+(x,n(x)) =
n ′(x)IN, boundary condition (11) may be written in simplified form (10).

By B = BX,N we denote the space of all smooth maps from ∂X to the space of
complex self-adjoint invertible N×N matrices.

Suppose D ∈ D, B ∈ B. We will write (D,B) for operator (9) acting on the domain

{

u ∈ C1(X, C
2N) : restriction of u to ∂X satisfies boundary condition (10)

}

,

where C1(X, C2N) is the space of continuously differentiable functions from X to C2N.

Such operators have the following properties:

1. For any D ∈ D, B ∈ B the operator (D,B) is (unbounded) essentially self-adjoint
Fredholm operator, which has the discrete real spectrum. All its eigenvectors are
smooth functions. (Lemma 1, Section 10)
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2. Suppose Qt(x) is continuous on (t, x), D ∈ D, B ∈ B. Then all the operators from
the family (D+Qt,B) have the same domain, and this family is norm continuous
in L2

(
X, g; C2N

)
. Therefore the spectral flow of the operators family (D+Qt,B) is

well defined ([5], Proposition 2.2).

Now we can formulate the main result of the present paper:

Theorem 3. Let D ∈ D be a Dirac type operator (9), B ∈ B define boundary condition (10)
for D, Qt(x) be a continuous 1-parameter family of self-adjoint 2N × 2N matrices smoothly
dependent on x ∈ X such that D+Q1 = µ (D+Q0)µ

−1 for some smooth gauge transformation
µ : X→ U(1). Then

sf (D+Qt,B)t∈[0,1] = cm

m∑

j=1

bjµj,

where cm is the integer constant depending on m only, bj is the number of negative eigenvalues
of B (counting multiplicities) on ∂Xj, µj is the degree of the restriction of µ to ∂Xj, ∂X is oriented
as described in the statement of Theorem 1.

Note that constant cm in all the Theorems 1-3 is the same.

Remark. Let S be a spinor bundle over X, 〈 · , · 〉 be an Hermitean metric on S compatible
with its spinor structure, ∇ be a connection on S compatible with its spinor structure
and the Levi-Civita connection on TX. The Dirac operator on S in local coordinates has
the form D = c(v)∇v + c(w)∇w, where (v,w) is a positive oriented orthonormal basis in
TxX, and by c(v) we denote the action of a tangent vector v on spinors.

The unitary skew-adjoint isomorphism Jx = c(v)c(w) of Sx does not depend on the
choice of a basis (v,w) in TxX and defines the bundle decomposition S = S+⊕ S−, where
S± are the subbundles of S such that S±x are the eigenspaces of Jx corresponding to its
eigenvalues ∓i. Due to the triviality of TX and of any complex bundle over X, we can
fix some global positive oriented orthonormal basis field (v(x),w(x)) in TX and some
trivialization of S−. Let us extend the trivialization from S− to S so that the action of the
tangent vectors on the spinors in this trivialization has the form

c(v(x)) = −i

(
0 IN
IN 0

)
, c(w(x)) = −i

(
0 −iIN
iIN 0

)
.

Then sections u of the spinor bundle S can be identified with the column vectors (5) of
two functions u± : X→ CN, and Dirac operator D acting on such column vectors can be
written in the form D = −i (ρ1∇1 + ρ2∇2), where ρ1, ρ2 are defined by formula (8), Φ(x)

is the transition matrix: (v,w) = (e1, e2)Φ(x), and by ei we denote the vector (not the
differential operator) ∂i to avoid misunderstanding.

So any Dirac operator over X has the form (9) with Φ(x) satisfying the condition
Φ(x)Φ∗(x) = (gij(x)) and with the matrix Q(x) of very special kind. While considering
arbitrary metric g and arbitrary Q(x) is important for some physical applications, con-
sidering Clifford multiplication which does not agree with the metric on X (that is matrix
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function Φ(x) which does not satisfy the condition Φ(x)Φ∗(x) = (gij(x))) does not seem
neseccary. Nevertheless, we take care of this more general case because the proofs of our
results crucially depend on its consideration.

6 The case of one hole

Here we compute the spectral flow for the case when X has just one hole (m = 2), and
as a result find c2.

Theorem 4. c2 = 1.

Proof. By Theorem 3, the spectral flow does not depend on the geometry of X and on
the choice of D ∈ D, so it is sufficient to consider only the case when the computation
is as simple as possible. Let us take the annulus X = {(r,ϕ) : 1 6 r 6 2} in the polar
coordinates (r,ϕ) on the plane, with the metric ds2 = dr2 + dϕ2, N = 1,

D = −i

(
0 ∂r − i∂ϕ

∂r + i∂ϕ 0

)
, µ = eiϕ, Qt =

(
0 it

−it 0

)
,B =

{
+1 at r = 1
−1 at r = 2

We obtain the following system for the eigenvector u and the eigenvalue λ of (D+Qt,B):






(−i∂r + ∂ϕ − it)u+ = λu−

(−i∂r − ∂ϕ + it)u− = λu+

u+ = iu− at r = 1, 2

All the eigenvectors of (D+Qt,B) are smooth functions, so we can seek them in the
form u±(r,ϕ) =

∑
k∈Z

u±k (r)e
ikϕ. Substituting it in the last system, we obtain






∂ru
+
k − (k− t)u+k − iλu−k = 0

∂ru
−
k + (k− t)u−k − iλu+k = 0

u+k = iu−k at r = 1, 2

Equivalently, 




∂r
(
u+k + iu−k

)
= (k− t− λ)

(
u+k − iu−k

)

∂r
(
u+k − iu−k

)
= (k− t+ λ)

(
u+k + iu−k

)

u+k − iu−k = 0 at r = 1, 2

and ∂2
r

(
u+k − iu−k

)
=

(
(k− t)2 − λ2

) (
u+k − iu−k

)
. So we have the following cases:

• either u+k = u−k ≡ 0,

• or k− t+ λ = 0, u−k = const, u+k = iu−k ,

• or (k− t)2 − λ2 = −(πl)2, l ∈ Z \ {0}, u+k − iu−k = const ·
(
eπilr − e−πilr)

)
.
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Therefore the set

Λ = {(t, λ) : λ is the eigenvalue of (D+Qt,B)}

is the union of the setΛ1 = {(t, λ) : λ− t ∈ Z} (with the multiplicities 1 of the eigenvalues)
and of the set Λ2 lying beyond the band |λ| > π.

If λj(t) are the continuous functions from the interval [0, 1] to R such that Λ ∩
{0 6 t 6 1} is the union of the graphs of functions λj(t) and λi(t) 6 λj(t) for i 6 j,
then λj(t) = j+ t when −3 6 j 6 2 (up to shift of the numeration). So

sf (D+Qt,B)t∈[0,1] = 1.

On the other hand, by Theorem 3,

sf (D+Qt,B)t∈[0,1] = c2 (b1µ1 + b2µ2) = c2µ2 = c2

where by ∂X1, ∂X2 we denote the inner and the outer boundary circles respectively.
Therefore c2 = 1.

7 The case of several holes

In this section we provide some evidence supporting the conjecture that cm = 1 for all
m.

Namely, let us realize X = Xh as (m− 1) identical annuli arranged along the line and
connected by the band of the width h, with the corners smoothed out, as on the Fig. 2.

 

hX

h1

Figure 2: Contracting of the connecting band

Let us consider the process of continuous decreasing of the band’s width from h = 1
to h = 0; we suppose that the annuli do not change in progress. Let us fix some function
µ from X1 to U(1) and take qt = itµ

−1 (∂1µ+ i∂2µ). Restricting µ and qt on Xh, 0 < h 6

1, we obtain operator (2) over Xh. Let us define the boundary condition by Bh = +1 at
the inner part ∪j<m∂Xhj of ∂Xh and Bh = −1 at the outer part ∂Xhm of ∂Xh.

By Theorem 1, sf (D +Qt) = cm
∑
j<m µj does not depend on h. It is natural to

suggest that the limit at h→ +0 of the (constant) spectral flow of the family
(
D +Qt,B

h
)
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for Xh is equal to the spectral flow of
(
D +Qt,B

0
)

for the “limit” domain X0, which is

the disjoint union of m− 1 annuli, and the “limit” boundary condition B0 = +1 at the
inner boundary and B0 = −1 at the outer boundary of every annulus.

However, sf (D +Qt,B
0) for such union is the sum of sf (D +Qt,B

0) for the annuli,
and hence is equal to

∑
j<m c2µj = c2

∑
j<m µj.

Therefore, if the assumption on the limit behavior of the spectral flow is true, then
cm = c2 at any m > 2.

        

hX1X

Figure 3: Increasing of the holes

Another way to have a look at the general case is to fix the outer boundary and to
increase the holes up to their merging, as on Fig. 3. Here we obtain the single annulus in
the limit of h = 0, and the same result cm = 1 if the passage to the limit will be justified.

Alternatively, we can combine these two methods to obtain arbitrary number m ′,
1 6 m ′ 6 m− 1 of annuli in the end of the limit process, with the same result for cm.

8 General case: first order elliptic operators

The results of the present paper are concerned only with the case when X is a disk with
holes. Easy modification of the proof gives us analogue of this result for the case of
smooth compact oriented surface X with nonempty boundary, with the only change of
cm to cm,g, where cm,g is the integer constant depending on the number m of boundary
components of X and on the genus g of X. However, this still remains within the very
restricted framework: all the operators Dt are of Dirac type, both symbol of Dt and
boundary condition do not depend on t, conjugating gauge transformation is scalar.

In fact, this result can be extended to much more general case. Namely, let X be a
smooth compact surface, (At) be an 1-parameter family of first order symmetric elliptic
differential operators acting on sections of unitary vector bundle E over X, and subbun-
dle Lt of E|∂X defines a self-adjoint elliptic local boundary condition for At at any t.
Suppose that (A1, L1) is conjugate to (A0, L0) by some gauge transformation µ (that is µ
is unitary isomorphism of E, not necessarily scalar). Then operators (A1, L1), (A0, L0) are
isospectral, and there arises the natural question about the spectral flow of the family
(At, Lt). This question will be considered in a forthcoming paper by the author [10]. In

14



that paper we will prove that

sf (At, Lt)t∈[0,1] = cm,g

m∑

j=1

ϕj,

where cm,g is the integer depending on the numberm of boundary components of X and
on the genus g of X, ϕj is the integer determined in a canonical way by the restrictions
on j-th boundary component of the following data:

(1) family (ρt), where ρt is the symbol of At;

(2) family (Lt) of boundary conditions;

(3) gauge transformation µ.

In particular, the spectral flow of (At, Lt) does not depend on the choice of the operators
in the interior of X but only on the symbol of the operators on the boundary.

Theorem 3 of present paper fits into this general result as follows: cm = cm, 0, ϕj =
bjµj. Recall that µj is invariant of the restriction of µ to j-th boundary component of X,
bj is defined from the restrictions of boundary condition and of the operator’s symbol
on j-th boundary component.

9 The spectral flow for N = 2 in terms of the condensed

matter physics

In this section we compare our boundary condition (6) with “the general boundary
conditions for the Dirac equation” for 4-dimensional Dirac operators formulated by
Akhmerov and Beenakker in [1]. After that, we give some computations for the spectral
flow in terms of [1]. In particular, we show that the spectral flow vanishes in the case
of time reversal symmetry (under the assumption of local ellipticity of the boundary
problem).

In this section we will temporarily use the notations from [1] in their original form
and will formulate our results in the same terms.

The long-wavelength and low-energy electronic excitations in graphene considered
in [1] are described by the Dirac equation HΨ = εΨ with Hamiltonian

(12) H = vτ0 ⊗ (σ · p)

acting on a four-component spinor wave function Ψ = (ΨA,ΨB) (in our notations, Ψ is
two-dimensional spinor function, ΨA = u+, ΨB = u−, N = 2). Here v is the Fermi
velocity, p = −i h∇ is the momentum operator, σ · p = −i h (σ1∇1 + σ2∇2), matrices
τi,σi are Pauli matrices in valley space and sublattice space, respectively:

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
, τi = σi.
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The general energy-independent boundary condition posed in [1] has the form

(13) Ψ =MΨ on the boundary,

where M is a self-adjoint unitary 4 × 4 matrix depending on the point x ∈ ∂X and
anticommuting with the current operator vτ0 ⊗ (σ ·nB). Here nB is the outward normal
to the boundary of X at x , so nB = (n1,n2) in our previous notations, and σ · nB =

n1σ1 +n2σ2.
Let us compare (13) with our boundary condition (6).
At first note that the condition “M is a self-adjoint unitary matrix anticommuting

with the current operator” mean nothing but the condition of self-adjointness of the
boundary problem (13). The authors of [1] do not require local ellipticity from the
boundary condition; however, in the absence of local ellipticity the spectrum of the
operator is not expected to be discrete. Boundary condition (13) is both locally elliptic
and self-adjoint if and only if the matrix functionM(x) can be represented by the formula

M = I2N − 2

(
IN + B2 0

0 IN + B2

)−1 (
IN in̄B

−inB B2

)

for some complex self-adjoint invertible N×N matrix function B(x). For such M bound-
ary condition (13) is equivalent to our boundary condition (7).

The set of all possible self-adjoint unitary 4 × 4 matrices anticommuting with the
current operator is paramertrised in [1] by the following 4-parameter family:

(14) M = sinΛ τ0 ⊗ (n1 ·σ) + cosΛ (ν · τ )⊗ (n2 ·σ),

where Λ(x) is a “mixing angle”, ν(x), n1(x), n2(x) are unit vectors in R3 =
{
(x1, x2, x3)

}

such that n1 and n2 are mutually orthogonal and also orthogonal to the boundary nor-

mal nB(x), (ν · τ ) =
∑3
i=1 ν

iτi, and (nj · σ) are defined analogously. Now we give the
description of the ellipticity of the boundary problem (13) in terms of Λ, ν, n1, n2, and
compute bj as the functions of these parameters.

From now on we will suppose that the frame (nB,n1,n2) is positive oriented in R3, that
is its orientation coincides with the orientation of the frame (e1, e2, e3) of basis coordinate
vectors. This is possible because parameters (Λ,n1,n2,ν) and (−Λ,−n1,n2,ν) give us
the same matrix M, so in a case of a negative oriented frame (nB,n1,n2) we can change
the signs of n1 and Λ simultaneously to obtain the positive orientation of the frame.

Let ϕ(x) be a function from the boundary to the circle R mod 2π such that n2 =

sinϕ · η+ cosϕ · e3, where e3 is the unit vector in R
3 in the direction of x3, η(x) is the

unit tangent vector to the boundary at x ∈ ∂X such that the pair (nB(x), η(x)) has the
positive orientation on the plane (x1, x2). Then n1 = cosϕ · η − sinϕ · e3, and M is
determined by the triple (Λ,ϕ,ν).

Proposition 1. Boundary condition (13) is locally elliptic for Dirac operator (12) if and only if
Λ+ϕ 6= 0 (modπ) and Λ−ϕ 6= 0 (modπ) for any x ∈ ∂X.
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In other words, the boundary condition is not locally elliptic if and only if n2 =

± sinΛη± cosΛe3 for some x ∈ ∂X and for some combination of signs ±.

Proposition 2. If boundary condition (13) is locally elliptic for Dirac operator (12) then it is
equivalent to the boundary condition

in(x)ΨA = B(x)ΨB

with the matrix B(x) defined as following:

B = β+P+ +β−P−, where P± =
τ0 ± (ν · τ )

2
, β+ = cot

Λ+ϕ

2
, β− = tan

Λ−ϕ

2
.

Here β± are the eigenvalues of B, P± are the ortogonal projections on the invariant subspaces of
B corresponding to the eigenvalues β±.

We prove these Propositions in the end of the section.

Corollary 1. Let Qt(x) be a continuous 1-parameter family of self-adjoint 4 × 4 matrices
smoothly dependent on x ∈ X such that H +Q1 = µ (H+Q0)µ

−1 for some smooth gauge
transformation µ : X → U(1). Suppose that boundary condition (13) is locally elliptic for Dirac
operator (12). Then the spectral flow of the family (H +Qt) with this boundary condition is
described by the formulae

sf (H+Qt,M)t∈[0,1] = cm

m∑

j=1

bjµj,

where cm, µj are as in Theorem 2, bj depends only on the values of Λ, ϕ on j-th boundary
component:

bj =






0, if both Λ+ϕ, Λ−ϕ belong to the interval (0,π)

2, if both Λ+ϕ, Λ−ϕ belong to the interval (π, 2π)

1, if one of Λ+ϕ, Λ−ϕ belongs to the interval (0,π) and another to the interval (π, 2π)

Proof. This follows immediately from Theorem 2 and Proposition 2.

Let us inspect closer the case of time reversal symmetry. The time reversal operator
in the valley isotropic representation is

T = −(τ2 ⊗ σ2)C,

with C the operator of complex conjugation [1]. The boundary condition preserves time
reversal symmetry if M commutes with T . This implies that the mixing angle Λ ≡ 0
[1]. By Proposition 1, in this case boundary problem (13) is locally elliptic if and only
if n2(x) is not vertical for all x ∈ ∂X. If this is fullfilled then Corollary 1 allows us to
compute the spectral flow regardless of other parameters:
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Corollary 2 (the case of time reversal symmetry). Let Qt(x), t ∈ [0, 1] be a continuous
1-parameter family of self-adjoint 2N × 2N matrices smoothly dependent on x ∈ X such that
H+Q1 = µ (H+Q0)µ

−1 for some smooth gauge transformation µ : X → U(1). Suppose that
boundary condition is defined by formulas (13), (14) with Λ ≡ 0, and that for any x ∈ ∂X vector
n2(x) is not vertical. Then the spectral flow of the family (H+Qt) is zero.

Proof. By Corollary 1, bj = 1 for all j. So we obtain

sf (H+Qt)t∈[0,1] = cm

m∑

j=1

bjµj = cm

m∑

j=1

µj = 0.

Remark. Corollary 2 can be proved by other means as well, without use of Corollary 1
and of formula (14) but using Theorem 2 directly. Namely, let MΨ = Ψ be locally elliptic
boundary condition for Dirac operator (12) such that TMT−1 = M. At first note that
the spectral flow of the family (H+Qt) is independent of the choice of connection ∇, so
we can assume that ∇i = ∂i. With this choice of connection, we have THT−1 = H. Let
Q ′
t(x) = TQt(x)T

−1, then

Q ′
1 −Q

′
0 = T(Q1 −Q0)T

−1 = T(µHµ−1 −H)T−1 = µ−1THT−1µ− THT−1 = µ ′Hµ ′−1 −H,

where µ ′ = µ−1. By Theorem 2,

sf (H+Q ′
t,M) = cm

∑
bjµ

′
j = −cm

∑
bjµj = − sf (H+Qt,M),

where by sf (H+Qt,M) we denote the spectral flow of the family (H+Qt) with bound-
ary condition MΨ = Ψ. If M commutes with T then

(15) sf (T(H+Qt)T
−1, TMT−1) = sf (H+Q ′

t,M) = − sf (H+Qt,M).

In Section 11 we prove the conjugacy invariance of the spectral flow under unitary iso-
morphisms of L2(X, g; C2N). Even though T is antilinear isomorphism of the Hilbert space
L2(X, g; C4), the spectral flow still remains invariant under conjugation by T . This can
be proved using the uniqueness property of the spectral flow in the same manner as
Property (P4) in Section 11, taking into account that conjugation by T preserves self-
adjointness of operators in L2(X, g; C

4). Thus sf (T(H+Qt)T
−1, TMT−1) coincides with

sf (H+Qt,M). Together with (15), this imply sf (H+Qt,M) = 0.

Proof of Proposition 1. By S = S(x) we denote the matrix (ν · τ ) =
∑3
i=1 ν

iτi. In our
notations,

M = sinΛ · τ0 ⊗
(
− sinϕ −in̄ cosϕ
in cosϕ sinϕ

)
+ cosΛ · S⊗

(
cosϕ −in̄ sinϕ
in sinϕ − cosϕ

)
=

=

(
S1 −in̄S2

inS2 −S1

)
,
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where S1 = − sinϕ sinΛ · I+ cosϕ cosΛ · S, S2 = cosϕ sinΛ · I+ sinϕ cosΛ · S, I = I2 is
2 × 2 identity matrix. Note that S2 = I for any ν, S2

1 + S
2
2 = I for any ν, ϕ, Λ.

Boundary condition MΨ = Ψ is equivalent to the following system:

(16)

{
−in̄S2u

− = (I− S1)u
+

inS2u
+ = (I+ S1)u

−

This boundary problem is locally elliptic for operator (12) if the linear space of the solu-
tions of this system intersects with both spaces {u+ = 0} and {u− = 0} by zero subspace.
This condition is equivalent to the invertibility of S2. Matrix S has the eigenvalues ±1,
so S2 has the eigenvalues cosϕ sinΛ± sinϕ cosΛ = sin(Λ±ϕ). Both eigenvalues of S2

are nonzero if and only if Λ±ϕ 6= 0 (modπ). This completes the proof.

Proof of Proposition 2. From (16) we have B = S−1
2 (I+ S1). Taking into account the identity

S2 = I, we obtain

S−1
2 =

(
cos2ϕ sin2Λ− sin2ϕ cos2Λ

)−1
(cosϕ sinΛ · I− sinϕ cosΛ · S) ,

S−1
2 (I+ S1) =

(
cos2ϕ sin2Λ− sin2ϕ cos2Λ

)−1
(sinΛ− sinϕ) (cosϕ · I+ cosΛ · S) =

=
sinΛ− sinϕ

sin(Λ+ϕ) sin(Λ−ϕ)
(cosϕ · I+ cosΛ · S).

Eigenvalues of S are ±1, so the eigenvalues of B are equal to

(17) β± =
sinΛ− sinϕ

sin(Λ+ϕ) sin(Λ−ϕ)
(cosϕ± cosΛ).

From last two formulas we have

B =
sinΛ− sinϕ

sin(Λ+ϕ) sin(Λ−ϕ)

(
(cosϕ+ cosΛ)

I+ S

2
+ (cosϕ− cosΛ)

I− S

2

)
=

= β+
I+ S

2
+β−

I− S

2
= β+P+ +β−P−.

We can simplify (17) using sum-to-product trigonometric identities:

sinΛ− sinϕ

sin(Λ+ϕ) sin(Λ−ϕ)
=

2 sin Λ−ϕ
2 cos Λ+ϕ2(

2 sin Λ+ϕ
2 cos Λ+ϕ2

) (
2 sin Λ−ϕ

2 cos Λ−ϕ2

) =

(
2 sin

Λ+ϕ

2
cos

Λ−ϕ

2

)−1

,

cosϕ+ cosΛ = 2 cos
Λ+ϕ

2
cos

Λ−ϕ

2
, cosϕ− cosΛ = 2 sin

Λ+ϕ

2
sin

Λ−ϕ

2
.

Substituting this in (17), we obtain

β+ = cot
Λ+ϕ

2
, β− = tan

Λ−ϕ

2
.
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This completes the proof.

Part II

Proof of Theorem 3

Note that for D ′ = D+Q0, Q ′
t = Qt −Q0 we have sf (D+Qt,B) = sf (D ′ +Q ′

t,B) with
Q ′

0 = 0. By this reason, in the proof we will restrict ourselves by the families Qt with
Q0 = 0.

10 Two technical lemmas

First of all, we need to give some technical details. The reader interested only in the
ideas behind the proof can go directly to the next section.

Suppose D ∈ D, B ∈ B. We will write (D,B) for the operator D acting on the domain

(18) domain(D,B) =

=
{

u ∈ L2
1

(
X; C

2N
)
: restriction of u to ∂X satisfies boundary condition (10)

}

.

Here L2
1

(
X; C

2N
)

is the first Sobolev space; its elements are functions u ∈ L2
(
X; C

2N
)

such that ∂1u, ∂2u ∈ L2
(
X; C2N

)
. Strictly speaking, we use here not the restriction

in the usual sense (trace map u 7→ u|∂X) but the extension by continuity of the trace
map C∞

(
X; C2N

)
→ C∞

(
∂X; C2N

)
to the bounded linear map from L2

1

(
X; C2N

)
to

L2
1/2

(
∂X; C2N

)
[8].

Note that the operator (D,B) defined here is the closure of the operator (D,B) defined
in Section 5 (see [8], Proposition 2.9). Using of non-closed operators in the first part of
the paper is explained by our intention to avoid the introduction of Sobolev spaces and
of the extension of the trace map as long as possible. Due to the following Lemma, these
two definitions give us the operators with the same eigenvectors, so this slight abuse of
notation does not cause any troubles.

Lemma 1. For any D ∈ D, B ∈ B the operator (D,B) is (unbounded) closed self-adjoint
Fredholm operator on L2

(
X, g; C2N

)
, which has the discrete real spectrum. Moreover, all its

eigenvectors are smooth functions.

Proof. Let B be a smooth function from ∂X to GL(N, C). Then for any D ∈ D, λ ∈ C

boundary condition (10) satisfies the Sapiro-Lopatinskii condition for D− λ: the inter-
sections of the subspace {u : in ′(x)u+ = B(x)u−} ⊂ C2N both with {u : u− = 0} and with
{u : u+ = 0} are zero at any x ∈ ∂X. By Proposition 2.9 from [8], (10) is strongly regular
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boundary condition for D, so all eigenvectors of (D,B) in L2
(
X, g; C

2N
)

are smooth func-
tions. By the same Proposition, (D− λ,B) is a closed Fredholm operator for any λ ∈ C,
so the spectrum of (D,B) is discrete.

For any u,w ∈ L2
1

(
X, g; C2N

)
we have

〈Du,w〉L2 − 〈u,Dw〉L2 =

∫

X

(〈Du,w〉− 〈u,Dw〉)√g dx1dx2 =

= −i

∫

X

(∂1 〈
√
gρ1u,w〉+ ∂2 〈

√
gρ2u,w〉)dx1dx2 =

= −i

∫

X
d
(
〈√gρ1u,w〉dx2 − 〈√gρ2u,w〉dx1

)
= −i

∫

∂X

√
g
(
〈ρ1u,w〉dx2 − 〈ρ2u,w〉dx1

)
=

= −i

∫

∂X

〈(n1ρ1 +n2ρ2)u,w〉√gds = −

∫

∂X

〈(
in̄ ′u−

in ′u+

)
,

(
w+

w−

)〉√
gds =

=

∫

∂X

(〈
u−, in ′w+

〉
−
〈
in ′u+,w−

〉)√
gds,

where ds is the length element on ∂X. So for any u,w ∈ domain(D,B)

〈Du,w〉L2 − 〈u,Dw〉L2 =

∫

∂X

〈
u−, (B−B∗)w−

〉√
gds,

and the operator (D,B) is symmetric on L2
(
X, g; C2N

)
if and only if B(x) is self-adjoint

at any x.
Let now w ∈ domain(D,B)∗. By Proposition 2.9 from [8], domain(D,B)∗ is contained

in L2
1

(
X, g; C2N

)
, so we can use the computation above:

〈Du,w〉L2 − 〈u,Dw〉L2 =

∫

∂X

〈
u−, (in ′w+ −Bw−)

〉√
gds

for any u ∈ domain(D,B). Therefore, in ′w+ −Bw−|∂X = 0 for any w ∈ domain(D,B)∗,
domain(D,B)∗ = domain(D,B), and (D,B) is self-adjoint on L2

(
X, g; C

2N
)
. All eigen-

values of a self-adjoint operator are real. This completes the proof.

In the statement of Theorem 3 we used only norm continuous paths of operators
with fixed domain. But for the proof of Theorem 3 we have to deal with the paths of
more general kind, when neither symbol of the operator nor boundary condition are
fixed any more. The paths we need for the proof are not norm continuous but only
graph continuous (note that by Proposition 2.2 from [5] any norm continuous path is
graph continuous as well). So further we will use the graph topology on the space of
closed densely defined self-adjoint operators on a separable Hilbert space H (in our case
H = L2

(
X, g; C2N

)
).

There are various definitions of the graph distance, all of which give the same graph
topology [4]. One can take dG(A,A ′) =

∥∥(A+ iI)−1 − (A ′ + iI)−1
∥∥, or alternatively
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dG(A,A ′) = ‖PA − PA ′‖, where PA, PA ′ are the orthogonal projections of H× H onto
the graphs of A, A ′ respectively.

Let us introduce the following metrics in D and B:

d
(
DΦ,Q,DΦ ′,Q ′

)
=

∥∥Q−Q ′∥∥
C(X)

+
∥∥Φ−Φ ′∥∥

C1(X)
=

= max
x∈X

∥∥Q(x) −Q ′(x)
∥∥+max

x∈X

(∥∥Φ(x) −Φ ′(x)
∥∥+

∥∥∂1Φ(x) − ∂1Φ
′(x)

∥∥+
∥∥∂2Φ(x) − ∂2Φ

′(x)
∥∥) ,

d(B,B ′) =
∥∥B− B ′∥∥

C1(∂X)
= max
x∈∂X

(∥∥B(x) − B ′(x)
∥∥+

∥∥∂sB(x) − ∂sB ′(x)
∥∥) ,

where s is the length parameter on ∂X. Here we use any of the standard norms on the
spaces B(CN) and B(C2N) of complex N×N and 2N× 2N matrices, and on the space
B(R2) of real 2 × 2 matrices.

Note that
(
DΦt,Qt

,Bt
)

is the continuous path in D×B if and only if Qt(x), Φt(x),
Bt(x), and the first partial derivatives of Φt(x), Bt(x) with respect to x are continuous
functions of (t, x).

Denote by HF(H) the space of closed self-adjoint (or, what is the same, Hermitian)
Fredholm operators in separable Hilbert space H. We fix graph topology on HF(H).
Nevertheless we will usually write “graph continuous” instead of mere “continuous”
for the maps to HF(H) to avoid a misunderstanding.

By Lemma 1, we have the natural inclusion D × B →֒ HF
(
L2

(
X, g; C2N

))
, which

carries a pair (D,B) ∈ D×B to the operator D with the domain (18).

Lemma 2. The natural inclusion D×B →֒ HF
(
L2

(
X, g; C2N

))
is graph continuous.

Therefore, if t 7→ (Dt,Bt) is the continuous path in D × B, then (Dt,Bt) defines
the graph continuous path in HF

(
L2

(
X, g; C2N

))
, and the spectral flow of the operators

family (Dt,Bt) is well defined.

Proof. Let us consider the smooth map

ψ : B(CN) → H(C2N), A 7→ P =

(
IN −A

−A∗ A∗A

)(
IN +AA∗ 0

0 IN +A∗A

)−1

,

which carries A ∈ B(CN) into the orthogonal projection P of C
2N with KerP ={

u = (u+,u−) : u+,u− ∈ CN,u+ = Au−
}

. It induces the continuous map

ψ∗ : C
1
(
∂X, B(CN)

)
→ C1

(
∂X, H(C2N)

)
.

Composing ψ∗ with the continuous map

D×B → C1
(
∂X, B(CN)

)
, (D,B) 7→ −iρ+(x,n(x))−1B(x),

we obtain the continuous map

Ψ : D×B → C1
(
∂X, H(C2N)

)
,
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which carries (D,B) into the orthogonal projection P of L2
(
∂X, g|∂X ; C

2N
)

with the kernel

defined by boundary condition (10) 3.
By Proposition II.1.1 from [11], we have the continuous inclusion of the Banach spaces

B
(
L2

1

(
∂X; C

2N
))

⊂ B
(
L2

1/2

(
∂X; C

2N
))

,

where B(V) denotes the space of bounded linear operators on a Banach space V , L2
r is

the (fractional) Sobolev space. Composing it with the natural continuous inclusion

C1
(
∂X, B(C2N)

)
⊂ B

(
L2

1

(
∂X; C

2N
))

,

we obtain that the map Ψ∗ : D×B → B
(
L2

1/2

(
∂X; C

2N
))

is continuous.

The natural map from D to the space of bounded linear operators from L2
1

(
X; C2N

)

to L2
(
X; C2N

)
is continuous too:

∥∥DΦ,Q −DΦ ′,Q ′

∥∥
1,0

6 const
(∥∥Φ−Φ ′∥∥

C(X)
+ ‖RΦ − RΦ ′‖C(X) +

∥∥Q−Q ′∥∥
C(X)

)
6

6 const
(∥∥Φ−Φ ′∥∥

C1(X)
+
∥∥Q−Q ′∥∥

C(X)

)
.

By Theorem 7.16 from [8] and by Lemma 1, this implies that the inclusion D×B →֒
HF

(
L2

(
X, g; C2

))
is graph continuous. This completes the proof.

11 Basic properties of the spectral flow

There can be different versions of the definition of the spectral flow when one or both of
the endpoints of the path is non-invertible. If a path is a loop up to a gauge transforma-
tion as in the first part of the paper, then the value of the spectral flow is independent of
the choice of the definition. But for the proofs below we have to fix some choice.

Definition. Let (At) be an 1-parameter graph continuous family of closed self-adjoint
Fredholm operators in a separable complex Hilbert space H. Take a small ε > 0 such
that A0, A1 have no eigenvalues in the interval [−ε, 0). We put sf (At) be equal to sf (At+
εI), were we use any of the (equivalent) definitions of the spectral flow for the path of
operators with invertible endpoints from [4, 5]. This definition does not depend on the
choice of such ε.

We will need the following properties of the spectral flow.

(P0) Zero crossing. In the absence of zero crossing the spectral flow vanishes. More pre-
cisely, suppose γ : [0, 1] → D×B is the continuous path such that 0 is not the eigenvalue
of γ(t) for any t ∈ [0, 1]. Then sf (γ) = 0.

3Here we use the general formula for the orthogonal projection P with the kernel {u+ = Au−} for
arbitrary matrix A. Actually, in our case A = (in ′)−1B is normal: AA∗ = A∗A.
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(P1) Homotopy invariance. The spectral flow along the continuous path γ : [0, 1] →
D×B does not change when γ changes continuously in the space of paths in D×B

with the fixed endpoints (the same as the endpoints of γ).
In other words, for the continuous map h : [0, 1]× [0, 1] → D×B such that hs(0) ≡

(D0,B0), hs(1) ≡ (D1,B1), we have sf (h0(t))t∈[0,1] = sf (h1(t))t∈[0,1].

(P2) Path additivity. Suppose γ : [a, c] → D×B is a continuous path, a 6 b 6 c. Then
sf (γ(t))t∈[a,c] = sf (γ(t))t∈[a,b]+ sf (γ(t))t∈[b,c].

(P3) Additivity with respect to direct sum. Let N1, N2 be natural numbers,
(
Dit,B

i
t

)
be

continuous paths in DNi
×BNi

. Then the spectral flow along the path
(
D1
t ⊕D2

t ,B
1
t ⊕ B2

t

)

is equal to the sum of the spectral flows along the paths
(
D1
t ,B

1
t

)
and

(
D2
t ,B

2
t

)
.

(P4) Conjugacy invariance. Let J± : X → U(N) be unitary N ×N matrices smoothly

dependent on x ∈ X, J =

(
J+ 0
0 J−

)
: X → U(2N), (Dt,Bt) be a smooth path in D×B.

Then sf (Dt,Bt) = sf (JDtJ−1, J−BtJ
−1
− ).

More generally, ifH is a separable complex Hilbert space, J is an unitary isomorphism
of H, (At) is an 1-parameter graph continuous family of closed self-adjoint Fredholm
operators, then sf (At) = sf (JAtJ−1).

Remark. Properties (P1) and (P2) imply that the spectral flow along the path is opposite
to the spectral flow along the same path passing in the opposite direction.

Proof. By Lemmas 1-2, the inclusion of D×B into HF
(
L2

(
X, g; C2N

))
is graph contin-

uous. So it is sufficient to prove Properties (P0-P4) for graph continuous paths in the
space HF(H) of all closed self-adjoint Fredholm operators in separable Hilbert space H;
this will imply properties (P0-P4) for the paths in D×B.

First three properties of the spectral flow for graph continuous paths in HF(H) are
proved in [4] (Proposition 2.2), taking into account the convention from Section 2 for the
case when γ(0) or γ(1) are non-invertible.

Conjugacy invariance of the spectral flow for graph continuous paths in HF(H) fol-
lows from the uniqueness property of the spectral flow. Namely, let J be an unitary
isomorphism of a separable complex Hilbert space H. To each graph continuous path
(At) in HF(H) assign the integer sfnew(At) = sf(JAtJ−1). Then sfnew satisfies Concate-
nation, Homotopy and Normalization properties in the sense of [5]. By Theorem 5.9
from [5], this imply that sfnew equals sf for the paths in HF(H) with invertible endpoints.
Taking into account our convention from Section 2 and choosing a small ε > 0 such that
A0, A1 have no eigenvalues in the interval [−ε, 0), we obtain

sf (JAtJ−1) = sf (JAtJ−1 + εI) = sfnew(At + εI) = sf (At + εI) = sf (At).

To prove (P3), consider graph continuous paths (At), (A
′
t) in HF(H), HF(H ′) respec-

tively. Suppose for a while that A0, A1, A ′
0, and A ′

1 are invertible. The path (At⊕A ′
t)t∈[0,1]

is homotopic to the concatenation of paths (At⊕A ′
0)t∈[0,1] and (A1 ⊕A ′

t)t∈[0,1] in HF(H⊕
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H ′). The spectral flow of the path (At⊕A ′
0) in HF(H⊕H ′) considered as the function of

(At) satisfies Concatenation, Homotopy and Normalization properties in the sense of [5],
so by the uniqueness property of the spectral flow from [5] we have sf (At⊕A ′

0) = sf (At).
Similarly, sf (A1 ⊕A ′

t) = sf (A ′
t). Therefore, sf (At ⊕A ′

t) = sf (At) + sf (A ′
t) for any paths

(At), (A
′
t) with invertible endpoints. Taking into account our convention from Section

2, we obtain that sf (At ⊕ A ′
t) = sf (At) + sf (A ′

t) for arbitrary paths (At), (A ′
t). This

completes the proof.

12 Independence of the choice of family (Qt)

Let us prove that the spectral flow along (D+Qt,B) does not depend on the choice of
(Qt) when D, B, µ are fixed.

Let Qt, Q
′
t be two 1-parameter families of smooth maps from X to H(C2N) such that

Q0 = Q ′
0 = 0, Q1 = Q ′

1 = µDµ−1 −D.
The path D +Qt can be continuously changed to the path D +Q ′

t in the class of
paths in D with the fixed endpoints. For example, we can take the homotopy h(s, t) =
D + (1 − s)Qt + sQ

′
t. By the homotopy invariance property (P1) of the spectral flow,

sf (D+Qt,B)t∈[0,1] = sf (D+Q ′
t,B)t∈[0,1].

Therefore, if Q0 = 0, Q1 = µDµ−1 −D then

sf (D+Qt,B)t∈[0,1] = F(X, g,N,D,B,µ)

for some integer-valued function F. Now we will investigate the properties of this func-
tion.

13 Independence of the choice of operator D

1. Suppose that D0 is homotopic to D1 in D, that is there exist a continuous 1-parameter
family of the Dirac type operators Ds connecting D0 with D1. We will show now that
F(X, g,N,D0,B,µ) = F(X, g,N,D1,B,µ).

Let us consider 2-parameter family of the Dirac type operators Ds,t = (1 − t)Ds +

tµDsµ
−1. Note that Ds,0 = Ds, Ds,1 = µDsµ

−1, Ds,t −Ds,0 = tQs, where Qs = µDsµ
−1 −

Ds is the 1-parameter family of 2N× 2N self-adjoint complex matrices smoothly depen-
dent on x ∈ X.

Let us define the path γ1 : [0, 3] → D by the formula

γ1(t) =






Dt,0, t ∈ [0, 1]
D1,t−1, t ∈ [1, 2]
D3−t,1, t ∈ [2, 3]

In other words, we consequently go around the left, top and right sides of the rectangle
on Fig. 4 in clockwise direction. The path γ1 can be continuously deformed to the path
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0,0D

0,sD

0,1D

1,0D

1,sD

1,1DtD ,1

( )tsγ

( )t0γ

( )tsγ

Figure 4: Homotopy from γ0(t) to γ1(t)

D0,t = D0 + tQ0 within the rectangle. For example, we can take as such a deformation
the family

γs(t) =






Dst,0, t ∈ [0, 1]
Ds,t−1, t ∈ [1, 2]
Ds(3−t),1, t ∈ [2, 3]

Then γ0(t) is the path (D0 + (t− 1)Q0)t∈[1,2] concatenated with two steady paths, the
spectral flows along which are zero by property (P0).

By the homotopic invariance property of the spectral flow,

sf (γ1(t),B)t∈[0,3] = sf (γ0(t),B)t∈[0,3] = sf (D0 + tQ0,B)t∈[0,1].

On the other hand, the spectral flows along the first and the third parts of γ1 are mutually
reduced by (P4):

sf (γ(t),B)t∈[0,1] + sf (γ(t),B)t∈[2,3] = sf (Ds,B)s∈[0,1] − sf (µDsµ−1,B)s∈[0,1] = 0.

Therefore, sf (D0 + tQ0,B)t∈[0,1] = sf (γ1(t),B)t∈[1,2] = sf (D1 + tQ1,B)t∈[0,1], and

F(X, g,N,D0,B,µ) = F(X, g,N,D1,B,µ).

2. Now we will simplify D step by step.
At first, we can continuously change D = DΦ,Q = −i (ρ1∂1 + ρ2∂2) + iRΦ(x) +Q(x)

to the operator DΦ, 0, for example, along the path DΦ,(1−s)Q.

Further, take a smooth map h : [0, 1]× GL+(2, R) → GL+(2, R) such that h(0, ·) is the
identity map, while the image of h(1, ·) is the group SO(2, R) of 2 × 2 orthogonal real
matrices with determinant equal to one (the existence of such a family is well known in
any dimension; this is an easy application of Gram-Schmidt orthonormalisation proce-
dure). The operator DΦ, 0 can be continuously changed in D along the path Dh(t,Φ), 0 to
the operator DΦ ′, 0, where

Φ ′(x) =

(
cosϕ sinϕ
− sinϕ cosϕ

)
∈ SO(2, R)
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for some smooth function ϕ from X to S1. So we have

F(X, g,N,DΦ,Q,B,µ) = F(X, g,N,DΦ ′, 0,B,µ).

On the other hand, DΦ ′, 0 can be represented as J−1DI, 0J, where I = I2 is the identity
2 × 2 matrix,

J(x) =

(
J+ 0
0 J−

)
=

(
eiϕIN 0

0 IN

)
∈ U(2N).

Let Qt be an 1-parameter family of self-adjoint 2N× 2N complex matrices such that
Q0 = 0, Q1 = µDΦ ′, 0µ

−1 −DΦ ′, 0. Applying property (P4) of the spectral flow, we obtain

F(X, g,N,DΦ ′, 0,B,µ) = sf (DΦ ′, 0 +Qt,B) = sf (J
(
DΦ ′, 0 +Qt

)
J−1, J−BJ

−1
− ) =

= sf (DI, 0 + JQtJ
−1,B) = F(X, g,N,DI, 0,B,µ),

because JQ1J
−1 = µ

(
JDΦ ′, 0J

−1
)
µ−1 − JDΦ ′, 0J

−1 = µDI, 0µ
−1 −DI, 0.

Therefore, F(X, g,N,D,B,µ) does not depend on the choice of D ∈ D, so from now
on we will write F(X, g,N,B,µ) instead of F(X, g,N,D,B,µ).

14 Independence of the metric and invariance under the

change of variables

We prove here that F(X, g,N,B,µ) is independent from the choice of the metric g on
X, invariant under the change of variables, and does not depend on the geometry of
X, using the fact that the number of holes is the only topological invariant of the disk
with holes, and that the spectral flow is conjugacy invariant and does not depend on the
choice of the operator.

Let X, X ′ be compact planar domains, each bounded by m smooth curves, and g, g ′

be Riemannian metrics on X, X ′ respectively.
As well known, there exists an orientation-preserving diffeomorphism f : X ′ → X. 4

We define θ as the smooth function from X ′ to R+ such that f∗ dvol = θdvol ′, where
dvol, dvol ′ are volume elements on X, X ′ respectively. 5

Diffeomorphism f defines the unitary isomorphism J from the Hilbert space

L2
(
X, g; C2N

)
to the Hilbert space L2

(
X ′, g ′; C2N

)
, u 7→

√
θf∗u. 6

Isomorphism J transforms the operator D ∈ DX,g,N with symbol ρ to the symmetric
operator D ′ = JDJ−1 on X ′ with symbol ρ ′. For any x ′ ∈ X ′, x = f(x ′), any cotangent

4In other words, there exist a smooth one-to-one change of variables (x ′1, x ′2) = x ′
f→ x = (x1, x2) with

the smooth inverse and with positive Jacobian determinant det(∂x/∂x ′), which transforms X ′ onto X.
5As usual, by f∗ we denote the homomorphism from the differential forms (in particular, functions) on

X to the differential forms on X ′, which is induced by f. In coordinate form, θ(x ′) =

√
g(f(x ′))√
g ′(x ′)

det( ∂x
∂x ′ ).

6That is (Ju)(x ′) =
√
θ(x ′)u(f(x ′)).
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vector ξ ∈ T∗xX, ξ ′ = f∗ξ, we have ρ ′(x ′, ξ ′) = ρ(x, ξ), that is ρ ′(x ′) =
(
∂x′

∂x

)
ρ(x) =

(
∂x′

∂x

)
Φσ in coordinate representation. The matrix

(
∂x′

∂x

)
Φ(x) is contained in GL+(2, R)

for any x ∈ X, so D ′ ∈ DX ′,g′,N.
Let µ be a smooth function from X to U(1). Taking the map µ ′ = f∗µ from X ′ to U(1)

and the map B ′ = ‖f∗n‖−1
g′ f

∗B from ∂X ′ to H(CN), we obtain

µ ′D ′µ ′−1 −D ′ = µ ′
(
JDJ−1

)
µ ′−1 − JDJ−1 = J

(
µDµ−1 −D

)
J−1.

So if Qt connects Q0 = 0 with Q1 = µDµ−1 −D, then Q ′
t = JQtJ

−1 connects Q ′
0 = 0 with

Q ′
1 = µ ′D ′µ ′−1 −D ′, and by the conjugacy invariance of the spectral flow (P4), we have

sf (D+Qt,B) = sf
(
J(D+Qt)J

−1,B ′
)
= sf (D ′ +Q ′

t,B
′).

However, B ′ is homotopic to f∗B in BX ′,N, while the spectral flow of (D ′ +Q ′
t, B̃) is

invariant under the continuous change of B̃ in BX ′,N (this is verified in a way similar
to the proof in Section 13). Therefore sf (D ′ +Q ′

t,B
′) = sf (D ′ +Q ′

t, f
∗B), and finally we

obtain

(19) F(X, g,N,B,µ) = F(X ′, g ′,N, f∗B, f∗µ).

This completes the proof.
In particular, for any two metrics g, g ′ on the same X, using the identity diffeomor-

phism f, we have
F(X, g,N,B,µ) = F(X, g ′,N,B,µ).

Further we will write F(N,B,µ) instead of F(X, g,N,B,µ).

15 Boundary conditions

Let us investigate the dependence of F(N,B,µ) on B.
F(N,B,µ) does not change when B continuously changes in B; this is verified in a

way similar to the proof in Section 13.
Let bj be the number of negative eigenvalues of B (counting multiplicities) on ∂Xj. We

prove that the ordered set b̂ =
(
bj
)m
j=1

uniquely determines B up to continuous variation

of B in B.
Obviously, b̂ is invariant with respect to such variations, so we only have to prove that

any two B, B ′ with the same b̂ are homotopic. It is sufficient to prove that any smooth
map A from the circle S1 to the space of complex self-adjoint invertible N×N matrices
is homotopic (in the space of all such maps with C1-metric) to the steady map sending
S1 to the point (−Ik)⊕ IN−k ∈ H(CN), where k is the number of negative eigenvalues of
A(x), x ∈ S1.
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1. Let us consider the continuous 1-parameter family As of smooth maps from S1 to
the space of complex self-adjoint invertible N×N matrices defined by the formula As =

A ·
(
(1 − s)IN + sA2

)−1/2
. This expression is correct because (1− s)IN+ sA2 is self-adjoint

and positive definite for any s ∈ [0, 1]. The family As gives us the deformation from
A = A0 to smooth map A1 from S1 to the space of self-adjoint unitary N×N matrices.

2. The connected component of A1(x) in the space of self-adjoint unitary N×N matrices
is diffeomorphic to the space GrC(k,N) of all k-dimensional linear subspaces of CN. This
diffeomorphism is defined by the correspondence U 7→ Ker (IN +U), which associates
with U the invariant subspace V ⊆ C

N of U corresponding to eigenvalue −1 of U. The
inverse diffeomorphism is defined by the formula V 7→ U = (−I)V ⊕ IV⊥ .

The complex Grassmanian GrC(k,N) is known to be simply connected, so any two
continuous maps from the circle to GrC(k,N) are homotopic. Taking into account that
GrC(k,N) is the smooth manifold, we obtain that the space of smooth maps from the
circle to GrC(k,N) (with C1-metric) is path-connected. The same is true for the connected
component of the space of self-adjoint unitary N×N matrices which is diffeomorphic to
GrC(k,N), so A can be continuously changed in the class of smooth maps to the steady
map x 7→ (−Ik)⊕ IN−k. This completes the proof.

16 Gauge transformations

1. We will prove that F is linear in µ, that is F(N,B,µ1µ2) = F(N,B,µ1) + F(N,B,µ2) for
any smooth functions µ1,µ2 : X→ U(1).

Let Qi = µiDµ
−1
i −D. Then Q1 + Q2 = (µ1µ2)D (µ1µ2)

−1 −D, so by definition
F(N,B,µ1µ2) is equal to the spectral flow along the path (D+ Pt,B)t∈[0,2], where P0 = 0,
P2 = Q1 +Q2. We can take Pt composed from two parts: from 0 to Q1 and then from Q1

to Q1 +Q2, for example,

Pt =

{
tQ1, t ∈ [0, 1]
Q1 + (t− 1)Q2, t ∈ [1, 2]

Using the property (P2) of the spectral flow, we obtain

F(N,B,µ1µ2) = sf (D+ Pt,B)t∈[0,1] + sf (D+ Pt,B)t∈[1,2] =

= sf (D+ tQ1,B)t∈[0,1] + sf ((D+Q1) + tQ2,B)t∈[0,1] =

= F(N,B,µ1) + F(N,B,µ2),

so F is linear in µ.

2. By M denote the set of equivalence classes of smooth functions µ : X → U(1), where
two functions are equivalent if one of them can be continuously changed to another in
the space of smooth functions from X to U(1) (with C1-metric). We will consider M as
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the Abelian group, where the group structure on M is induced by the group structure
on U(1). It is well known that

M =
{
(µ1, ..,µm) ∈ Z

m :
∑

µj = 0
}

,

with the group structure induced from Zm, and the class of µ in M is defined by the
m-tuple µ̂ =

(
µj
)
, where µj is the degree of the restriction of µ to ∂Xj.

Let us prove that F(N,B,µ) depends only on the class of µ in M.
Suppose that µt is a continuous path in the space of smooth functions from X to U(1)

such that µ0(x) ≡ 1. By the previous clause, it is sufficient to prove that F(N,B,µ1) = 0.

Let us take Qt = µtDµt
−1 −D. Taking into account that Q1 = µ1Dµ

−1
1 −D, we obtain

F(N,B,µ1) = sf (D+Qt,B). But all the operators (D+Qt,B) are conjugate to (D,B) by
µt and therefore are isospectral. Let ε > 0 be such that (D,B) has no zero eigenvalues
in the interval [−ε, 0). Then sf (D+Qt,B) = sf (D+Qt + εI2N,B) = 0 by (P0) because all
the operators (D+Qt + εI2N,B) have no zero eigenvalues. This completes the proof.

17 Bilinearity

In the previous sections we have proven that F depends only on the integer numbers N,
b1, . . . ,bm,µ1, . . . ,µm. Now we will study this dependence more closely.

By S denote the set of all possible (m+ 1)-tuples (N,b1, . . . ,bm):

S =
{
(N,b1, . . . ,bm) ∈ Z

m+1 : N > 1, 0 6 bj 6 N
}

.

F defines the map from S×M to Z (which we denote by the same letter F for simplicity)
satisfying the following conditions:

F
(
N, b̂, µ̂⊕ µ̂ ′) = F

(
N, b̂, µ̂

)
+ F

(
N, b̂, µ̂ ′)

F
(
N+N ′, b̂⊕ b̂ ′, µ̂

)
= F

(
N, b̂, µ̂

)
+ F

(
N ′, b̂ ′, µ̂

)

where µ̂ =
(
µj
)
j=1...m, b̂ =

(
bj
)
j=1...m, symbol ⊕ denotes the componentwise addition.

Indeed, the first equality has been proven in section 16, while the second equality is by
the property (P3) of the spectral flow.

Hence F is a bilinear function, and therefore there is a homomorphism from Zm+1 ⊗
M to Z such that F can be represented as the composition

(20) S×M →֒ Z
m+1 ×M→ Z

m+1 ⊗M→ Z,

where the first arrow is induced by the natural embedding of S into Zm+1, and the
second arrow is the canonical map of the direct product to the tensor product.
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Let us consider operator (2) with boundary condition (3). If (D +Qt)u = 0 and
i (n1 + in2)u

+ = Bu− on ∂X, then

∫

∂X

〈
B(x)u−,u−

〉
ds =

∫

∂X

〈
i (n1 + in2)u

+,u−
〉
ds =

=

∫

X

〈
(−i (∂1 + i∂2) + qt)u

+,u−
〉
dx1dx2 −

∫

X

〈
u+, (−i (∂1 − i∂2) + qt)u

−
〉
dx1dx2 = 0,

where ds is the length element on ∂X.
Suppose now that the sign of B is the same on all boundary components. Then

from the last equality we have u− ≡ 0 on ∂X, u+ = −i (n1 − in2)Bu
− ≡ 0 on ∂X.

Thus u ≡ 0 on X by the weak inner unique continuation property of Dirac operator
[3]. So (D +Qt,B) has no zero eigenvalues at any t for such B, and by Property (P0)
sf (D +Qt,B) = 0. Finally we obtain F(1, 0̂, µ̂) = F(1, 1̂, µ̂) = 0 at any µ̂, where we denote
0̂ = (0, . . . , 0) , 1̂ = (1, . . . , 1) ∈ Z

m.
Let us consider the group M ′ which is quotient of Zm+1 by subgroup spanned by

elements
(
1, 0̂

)
,
(
1, 1̂

)
∈ Zm+1. Note that M ′ coincides with the quotient group Zm/

〈
1̂
〉
,

so it is naturally isomorphic to the Abelian group Hom(M, Z) of all homomorphisms of
M to Z.

By previous arguments, there exists such homomorphism F̃ : M ′ ⊗M → Z that F is
the composition of the following homomorphisms:

(21) S×M →֒ Z
m+1 ×M→ Z

m+1 ⊗M→M ′ ⊗M F̃→ Z,

where the first two arrows are the same as in (20), and the third arrow is induced by the
natural projection Z

m+1 →M ′.

18 Invariance under the action of symmetric group

Let Diff+(X) be the group of all diffeomorphisms of X preserving orientation, f ∈
Diff+(X). As it was shown in Section 14, F (N, f∗B, f∗µ) = F(N,B,µ), and hence

F
(
N, f∗b̂, f∗µ̂

)
= F(N, b̂, µ̂),

where f∗ acts on b̂ and µ̂ by the permutation of the coordinates, corresponding to the
permutation of the boundary components of X by f. It is well known that any permu-
tation of the boundary components of X is realized by some element of Diff+(X). Thus
F(N, b̂, µ̂) is invariant under the action of symmetric group Sm (the group of permuta-
tions of m elements) on

(
b̂, µ̂

)
by the permutations of the coordinates.

All permutations of the coordinates leave he element 1̂ of Zm invariant, so Sm acts

on M ′ = Zm/
〈
1̂
〉

in exactly the same way, and F̃ is invariant under the action of Sm, too.

Extending F̃ by linearity from M ′ ⊗M to V ′ ⊗ V , V ′ = M ′ ⊗ C = C
m/

〈
1̂
〉
, V =

M⊗ C =
{
v ∈ Cm :

∑
vj = 0

}
, we obtain homomorphism F̃C : V ′ ⊗ V → C, coinciding
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with F̃ on the lattice M ′ ⊗M ⊂ V ′ ⊗ V . Obviously, F̃C is invariant with respect to the
action of Sm on V ′ ⊗ V as well.
V ′ and HomC(V , C) coincide as the representations of Sm, so the vector space of all

invariant homomorphisms from V ′ ⊗ V to C is isomorphic to the vector space of all
equivariant homomorphisms V → V . But the latter space is 1-dimensional by Schur’s

lemma, because V is the irreducible representation of Sm [12]. So F̃C (v ′ ⊗ v) = c
∑
j v

′
jvj

for some constant c ∈ C, and F(N, b̂, µ̂) = c
∑
bjµj, where c depends only on m.

On the other hand, F is integer-valued and, in particular, c = F (1, (0, 1), (−1, 1)) ∈ Z.
Finally, we obtain sf (D+Qt,B)t∈[0,1] = cm

∑m
j=1 bjµj, where cm is the integer constant

depending on m only, and Theorem 3 is proved.
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