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Abstract

Let X be a closed m-dimensional spin manifold which admits a metric
of positive scalar curvature and let R+(X) be the space of all such metrics.
For any g ∈ R+(X), Hitchin used the KO-valued α-invariant to define a
homomorphism An−1 : πn−1(R

+(X), g) → KOm+n. He then showed that
A0 6= 0 if m = 8k or 8k + 1 and that A1 6= 0 if m = 8k − 1 or 8k.

In this paper we use Hitchin’s methods and extend these results by
proving that

A8j+1−m 6= 0

whenever m ≥ 7 and 8j − m ≥ 0. The new input are elements with
non-trivial α-invariant deep down in the Gromoll filtration of the group
Γn+1 = π0(Diff(Dn, ∂)). We show that α(Γ8j+2

8j−5) 6= {0} for j ≥ 1. This
information about elements existing deep in the Gromoll filtration is the
second main new result of this note.

1 Introduction

Let n be greater than 4, let Θn+1 denote the group of homotopy (n+1)-spheres
and let Γn+1 = π0(Diff(Dn, ∂)) denote the group of isotopy classes of orienta-
tion preserving diffeomorphisms of the n-disc which are the identity near the
boundary. There is the standard isomorphism Σ: Γn+1 ∼= Θn+1, due to Smale
and Cerf [6, 26]. Moreover, for all 0 < i ≤ j there are homomorphisms

λni,j : πj(Diff(Dn−j , ∂))→ πj−i(Diff(Dn−j+i, ∂)).
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The definitions of Σ and λni,j are recalled in Section 2.1.
We denote λ := λni,i. In [8, Abschnitt 1] Gromoll defined the group

Γn+1
i+1 := λ(πi(Diff(Dn−i, ∂)) ⊂ Γn+1

and the corresponding filtration

0 = Γn+1
n−2 ⊂ Γn+1

n−3 ⊂ · · · ⊂ Γn+1
3 ⊂ Γn+1

2 = Γn+1 .

We say that f ∈ Γn+1 has Gromoll filtration i if f ∈ Γn+1
i \ Γn+1

i+1 . The identity

Γn+1 = Γn+1
2 is due to Cerf [6], as pointed out in [2]. The equality Γn+1

n−2 = 0
follows from Hatcher’s proof [10] of the Smale Conjecture.

Starting with Novikov [22], authors have used the homomorphisms λni,j to
explore the homotopy type of Diff(Dn, ∂). For example, [5, Theorem 7.4] shows
that there is an infinite sequence {(pi, ki,mi)} of integer triples with pi odd
primes, limi→∞mi/ki = 0 and

πki
(Diff(Dmi , ∂))⊗ Z/pi 6= 0 .

Later, Hitchin [12, Section 4.4] used the homomorphisms λni,j to investigate the
homotopy type of the space of positive scalar curvature metrics on a closed
manifold. In this paper we extend the results of [5] and [12, Section 4.4].

Hitchin’s main tool is the α-invariant, the KO-valued index of the real Dirac
operator of a closed spin manifold. Since an exotic sphere carries a unique spin
structure, we get an induced homomorphism

α : Γm+1 ∼=
−→ Θm+1 → KOm+1 .

Our first main result shows that the Gromoll filtration of some (8k+2)-dimensional
exotic spheres with non-trivial α-invariant is quite deep.

1.1 Theorem. For all j ≥ 1 there is an element fj ∈ π8j−6(Diff(D7, ∂)) such

that α(λ(fj)) 6= 0 and 2fj = 0. Hence α(Γ8j+2
8j−5) 6= {0} and for all 0 ≤ i ≤ 8j−6,

λ8j+1
i,8j−6(fj) ∈ π8j−6−i(Diff(D7+i, ∂)) is a non-trivial element of order 2.

1.1 Positive scalar curvature

Let X be a closed spin manifold of dimensionm and let R+(X) denote the space
of positive scalar curvature metrics on X . The Lichnerowicz formula entails that
the first obstruction to the existence of a positive scalar curvature metric onX is
the index of the Dirac operator defined by its spin structure. This is an element
ind(X) ∈ KOm which gives rise to a ring homomorphism

α : Ωspin
∗
→ KO∗, [X ] 7→ ind(X) .

When X is simply connected of dimesion ≥ 5, Stolz [27] proved that R+(X) 6= φ
if and only if α(X) = 0. In general, the question of whether R+(X) 6= φ is a
deep problem which remains open, see for example [24, 25].

IfR+(X) 6= ∅ we equip it with the C∞-topology and go on to investigate this
topological space. Note that Diff(X) acts on R+(X) via pull-back of metrics
and so fixing g defines a map T : Diff(X)→R+(X), h 7→ h∗g. Moreover, fixing
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Dm ⊂ X defines an inclusion i : Diff(Dm, ∂) → Diff(X) via extension by the
identity.

Hitchin observed in his thesis [12, Theorem 4.7] that sometimes non-zero
elements in π∗(Diff(Dm, ∂)) yield, via the induced action of Diff(Dm, ∂) on
R+(X), non-zero elements in π∗(R+(X)) := π∗(R+(X), g). More precisely,
Hitchin [12, Proposition 4.6] (see Section 2.5), defines a homomorphism

An−1 : πn−1(R
+(X))→ KOm+n

and shows that the composition

Cn−1 : πn−1(Diff(Dm, ∂))
i∗−→ πn−1(Diff(X))

T∗−→ πn−1(R
+(X))

An−1

−−−→ KOm+n

is non-trivial for n = 1 and m = 8k, 8k + 1 and for n = 2 and n = 8k − 1, 8k.
Hitchin’s method exploited the at the time known facts that α(Γ8j+1

1 ) 6= {0}

and α(Γ8j+2
2 ) 6= {0}. With our refined knowledge about the non-zero images

α(Γ8j+2
8j−5), we obtain the following corollary using the same method as Hitchin.

1.2 Corollary. Let X be a spin manifold of dimension m ≥ 7 with g ∈ R+(X)
and let fj be as in Theorem 1.1. Then for all j ∈ Z such that 8j + 1 −m ≥ 0,

C8j+1−m(λ8j+1
m−7,8j−6(fj)) 6= 0 ∈ KO8j+2. In particular, the homomorphism

A8j+1−m : π8j+1−m(R+(X))→ KO8j+2

is a split surjection and for all such (X, g) the graded group π∗(R+(X)) contains
non-trivial two-torsion in infinitely many degrees.

To our knowledge, these examples and those of [9] are the first examples
where πk(R+(X)) is shown to be non-trivial when k > 1. In contrast to [9],
Corollary 1.2 also shows that π∗(R+(X)) is non-trivial in infinitely many de-
grees. However, note that by construction the elements of π∗(R+(X)) found in
Corollary 1.2 vanish under the action of Diff(X), i.e. in π∗(R

+(X)/Diff(X)).
In contrast to this in [9] the first examples of elements x ∈ πk(R+(X)) which re-
main non-trivial by pullback with arbitrary families in Diff(X) are constructed
for arbitrarily large k. That R+(X)/Diff(X) often has infinitely many compo-
nents is already proved in [3, 18, 23].

2 The Gromoll filtration of Hitchin spheres

In this Section we prove Theorem 1.1 and Corollary 1.2. Section 2.1 recalls
methods from smoothing theory which give a second definition of the Gromoll
filtration. Section 2.2 reviews the Kervaire-Milnor analysis of the group of homo-
topy spheres. Section 2.3 recalls results of Adams from stable homotopy theory
and their relation to the KO-index theory due to Milnor. Section 2.4 shows
how non-trivial compositions in the stable homotopy groups of spheres lead to
non-zero elements deeper in the Gromoll filtration and so proves Theorem 1.1.

2.1 The groups Θn+1, Γ
n+1 and πn+1(PL/O)

Let n ≥ 5. Recall that Θn+1 is the group of oriented diffeomorphism classes
of homotopy (n + 1)-spheres, that by definition Γn+1 = π0(Diff(Dn, ∂)) and
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recall also the space PL/O which will be defined below. In this subsection
we review the three fundamental isomorphisms Σ, Ψ and M∗ appearing the
following diagram:

Γn+1 Σ
//

M∗

&&▲
▲▲

▲▲
▲▲

▲▲
▲▲

Θn+1

Ψ

xxqq
qq
qq
qq
qq

πn+1(PL/O)

We then prove that the diagram commutes: a point which seems to have been
implicit in the literature.

Given a mapping class f ∈ Γn+1 we may build a homotopy (n + 1)-sphere
Σf by first extending f by the identity map to a diffeomorphism f̄ : Sn → Sn

and then setting Σf := Dn+1 ∪f̄ D
n+1. In this way we obtain the map, which

is well known to be a homomorphism

Σ: Γn+1 → Θn+1, f 7→ Σf . (2.1)

By [26] Σ is onto and by [6] Σ is injective.
Next let Ok and PLk denote the k-dimensional orthogonal group and the

group of piecewise linear homeomorphisms of k-dimensional Euclidean space
fixing the origin and let O := limk→∞Ok and PL := limk→∞ PLk denote the
corresponding stable groups. There are inclusions Ok → PLk with quotients
PLk/Ok and we obtain the space PL/O = limk→∞(PLk/Ok) along with stab-
lisiation maps S : PLk/Ok → PL/O. The fundamental theorem of smoothing
theory applied to the (n+ 1)-sphere [11,17], (see also [15, Theorem 7.3]) states
that there is an isomorphism

Ψn+1 : Θn+1
∼= πn+1(PL/O) . (2.2)

A third fundamental result is due to Morlet (unpublished) and Burghelea
and Lashof [5, Theorems 4.4, 4.6].

2.3 Theorem ([5] Theorem 4.4). There is a homotopy equivalence of commu-
tative H-spaces

Mn : Diff(Dn, ∂) ≃ Ωn+1(PLn/On)

such that the composition

π0 Diff(Dn, ∂)
Mn∗−→ π0Ω

n+1(PLn/On)
S∗−→ π0Ω

n+1(PL/O) = πn+1(PL/O)

yields an isomorphism

M∗ : Γ
n+1 ∼= πn+1(PL/O) .

Here S∗ is induced by the stabilisation map Ωn+1(PLn/On)→ Ωn+1(PL/O).

To give the alternative description of the Gromoll filtration, we use the
homomorphisms

λni,j : πj(Diff(Dn−j , ∂))→ πj−i(Diff(Dn−j+i, ∂))
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from the introduction. Here we represent a ∈ πj(Diff(Dn−j , ∂)) by a map

a : [0, 1]j → Diff([0, 1]n−j, [0, 1]n−j)

such that the value of a is the identity map near the boundary of [0, 1]j and
such that each a(x) is a diffeomorphism which restricts to the identity near the
boundary of [0, 1]n−j. The class λni,j(a) is then represented by the map

λni,j(a) : [0, 1]
j−i → Diff([0, 1]n−j × [0, 1]i, [0, 1]n−j × [0, 1]i) (2.4)

with λni,j(a)(x)(t, y) = (a(x, y)(t), y). Indeed the formula (2.4) implies that if
we use Ω to denote the space of differentiable loops, then there are maps

Λn
i,j : Ω

j Diff(Dn−j , ∂)→ Ωj−1 Diff(Dn−j+i, ∂)

which induce the homomorphisms λni,j .

2.5 Lemma (c.f. [4, Theorem 1.3]). Let in : PLn/On → PLn+1/On+1 be the
canonical inclusion and let ΩMn be the map of smooth loop spaces induced by
Mn and assume n ≥ 4. Then the following diagram is homotopy commutative.

ΩDiff(Dn, ∂)

λn
1,1

��

ΩMn
// Ωn+2(PLn/On)

Ωn+2(in)

��

Diff(Dn+1, ∂)
Mn+1

// Ωn+2(PLn+1/On+1)

Proof. The corresponding statement for n 6= 4 with PLn replaced by Topn is
given in [4, Theorem 1.3] where Burghela considers the map hn : Diff(Dn, ∂)→
Ωn+1(Topn/On). And indeed Burghelea remarks [4, p.9] that the analagous
versions of his results hold when Topn is replaced by PLn.

We give a somewhat indirect argument based on the work of Kirby and
Siebenmann which deduces the commutativity of the diagram above from [4,
Theorem 1.3]. By definition the map hn factors throughMn and the canonaical
map πn : PLn/On → Topn/On:

hN = πn ◦Mn : Diff(Dn, ∂) −→ Ωn+1(PLn/On) −→ Ωn+1(Topn/On).

Now there is a fibration sequence

Ωn+1(PLn/On)→ Ωn+1(Topn/On)→ Ωn+1(Topn/PLn)

and for n ≥ 5 there is, by [14, Essay V, 5.0 (1)], a homotopy equivalence

Topn/PLn ≃ K(Z/2, 3).

Hence the space Ωn+1(Topn/PLn) is contractible and the map πn above is a
homotopy equivalence. It follows that the commutativity of Burghelea’s diagram
[4, Theorem 1.3] entails the commutativity of the diagram above.

An immediate consequence of Theorem 2.3 and [4, Theorem 1.3] is the fol-
lowing alternative definition of the Gromoll filtration.

2.6 Corollary. Γn+1
k+1 =M−1

∗
S∗

(

πn+1(PLn−k/On−k)
)

.
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The following lemma is presumably well known and in particular is implicit
in [5]. Since we could not find a reference, we give a proof.

2.7 Lemma. M∗ = (Ψ ◦ Σ): Γn+1
∼=
−→ πn+1(PL/O).

Proof. We use the description of Ψ: Θn+1
∼= πn+1(PL/O) given in [19, proof of

Theorem 6.48]. Given an exotic sphere Σf obtained from a diffeomorphism f ∈
Diff(Dn, ∂), take the PL-homeomorphism u : Σf

∼= Sn+1 to the standard sphere
coming from the Alexander trick. There is an associated “derivative” map
between the PL-microbundles of Σf and Sn+1. Using the smooth structures,
these PL-bundles are induced from the smooth tangent bundles which are of
course vector bundles. Pulling back with u to Sn+1, we then have two On+1-
structures on the same PLn+1-bundle over Sn+1, and the difference of the lifts
of structure group gives a pointed map Sn+1 → PLn+1/On+1. By stabilization
we get an element of πn+1(PL/O), which is by definition Ψ(Σf ).

On the other hand, the map M∗ : π0(Diff(Dn, ∂)) → πn+1(PL/O) from [5]
is defined (after we strip off the technicalities associated to the use of simplicial
methods) by first looking at the loop γ : [0, 1]→ PL(Dn, ∂) obtained by apply-
ing the Alexander trick to f , with induced path γ̄ : [0, 1]→ PL(Dn, ∂)/Diff(Dn, ∂).
The latter corresponds to the inverse in the boundary map of the fibration

PL(Dn, ∂)→ BDiff(Dn, ∂) = PL(Dn, ∂)/Diff(Dn, ∂) ,

compare [5, proof of Theorem 4.2]. The path of PL-derivatives t 7→ D(γt) gives,
as above by comparing the pullbacks of the vector bundle structure on the PL-
microbundle of Dn to the standard vector bundle structure, a loop of maps
from (Dn, ∂) to PLn/On, i.e. a map Sn+1 → PLn/On. By [5, proof of 4.2 and
Section 1], its stabilization represents M∗(ψ) ∈ πn+1(PL/O).

Observe that the family of PL-homeomorphismsDn → Dn just constructed,
extended by the identity over a “second hemisphere”, patch together to the
PL-homeomorphism between the homotopy sphere Σf and Sn+1 used in the
definition of Ψ ◦ Σ. Moreover, if we stabilize the family of differentials by
the identity of the vertical direction, we obtain the differential of that PL-
homeomomorphism. Finally, the underlying vector bundle structures on the
PL-microbundles patch together and stabilize to the vector bundle structures
on the PL-microbundles of Σf and Sn+1 encountered above. It follows that the
stable comparison maps Sn+1 → PL/O coincide, i.e. M∗ = Ψ ◦ Σ.

2.8 Remark. It is interesting to observe that Ψ ◦ Σ factors by construction
through πn+1(PLn+1/On+1), whereasM∗ even factors through πn+1(PLn/On).

2.2 Homotopy spheres

In this subsection we review a number of important isomorphisms used to study
the group of homotopy spheres Θn+1. More information and proofs can be found
in [19, 6.6] and [16, Appendix]. Let G := limk→∞G(k) denote the stable group
of homotopy self-equivalences of spheres, let πS

i denote the ith stable stem and
let Ωfr

i denote i-dimensional framed bordism group. We have isomorphisms

πi(G) ∼= πS
i
∼= Ωfr

i

where the first isomorphism may be found in [20, Corollary 3.8] and the second
is the Pontrjagin-Thom isomorphism.
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The canonical map O → G induces the stable J-homomorphism on homo-
topy groups Ji : πi(O) → πi(G). The group im(Ji) ⊂ πi(G) is a cyclic sum-
mand and the group coker(Ji) maps isomorphically onto the torsion subgroup
of πi(G/O) under the canonical map q : G→ G/O. Moreover there is an isomor-
phism πi(G/O) ∼= Ωalm

i where Ωalm
∗

denotes almost framed bordism (cycles are
manifolds with a chosen base point and a framing of the stable normal bundle
on the complement of this base point).

2.9 Theorem ([13, Section 4]). For n ≥ 4 the abelian group Θn+1 is finite and
lies in an exact sequence

0 −→ bPn+2 −→ Θn+1
Φ
−→ coker(Jn+1)

where bPn+2 is the finite cyclic subgroup of homotopy spheres bounding paral-
lelizable manifolds. By [13, Theorem 6.6], Φ is surjective if n is odd.

2.10 Proposition. The canonical map p : PL/O→ G/O satisfies

q∗ ◦ Φ = p∗ ◦Ψ: Θn+1 → πn+1(G/O).

Proof. The statement follows from the commutativity of the squares

πn+1(PL/O)
Ψ

←−−−−
∼=

Θn+1





y

p∗





y

πn+1(G/O)
∼=

←−−−− Ωalm
n+1

x





q∗

x





πS
n+1

∼=
−−−−→ πn+1(G)

∼=
←−−−− Ωfr

n+1

which is explained in [19, Theorem 6.48]. The homomorphism Φ is geometrically
defined as the composition of the upper right homomorphism, the isomorphism
Ωalm

n+1
∼= πn+1(G/O) and the inverse of the isomorphism induced by q∗ from

coker(Jn+1) to the torsion subgroup of πn+1(G/O).

2.3 The α-invariant

Recall from [12, []Section 4.2] that the α-invariant is the ring homomorphism

α : ΩSpin
∗ → KO∗ which associates to a spin bordism class the KO-valued index

of the Dirac operator of a representative spin manifold. We also write α for the
corresponding invariant on framed bordism:

α : Ωfr
∗
→ ΩSpin

∗
→ KO∗ . (2.11)

Under the Pontrjagin-Thom isomorphism Ωfr
∗

∼= πS
∗

the α-invariant has the
following interpretation as Adams’ d-invariant [1, Section 7], dR : π

S
∗
→ KO∗,

which was used already in [12, p. 44], compare [21, Section 3].

2.12 Lemma. Under the Pontryagin-Thom isomorphism Ωfr
∗

∼= πS
∗
the α-inva-

riant α : Ωfr
8j+1 → KO8j+1 may be identified with dR : π

S
8j+1 → KO8j+1 .
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Recall that KO∗ satisfies Bott periodicity of period 8 with Bott generator
β ∈ KO8

∼= Z. By [1, Theorems 7.18 and 12.13], for all k ≥ 1 there are (not
uniquely defined) Adams’ elements µ8k+1 ∈ π

S
8k+1 = Ωfr

8k+1 satisfying

α(µ8k+1) = α(η)βk 6= 0 ∈ KO8k+1 ,

where η ∈ πS
1 generates the 1-stem and α(η) generates KO1. Since α is a

ring homomorphism we see that α(ηµ8k+1) = α(η2)βk 6= 0 ∈ KO8k+2, and
combining Lemma 2.12 with [1, Proposition 12.14] we have

α(µ8j+1 · µ8k+1) = α(η2)βj+k 6= 0 ∈ KO8(j+k)+2 . (2.13)

Recall that an element x ∈ πS
j = limk πj+k(S

k) is said to live on Sk if there

is xk ∈ πj+k(S
k) which maps to x under the canonical homomorphism.

The next crucial property of the elements µ8k+1 is that (at least if we make
suitable choices here) they all live on S4.

2.14 Lemma. For suitable choices, the (not uniquely defined) homotopy class
µ8j+1 ∈ πS

8j+1 lives on the 5-sphere and moreover there is µ8j+1,5 ∈ π8j+5(S
5)

with 2µ8j+1,5 = 0. It follows that there is a corresponding homotopy class
µ8j+1,9 ∈ π8j+10(S

9) of order 2.

Proof. The statement follows by carefully inspecting Adams’ construction of the
homotopy class µ8j+1 ∈ πS

8j+1, involving Toda brackets.

Let us recall that, given homotopy classes of maps u : Sa → Sb, v : Sb → Sc

and w : Sc → Sd such that [v ◦ u] = 0 and [w ◦ v] = 0, there is a set {w, v, u}
of homotopy classes of maps Sa+1 → Sc, the Toda brackets of w, v, u, a kind
of secondary composition. The elements of the set depend on choices of null-
homotopies for v ◦ u and w ◦ v, and indeed (for a ≥ 1) {w, v, u} is a coset of
[Eu] ◦ πb+1(S

c) + πa+1(S
b) ◦ [w] ∈ πa+1(S

c), where E denotes suspension.
Now, for the construction of the µ8j+1,5 on starts with a homotopy class

α1 : S
k+7 → Sk of order 2 such that {2, α, 2} contains 0. Here 2 stands for the

self map of the sphere of degree 2.
One then chooses inductively αs : S

k+8s−1 → Sk to be any element in the
Toda bracket {αs−1, 2, α}. For notational simplicity we write α also instead of
the appropriate suspension of it. Note that in this proof we follow Adams and
use ‘α′

s to refer to a certain homotopy class. This should not be confused with
the α-invariant of (2.11).

For the induction to work we have to show that [2αs] = 0 ∈ πk+8s−1(S
k). For

this we use [28, Proposition 1.2 IV)]: {αs−1, 2, α}2 = αs−1 ◦ {2, α, 2} = 0. The
latter follows because by our induction hypothesis [αs−1 ◦ 2] = 0 and {2, α, 2}
contains by assumption only multiples of 2.

Finally, we define µ8j+1,k−1 as any element in the Toda bracket {η,k−1, 2, αj}.
Here, we let η,n : S

n+1 → Sn represent (for n ≥ 3) the generator of πn+1(S
n) ∼=

Z/2.

To see that µ8j+1,k−1 is of order 2 we need some preparation:
If for a ∈ πk+s(S

k) we have that {2, a, 2} = 2πk+s+1(S
k) ⊂ πk+s+1(S

k),
then for arbitrary x : Sr → Sk+s and y : Sk → Sb also {2, a, 2x} ⊂ 2πr+1(S

k)
and {2y, a, 2} ⊂ 2πk+s+1(S

b). Note that {2, a, 2x} is a coset of 2πr+1(S
k) +

πk+s+1(S
r) ◦ 2Ex ⊂ 2πr+1(S

k) so it suffices to show that 0 ∈ {2, a, 2x}, and
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similarly for {2y, a, 2}. Now the module property [28, Proposition 1.2 IV] implies
0 = 0 ◦ x ∈ {2, a, 2} ◦ x ⊂ {2, a, 2x}, and in the same way 0 ∈ {2, a, 2y}.

Now we show by induction that {2, αs, 2} consists of the multiples of 2. By
assumption this is true for s = 1. For the induction, we apply the Leibniz rule
[28, Proposition 1.5] which says that {2, αs, 2} = {2, {αs−1, 2, α}, 2} (which is a
coset of the multiples of 2) is congruent to the set

{{2, αs−1, 2}, α, 2}+ {2, αs−1, {2, α, 2}}.

By the induction hypothesis and the above consideration, both these iterated
Toda brackets only contain multiples of 2, and so {2, αs, 2} must be the coset
of 0 of the multiples of 2.

Finally, using again [28, Proposition 1.2]

2µ8j+1,k−1 ∈ {η,k−1, 2, αj}2 = η,k−1 ◦ {2, αj, 2} ⊂ η,k−1 ◦ 2πk+8j(S
k) = 0

because 2η,k−1 = 0 as long as k ≥ 4.
Finally, we follow literally one of the proofs Adams gives to show that

α(µ8j+1) is non-trivial. This uses the fact, estabilished in [1, p. 68] that for
the relevant dimension α coincides with Adams’ homomorphism eC (both con-
sidered to be maps to R/Z). To compute eC(µ8j+1) one can inductively apply
[1, Theorem 11.1]. This theorem states that eC{x, 2, y} = 2eC(x)eC(y) modulo
Z. Finally, one only has to use that eC(η) = 1/2 and eC(α) = 1/2, which is
established in [1, proof of Theorem 12.13].

For the choice of α1 we follow again [1, proof of Theorem 12.13] which uses
corresponding results of Toda. Indeed, in [28, Lemma 5.13] Toda checks that
the element σ′′′ ∈ π5+7(S

5) of order 2 stabilizes to the element of order 2 in πS
7 .

Moreover, with E still denoting the suspension, Toda shows in [28, Corollary 3.7]
that {2, Eσ′′′, 2} ∋ Eσ′′′η,13 = 2σ′′η,13 = 0 since η,13 has order 2. Therefore,
an appropriate choice is α1 := E(σ′′′) = 2σ′′ ∈ π6+7(S

6). Here σ′′ is Toda’s
notation for an element of order 4 in (π6+7(S

6) ∼= Z/60Z.

2.15 Remark. On the face of it, our construction of αs and therefore µ8j+1 is
slightly more general than Adams’ construction which does seem not allow for
arbitrary elements in the Toda brackets involved in the inductive construction.
Note, however that we have to use unstable Toda brackets, which means that
the same construction, starting with larger k, might give rise to more elements
in πs

8j+1 which do not live on the 5-sphere.

2.16 Remark. Another proof of the existence of µ8j+1,5 comes from [7] where
Curtis calculated the sphere of origin for many examples using the the Adams
spectral sequence and the restricted lower central series spectral sequence. In
fact Curtis shows that elements of non-trivial d-invariant live on S3. We gave
an independent proof to avoid the task of checking how the notations from [7]
match with those of [1] and to show that there is a µ8j+1,5 of order two.

2.4 Proof of Theorem 1.1

In this subsection we prove our main theorem. Since every homotopy sphere
has a unique spin-structure we obtain the α-invariant on Γn+1 ∼= Θn+1:

α : Γn+1 → ΩSpin
n+1 → KOn+1 .
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Combining [21, Theorem 2 and its proof], [1, Theorems 7.18 and 12.13] and
2.9 we see that for each j > 1 there is a homotopy 8j − 7-sphere Σµ8j−7

∈
Θ8j−7 representing [µ8j−7] ∈ coker(J8j−7). In particular we have the equation
α(Σµ8j−7

) = α(η)βj−1 6= 0 ∈ KO8j−7. By Cerf’s theorem [6], Γ9
2 = Γ9

1 and so
we can find g ∈ π1(Diff(D7, ∂)) such that Σ(λ(g)) = Σµ9

. By (2.13) above,

α(Σµ9
× Σµ8j−7

) = α(η2)βj 6= 0 ∈ KO8j+2 . (2.17)

Recall the homotopy equivalence M : Diff(D7, ∂) ≃ Ω8(PL7/O7) of Theo-
rem 2.3 and consider the induced isomorphism

M7∗ : π1(Diff(D7, ∂)) ∼= π9(PL7/O7) .

With g ∈ π1(Diff(D7, ∂)) as above we have M7∗(g) ∈ π9(PL7/O7). Now let
µ8j−7,9 ∈ π8j+2(S

9) be an element of order 2 with S(µ8j−7,9) = µ8j−7 ∈ πS
8j−7

whose existence is proven in Lemma 2.14. The composition

M7∗(g) ◦ µ8j−1,9 ∈ π8j+2(PL7/O7)

has order 2 and we define

fj :=M−1
7∗ (M7∗(g) ◦ µ8j−7,9) ∈ π8j−6(Diff(D7, ∂))

so that λ(fj) ∈ Γ8j+2
8j−5. For Σfj := Σ(λ(fj)) we show below that

α(Σfj
) = α(Σµ9

× Σµ8j−7
) (2.18)

and so by (2.17) we have that α(λ(fj)) = α(Σfj
) = α(η2)βj 6= 0 ∈ KO8j+2

which proves Theorem 1.1.
We prove equation (2.18) using the following diagram where k = 8j+2. We

obtain the diagram by combining [5, p. 14] and [19, Theorems 6.47, 6.48] and
we claim that it commutes:

π1(Diff(D7, ∂))× πk(S9) πk−8(Diff(D7, ∂))
Σ◦λ
−−−−→ Θk





y

M∗×id ∼=





y

M∗





y

=

π9(PL7/O7)× πk(S9)
◦

−−−−→ πk(PL7/O7)
Ψ−1

◦S∗−−−−−→ Θk




y

S∗×id





y
S





y

=

π9(PL/O)× πk(S9)
◦

−−−−→ πk(PL/O)
Ψ

←−−−−
∼=

Θk





y

p∗×S





y

p∗





y

π9(G/O) × πS
k−9

◦

−−−−→ πk(G/O)
∼=

←−−−− Ωalm
k

α
−−−−→ KOk

x





q∗×id

x





q∗

x





x





=

π9(G)× πS
k−9

◦

−−−−→ πk(G)
∼=←−−−− Ωfr

k

α
−−−−→ KOk

x





∼=

x





∼=

x





=

x





=

πS
9 × π

S
k−9

◦

−−−−→ πS
k

∼=
−−−−→ Ωfr

k

α
−−−−→ KOk

(2.19)
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Using the claimed commutativity of diagram (2.19) let us start in the second
row with the pair

(M7∗(g), µ8j−7,9) ∈ π9(PL7/O7)× π8j+2(S
9).

Since Σ(λ(g)) = Σµ9
, the pair (µ9, µ8j−7) ∈ πS

9 ×π
S
k−9 maps to the same element

in π9(G/O)×πS
k−9 as (M7∗(g), µ8j−7,9). We already checked in Equation (2.17)

that (µ9, µ8j−7) is mapped in the bottom row to α(η2)βj ∈ KO8j+2. Finally,
Σfj is obtained from the element Σ ◦ λ ◦M−1

7∗ (M7∗(g) ◦ µ8j−7,9) ∈ Θ8k+2 in the
top right corner of the diagram. By commutativity, its α-invariant is as desired.

Now we prove the commutativity of (2.19). The left part is taken from
[5], the identification of the homotopy groups of PL/O, G/O, G with the bor-
dism groups or Θk and the corresponding commutativity from [19, Section 6].
The only assertions which are not contained in those two references are the
compatibility with α, which is clear, and, although implicitly stated in [5], the
commutativity of the diagram

πk−8(Diff(D7, ∂))
Σ◦λ
−−−−→ Θk

M∗





y

∼=





y

=

πk(PL7/O7)
Ψ−1

◦S∗−−−−−→ Θk,

This commutativity we have essentially prove in Lemma 2.7, one has addition-
ally only to apply compatibility of the constructions with suspension.

2.20 Remark. The argument above started from the statement Σ−1(Σµ9
) ∈ Γ9

2.
If one knew that a 9-dimensional Hitchin sphere Σµ9 had Gromoll filtration Γ9

k

for 2 < k ≤ 5 then we could repeat the argument to conclude that α(Γ8j+2
8j−7+k) 6=

0. As of writing, it seems that nothing is known about the Gromoll filtration of
9-dimension Hitchin spheres beyond the Cerf-Hatcher bounds Σ−1(Σµ9

) ∈ Γ9
2

and Γ9
6 = {0}.

2.21 Remark. In our construction, we crucially use the ring structure of KO∗

and the non-triviality of the product of generators in KO8k+1. This means
that the interesting elements (with non-trivial α-invariant) we obtain are in
πk(Diff(Dn, ∂)) with k + n ≡ 1 (mod 8).

We expect that one can use Toda brackets (of an element in π∗(PLk/Ok)
with elements of π∗(S

n)) to construct such elements in πk(Diff(Dn, ∂)) with
k + n 6≡ 1 (mod 8). This we leave for future work.

2.5 Positive scalar curvature metrics: Corollary 1.2

To prove Corollary 1.2 one need only recall the arguments following [12, Propo-
sition 4.6]: Let X be a closed m-dimensional spin-manifold (m ≥ 7) and let
R+(X) be the space of positive scalar curvature metrics on X which we assume
to be non-empty. Observe that the group of diffeomorphisms ofX , Diff(X), acts
on R+(X) by composition. In particular, fixing a metric g ∈ R+(X), define the
map

T : Diff(X)→R+(X), h 7→ h∗g .

Moreover, by fixing a k-disc Dm ⊂ X and extending diffeomorphisms by the
identity we obtain a map i : Diff(Dm, ∂)→ Diff(X).
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In [12, Proposition 4.6] Hitchin defines a homomorphism

An−1 : πn−1(R
+(X))→ KOm+n .

He shows then that the composite homomorphism

Bn−1 := An−1 ◦ T∗ : πn−1(Diff(X))→ πn−1(R
+(X), g0)→ KOm+n

assigns to φ : Sn−1 → Diff(X) the family index of the bundle of spin manifolds
X → Zφ → Sn obtained by the usual clutching construction. Moreover, in
[12, Section 4.3, in particular Proposition 4.4] Hitchin shows that if we start
with φ : Sn−1 → Diff(Dm, ∂) then B(i∗(φ)) = α(Σφ), where Σφ is the exotic
(n+m)-sphere defined by λ(φ) ∈ Γn+m

n .
Fix j with 8j + 1 > m ≥ 7. We apply the argument above starting from

fj as in Theorem 1.1 and φ := λ8j+1
m−7,8j−6(fj) ∈ π8j+1−m(Diff(Dm, ∂)). By

Theorem 1.1 we have that 2φ = 0 and that λ(φ) ∈ Γ8j+2
8j−5 satisfies α(λ(φ)) 6= 0.

Pulling back the metric g by φ we obtain a continuous family of metrics in
R+(X) parameterized by S8j+1−m and hence the homotopy class T∗i∗(φ) ∈
π8j+1−m(R+(X)) of order 2. By [12, Proposition 4.4], A8j+1−m(T∗i∗(φ)) =
α(λ) and so generates KO8j+2

∼= Z/2. This proves Corollary 1.2.

A The Gromoll filtration: table of values

We think that our results about the Gromoll filtration and the existence of
elements rather deep down with non-trivial α-invariant are interesting in their
own right. In this appendix we place them in context by assembling some results
from the literature about the Gromoll filtration.

Γ7
2
∼= Z/28 Γ7

2 6= Γ7
3 ⊃ 0 = Γ7

4. The inequality for Γ7
3 6= Γ7

2 is
due to Weiss [30] who proved that Γ7

3 has at most
14 elements.

Γ8
2
∼= Z/2 nothing known

Γ9
2
∼= (Z/2)3

Γ10
2
∼= Z/6 Γ10

3 ⊃ Z/2 by Theorem 1.1
Γ11
2
∼= Z/992 Γ11

3 ⊂ Z/496 by [29]
Γ12
2 = 0

Γ13
2
∼= Z/3 Γ13

2 = Γ13
3 = Γ13

4 by [2]
Γ14
2
∼= Z/2 nothing known

Γ15
2
∼= Z/2⊕ Z/8,128 Γ15

3
∼= Z/2⊕ Z/4,064 by [2, 29]

Γ16
2
∼= Z/2 nothing known, conjecturally Γ16

3 = 0
Γ17
2
∼= (Z/2)2 If Remark 2.21 could be implemented we would

be able to conclude that α(Γ17
9 ) 6= 0 or perhaps

even α(Γ17
10) 6= 0, in particular Γ17

9 or even Γ17
10

would contain Z/2.
Γ18
2
∼= Z/8⊕ Z/2 By Theorem 1.1, α(Γ18

11) 6= 0. Because Z/8 =
ker(α), Γ18

11 ⊃ Z/2.
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