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We prove that Floer cohomology of cyclic Lagrangian correspondences is invariant under transverse
and embedded composition under a general set of assumptions.

1 Introduction

1.1 Lagrangian correspondences and geometric composition

Given two symplectic manifolds (M1, ω1), (M2, ω2) a Lagrangian correspondence is a Lagrangian
submanifold L ⊂ (M1 ×M2,−ω1 ⊕ ω2). These are the central objects of the theory of holomorphic
quilts as developed by Wehrheim and Woodward in [17]. Consider two Lagrangian correspondences
Li ⊂ (Mi−1 ×Mi,−ωi−1 ⊕ ωi) for i = 1, 2. Let

∆ = {(x, y, z, t) ∈ M0 ×M1 ×M1 ×M2 | y = z}

If L1 × L2 is transverse to ∆, we may form the fibre product L1 ×M1 L2 ⊂ M0 ×M1 ×M1 ×M2 by
intersecting ∆ with L1 × L2 . If the projection L1 ×M1 L2 → M0 ×M2 is an embedding, we say that
L1 and L2 are composable and L1 ◦ L2 is naturally a Lagrangian submanifold of M0 ×M2 and is
called the (geometric) composition of L1 and L2 . As a point set one has

L1 ◦ L2 = { (x, z) ∈ M0 ×M2 | ∃y ∈ M1 such that (x, y) ∈ L1 and (y, z) ∈ L2}

1.2 Floer cohomology of a cyclic set of Lagrangian correspondences

A cyclic set of Lagrangian correspondences of length k is a set of Lagrangian correspondences
Li ⊂ Mi−1 ×Mi for i = 1, . . . , k such that (M0, ω0) = (Mk, ωk).

Given a cyclic set of Lagrangian correspondences, Wehrheim and Woodward in [17] define a Floer
cohomology group HF(L1, . . . , Lk) (see Section 2.1 below for a review). This can be identified with
the Floer cohomology group of the Lagrangians

L(0) = L1 × L3 × . . .× Lk−1 and L(1) = L2 × L4 × . . .× Lk
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in the product manifold M = M−0 ×M1 ×M−2 × . . .×Mk−1 if k is even. If k is odd, one inserts
the diagonal ∆M0 ⊂ M−0 ×M0 = M−k+1 ×M0 to get a cyclic set of Lagrangian correspondences
with even length. (We denote by M− the symplectic manifold (M,−ω) where ω is the given
symplectic form on M ). Under appropriate assumptions on the underlying Lagrangians, one expects
an isomorphism

HF(L0, . . . ,Lr,Lr+1, . . . ,Lk−1) ' HF(L0, . . . ,Lr ◦ Lr+1, . . . ,Lk−1)

when Lr and Lr+1 are composable. The main goal of the present work is to prove such an isomorphism
under a rather general set of assumptions. Such an isomorphism should exist whenever the Floer
cohomology groups on either side can be defined. For instance, let us discuss this isomorphism in
the aspherical case. For this we need to introduce some notation. Namely, given two transverse
Lagrangians L,L′ ⊂ (M, ω), we consider the path space:

P = P(L,L′) = {γ : [0, 1]→ M| γ(0) ∈ L , γ(1) ∈ L′}

Now pick x0 ∈ L ∩ L′ to be the constant path on a fixed component P0 of P . Then given any path
γ ∈ P0 , we can pick a smooth homotopy γt such that γ0 = x0 and γ1 = γ . Then consider the action
functional :

A : P0 → R

γ →
∫

[0,1]2
γ∗t ω

This is not always well-defined, because in general it depends on the choice of the homotopy γt .
However, under various topological assumptions, it is possible to avoid this dependence.

A simple case of the main result in this paper is the following statement:

Theorem 1 Given a cyclic set of compact connected orientable Lagrangian correspondences
L1, . . . ,Lk in compact symplectic manifolds (M0, ω0), . . . , (Mk, ωk) such that for some r , Lr and
Lr+1 can be composed, suppose that the following topological properties hold:

(1)
For any v : S1 × [0, 1]→ M such that v|S1×{0} ⊂ L(0) and vS1×{1} ⊂ L(1)∫

v∗ωM = 0

Then,
HF(L0, . . . ,Lr,Lr+1, . . . ,Lk−1) ' HF(L0, . . . ,Lr ◦ Lr+1, . . . ,Lk−1)

The assumption (1) is used to avoid bubbling in various moduli spaces and to ensure that the action
functional

A : P0(L(0),L(1))→ R
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is single valued (on any of its path components) which ensures that the Floer differential squares to
zero. These assumptions are already required for the Floer cohomology groups considered above to
be well-defined. One could replace them with assumptions of similar nature but not dispose of them
altogether.

The analogous result under positive monotonicity assumptions was proved earlier by Wehrheim and
Woodward in [17]. The difficulty in extending their proof to our setting is the fact that the strip
shrinking argument in [17] might give rise to certain figure-eight bubbles for which no removal of
singularities is known. Our proof of the theorem above does not involve strip shrinking and does not
give rise to figure-eight bubbles. Applying the idea used for the proof of Theorem 1, we will give an
alternative proof of the positive monotone case considered in [17].

Theorem 2 (positively monotone case) Let L1, . . . ,Lk be a cyclic set of compact orientable
Lagrangian correspondences in compact connected symplectic manifolds (M0, ω0), . . . , (Mk, ωk)
such that for some r , Lr and Lr+1 can be composed. Let τ > 0 be a fixed real number. Suppose that
the following topological properties hold:

(2)

For any v : S1 × [0, 1]→ M such that v|S1×{0} ⊂ L(0) and vS1×{1} ⊂ L(1)∫
v∗ωM = τ IMaslov(v∗L(0), v∗L(1))

The minimal Maslov index for disks in π2(M,L(0)) and π2(M,L(1)) is ≥ 3.

Then,
HF(L0, . . . ,Lr,Lr+1, . . . ,Lk−1) ' HF(L0, . . . ,Lr ◦ Lr+1, . . . ,Lk−1)

Note that we only require monotonicity for the annuli with boundary on L(0) and L(1) which makes
the group on the left well-defined. However, it is easy to see that the corresponding monotonicity
relation for the group on the right hand side follows from this. Furthermore, via the natural map from
π2(M)→ π2(M; L(0), L(1)) the hypotheses of the theorem implies the following monotonicity of the
symplectic manifolds Mi , which determines the monotonicity constant τ .

[ωMi] = τc1(TMi) for all i.

Note also that when τ = 0, the symplectic manifolds are exact and necessarily non-compact, thus
one needs to assume convexity properties at infinity (as for example in [15]) in order to ensure
compactness of various moduli spaces. The proof is simpler in the exact case. Indeed, the hypothesis
of Theorem 1 are satisfied, hence this case is covered by the previous result.

Finally, we extend the argument to the (strongly) negatively monotone case which is needed for the
application to quilted Floer homology of broken fibrations ([10]) . Recall that for [u] ∈ π2(M), the
expected dimension of the moduli space of unparametrized holomorphic spheres in class [u] is given
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by 2(〈c1(TM), [u]〉+ dim(M)− 3) and for [u] ∈ π2(M,L), the expected dimension of the moduli
space of unparametrized holomorphic disks in class [u] is given by µL([u]) + dim(M)− 3 (where
µL is the Maslov homomorphism). In the strongly negative case, we require these numbers to be
sufficiently negative in order to avoid bubbling in 0, 1 and 2-dimensional moduli spaces.

Theorem 3 (strongly negative monotone case) Given a cyclic set of compact connected orientable La-
grangian correspondences L1, . . . , Lk in compact connected symplectic manifolds (M0, ω0), . . . , (Mk, ωk)
such that for some r , Lr and Lr+1 can be composed. Let τ < 0 be a fixed real number. Denote
dim Mi = 2mi . Suppose that the following topological properties hold for all i = 0, . . . , k :

(3)
For any v : S1 × [0, 1]→ M such that v|S1×{0} ⊂ L(0) and vS1×{1} ⊂ L(1)∫

v∗ωM = τ IMaslov(v∗L(0), v∗L(1))

(4)

If
∫

u∗(ωi) > 0 for [u] ∈ π2(Mi), then 〈c1(TMi), [u]〉 < −mi + 2.

If
∫

u∗(−ωi ⊕ ωi+1) > 0 for [u] ∈ π2(Mi ×Mi+1,Li+1),

then µLi+1([u]) < −(mi + mi+1) + 1.

Then,

HF(L0, . . . ,Lr,Lr+1, . . . ,Lk−1) ' HF(L0, . . . ,Lr ◦ Lr+1, . . . ,Lk−1)

In all of the cases, the main idea is to construct a particular homomorphism

Φ : HF(L0, . . . ,Lr,Lr+1, . . . ,Lk−1)→ HF(L0, . . . ,Lr ◦ Lr+1, . . . ,Lk−1)

Once Φ is constructed, a simple energy argument shows that Φ is an isomorphism.

The main motivation for proving Theorem 3 is an application to an explicit example. Namely, it is
used to get rid of a technical assumption in the proof of an isomorphism between Lagrangian matching
invariants and Heegaard Floer homology of 3-manifolds, which appeared in a previous work of
the first author [10]. Our main construction was also used in [12] in order to prove the topological
invariance of their symplectic construction of a Floer homology group which they conjecture to be
isomorphic to a version of instanton Floer homology.

In order to avoid repetition, we will not give all the details involved in the definition of holomorphic
quilts and Floer cohomology of a cyclic set of Lagrangian correspondences. The more comprehensive
discussion of foundations of this theory is available in [17].
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2 Morphisms between Floer cohomology of Lagrangian correspon-
dences

2.1 Chain complex of a cyclic set of Lagrangian correspondences

Let us recall that when L(0) and L(1) intersect transversely the chain complex CF(L) associated with
L = (L1, . . . ,Lk) is the freely generated group over a base ring Λ by the generalized intersection
points I(L) where

I(L) = {x = (x1, . . . , xk) | (xk, x1) ∈ L1, (x1, x2) ∈ L2, . . . , (xk−1, xk) ∈ Lk}

The role of Λ here is no different than its role in the usual Lagrangian Floer cohomology. We will
mostly take Λ to be Z2 (or more generally Novikov rings over a base ring of characteristic 2) in
order to avoid getting into sign considerations. The full discussion of orientations in this set-up
appeared in [19], from which one expects that under assumptions on orientability of the relevant
moduli spaces (say when Li are relatively spin), our results still hold over Z.

More generally, we can choose Hamiltonian functions Hi : [0, δi]×Mi → R and perturb L with a
Hamiltonian isotopy on each Mi to ensure that L(0) and L(1) intersect transversely, so that I(L) is a
finite set. It is an easy lemma to show that for a generic choice of (Hi)i=1,...,k , transversality of L(0)

and L(1) holds after the perturbation, in particular the set I(L) is finite (see [18] page 7). From now
on, we will always assume that L(0) and L(1) are perturbed into general position and we will take
Hi ≡ 0 for all i, so that I(L) consists of a finite set of generalized intersection points as defined in
the beginning of this section.

Next, to define the differential on CF(L), for each i = 1, . . . , k , we choose a compatible almost
complex structure Ji on Mi and extend the definition of the Floer differential to our setting in the
following way. Let x, y be generalized intersection points in I(L). We define the moduli space of
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finite energy quilted holomorphic strips connecting x and y by

M(x, y) = {ui : R× [0, δi]→ Mi| ∂̄Ji,Hiui := ∂sui + Ji(∂tuj − XHi(ui)) = 0,

E(ui) :=
∫

u∗i ωi − d(Hi(ui))dt <∞

lims→−∞ui(s, ·) = xi, lims→+∞ui(s, ·) = yi

(ui(s, δi), ui+1(s, 0)) ∈ Li+1 for all i = 1, . . . k}/R

Under monotonicity assumptions (as in Theorem 2), it is proven in [17] (with corrections from [20])
that, given (δi)i=1,...,k and (Hi)i=1,...,k , there is a Baire second category subset of almost complex
structures (Ji)i=1,...,i=k for which these moduli spaces are cut out transversely and compactness
properties of the usual Floer differential carry over. It is straightforward to check that the same result
holds when we replace the monotonicity assumptions by the set of assumptions in the statement of
Theorem 1 (for more details, see the proof of Theorem 5.2.3 in [17]). As we check in the proof of
Theorem 3, the assumptions of Theorem 3 also gives rise to well-defined moduli spaces. Therefore,
in either case one can define the Floer differential for a cyclic set of Lagrangian correspondences by
:

∂x =
∑

y∈I(L)

#M(x, y)y

where # means counting isolated points modulo 2.

Remark 4 If one has the additional choices in place so that the moduli spaces M(x, y) are oriented
(cf. [15], [19]) , then # would mean the signed count of isolated points. Similarly, if one uses a
Novikov ring as the base ring Λ, then the above differential should be modified accordingly as usual
to accommodate various other quantities of interest (homotopy class, area,. . . etc.). The same remark
applies to any of the moduli spaces and corresponding counts that we use in this paper.

The compactness and gluing properties of the above moduli spaces allow one to prove that the
differential squares to zero, hence we get a well-defined Floer cohomology group. We refer the
reader to Proposition 5.3.1 in [17] for a continuation argument which shows that the resulting group
is independent of the choices of (δi,Hi, Ji)i=1,...,k .

Following [18], we will prove Theorems 1,2 and 3 in a special case (the general case is proved in
exactly the same way). Let (Mi, ωi)i=0,1,2 be symplectic manifolds of dimension 2ni and let

L0 ⊂ M0, L01 ⊂ M−0 ×M1, L12 ⊂ M−1 ×M2, L2 ⊂ M−2
be compact Lagrangian submanifolds such that the geometric composition L02 = L01◦L12 ⊂ M−0 ×M2

is embedded. As discussed above, we can perturb L0 and L2 so that the generalized intersections of
(L0,L01,L12,L2) as well as (L0,L02,L2) are transverse. Our goal is to construct a map

Φ : HF(L0,L01,L12,L2)→ HF(L0,L02,L2)



Geometric Composition in Quilted Floer Theory 7

which we will prove to be an isomorphism. Note that there is an obvious bijection of the chain
groups

CF(L0,L01,L12,L2) ∼= CF(L0,L02,L2)

The map Φ will not necessarily be induced by this bijection. As we will later demonstrate, it will
differ from this bijection possibly by a nilpotent matrix.

2.2 Defining the quilt

Our construction of Φ is summarized in Figure 1 below.

L0

L01

L12

L2

M1

M0

M2

L0

L02

L2

Figure 1: The geometric composition map

Let Σ be the pictured quilt (without the dotted line segment and the dotted circle). More precisely,
let Σ = Σ0 ∪ Σ1 ∪ Σ2 , where topologically speaking, each Σi is homeomorphic to a closed unit
disk with punctures at the boundary. Namely, Σ0 = D2\{−1,−i, 1} , Σ1 = D2\{−1, 1} and
Σ2 = D2\{−1, i, 1}. These are the embedded regions (patches) in Figure 1. Ignoring the dotted
curves, Σi is embedded in the region labelled Mi and Σ is obtained by identifying the connected
components of the boundary of Σi as indicated in Figure 1. As pictured, Σ has 3 (resp. 2) boundary
punctures on the left (resp. right) which we refer to as incoming (resp. outgoing) ends. There is also
the puncture in the middle, which we will refer to as the Y-end. (One can visualize the Y-end as
a semi-infinite cylinder where 3 semi-infinite strips are glued together along the 3 solid (straight,
parallel) lines that go to infinity. On each patch Σi we fix a complex structure ji with real analytic
boundary conditions as in [16]. In short, this means that the seams, the solid curve segments in
Figure 1, are embedded as real analytic sets in Σ. A concrete way of arranging such ji is as follows:
Take a thin neighborhood of each seam in Σ and identify it with a small neighborhood R× (−iε, iε)
of R in C , and choose {ji} to be holomorphically compatible with this identification. As in Figure
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1, let us label the maps from the three patches as ui : Σi → Mi with i = 0, 1, 2. Along the boundary
components of these patches, these have the labeled “seam conditions” as in the picture. This means
first of all that there are choices of diffeomorphisms φij between adjacent boundary components
of each patch (the way we constructed the {ji} near the seams by using the embedding of Σi in
Σ determines these choices). Now, if we consider the maps from adjacent patches, say ui and uj ,
as a map (ui, uj) : Σi × Σj → Mi ×Mj of product manifolds, for each point x in the boundary of
Σi adjacent to Σj , we should have that (ui(x), uj(φij(x))) ∈ Lij where Lij is the labeled Lagrangian
submanifold in the product Mi×Mj . What we describe here is a particular example of a holomorphic
quilt. We refer to Definition 3.1 in [16] for a more detailed and general definition of a holomorphic
quilt.

We may identify the region inside the dotted circle, which is a neighborhood of the Y-end, with
(0,∞)×[0, 1] mapping to M−0 ×M1×M−1 ×M2 . More precisely, first we split the strip corresponding
to u1 : Σ1 → M1 along the dotted horizontal seam in Figure 1 and put the diagonal seam condition
∆ ⊂ M1 ×M−1 . This has no effect on the moduli space that we consider. However, now at the Y-end
we can “fold” the strip to get the desired map. Specifically, at the Y-end instead of looking at maps
from different strips to different manifolds, one can consider a single map from (0,∞)× [0, 1] to the
product M−0 ×M1×M−1 ×M2 . Therefore, we choose our complex structure ji so that near the Y-end
they are identified with the standard complex structure on (0,∞)× [0, 1]. Similarly, we can choose
ji near the incoming and outgoing ends so that we can identify our strips with (−∞, 0]× [0, 1] and
[0,∞) × [0, 1] and we fix these choices once and for all. (For a standard discussion about these
choices see the discussion of strip-like ends in [15] Section (8d)). At the Y-end, let us label the map
obtained by folding by

v : (0,∞)× [0, 1]→ M−0 ×M1 ×M−1 ×M2 = M

This has the seam conditions v(s, 0) ∈ L01 × L12 and v(s, 1) ∈ L02 ×∆. (Note that at this point
we do not impose any condition on the behavior of v as s→∞. It will be seen to converge to an
intersection point of L01 × L12 and L02 ×∆ as a consequence of holomorphicity.) Next, we would
like to specify the complex structures on each Mi . Assume that we have chosen Ji on Mi such
that HF(L0,L01,L12,L2) and HF(L0,L02,L2) are both defined. In general, such Ji may need to be
t-dependent near

(s, t) ∈ [0,∞)× [0, 1] ∪ (−∞, 0]× [0, 1]

to ensure transversality for the moduli spaces that appear in the definition of the Floer differential.
Note that this specifies J = J0×−J1× J1×−J2 on M−0 ×M1×M−1 ×M2 . To ensure transversality
for the moduli space of quilted maps, we now introduce a domain dependent J(z) on M . Pick a small
holomorphically embedded disk D ⊂ (0,∞)× (0, 1) (Note that this is an interior disk). We define
J(z) by letting J(z) = J outside D and letting J(z) be chosen generically from the set of compatible
complex structures inside D. Such a J(z) need not preserve the product structure on M. A similar
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construction in quilted Floer theory already appears in [14]. We will denote such domain dependent
complex structures for our quilt, simply by J .

Definition 5 Let x, y be two generalized intersection points for (L0,L02,L2) (or equivalently
(L0, L01, L12, L2)). LetMJ(x, y) be the set of all finite energy maps u = (ui)2

i=0 that are holomorphic
with respect to J , have the quilted Lagrangian boundary conditions and converge to x on the incoming
end and to y on the outgoing end.

Note that L02 ×∆ and L01 × L12 intersect cleanly in

L̃02 = (L02 ×∆) ∩ (L01 × L12)

which is diffeomorphic to L02 . By definition, this means that

TL̃02 = T(L02 ×∆) ∩ T(L01 × L12)

The finite energy assumption guarantees that the map near the Y-end has exponential decay. More
precisely, at the Y-end we have a holomorphic map

v : (0,∞)× [0, 1]→ M−0 ×M1 ×M−1 ×M2

for which we have the following decay estimate (see [21], lemma 2.5 or [7], appendix 3):

Lemma 6 There exists ε0 > 0, such that for any holomorphic v with finite energy there exists C
such that

supt∈[0,1]|∇v(s, t)| ≤ Ce−ε0s

Here the gradient is taken with respect to a reference metric and the constant C only depends on
this metric. This lemma combined with Gromov-Floer compactness implies that as s → ∞ each
v converges exponentially fast to some point z ∈ L̃02 and all derivatives of v(s, t) converge to 0
exponentially fast. We will denote the point of convergence by v(∞).

Note that the use of Gromov-Floer compactness is justified by the following standard argument:
We cover our quilt by a finite number of domains such that each domain can be folded to yield a
map of a holomorphic curve from a single Riemann surface (possibly with boundary and strip-like
ends) into a product of symplectic manifolds. (Note that the folding can be carried out even when
there are boundary conditions as one requires seams to be embedded as real-analytic subsets). On
each domain we apply the usual Gromov-Floer compactness to deduce convergence in compact
subdomains outside a finite collection of points. This implies Gromov-Floer compactness holds
in any compact subdomain of a quilt. Finally, at the strip-like ends, we can again fold and reduce
to the standard Gromov-Floer compactness statement. Putting this all together yields the desired
Gromov-Floer compactness statement for a quilt. (See Chapter 4 of [13] for a detailed discussion of
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compactness in the case the domain is compact which applies to the setting of holomorphic quilts
without any change and Theorem 2.14 of [21] concerning strips with clean intersection Lagrangian
boundary conditions).

2.3 Morse-Bott intersections and transversality

Given that any element u ∈MJ(x, y) has exponential decay for some uniform ε0 > 0 at the Y-end,
we can view MJ(x, y) as the zero set of a Fredholm section of a Banach bundle defined using a
norm with exponential weights at the Y-end. We briefly review this construction with the purpose of
identifying the relevant tangent spaces.

Fix some p > 2, intersection points x ∈ CF(L0,L01,L12,L2) and y ∈ CF(L0,L02,L2). Let
(0,∞)× [0, 1] be a neighborhood of the Y-end in the quilt Σ. Let Σ = Σ− (1,∞)× [0, 1] be the
complement of a slightly smaller end. On the open subdomain Σ, we define the Banach manifold
B1 of all Lp

1,ε maps with quilted boundary conditions (seam conditions) that converge to x on the
incoming end and to y on the outgoing end. For any sufficiently small ε > 0, we may define on
(0,∞)× [0, 1] the Banach manifold B2 of all Lp

1,ε maps

v : (0,∞)× [0, 1]→ M0 ×M1 ×M1 ×M2 = M

with Lagrangian boundary conditions v(s, 0) ∈ L01 × L12 , v(s, 1) ∈ L02 ×∆ and exponential decay
with coefficient ε. For a recent review of exponential weights (with references to older treatments)
see [21]. Any element v ∈ B2 converges to some point on the manifold (L01 × L12) ∩ (L02 ×∆).
The tangent space to such v are a pair

v′ = (v′a, v
′
b)

where v′a is a section of v∗(TM) with totally real boundary conditions and exponential decay at
infinity, while v′b is an element of the finite dimensional space

Tv(∞)((L01 × L12) ∩ (L02 ×∆))

The norm on v′ is specified by(∫
(0,∞)×[0,1]

|eεsv′a|p + |∇(eεsv′a)|pdsdt
)1/p

+ |v′b|

Here we may use any norm |.| on the tangent spaces induced by smooth Riemannian metrics on the
Mi ’s. Since we assume that each Mi is compact, all such metrics lead to equivalent topologies on the
tangent space to v.

A chart of B2 near v is obtained by applying the exponential map to all such v′ where the
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norm of v′ is sufficiently small. To be precise, one must use a t-dependent metric on M which makes
L01 × L12 totally geodesic for t = 0 and L02 ×∆ totally geodesic for t = 1. See [21] Section 2.2)
for more details. Finally, we define our Banach manifold Bε(x, y) over Σ as pairs (w, v) ⊂ (B1,B2)
which agree on the overlap (0, 1)× [0, 1].

Now, let V be the Banach bundle over Bε(x, y) whose fibre over u is given by Ω0,1(Σ,E) where
E is the pullback of the tangent bundles of Mi and Ω0,1(Σ,E) denotes the space of (0, 1)-forms
with finite Lp norm and with exponential decay at the Y-end. On each of the two pieces, standard
arguments (see [17] for B1 and [21] for B2 ) imply that the ∂̄ operator is a restriction of a Fredholm
operator to an open domain. Note that this does not mean that restriction of ∂̄ to B1 or B2 is
a Fredholm operator; we are saying that there exists a way to embed the open domains Σ and
(1,∞) × (0, 1) to bigger domains where one has extensions of the corresponding ∂̄ operators to
Fredholm operators. One can arrange this easily in the case of B1 and B2 . For example, one can
take the double of each domain, and at the same time doubling all the structure of Banach bundles
and the sections defined by ∂̄ operators (see [6] for a discussion of such doubling in a related
problem). In that way, B1 is embedded into a standard Fredholm problem for a holomorphic quilt as
studied in ([17], pg. 877) and B2 is embedded into a standard Fredholm problem that underlies the
definition of Floer differential for the Lagrangian Floer homology of (L01×L12, L02×∆) ([21], pg. 14).

Knowing that the ∂̄ operator is a restriction of a Fredholm operator to an open domain for
both B1 and B2 allows us to apply a standard patching argument (see for example [3] pg. 50) which
implies that the ∂̄ operator defines a Fredholm section over Bε(x, y). Note that ε has to be chosen
sufficiently small to ensure that ∂̄ on B2 is the restriction of a Fredholm operator to an open domain
and that each element of MJ(x, y) actually belongs to Bε(x, y).

For future reference, note that the linearization of ∂̄ at some v on (0,∞)× [0, 1] has the form:

D∂̄ ⊕ K : Lp
1,ε(E,F)⊕ Tv(∞)((L01 × L12) ∩ (L02 ×∆))→ Lp

0,ε(Ω
0,1(E))

Here E = v∗TM and F is the Lagrangian subbundle given by v∗(T(L01 × L12)) along {0,∞}× {0}
and v∗(T(L02×∆)) along {0,∞}×{1}; K is some operator with a finite dimensional linear domain
Tv(∞)((L01 × L12) ∩ (L02 ×∆)). The specific form of K depends on the choice of the t-dependent
metric gt and will not need to be made explicit for our purposes. The special case when v is constant
will be discussed below (Section 2.4). We now give a proof of the following claim:

Proposition 7 For a generic choice of J , MJ(x, y) is a smooth finite dimensional manifold.

Proof We need to verify that, for a generic choice of J , the Fredholm section defined by ∂̄ of
the Banach bundle V over Bε(x, y) will be transverse to the zero section. Let J be the space
of almost complex structures constructed above (see page 8). Recall that we consider domain
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dependent almost complex structures where this dependence is at the Y-end and only on a small disk
D ⊂ (0,∞)× (0, 1). Thus, given that ui ∈MJ(x, y), we need to show that the linearized operator
D∂̄(u, J) is surjective. Note that as we use a domain dependent J , the linearized operator is the sum
of two terms - one term coming from D∂̄(u) corresponding to variations of u and the second term
corresponds to variations of J . First assume that the map v defined at the Y-end is non-constant. We
will show that any Lq

0,−ε -section (1/p + 1/q = 1) η of the dual bundle Ω0,1(E,F) orthogonal to
the image of the linearization must vanish around some point in D. Then the unique continuation
principle will yield that η vanishes identically.

We now write the linearization of our section on the disk D ⊂ (0,∞)× (0, 1), where we required
J to have the domain dependence. The main point here is that since we allow our J to be domain
dependent, we do not need a somewhere injective curve but simply a point z0 ∈ D such that
dv(z0) 6= 0. Following the argument in [13, page 48], the linearized operator has the following form
on D:

D∂̄(v, J) = D∂̄(v) +
1
2

S(v, z) ◦ dv ◦ jD

Here, D∂̄(v) denotes the partial derivative holding J fixed and S(z, v) ◦ v ◦ jD corresponds to
linearization with respect to J , where S(z, v) is a section of the tangent space to J at J which can be
identified with the subspace of S ∈ End(TM) such that

SJ = −JS, ω(S·, ·) = −ω(·, S·)

Now, suppose that some section η is orthogonal to the image. Following [13], we can choose
S(z0, v(z0)) such that

〈η(z0), S(z0, v(z0)) ◦ dv(z0) ◦ jD〉 > 0

whenever η(z0) 6= 0. We can extend S(z0, v(z0)) to a small neighborhood of z0 by using a bump
function. Note that the resulting S(z, v) is domain dependent. This shows that η(z0) = 0 for all z0

where dv(z0) 6= 0. However, such z0 are dense in D. Since η is in the kernel of a ∂̄ -type operator,
namely (D∂̄(v))∗η = 0, it must vanish everywhere by the unique continuation principle.

Finally, assume that v is constant, thus by unique continuation u is constant. In the next subsection,
we show that the index of the linearization is 0 (Lemma 8) for the case of a constant almost complex
structure of split-type, that is, it comes from an almost complex structure Ji on Mi . Notice however
that in Section 2.2 (Definition 5), we have required that almost complex structure J is of split-type
except on a small disk D in order to ensure transversality at the constant solutions. On the other
hand, for the purpose of calculation of index we can always homotope our J to a split-type almost
complex structure so the calculation of the next subsection ensures that the index of the linearization
is 0 for a regular J (as in Definition 5).

We claim that for any regular J , D∂̄(u, J) is surjective. In view of the index calculation, it is enough
to show that the kernel of the linearization at a constant map is zero. We may identify the image of ui
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with 0 ∈ R2ni . An element u′ of the kernel of the linearization is then a triple of maps u′i from the
quilt to (R2ni , ω0). (Outside of the region where J is non-split, we have that ∂̄Jiu

′
i = 0 but along the

disk D where J is non-split we can only speak of J -holomorphicity for the folded map.) u′i have linear
quilted Lagrangian boundary conditions. Thus, along each seam (u′i, u

′
i+1) ∈ L′i,i+1 ⊂ R2(ni+ni+1)

where L′i,i+1 is a linear Lagrangian submanifold. By construction, u′i have exponential decay near
the incoming and outgoing ends. Near the Y-end, we can identify u′i with the folded map

v′ : (0,∞)× [0, 1]→ Cn0+2n1+n2

which satisfies ∂̄Jv′ = 0. Let us decompose v′ as

v′ = v′a + v′b

where v′a has exponential decay at infinity and v′b is a constant vector in the intersection of the linear
Lagrangians. In particular, the total derivative of v′ has exponential decay near infinity. Note that
in the part where J does not split (i.e. near the Y-end) by assumption J is compatible with the
symplectic structure on

(R2n0 ,−ω0)× (R2n1 , ω0)× (R2n1 ,−ω0)× (R2n2 , ω0)

We claim that in fact each u′i is constant. Now, the standard symplectic form ω0 = 1
2 d(xdy− ydx) is

an exact form and the linear Lagrangians L′i,i+1 are exact Lagrangians, therefore by Stokes’ theorem
we have that the symplectic area vanishes:

3∑
i=1

∫
Σi

(u′i)
∗ω0 = 0

Note that the use of Stokes’ theorem is justified since near the incoming and outgoing ends u′i have
exponential decay and near the Y-end we have that the total derivative of v′ decays exponentially.
Now, the fact that u′ is holomorphic enables us to relate the symplectic area to the energy (see
[13, page 20]). Since we have that J is non-split near the Y-end, in order express the energy, as
before let us divide the domain into two pieces. Near the Y-end, we have the folded map v′ with
domain (0,∞) × [0, 1]. Denote by Σ′i = Σi\((0,∞) × [0, 1]), the domain of u′i outside of the
neigborhood of the Y-end. We can now write out the relation between symplectic area and the energy
of a holomorphic u′ as follows:

3∑
i=1

1
2

∫
Σ′

i

|du′i|2Ji
dvolΣ′

i
+

1
2

∫
(0,∞)×[0,1]

|dv′|2Jdvol =
3∑

i=1

∫
Σi

(u′i)
∗ω0 = 0

where Ji are almost complex structures on Mi and J = (Ji)3
i=1 over (Σ′i)

3
i=1 .

Therefore, we conclude that the u′i are constant. Since u′i converges to zero at the incoming and
outgoing ends, this implies that u′i = v′ = 0 as desired.
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2.4 Index computation for a constant map

In this section we calculate the index of the linearization of ∂̄ operator at a constant map. Although,
everywhere else, we used Sobolev spaces Lp

1,ε and Lp
0,ε for p > 2, in calculating the index we take

p = 2 as this makes the calculation of the index easier. Since the kernel and cokernel of the linearized
∂̄ operator is smooth by elliptic regularity, this calculation immediately implies the index calculation
for p > 2.

Lemma 8 Let u ∈MJ(x, x) be a constant map, then the index of u vanishes.

The linearized problem we will study is that of holomorphic quilts mapping into Cn with linear
Lagrangian boundary conditions. As preparation for the main result, we first review a standard
Morse-Bott index calculation. Let L , L′ ⊂ Cn be a pair of Lagrangian subspaces. Let S = R× [0, 1].
We consider the Fredholm map

∂̄ : L2
1,ε(S; L,L′)→ L2

0,ε(S)

for sufficiently small ε > 0. Here L2
1,ε(S; L,L′) denotes the weighted Sobolev space of maps with

u(·, 0) ∈ L and u(·, 1) ∈ L′ . Note that in view of the restriction map

L2
1(S)→ L2(∂S)

we do not need u to be continuous to make sense of the linear Lagrangian boundary condition. For a
general discussion of regularity for the ∂̄ -operator with totally real boundary conditions that include
the rather special case we are considering, see Theorem C.1.10 in [13].

Lemma 9 ind(∂̄) = −dim(L ∩ L′).

Proof A function u : R× [0, 1]→ (Cn; L,L′) may be written as

u(s, t) =
∑
λ

f (t)φλ(s)

where φλ is an eigenfunction with eigenvalue λ of the operator −i∂s on [0, 1] with φλ(0) ∈ L and
φλ(1) ∈ L′ .

The kernel of ∂̄ = ∂t + i∂s consists of maps

u(s, t) =
∑
λ

cλetλφλ(s)

for some constants cλ . However, since λ is real and such solutions are required to have exponential
decay for t→ ±∞, it must be that cλ = 0 for all λ. Hence, we conclude that dim ker ∂̄ = 0.
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By elliptic regularity, the cokernel can be identified with the kernel of −∂t + i∂s on the space of L2
1

functions with exponential growth of at most ε. In addition, these functions have boundary values on
iL and iL′ . Therefore, such maps consist of

u(s, t) =
∑
λ

cλe−tλφλ(s)

However, if ε is smaller than the first nonzero eigenvalue λ0 , the only maps are those with
λ = 0. These are precisely the constant maps with values in (iL) ∩ (iL′). Therefore, index
∂̄ = −dim((iL) ∩ (iL′)) = −dim(L ∩ L′).

The calculation of the index for

∂̄ : L2
1,ε(S; L,L′)→ L2

0,ε(S)

computes the index for any
∂̄ : Lp

k,ε(S; L,L′)→ Lp
k−1,ε(S)

with p ≥ 2 and k ≥ 1. Indeed, elliptic regularity for the ∂̄ -operator with linear Lagrangian boundary
conditions implies that any element of the kernel/cokernel is smooth. Strictly speaking, one must first
prove that the corresponding problem for Lp

k,ε -spaces is Fredholm. As explained in [3] (pg.58-60,
70-75) , one can convert the index problem over weighted spaces to an equivalent problem for
unweighted spaces where the Fredholm property is standard. The previous lemma is useful when
considering Morse-Bott moduli spaces. In particular, consider the tangent space at the constant map
of the moduli space of holomorphic curves with Morse-Bott boundary conditions along (L,L′). By
definition, it is the kernel of the map

∂̄ ⊕ K : L2
1,ε(S; L,L′)⊕ ((L ∩ L′)× (L ∩ L′))→ L2

0,ε(S)

For the calculation of the index the explicit form of the map K is not relevant since it is a compact
operator. Thus we have:

Corollary 10 ind(∂̄ ⊕ K) = dim(L ∩ L′).

This is consistent with the intuition that the Morse-Bott case corresponds to constant holomorphic
disks lying on L ∩ L′ .

We will make use of excision for our index calculations. This is a standard tool for comput-
ing the index of elliptic operators that goes back to the work of Atiyah and Singer on the index
theorem ([1]). We review a simple version of it that is tailored to our application. For recent proofs,
one may consult [2].
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Σ1

Σ′
1

Σ2

Σ′
2

Figure 2: Excision

Suppose we are given quilts Σ1 , Σ2 each with a pair of complex vector bundles Ei and Fi . In
addition, suppose we have ∂̄ -operators

∂̄i : Γ(Ei)→ Γ(Fi)

over each Σi . At the boundaries, we assume that there are totally real boundary conditions. This
amounts to a choice of a totally real subbundle Ti of each Ei over the boundary of Σi .

Now, assume that each Σi contains a separating strip (a, b) × [0, 1]. We assume there are
isomorphisms F : E1|(a,b)×[0,1] → E2|(a,b)×[0,1] and G : F1|(a,b)×[0,1] → F2|(a,b)×[0,1] which map ∂̄1

to ∂̄2 and T1 to T2 , respectively. We may excise Σi along the strips as in Figure 2 to form new quilts
Σ′1 and Σ′2 with corresponding bundles and ∂̄ -operators ∂̄′1 and ∂̄′2 . The excision theorem asserts
that

ind(∂̄1) + ind(∂̄2) = ind(∂̄′1) + ind(∂̄′2)

A similar discussion applies when instead of a separating strip we have a separating cylinder
(a, b)× S1

We are ready to compute the index of the linearization at a constant map. Note that for this linearization
all maps are into Cn with the standard complex structure and the nonlinear Lagrangian boundary
conditions are replaced by their tangent spaces in Cn . Consider the nine figures drawn in Figure 3.
Let mi stand for the index of Fig i. We wish to compute m1 . We have shown in the previous section
that the kernel of the map represented by Fig 1 is zero. Similarly the kernel of Fig 2 is zero. This
implies that m1 ≤ 0 and m2 ≤ 0. By additivity of index,

m3 = m1 + m2
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Figure 3: Index calculation using excision
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Excising Fig 3 and 6 along a neighborhood of the dotted circles (where we use the vertical dotted
circle for Fig 6) gives

m3 + m6 = m4 + m5

Now, we claim that m5 = dim(L02). To see this, one simply folds to obtain a single strip with
Morse-Bott Lagrangian boundary conditions on (L01 × L12,L02 ×∆). Thus, the discussion right
after Lemma 9 above gives m5 = dim(L02). We have m4 = 0 since it is the quilt of the identity
map. To compute m6 , note that excision (this time we use horizontal dotted circle for Fig 6) implies
that

m6 + m7 = m8 + m9

By folding, we have that m8 and m9 represent disks so

m8 + m9 = dim(L01) + dim(L12)

and m7 = dim(M1) since it is the linearization of a constant map of a sphere. Thus, m6 = dim(L02)
which together with m4 = 0 and m5 = dim(L02) gives m3 = 0. This implies m1 = m2 = 0, as
desired.

2.5 Completion of the proof of Theorem 1

By Proposition 7, the moduli spaces MJ(x, y) are transversely cut out. To define a count we need to
show that the zero dimensional moduli spacesM0

J(x, y) is compact and hence finite. Then,M0
J(x, y)

allows us to define the map

Φ : CF(L0,L01,L12,L2)→ CF(L0,L02,L2)

We will sometimes refer to this map by Y-map. To verify that this is indeed a chain map we need to
consider the 1-dimensional moduli spaces M1

J(x, y).

First note that the set of assumption (1) on second homotopy classes ensure that we cannot have any
interior disk or sphere bubbles. Therefore, by Gromov compactness the boundary of M0

J(x, y) and
M1

J(x, y) consists of broken configurations at the ends. In the case of M0
J(x, y), there cannot be

breaking at the x and y ends because by our transversality assumptions such a break cannot occur in
a 0-dimensional component of the moduli space. Finally, we need to argue that for both M0

J(x, y)
and M1

J(x, y) there cannot be a breaking at the Y-end.

To this end, the following lemma will be useful:

Lemma 11 Let δ : R×[0, 1]→ (M; L01×L12, L02×∆) be a smooth map with Lagrangian boundary
conditions and at the two ends converges exponentially to points in the Morse-Bott intersection. Then
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there exists a smooth map δ̃ ∈ π2(M; L01 × L12) such that∫
δ∗ωM =

∫
δ̃∗ωM

Furthermore, the Fredholm indices of δ and δ̃ are related as follows:

index(δ̃) + 2dim(M1) = index(δ)

Proof It will be convenient to view δ as a quilted map

δi : R× [0, 1]→ Mi, i = 1, 2, 3

with cyclic Lagrangian boundary conditions (L01, L12, L02). Thus, we have (δ2(1, s), δ0(0, s)) ∈ L02 ,
etc. Let δ4 : R× [0, 1]→ M1 be the map with δ4(s, t) = b(s), where b(s) is the unique point on M1

with (δ2(1, s), b(s), b(s), δ0(0, s)) ⊂ L01×L12 . Note that δ4 is a smooth map which is not holomorphic
but converges exponentially as |s| → ∞. Furthermore, the image of δ4 is just a path, thus δ4 has
zero area. We have now obtained a new quilt δ′ with four patches δi and seams (L01,L12,L01,L12)
while the area of δ and δ′ is the same. We fold δ′ to obtain a map

R× [0, 1]→ M

with boundary on (L01 × L12,L01 × L12). Alternatively, we may view this as a map

δ̃ : D→ M

where D is the unit disk and δ̃ has Lagrangian boundary conditions on L01 × L12 . This map satisfies
the required property, since δ, δ′, δ̃ all have the same area.

To see the relation of Fredholm indices, we note that δ, δ′, δ̃ all have the same Maslov index since
t-derivative of δ4 vanishes (cf. [18] pg. 846). The Fredholm index is given by the sum of Maslov
index and the dimension of the Morse-Bott intersection. To conclude, observe that the dimension of
the Morse-Bott intersection for δ is dim((L01 × L12) ∩ (L02 ×∆)) = dim(M0) + dim(M2) while it is
dim(L01 × L12) = dim(M0) + 2dim(M1) + dim(M2) for δ̃ .

Back to the proof of Theorem 1, observe that a bubble at the Y-end would be a holomorphic map
δ : R× [0, 1]→ M−0 ×M1 ×M−1 ×M2 as in the previous lemma. However, holomorphicity ensures
that it has positive area. Therefore, we would obtain an element δ̃ ∈ π2(M; L01 × L12) which has
positive area, which is impossible by the assumption (1). Thus, there cannot be a bubbling at the
Y-end.

Therefore, standard gluing theory applied to M1
J(x, y) shows that Φ is a chain map.

Remark 12 Note that we do not need to consider Morse-Bott gluing as the only place where a
breaking could occur is at the ends where we have transverse intersection.
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To complete the proof we need to show that Φ induces an isomorphism on cohomology. Let us write
P in = {(γ0, γ1, γ2)| γi : [0, 1]→ Mi, γ0(0) ∈ L0, (γ0(1), γ1(0)) ∈ L01, (γ1(1), γ2(0)) ∈ L12, γ2(1) ∈
L2}. Each generator of the chain complex CF(L0,L01,L12,L2) is an element of P in and the chain
complex splits into a direct sum of chain complexes corresponding to the path components of P in .
In what follows, we assume that P in is path-connected in order to avoid the notational complexity of
indexing path components and carrying out the argument for each path-component separately.

As above, assumption (1) enable us to have a well-defined action functional,

Ain : P in → R

γ →
2∑

i=0

∫
[0,1]2

(γt
i )
∗ωi

where as before γt
i is any choice of a smooth homotopy in P in between γi and a fixed path on P in , and

ωi are the given symplectic forms on Mi . Therefore, the chain complex CF(L0, L01, L12, L2) inherits
a filtration given by Ain . Recall that the Floer differential decreases the action functional.

Next, we have a similar filtration on CF(L0,L02,L2), where we write

Pout = {(γ0, γ2)| γi : [0, 1]→ Mi, γ0(0) ∈ L0, (γ0(1), γ2(0)) ∈ L02, γ2(1) ∈ L2}

and Aout is defined as before. Note that Pout consists of elements of P in such that γ1 is constant.
Therefore, the action functional Aout = Ain whenever both are defined.

In view of the fact that constant maps are the only zero dimensional solutions which preserve the
action (and they are transversely cut out as proved in Proposition 7), to conclude that Φ is an
isomorphism, it suffices to show that Φ is a filtered chain map. For this, it suffices to show that if
M0

J(x, y) is non-empty, then the following inequality holds :

Ain(x) ≥ Aout(y)

where the equality holds only if x = y and M0
J(x, y) consists entirely of the trivial solution.

To see this, let u be a holomorphic curve in M0
J(x, y). Now, u can be considered as a path (γt

i )
2
i=0 in

the path space P in such that γt
1 shrinks to a constant path as we get to the Y-end and stays constant

until the outgoing end. Now, since u is a holomorphic map, the action strictly decreases unless
u is constant. This gives the desired inequality: Ain(x) ≥ Ain(y) = Aout(y) with equality only if
x = y and u is constant. So, we have #M0

J(x, x) = 1 with contributions coming only from constant
solutions, which are cut transversely. We conclude that Φ is an isomorphims, as desired.
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3 Extensions of the main theorem

In this section, we discuss the proof of Theorem 1 under positive and strongly negative monotonicity
assumptions. This result in the positively monotone case was first proved by Wehrheim and Woodward
by different techniques. However, the strongly negative monotone case is new and important for our
application.

As a first step, we prove a topological lemma which will allow us to establish an a priori energy
bound for pseudoholomorphic curves counted in the moduli space MJ(x, y) used for defining the
map Φ : CF(L0,L01,L12,L2)→ CF(L0,L02,L2).

Lemma 13 Let x, y ∈ CF(L0,L01,L12,L2) ' CF(L0,L02,L2) be two generalized intersection
points. Let P(x, y) be the space of maps (−∞,∞) → P(L0,L01,L12,L2) which asymptotically
converge to x and y. Similarly, let B(x, y) be the space of smooth maps that is considered for
defining the map Φ : CF(L0, L01, L12, L2)→ CF(L0, L02, L2) (see Section 2.2) Then there is a natural
inclusion map B(x, y) ↪→ P(x, y) which induces an isomorphism:

π0(P(x, y)) ∼= π0(B(x, y))

In particular, any homotopy classes of maps used to define Φ : CF(L0, L01, L12, L2)→ CF(L0, L02, L2)
mapping x to y can be represented as a concatenation of maps Φ = u#c, where u ∈ P(x, y) and
c : CF(L0,L01,L12,L2)→ CF(L0,L02,L2) is the constant map with value y.

Proof Recall that the space of paths in the absence of Hamiltonian perturbations (which we assume, by
an a priori arrangement of transversality of L0, L01, L12, L2 as before) is given by P(L0, L01, L12, L2) =

{(γ1, γ2, γ3)|γi : [0, 1] → Mi, γ1(0) ∈ L0, (γ1(1), γ2(0)) ∈ L01, (γ2(1), γ3(0)) ∈ L12, γ3(1) ∈ L2)}.
We will denote a path γ : (−∞,∞)→ P(L0,L01,L12,L2) in this path space by γs = (γs

1, γ
s
2, γ

s
3) ∈

P(x, y), where s ∈ (−∞,∞). Now the space B(x, y) can be identified as a subspace of P(x, y)
where γs = (γs

1, γ
s
2, γ

s
3) ∈ B(x, y) if and only if γs

2 is a constant with respect to t for s ≥ 1. More
precisely, first note that any map in B(x, y) can be homotoped to be constant around a neighborhood
of the Y-end (because of the exponential convergence at the Y-end). Now, for a moment, let us
forget about all the decorations and seam conditions on the domain of Φ as given in Figure 1,
we then see a rectangle with a middle point (Y-end) removed. Let’s identify this rectangle with
R× [0, 1] (R corresponds to the horizontal direction and [0, 1] corresponds to the vertical direction
in Figure 1). We arrange so that the Y-end point corresponds to (1, 1/2). Let’s foliate this rectangle
by vertical lines Ls = {s} × [0, 1]. Now, if we look at Φ(Ls) for s < 1 then we get 3 paths
(γs

1, γ
s
2, γ

s
3) as restrictions of Φ|Ls . For s > 1, we obtain (γs

1, γ
s
3) as restrictions of Φ|Ls such that

(γs
1(1), γs

3(0)) ∈ L02 . We can view this alternatively, as a triple of paths (γs
1, γ

s
2, γ

s
3) where γs

2 is
the constant path such that (γs

1(1), γs
2(t)) ∈ L01 and (γs

2(t), γs
3(0)) ∈ L12 (such a path is uniquely
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determined by the composability of L01 and L12 ). Finally, since we arranged that Φ is constant
near the Y -end, the triple γs = (γs

1, γ
s
2, γ

s
3) of path of paths extends continuously over s = 1 and we

obtain γs ∈ P(x, y). Note that γs
2 does not vary with t for s ≥ 1.

The desired equivalence of path components can be seen by noting that any path γs = (γs
1, γ

s
2, γ

s
3) ∈

P(x, y) is homotopic to a path which is constant for s > N for some sufficiently large N by the
requirement of convergence as s→∞. One can then isotope γs so that it is constant for s ≥ 1

2 in
both s and t . Thus, we have an inverse map π0(P(x, y))→ π0(B(x, y)) to the map induced by the
inclusion map. This gives the desired isomorphism.

To see the last part of the statement more explicitly, express any the homotopy class ρ ∈ P(x, y) as
(γs

1, γ
s
2, γ

s
3) as above with γs

i constant for s > N . Now, consider the homotopy ρr where r ∈ [0, 1]
given by (γs+rN

1 , γs+rN
2 , γs+rN

3 ). Then ρ1 is a map in B(x, y) which is constant for s ≥ 1
2 , hence it is

a concatenation of u ∈ P(x, y) and the constant map with value y as stated.

We are now ready to prove the extension of Theorem 1 to the monotone case:

3.1 Proof of Theorem 2

We briefly recall from [17] why the Floer cohomology groups in consideration are well-defined
(independent of the choices, invariant under Hamiltonian deformations, etc.). Given x, y ∈ L(0)∩L(1) ,
the monotonicity assumptions guarantee that the energy of index k holomorphic strips u ∈Mk(x, y)
is constant. Therefore, by Gromov-Floer compactness it suffices to exclude disk and sphere bubbles.
The monotonicity assumptions ensure that any non-trivial holomorphic disk must have non-zero
Maslov index which excludes disk bubbles in 0-dimensional moduli space. If one assumes that the
Lagrangians are orientable, the Maslov index at a disk bubble has to be at least 2, which excludes disk
bubbles in 0- and 1-dimensional moduli spaces. However, to have a well-defined Floer cohomology
group we also need to avoid disk bubbles in index 2 moduli spaces, hence we require the minimal
Maslov index for disks to be at least 3 (the sphere bubbles are handled similarly).

Now, as before we will consider the map

Φ : HF(L0,L01,L12,L2)→ HF(L0,L02,L2)

which is defined by counting solutions in M0
J(x, y). Let us first study the compactness property of

the moduli spaceMJ(x, y) under our assumptions. We first need to establish an area-index relation to
have an a priori energy bound so that we can apply Gromov-Floer compactness. This follows easily
from Lemma 13. Namely, to compute the index of an element Φ ∈MJ(x, y), we can topologically
apply a homotopy as in Lemma 13 so that Φ = u#c where u is a map contributing to the differential
of the chain complex CF(L0, L01, L12, L2) and c ∈MJ(y, y) is the constant map at y. In Section 2.4,



Geometric Composition in Quilted Floer Theory 23

we computed the index of c to be equal to zero. (Indeed, this computation is the non-trivial part of
the argument that we are giving here). Therefore, by excision,

index(Φ) = index(u) + index(c) = index(u)

Now, by the area-index relation for the moduli space that u belongs to (this follows from the
monotonicity assumptions, see [17, Remark 5.2.3]), the energy of index k holomorphic strips is
constant. Since the energy of Φ is equal to the energy u, it follows that the energy of index k maps
in MJ(x, y) is constant. This last statement is the main output of monotonicity assumptions and it is
what we mean by area-index relation for holomorphic curves in MJ(x, y).

In view of the area-index relation for maps in MJ(x, y), we have energy bounds on all trajectories
of index 0 and 1 and thus Gromov-Floer compactification holds. Therefore, the compactification
includes broken configurations at the ends, possibly also including the Y-end, and disk and sphere
bubbles. However, as before our monotonicity assumptions ensure that disk and sphere bubbles do
not arise in the compactification of index 0 and 1 moduli spaces. Recall that M0

J is used to define
the map Φ and M1

J is used to check that it is a chain map.

We now need to deal with bubbles at the Y-end. Given a sequence of trajectories ui ∈ M1
J(x, y)

breaking along the Y-end, by Gromov-Floer compactness, we get in the limit a pair (u∞, δ) where
u∞ ∈MJ(x, y) (possibly broken at the incoming and outgoing ends) and δ is a holomorphic strip
with Morse-Bott boundary conditions along (L01× L12, L02×∆). Note that δ can also be broken but
that does not affect the argument. Now, if δ is non-constant, it will have non-zero energy, therefore
we have

E(u∞) < E(ui)

By an application of Lemma 11, from δ we obtain a map δ̃ with E(δ) = E(δ̃) which represents a
class in π2(M, L01 × L12) therefore if δ is non-constant, by energy-index relation δ̃ has at least index
2 since L01× L12 are assumed to be orientable. By the index computation in Lemma 11 we conclude
that δ has index at least 2 if it is non-constant. Again by the energy-index relation proved above for
maps in MJ(x, y), this implies

index(u∞) ≤ index(ui)− 2 = −1

Since the index is additive, there exists at least one unbroken holomorphic piece in u∞ with negative
index. However, since these moduli spaces are cut out transversely, this cannot occur. Therefore,
M0

J and M1
J cannot have any broken configuration with a bubble at the Y-end. This concludes the

argument that the map Φ is well-defined.

Now, to check that Φ is an isomorphism, we construct an approximate inverse to Φ. Let

Ψ : HF(L0,L02,L2)→ HF(L0,L01,L12,L2)
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be the map given by counting index 0 holomorphic maps from the quilt that is obtained by reversing
the orientation of the quilt that is used to define Φ. Arguments identical to those for Φ, show that Ψ

is a chain map. We claim that
Ψ ◦ Φ = I + K

where I is the identity and K is a nilpotent map. This will prove that Φ is an isomorphism. The
diagonal entries of Ψ ◦ Φ are obtained by counting pairs of broken trajectories (u1, u2) with u1

starting at a critical point x and u2 ending at the same critical point. In addition, u1 has the
same endpoint as the starting point of u2 . By the area-index relation, the only such trajectories
of index 0 are the constants. More generally, given a sequence of such broken pairs (u1, u2),
(u3, u4) · · · (uN−1, uN) such that the endpoint of ui is the starting point of ui+1 and the starting point
of u1 is the same as the endpoint of uN we have that the only index 0 trajectory is the constant
one. Indeed, since index and area are additive, any such trajectory with nonzero area has positive index.

Let N0 denote the number of intersection points, i.e. cardinality of I(L). Consider a broken
trajectory, that is a sequence of holomorphic curves that contribute to Ψ ◦ Φ, of index zero with no
constant pairs. In other words, these are the holomorphic curves that contribute to K = Ψ ◦ Φ− I .
Any such trajectory with more than N0 − 1 pairs must have a repeated intersection point. Thus
such trajectories do not arise, since they would include a segment which has positive index, as we
just explained. Now, if Kk(x) is nonzero there must be a broken trajectory consisting of k pairs
connecting x to some critical point y. This trajectory consists of non-constant pairs. This is easily
seen by induction. First, K(x) lies in the span of critical points connected to x by a non-constant
pair. Suppose that Ki(x) lies in the span of critical points yi connected to x by a non-constant broken
path of pairs of length i− 1. Any nonzero matrix element 〈y,K(yi)〉 gives rise to a critical point y
connected to yi by a non-constant pair. It is thus connected to x by a non-constant path of pairs of
length i as desired. Therefore, we may conclude that KN0 = 0 since it is contained in the span of
elements coming from broken pairs of length N0 . This completes the proof that Φ is an isomorphism.

3.2 Proof of Theorem 3

In this case, we follow the same steps as in the positively monotone case. The only difference is
the way we handle various exclusions of bubbles. Namely, we exclude bubbling by first arranging
the transversality for the moduli spaces of simple sphere bubbles and simple disk bubbles. (Recall
that simple means not multiply-covered). The strongly negative monotonicity assumptions is
the assumption that the expected dimension of these moduli spaces is negative therefore when
transversality holds (which can be arranged by choosing the almost complex structure J in the
target generically), we guarantee that these moduli spaces are empty. A lemma of McDuff ([13],
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Proposition 2.51) and the decomposition lemma of Kwon-Oh [8] and Lazzarini ([9]) allows us to
lift this to non-simple sphere and disk bubbles. More specifically, the lemma of McDuff states
that any pseudoholomorphic sphere factors through a simple pseudoholomorphic sphere, so the
existence of the former one implies the existence of the latter. Similarly, Kwon-Oh and Lazzarini’s
lemma implies that the existence of any pseudoholomorphic disk ensures the existence of a simple
pseudoholomorphic disk. Now, recall that the expected dimension of unparameterized moduli space
of spheres in Mi in the homology class [u] is 2(〈[u], c1(TMi)〉+ mi − 3). As part of the hypothesis,
we assumed that this number is negative, in fact we assumed that this number is strictly less than
−2 to exclude bubbling in Mk

J(x, y) , for k = 0, 1, 2. This is required to ensure that the Floer
cohomology groups that we are considering are well-defined and independent of the auxiliary choices.
Similarly, to avoid disk bubbles, recall that by the real-analyticity of the seams, any disk bubble
in a quilted map can be seen as a disk bubble in Mi × Mi+1 with boundary on Li+1 for some i.
The expected dimension for unparameterized simple disks in the homology class u is given by
µLi+1([u]) + (mi + mi+1)− 3. We assumed that this number is strictly less than −2 to avoid disk
bubbles in Mk

J(x, y), for k = 0, 1, 2 for the same reason as before.

Therefore, these considerations imply that the Floer cohomology groups are well-defined. Furthermore,
the negative monotonicity assumption gives an area-index relation as before, which guarantees an a
priori energy bound on the moduli spaceMk

J(x, y), hence Gromov-Floer compactness applies. Since
we excluded the possibility of the sphere and disk bubbled configurations in the compactification of
the moduli spaces M0

J and M1
J , to finish off the only remaining issue is to exclude the bubbling

at the Y-end. We will follow the notation given in the proof of Theorem 2. We need to exclude
non-constant δ bubbles. Recall that

δ : R× [0, 1]→ (M; L01 × L12,L02 ×∆)

is a strip with Lagrangian boundary conditions and at the two ends converges exponentially to points
in the Morse-Bott intersection. Note that we can always ensure the transversality of the moduli space
of such J -holomorphic curves by choosing our J to be t-dependent near the Y-end (cf. [5]).

Lemma 14 index(δ) ≤ 0.

Proof Via the construction given in Lemma 11 we will relate the index of δ to that of a disk in
M with boundary on L01 × L12 . The desired conclusion will then follow from the monotonicity
assumptions of Theorem 3. Recall from Lemma 11 that we view δ as a quilt of maps

δi : R× [0, 1]→ Mi, i = 1, 2, 3

with cyclic Lagrangian boundary conditions (L01, L12, L02). We introduce δ4 : R× [0, 1]→ M1 to be
the map with δ4(s, t) = b(s), where b(s) is the unique point on M1 with (δ2(1, s), b(s), b(s), δ0(0, s)) ∈
L01 × L12 . This defines a quilted map δ′ with four patches δi and seams (L01,L12,L01,L12). Note
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that we have equality of energies E(δ) = E(δ′) since the image of δ4 has zero area. We fold δ′ to
obtain a map

δ′′ : R× [0, 1]→ M

with boundary on (L01 × L12,L01 × L12). Alternatively, we may view this as a map

δ′′′ : D→ M

where D is the unit disk and δ′′′ has Lagrangian boundary conditions on L01 × L12 . Now observe
that index(δ′′′) = index(δ′′) and by the monotonicity assumptions,

index(δ′′′) = µL01×L12([δ′′′]) + m0 + 2m1 + m2 ≤ 0

To conclude, we know by Lemma 11 that index(δ)+2dim(M1) = index(δ′′′). Putting all this together,
we get

index(δ) + 2dim(M1) ≤ 0

We conclude that index(δ) ≤ 0 as desired.

Since δ is assumed to be non-constant, it cannot have expected dimension zero since translations
contribute one dimension to the moduli space. Therefore, index(δ) < 0. Such δ cannot occur in
view of the transversality of the moduli space. Having excluded bubbling at the Y-end, we argue as
in the positively monotone case to conclude that the map Φ gives the desired isomorphism. The
crucial point is again to exclude broken non-constant trajectories with the same endpoints. While in
the positive monotone case these gave rise to moduli spaces of index greater than zero, under the
negative monotone assumptions, the sum of the expected dimension of such trajectories is negative.
This means that at least one unbroken trajectory in the sequence has negative index. This violates the
transversality.

References

[1] M F Atiyah I M Singer The index of elliptic operators. I. Ann. of Math. 87 (1968) 484–530.
[2] B Charbonneau Analytic aspects of periodic instantons, PhD thesis MIT (2004).
[3] S Donaldson Floer homology groups in Yang-Mills theory, Cambridge University Press.
[4] A Floer An unregularized gradient flow for the symplectic action Comm. Pure Appl. Math 41 (1987)

775–813.
[5] A Floer H Hofer D Salamon Transversality in elliptic Morse theory for the symplectic action Duke

Math. J. 80 (1995) 251–292.
[6] H Hofer V Lizan J-C. Sikorav On genericity for holomorphic curves in four-dimensional almost-

complex manifolds J. of Geom. Anal. 7 (1998) 149–159.



Geometric Composition in Quilted Floer Theory 27

[7] S Ivashkovich V Shevchishin Complex curves in almost-complex manifolds and meromorphic hulls
Schriftenreihe des Graduiertenkollegs Geometrie und mathematische Physik der Universität Bochum
Heft 36 (1999).

[8] D Kwon Y. G. Oh, Structure of the image of (pseudo)-holomorphic discs with totally real boundary
conditions Comm. Anal. Geom. 8 (2000), 31–82.

[9] L Lazzarini Existence of a somewhere injective pseudo-holomorphic disc Geom. Funct. Anal. 10
(2000) 829–862.

[10] Y Lekili Heegaard Floer homology of broken fibrations over the circle (2009) Preprint. arXiv:
0903.1773.

[11] R Lipshitz A cylindrical reformulation of Heegaard Floer homology Geometry & Topology 10 (2006)
955–1096.

[12] C Manolescu, C Woodward Floer homology on the extended moduli space, Perspectives in analysis,
geometry, and analysis. Progr. Math., 96, Birkhauser-Springer, New York 2012.

[13] D McDuff, D Salamon J -holomorphic curves and symplectic topology Amer. Mathematical Society,
(1994).

[14] T Perutz A symplectic Gysin sequence, (2008) Preprint. arXiv:0807.1863v1.
[15] P Seidel Fukaya categories and Picard-Lefschetz theory European Mathematical Society.
[16] K Wehrheim, C Woodward Pseudoholomorphic quilts, J. of Symp. Geom. (to appear).
[17] K Wehrheim, C Woodward Quilted Floer cohomology, Geometry & Topology 14 (2010), 833–902.
[18] K Wehrheim, C Woodward Floer cohomology and geometric composition of Lagrangian Corre-

spondences, (2009) Preprint. arXiv:0905.1368.
[19] K Wehrheim, C Woodward Orientations for pseudoholomorphic quilts Preprint, available from

www.math.rutgers.edu/∼ctw/papers.html.
[20] K Wehrheim, C Woodward Quilted Floer trajectories with constant components: corrigendum to

“Quilted Floer cohomolgy” Geom. Topol. 16 (2012) 127–154.
[21] C Woodward Gauged Floer theory of toric moment fibers. Geom. Funct. Anal. 21 (2011) 680–749.

University of Cambridge, Cambridge UK

Columbia University, New York, NY USA

yl319@cam.ac.uk, mlipyan@math.columbia.edu

mailto:yl319@cam.ac.uk
mailto:mlipyan@math.columbia.edu

