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Abstract. In this paper, we initiate the study of the Givental group action on Cohomo-
logical Field Theories in terms of homotopical algebra. More precisely, we show that the
stabilisers of Topological Field Theories in genus 0 (respectively in genera 0 and 1) are
in one-to-one correspondence with commutative homotopy Batalin–Vilkovisky algebras
(respectively wheeled commutative homotopy BV-algebras).
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Introduction

The Deligne–Mumford–Knudsen compactificationsMg,n of the moduli spaces of curves
with marked points form a modular operad. This algebraic structure is defined via the map-
pings of moduli spaces of curves that identify two marked points of one or two curves. This
modular operad structure passes to homology, and algebras over H•(Mg,n) are called Co-
homological Field Theories, or CohFTs for short. The notion of a CohFT was introduced
by Kontsevich and Manin in [23] in order to capture the main properties of Gromov–Witten
invariants of target varieties. Recently a new set of natural examples of CohFTs came from
the quantum singularity theory of Fan–Jarvis–Ruan–Witten [13].

Cohomological field theories also play a crucial role in the formulation of one of the
versions of the Mirror Symmetry conjecture. Namely, in [5], Bershadsky, Cecotti, Ooguri
and Vafa introduced a construction of a mirror partner (B-side) for the Gromov–Witten
invariants (A-side) of a mirror dual Calabi-Yau manifold. More precisely, they considered
what is now called the BCOV action on the Dolbeault complex of a Calabi–Yau manifold.
Barannikov and Kontsevich showed in [3] that the critical value of the BCOV action indeed
provides a genus 0 CohFT structure on the Dolbeault cohomology.

In the series of papers [16, 17, 18], Givental developed a particular group action on
a special class of formal power series (the “R-action”). Using this group action and some
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extra operators, he proposed an explicit conjectural formula for the Gromov–Witten invari-
ants of target varieties with semi-simple quantum cohomology (e.g., projective spaces) in
terms of the genus 0 data and known Gromov–Witten invariants of a finite number of dis-
joint points. This conjecture was proved by Teleman in [42] via a complete classification
of semi-simple CohFTs.

The (co)homology ring of the Deligne–Mumford–Knudsen moduli space of stable curves
is an intricate subject of study. One way to approximate it is to look at the tautological
rings RH•(Mg,n) that are defined as the subalgebras of the cohomology algebras ofMg,n

that contain all natural cohomology classes (like the ψ-classes and the κ-classes). In fact,
using the Poincaré duality, one can define a structure of a modular operad on the collection
of the cohomology algebras {H•(Mg,n)} of the moduli spaces Mg,n. Then the collection
{RH•(Mg,n)} can be defined as the collection of the minimal system of subalgebras of
H•(Mg,n) that forms a modular suboperad of H•(Mg,n). In genus 0, the tautological ring
coincides with the full cohomology ring: RH•(M0,n) = H•(M0,n).

In [12], Faber, the second author and Zvonkine proved that the Givental group acts
on representations of the modular operad RH•(Mg,n) of a given dimension. Later Kazar-
ian [21] and Teleman [42] observed that there is a way to describe the Givental group
action as an action on CohFTs of a given dimension, that is, representations of the modular
operad {H•(Mg,n)}.

In the recent preprint [8], Drummond-Cole and the third author described, in terms of
the Homotopy Transfer Theorem, or HTT for short, how the underlying homology groups
of some differential graded Batalin–Vilkovisky algebras can be endowed with a natural
Frobenius manifold structure. In general, the HTT produces homotopy BV-algebra struc-
tures on homology. But, it is proved in loc. cit. that the transferred homotopy BV-algebra
gives rise to a Frobenius manifold when the induced operator ∆ and its higher homo-
topies vanish. (In our definitions, a Frobenius manifold is just a genus 0 CohFT structure.)
This generalises the Barannikov–Kontsevich Frobenius manifold structure and it provides
higher homotopical invariants which allow one to reconstruct the homotopy type of the
original dg BV-algebra, for instance the Dolbeault complex.

The latter result hints at a certain role played by homotopy BV-algebras in the context of
the Mirror Symmetry conjecture and the Givental group action. The present paper initiates
the study of Givental group action in terms of homotopy BV-algebras, as follows.

In genus 0, on the one hand, we restrict ourselves to topological field theories, or TFT
for short, which are cohomological field theories concentrated in degree 0. A genus 0 TFT
is equivalent to a commutative algebra structure. On the other hand, we restrict ourselves
to commutative BV∞-algebras, which are BV∞-algebras where many higher operations
vanish, so that only the commutative product and a sequence of differential operators Dl

of order at most l, l ≥ 1, remain. Theorem 1 states that the data of a commutative BV∞-
algebra structure on a TFT is equivalent to the data of an element of the Lie algebra of the
Givental group which preserves the given TFT.

In genera 0 and 1, on the one hand, we restrict ourselves to genera 0 and 1 TFTs. This
algebraic structure is equivalent to a commutative algebra equipped with a compatible
trace. On the other hand, we restrict ourselves to wheeled commutative BV∞-algebras,
which are generalizations of the notion of commutative BV∞-algebras, but equipped with
a coherent trace. Theorem 2 states that the data of a wheeled commutative BV∞-algebra
structure on a genera 0 and 1 TFT is equivalent to the data of an element of the Givental



GIVENTAL GROUP ACTION ON TFTS AND HOMOTOPY BATALIN–VILKOVISKY ALGEBRAS 3

group which preserves the given TFT. This theorem partly relies on a recent proof [38] of
the Gorenstein conjecture for moduli spaces in genus 1 [20, 36].

An algebra over a modular operad has to be equipped with a scalar product and is, there-
fore, finite dimensional. To get rid of the dimension assumption, we recall that algebras
over an operad or over a wheeled operad do not have to be finite dimensional, and consider,
respectively, the operad {H•(M0,n)} and the wheeled operad {H•(M≤1,n)} associated to the
modular operad of cohomology algebras {H•(Mg,n)}. It is worth mentioning that the main
result of [8] relies on the Koszul duality of the two operads {H•(M0,n)} and {H•(M0,n)}.
The Koszul duality for the pair of wheeled operads {H•(M≤1,n)} and {H•(M≤1,n)}, as well
as the Koszul duality for the pair of (wheeled) properads {H•(Mg,n)} and {H•(Mg,n)} are
interesting open questions. In higher genera, the study of the precise relationship between
the full action on the Givental group on a general CohFT with homotopy BV-algebras is
yet to be finished. This will be the subject of a future work.

The paper is organised as follows. In Section 1, we have accumulated all the necessary
background information on the intersection theory for moduli spaces of curves, on operads
and the Givental group action. In Section 2, we recall the definition of a differential opera-
tor on a commutative algebra, introduce a new notion of compatibility with the trace, and
prove some auxiliary results on differential operators compatible with traces in the sense
of that definition. The first theorem, in genus 0, is proved in Section 3. The second theo-
rem, in genera 0 and 1, is proved in Section 4. The first appendix explains why differential
operators arise naturally in the context of wheeled homotopy BV-algebras. The second
appendix deals with a generalized BCOV theory.

Conventions. Throughout the paper, all vector spaces, unless otherwise specified, are de-
fined over the field of complex numbers C. Most of our constructions implicitly assume
that we work with the tensor category of graded vector spaces (that is, “commutative”
means “graded commutative”, “trace” means “supertrace”, “commutator” means “super-
commutator” etc.); for the convenience of the reader, we write all the formulae for the
elements of degree zero, keeping in mind that in general signs will appear in formulae ac-
cording to the Koszul sign rule for evaluating operations on elements. The words “commu-
tative algebra” always refer to a commutative associative algebra. We use the “topologist’s
notation” for finite sets, putting n := {1, . . . , n} and [n] := {0, 1, . . . , n}. For a given product
a1a2 · · · an of factors indexed by n, we denote by aI , for I ⊂ n, the product of factors whose
subscripts are in I.

Acknowledgements. The first author was supported by Grant GeoAlgPhys 2011–2013
awarded by the University of Luxembourg. The second author was supported by the
Netherlands Organisation for Scientific Research. The third author would like to thank
the Max Planck Institute for Mathematics (Bonn) for a long term invitation. The authors
would like to thank the University of Luxembourg and the Max Planck Institute for Math-
ematics (Bonn) for the excellent working conditions enjoyed during their visits there. The
authors also wish to thank Maxim Kazarian for sending a copy of his unpublished manu-
script [21].

1. Recollections

In this section, we recall only the most basic information. For more information on the
moduli spaces of curves, see the survey [43], for a detailed discussion of cohomological
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field theories, correlators, and relations between them — the book [30], for information on
operads — the book [27].

1.1. The moduli spaces of curves. The moduli space of curvesMg,n parametrises smooth
complex curves of genus g with n ordered marked points. Under the usual assumption
2g − 2 + n > 0, it is a smooth complex orbifold of dimension 3g − 3 + n. Its Deligne–
Mumford–Knudsen compactification Mg,n parametrises stable curves of genus g with n
ordered marked points. A stable curve is a connected curve with a finite automorphism
group whose allowed singularities are simple nodes. The spaceMg,n is a smooth compact
complex orbifold of (complex) dimension 3g − 3 + n.

Let us recall three kinds of “natural mappings” that can be defined between the different
moduli spaces of curves. First, there are projections

π : Mg,n+1 →Mg,n

that forget the last marked point. Second, the identification of the last two marked points
gives rise to the 2-to-1 mapping

σ : Mg−1,n+2 →Mg,n

whose image is the boundary divisor of irreducible curves with one node. Third, gluing
together two curves along their last marked points gives rise to the mapping

ρ : Mg1,n1+1 ×Mg2,n2+1 →Mg,n, g1 + g2 = g, n1 + n2 = n.

These mappings ρ produce the other irreducible boundary divisors of the compactification
ofMg,n.

The Deligne–Mumford–Knudsen compactification Mg,n has a natural stratification by
the topological type of stable curves. The images of the mappings σ and ρ give a complete
description of strata in codimension 1. An irreducible boundary stratum of codimension k
inMg,n is represented as an image p(S ) of the product S =Mg1,n1 × · · · × Mga,na . Here p
is a composition of the k natural mappings (σ and/or ρ) described above.

The cohomology algebras of the moduli space of curves are complicated objects, and
only limited information about them is available. However, a special system of subalge-
bras, called the tautological rings, is more accessible. The system of tautological rings
RH•(Mg,n) ⊂ H•(Mg,n,C) is defined as the minimal system of subalgebras of the afore-
mentioned cohomology algebras that is closed under the push-forwards and the pull-backs
via the natural mappings. The cohomology classes in RH•(Mg,n) are called the tautologi-
cal classes. The elements of the tautological ring that will be of crucial importance for our
computations are the following “ψ-classes”.

Definition 1 (ψ-classes). Both the moduli spaceMg,n and its compactificationMg,n have
n tautological line bundles Li. The fibre of Li over a point represented by a curve Cg with
marked points x1, . . . , xn is equal to the cotangent line T ∗xi

Cg. The cohomology class ψi of
Mg,n is defined as the first Chern class of the line bundle Li:

(1.1) ψi = c1(Li) ∈ H2(Mg,n,Q).

Using the Poincaré duality and the push-forward on the homology, one can define the
push-forward maps π∗, σ∗, and ρ∗ on the cohomology as follows: π∗ is the composite

(1.2) H•(Mg,n+1)→ H6g−6+2n+2−•(Mg,n+1)→ H6g−6+2n+2−•(Mg,n)→ H•−2(Mg,n),
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σ∗ is the composite

(1.3) H•(Mg−1,n+2)→ H6g−12+2n+4−•(Mg−1,n+2)→ H6g−12+2n+4−•(Mg,n)→ H•+2(Mg,n),

and ρ∗ is the composite

(1.4) H•(Mg1,n1+1) ⊗ H•(Mg2,n2+1)→ H•(Mg1,n1+1 ×Mg2,n2+1)→

→ H6g1+6g2−12+2n1+2n2+4−•(Mg1,n1+1 ×Mg2,n2+1)→

→ H6g1+6g2−12+2n1+2n2+4−•(Mg1+g2,n1+n2+1)→ H•+2(Mg1+g2,n1+n2+1).

1.2. Operads. The various notions of operads encode the algebraic structures defined by
various types of operations. The toy model of operads is the endomorphism operad EndV

whose components Hom(V⊗n,V) consist of multilinear maps defined on a given vector
space. In particular, EndV (1) is the space of all linear operators on V; we shall keep the
usual notation End(V) for it, hoping that no confusion would arise.

Definition 2 (Operad). An operad is an S-module P, that is a collection of right Sn-
modules {P(n)}n∈N, endowed with equivariant partial compositions

(1.5) ◦i : P(m) ⊗ P(n)→ P(m + n − 1), for 1 ≤ i ≤ m ,

satisfying

(µ ◦i ν) ◦i−1+ j ω = µ ◦i (ν ◦ j ω), for 1 ≤ i ≤ l, 1 ≤ j ≤ m,
(µ ◦i ν) ◦k−1+m ω = (µ ◦k ω) ◦i ν, for 1 ≤ i < k ≤ l,

for any µ ∈ P(l), ν ∈ P(m), ω ∈ P(n). An operad is required to be unital, that is equipped
with an element I ∈ P(1) acting as a unit for the partial compositions.

Elements of an operad model operations with n inputs and one output. The partial
composition ◦i amounts to composing one operation at the ith input of another one, as the
next figure shows.

The category of S-modules is equivalent to the category VectBijop
of contravariant func-

tors from the groupoid Bij of finite sets and bijections to the category Vect of vector spaces:

(1.6)
S−modules � VectBijop

{P(n)}n∈N 7→ P(X) :=
(⊕

f :n→X P(n)
)
Sn

P(n) 7→P(−) ,

where in the space of coinvariants on the right-hand side the sum is over all the bijections
from n to X and where the right action of σ ∈ Sn on ( f ; µ) for µ ∈ P(n) is given by
( f ; µ)σ := ( fσ; µσ). So, from now on, we freely identify them.
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Definition 3 (Modular operad [15]). A modular operad is a graded S-module P, that is
a graded collection of right Sn-modules {Pg(n)}g,n∈N, endowed with equivariant partial
compositions

(1.7) ◦
j
i : Pg(m) ⊗ Pg′ (n)→ Pg+g′ (m + n − 2), for 1 ≤ i ≤ m and 1 ≤ j ≤ n

and equivariant contractions

(1.8) ξi j : Pg(n)→ Pg+1(n − 2), for 1 ≤ i , j ≤ n .

These structure maps are required to satisfy the following properties, for every choice of
µ ∈ Pg(X), ν ∈ Pg′ (Y), and ω ∈ Pg′′ (Z):

(µ ◦ j
i ν) ◦

l
k ω =

{
µ ◦

j
i (ν ◦l

k ω), when k ∈ Y,
(µ ◦l

k ω) ◦ j
i ν, when k ∈ X,

for any i ∈ X, j ∈ Y , and l ∈ Z;

(1.9) ξi jξkl µ = ξklξi j µ

for any distinct i, j, k, and l in X;

ξi j(µ ◦l
k ν) =


ξi j(µ) ◦l

k ν, when i, j ∈ X,
µ ◦l

k ξi j(ν), when i, j ∈ Y,
ξkl(µ ◦

j
i ν), when i ∈ X and j ∈ Y,

ξkl(ν ◦
j
i µ), when i ∈ Y and j ∈ X,

for any k ∈ X, and l ∈ Y .

The modular endomorphism operad of a vector space V with a scalar product has the
vector space V⊗n as its component of genus g and arity n. It is endowed with both the partial
compositions and the contractions defined using the scalar product on V . The homology
groups H•(Mg,n) of the Deligne–Mumford–Knudsen moduli space of curves also form a
modular operad. In the latter case, the partial compositions are given by the pushforwards
of the maps ρ and the contractions are given by the pushforwards of the maps σ.

The genus 0 part of a modular operad is faithfully encoded into the following operad.
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Proposition 1 ([15]). Let (Pg(n), ◦ j
i , ξi j) be a modular operad. The S-module

(1.10) P(n) := P0(n + 1) � P0([n]),

and the partial compositions ◦i := ◦0
i define a functor

modular operads→ operads ,

which sends the endomorphism modular operad V⊗n to the endomorphism operad EndV .

The genus 0 operad H•(M0,n) encodes hypercommutative algebras. It contains the op-
erad Com � H0(M0,n) encoding commutative algebras and it is Koszul dual to the genus 0
operad H•(M0,n), see [14].

Definition 4 (Wheeled operad [32]). A datum of a wheeled operad is a pair of S-modules,
{P(1, n)}n∈N and {P(0, n)}n∈N, endowed with equivariant partial compositions

◦i : P(ε,m) ⊗ P(1, n)→ P(ε,m + n − 1), for 1 ≤ i ≤ m and 0 ≤ ε ≤ 1

and equivariant wheel contractions

ξi : P(1, n)→ P(0, n − 1), for 1 ≤ i ≤ n .

These structure maps are required to satisfy the following properties for every choice of
µ ∈ P(ε, X), ν ∈ P(1,Y), and ω ∈ P(1,Z):

(µ ◦i ν) ◦ j ω =

{
µ ◦i (ν ◦ j ω), when j ∈ Y,
(µ ◦ j ω) ◦i ν, when j ∈ X,

for any i ∈ X;

ξi(ν ◦ j ω) =

{
ξi(ν) ◦ j ω, when i ∈ Y,
ξ j(ω ◦i ν), when i ∈ Z,

for any j ∈ Y .

The paradigm of wheeled operads is the endomorphism wheeled operad made up of the
two components {Hom(V⊗n,V)}n∈N and {Hom(V⊗n,Q)}n∈N associated to a vector space V
equipped with a trace, that is a map tr : Hom(V,V)→ C satisfying tr([ f , g]) = 0.

The genera 0 and 1 parts of a modular operad are faithfully encoded into the following
wheeled operad.
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Proposition 2. Let (Pg(n), ◦ j
i , ξi j) be a modular operad. The pair of S-modules

P(1, n) := P0(n + 1) � P0([n]), and P(0, n) := P1(n) � P1(n),

the partial compositions and the wheel contractions ◦i := ◦0
i and ξi := ξi0 define a functor

modular operads→ wheeled operads ,

which sends the endomorphism modular operad V⊗n to the endomorphism wheeled operad
EndV .

Proof. It is straightforward to check the various axioms of a wheeled operad. Any scalar
product η of a vector space V induces a trace. Using the scalar product η, one makes the
identifications

V⊗(n+1) � Hom(V⊗n,V) and V⊗n � Hom(V⊗n,C),

which proves the last statement. �

Therefore, an algebra over a modular operad, that is a vector space V together with
the morphism of modular operads P → EndV , induces, under the aforementioned functor,
an algebra over the associated wheeled operad. The latter notion is more general than
the former one: as opposed to modular operads, a wheeled operad can act on infinite
dimensional vector spaces.

We conclude this section with a natural open question.

Question 1. Are the two wheeled operads, made up of the genera 0 and 1 parts of the
modular operads H•(Mg,n) and of H•(Mg,n), Koszul dual to one another? Are they Koszul
wheeled operads?

1.3. Cohomological Field Theories. Roughly speaking, a cohomological field theory on
a graded vector space V is a system of cohomology classes on the moduli spaces of curves
with values in tensor powers of V compatible with all natural mappings between the mod-
uli spaces. Expressed formally, this means that a cohomological field theory is a repre-
sentation of the modular operad formed by the cohomology algebras of moduli spaces of
curves. Let us use the previous section to make this precise. To conform with the usual
conventions, we use cohomology classes: even though a naı̈ve translation of what was
just said suggests to think of a cohomological field theory as of a collection of elements
ag,n : Hom(H•(Mg,n),V⊗n), we replace the dual space to the homology by the cohomology,
and let our elements belong to H•(Mg,n) ⊗ V⊗n.

Definition 5 (CohFT). Given a graded vector space V with a basis {e1, . . . , es} (e1 plays
the role of a unit) with a scalar product η, a cohomological field theory (CohFT) on V is
defined as a system of classes αg,n ∈ H•(Mg,n) ⊗ V⊗n satisfying the following properties:

� the classes αg,n is equivariant with respect to the actions of the symmetric group
Sn on the labels of marked points and on the factors of V⊗n.

� the pullbacks via the natural mappings σ and ρ correspond to the pairings with η
of the factors in tensor powers corresponding to the points in the preimage of the
node:

σ∗αg,n =
(
αg−1,n+2, η

−1
)
,(1.11)

ρ∗αg,n =
(
αg1,n1+1 ⊗ αg2,n2+1, η

−1
)
.(1.12)



GIVENTAL GROUP ACTION ON TFTS AND HOMOTOPY BATALIN–VILKOVISKY ALGEBRAS 9

� the unital conditions for the element e1:(
α0,3, e1 ⊗ ei ⊗ e j

)
= η(ei, e j),(1.13)

π∗αg,n = η(n+1)
(
αg,n+1, e1

)
(1.14)

(the superscript in η(n+1) refers to the fact that we use η to compute the scalar
product of e1 with the factor of V⊗n corresponding to the last marked point).

A topological field theory (TFT) is a special case of a cohomological field theory for
which all the classes αg,n are of homological degree 0, that is belong to H0(Mg,n) ⊗ V⊗n.
One can easily show that in this case the whole system {αg,n} is determined by the class
α0,3 ∈ V⊗3. A CohFT is a TFT if and only if α0,3 determines a structure of a unital
commutative Frobenius algebra on the vector space V , see [9].

The definition of a CohFT and thus of a TFT includes an element e1 playing the role
of a unit of V . However, this unit is not of an operadic nature (because of the stability
condition,M0,2 = ∅).

Throughout this paper, we shall consider possibly infinite dimensional genus 0 (respec-
tively genera 0 and 1) CohFTs without a unit as algebras over the operad (respectively
wheeled operad) associated to the modular operad H•(Mg,n). For practical purposes, this
means that a genus 0 CohFT is encoded by a collection of classes

αn := α0,n+1 ∈ H•(M0,n+1) ⊗ EndV (n),

and a CohFT in the genera 0 and 1 is encoded by a collection of classes

αn = α0,n+1 ∈ H•(M0,n+1) ⊗ EndV (n) and βn = α1,n ∈ H•(M1,n) ⊗ Hom(V⊗n,C).

Observe our choice of notation: the class αn = α0,n+1 represents an n-ary operation; it is a
cohomology class of the moduli space of curves with n + 1 marked points, since we need
n inputs and one output. In the same spirit, βn = α1,n represents an operation with n inputs
and no outputs.

1.4. Correlators. Using the ψ-classes, it is possible to extract certain numerical informa-
tion from a cohomological field theory.

Definition 6 (Correlators). Let d1, . . . , dn be a sequence of nonnegative integers. The cor-
relator 〈τd1 · · · τdn〉g,V associated to this sequence is defined by the formula

(1.15) 〈τd1 · · · τdn〉g,V :=
∫
Mg,n

αg,n ·

n∏
j=0

ψ
d j

j ∈ V⊗n.

In the computations below, we shall express the correlators as particular elements of
EndV with correlators for V = C as coefficients. The latter correlators are just numbers
denoted by 〈τd1 · · · τdn〉g. For a genus zero topological field theory, it is known that

(1.16) 〈τd1 · · · τdn〉0 =


(n − 3)!

d1! · · · dn!
if d1 + · · · + dn = n − 3,

0 otherwise.

By a standard argument, see for instance [40], the correlators contain all the information
necessary to compute the restriction of a cohomological field theory on the tautological
rings of the moduli spaces.

One of the key technical tools in our proofs will be the following relations, see for
instance [30].
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Proposition 3 (Topological recursion relations). The following relations between the cor-
relators hold:

� the genus zero relations at the points i, j, k

(1.17) 〈τd1τd2 · · · τdi+1 · · · τdn〉0 =
∑

ItJ=n
i∈I; j,k∈J

〈τdIτ0〉0〈τ0τdJ 〉0.

� a more symmetric version of the genus zero relations at the points i, j that follows
immediately from the previous ones

(1.18) 〈τd1τd2 · · · τdi+1 · · · τdn〉0 + 〈τd1τd2 · · · τd j+1 · · · τdn〉0 =
∑

ItJ=n
i∈I, j∈J

〈τdIτ0〉0〈τ0τdJ 〉0,

� the genus 1 relations at the point i

(1.19) 〈τd1τd2 · · · τdi+1 · · · τdn〉1 =
∑

ItJ=n,
i∈I

〈τdIτ0〉0〈τ0τdJ 〉1 +
1
24
〈τd1τd2 · · · τdi · · · τdnτ

2
0〉0.

1.5. Givental group action. In this section, we describe a part of the Givental theory of a
certain group action on CohFTs [16, 18].

Definition 7 (Givental group and Lie algebra). Let V be a vector space with a scalar prod-
uct η as above. The group that plays the key role in Givental’s construction is the (upper
triangular group of the) group of symplectomorphisms of Laurent series with coefficients
in V . It is the group of formal power series with coefficients in the space of endomorphisms
of V consisting of all series R(z) = Id + R1z + R2z2 + . . . satisfying R∗(−z)R(z) = Id. Its
Lie algebra consists of all series r1z + r2z2 + . . . , where rl ∈ End(V) is symmetric for odd l
and skew-symmetric for even l (with respect to the scalar product η).

Following [21, 42], we associate to an element
∑∞

l=1 rlzl as above an infinitesimal defor-
mation of CohFT.

Definition 8 (Givental Lie algebra action). The Givental Lie algebra action on cohomo-
logical field theories takes the system of classes αg,n ∈ H•(Mg,n) ⊗ V⊗n to the system of
classes (r̂lzl.α)g,n ∈ H•(Mg,n) ⊗ V⊗n given by the formula

(1.20) (r̂lzl.α)g,n := −
(
π∗(αg,n+1 · ψ

l+1
n+1), rl(e1)

)
+

n∑
m=1

(αg,n · ψ
l
m) ◦m rl+

+
1
2

l−1∑
i=0

(−1)i+1
(
σ∗(αg−1,n+2 · ψ

i
n+1ψ

l−1−i
n+2 ), η−1rl

)
+

+
1
2

∑
ItJ=n,

i+ j=l−1,
g1+g2=g

(−1) j+1
(
ρ∗(αg1,|I|+1 · ψ

i
|I|+1 ⊗ αg2,|J|+1 · ψ

j
|J|+1), η−1rl

)
.

In this formula, we assume that the points in the preimage of the node are the points
labelled n + 1 and n + 2 in the second sum, and the points |I| + 1 onMg1+1,|I|+1 and |J| + 1
onMg2+1,|J|+1 in the third sum.
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Proposition 4 ([21, 42]). The classes

(1.21) α̃g,n :=

exp

 ∞∑
l=1

r̂lzl

 .α
g,n

are well-defined cohomology classes with the values in the tensor powers of V that define
a CohFT.

If one chooses to ignore the unit e1, it is possible: the exact same formulae with the
summand containing e1 omitted provide a well defined Lie algebra action on CohFTs, see
for example [22]. We shall be using Formula (1.20) only in the cases of genera 0 and 1 and
without a unit, as follows. To match the notation of the subsequent sections, we shall write
the formula for the action of the operator Dlzl−1, l ≥ 1. Note that Formula (1.20) makes
sense even for l = 0, in which case we get the usual action on the Lie algebra End(V) by
the Leibniz rule.

In the case of genus 0, we have the action

(1.22) D̂lzl−1.{α} = {α′},

and the general formula (1.20) simplifies to

(1.23) α′n = (−1)lDl ◦1 αn · ψ
l−1
0 +

n∑
m=1

αn · ψ
l−1
m ◦m Dl+

+
∑

ItJ=n,|I|≥2,
i+ j=l−2

(−1)i+1(α|J|+1 · ψ
j
1)◦̃1(Dl ◦1 α|I| · ψ

i
0).

Here we assume that the output of every operadic element corresponds to the marked point
x0 on the curve, and that, in the last sum, the points in the preimage of the node are the
point x0 on the curve with |I| + 1 marked points and the point x1 on the curve with |J| + 2
marked points. The operation ◦̃1 in the last sum refers to using the push-forward ρ∗ on
the cohomology and, simultaneously, the composition ◦1 in the endomorphism operad.
Because of our assumption on the (skew-)symmetry of components of power series, the
first summand acquires the sign (−1)l: our translation into the operadic language requires
us to identify V with its dual using the scalar product η, so we have to replace the operator
Dl acting on the output by its adjoint. After that replacement, the assumptions on the (skew-
)symmetry of components of power series do not need to be used anymore: any element of
z End(V)[[z]] provides a well defined infinitesimal deformation of a given CohFT, viewed
as an algebra over the corresponding operad [22, 39].

In the case of genus 1, we have the action

(1.24) D̂lzl−1.{α, β} = {α′, β′}.

The classes α′n are defined by the genus zero formula (1.23). For the β-classes, we can
simplify the general formula (1.20) to

(1.25) β′n =

n∑
m=1

βn · ψ
l−1
m ◦m Dl +

∑
ItJ=n,|I|≥2,

i+ j=l−2

(−1)i+1(β|J|+1 · ψ
j
1)◦̃1(Dl ◦1 α|I| · ψ

i
0)+

+
1
2

∑
i+ j=l−2

(−1)i+1ξ̃n+1(αn+1 · ψ
i
0 · ψ

j
n+1 ◦n+1 Dl).
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Here we assume that the points in the preimage of the node are the point x0 on the curve of
genus 0 and the point x1 on the curve of genus 1 in the second sum, and the points x0, xn+1
in the third sum. The operation ◦̃1 in the second sum refers to using the push-forward ρ∗
on the cohomology and, simultaneously, the composition ◦1 in the wheeled endomorphism
operad. The operation ξ̃n+1 in the last sum refers to using the push-forward σ∗ on the coho-
mology and, simultaneously, the contraction ξn+1 in the endomorphism operad. As above,
once we pass to wheeled operads, we may drop the assumptions on components of power
series: any element of z End(V)[[z]] provides a well defined infinitesimal deformation of a
given CohFT, viewed as an algebra over the corresponding wheeled operad.

2. Differential operators

In this section, we recall the definition and the properties of differential operators on
commutative algebras, and introduce a new notion of compatibility with the trace. Several
new results are proved, both for classical differential operators and for operators compatible
with the trace.

Definition 9 (Order of an operator [24]). Let D be a linear map on a commutative algebra
V . Let us define the Koszul bracket hierarchy

(2.1) 〈−,−, . . . ,−〉Dl : V⊗l → V

by 〈 f 〉D1 := D( f ) and, recursively, by

(2.2) 〈 f1, . . . , fl−1, fl, fl+1〉
D
l+1 =

〈 f1, . . . , fl−1, fl fl+1〉
D
l − 〈 f1, . . . , fl−1, fl〉Dl fl+1 − fl〈 f1, . . . , fl−1, fl+1〉

D
l .

The operator D is said to be a differential operator on V of order at most l if the bracket
〈−,−, . . . ,−〉Dl+1 is identically equal to zero.

We denote by D ∈ Diff≤l(V) the set of all differential operators of order at most l, and
by Diff(V) the set of differential operators of all possible orders:

(2.3) Diff(V) :=
⋃
l≥0

Diff≤l(V).

The composition of differential operators makes Diff(V) an associative algebra. This alge-
bra is filtered by the order of operators:

(2.4) Diff≤k(V) ◦ Diff≤l(V) ⊂ Diff≤k+l(V).

There are many definitions of differential operators on commutative associative algebras
that can be found in the literature. The oldest and the most known one is probably due to
Grothendieck [19], requiring, for an operator of order at most l, that

(2.5) [[. . . [[D, f1 · (−)], f2 · (−)], . . .], fl+1 · (−)] = 0,

where each fi · (−) stands for the operator g 7→ fi ·g. Later, other definitions have appeared,
see for example [24, 1]. For algebras with a unit, and operators which annihilate the unit,
all these definitions are equivalent to each other, see [2].

It is easy to see that the above recursive definition of the Koszul hierarchy results in the
following explicit formula for the higher brackets:

(2.6) 〈 f1, . . . , fl−1, fl〉Dl =
∑
I⊂l,
|I|≥1

(−1)l−|I|D( fI) · fl\I .
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From this formula, it is clear that the Koszul brackets are graded symmetric, and the con-
dition of being a differential operator of order at most l becomes

(2.7) D( f1 f2 · · · fl+1) =
∑

I⊂l+1,
1≤|I|≤l

(−1)l−|I|D( fI) fl+1\I .

From calculus, it is well known that to compute the derivative (respectively the second
derivative) of a product of n factors, it is enough to know the derivative of each factor
(respectively the second derivative of each factor and each product of two factors):

( f1 f2 · · · fn)′ =
∑

1≤i≤n

f ′i fn\{i},(2.8)

( f1 f2 · · · fn)′′ =
∑

1≤i< j≤n

( fi f j)′′ fn\{i, j} − (n − 2)
∑

1≤i≤n

f ′′i fn\{i}.(2.9)

We shall need the following generalisation of these formulae for any commutative algebra
and any order of an operator.

Proposition 5. For a differential operator D of order at most l, and for every n ≥ l + 1 we
have

(2.10) D( f1 f2 · · · fn) =
∑
I⊂n,

1≤|I|≤l

(−1)l−|I|
(
n − 1 − |I|

l − |I|

)
D( fI) fn\I .

Proof. Let us prove this formula by induction on n− l. For the basis of the induction, that is
n−l = 1, Formula (2.10) coincides literally with Formula (2.7), so there is nothing to prove.
For inductive step, let us note that a differential operator of order at most l is automatically
a differential operator of order at most l + 1, therefore by the induction hypothesis,

(2.11) D( f1 f2 · · · fn) =
∑
J⊂n,

1≤|J|≤l+1

(−1)l+1−|J|
(
n − 1 − |J|
l + 1 − |J|

)
D( fJ) fn\J .

To show that this identity is equivalent to (2.10), let us eliminate all the terms D( fJ) fn\J
with |J| = l + 1 using (2.7). This would replace these terms by a sum of terms of the form
(−1)k−|I|D( fI) fn\I , and each of the latter terms will appear exactly

(
n−|I|

l+1−|I|

)
times (the number

of choices of the “new” factors in fn\I). Therefore, we have

(2.12) D( f1 f2 · · · fn) =
∑

I⊂n,|I|≤l

(−1)l+1−|I|
(
n − 1 − |I|
l + 1 − |I|

)
D( fI) fn\I+

+
∑

I⊂n,|I|≤l

(−1)l−|I|
(

n − |I|
l + 1 − |I|

)
D( fI) fn\I =

=
∑

I⊂n,|I|≤l

(−1)l−|I|
(
n − 1 − |I|

l − |I|

)
D( fI) fn\I ,

which is exactly what we wanted to prove. �

The key property of higher brackets that we shall need in this paper is given by the
following proposition.
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Proposition 6 ([4]). We have

(2.13) 〈 f1, . . . , fn−1, fn〉[A,B]
n =

=
∑

ItJ=n,
|I|=r≥1

〈〈 fi1 , . . . , fir 〉
B
r , f j1 , . . . , f jn−r 〉

A
n−r+1−

− (−1)deg(A) deg(B)〈〈 fi1 , . . . , fir 〉
A
r , f j1 , . . . , f jn−r 〉

B
n−r+1.

This formula immediately implies the well known fact that the commutator “makes the
order of differential operators drop by 1”:

(2.14) [Diff≤k(V),Diff≤l(V)] ⊂ Diff≤k+l−1(V).

Further in this paper, we shall need a modification of this property for commutative alge-
bras with traces which we shall now present.

Definition 10. A commutative algebra V is said to be an algebra with a trace if it is
equipped with the linear functional tr : End(V)→ C that vanishes on commutators, that is
tr([A, B]) = 0 for all A, B ∈ End(V).

Proposition 7. A differential operator A of order at most l on a commutative algebra V
with a trace satisfies the trace identity

(2.15) tr
(
〈 f1, . . . , fl−1, fl〉Al · (−)

)
= 0,

for all f1, . . . , fl ∈ V.

Proof. Since A is an operator of order at most l, the operator 〈 f1, . . . , fl,−〉Al+1 vanishes
identically. This means that

(2.16) 0 = 〈 f1, . . . , fl−1, fl,−〉Al+1 =

= 〈 f1, . . . , fl−1, fl · (−)〉Al − 〈 f1, . . . , fl−1, fl〉Al · (−) − fl〈 f1, . . . , fl−1,−〉
A
l .

As a consequence, we see that

(2.17) 〈 f1, . . . , fl−1, fl〉Al · (−) = [ fl · (−), 〈 f1, . . . , fl−1,−〉
A
l ],

so the trace in question vanishes being the trace of a commutator. �

Informally, this result means that “the order of a differential operator drops by 1 in
the presence of the trace”. A subclass of differential operators of particular interest to us
consists of operators whose order drops unexpectedly low in the presence of the trace.

Definition 11. Let V be a commutative algebra with a trace. A differential operator A of
order at most l ≥ 3 is said to be strongly compatible with the trace if it satisfies the trace
identity

(2.18) tr
(
〈 f1, . . . , fl−1〉

A
l−1 · (−)

)
= 0,

for all f1, . . . , fl−1 ∈ V . Notation: A ∈ Difftr
≤l(V), Difftr(V) :=

⋃
l≥3 Difftr

≤l(V)

Note that from the defining property 〈 f1, . . . , fl−1, fl, fl+1〉
A
l+1 = 0 of a differential oper-

ator one can instantly deduce 〈 f1, . . . , fl−1, fl, fl+1〉
A
l+1 fl+2 = 0 for every fl+2 ∈ V . In the

presence of traces, the corresponding conclusion is not obvious, and we shall prove it now.
It will be frequently used in our proofs in the main part of the article.
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Proposition 8. Let V be a commutative algebra with a trace. Suppose that A is a differen-
tial operator of order at most l ≥ 3 which is strongly compatible with the trace. Then

tr
(
〈 f1, . . . , fl−1, fl〉Al fl+1 · (−)

)
= 0,(2.19)

tr
(
〈 f1, . . . , fl−1〉

A
l−1 fl · (−)

)
= 0(2.20)

for all f1, . . . , fl ∈ V. The first of these statements holds for l = 1 and l = 2 as well.

Proof. Let us prove the second statement; the first one is proved analogously to how it is
done in Proposition 7. Since A is of order at most l, we have

tr
(
〈 f1, . . . , fl−1, fl〉Al · (−)

)
= 0

for all f1, . . . , fl−1, fl ∈ V . Because of the definition of the Koszul hierarchy, we have

(2.21) tr
(
〈 f1, . . . , fl−1, fl〉Al · (−)

)
=

= tr
(
〈 f1, . . . , fl−2, fl−1 fl〉Al−1 · (−)

)
− tr

(
〈 f1, . . . , fl−2, fl−1〉

A
l−1 fl · (−)

)
−

− tr
(

fl−1〈 f1, . . . , fl−2, fl〉Al−1 · (−)
)
.

so since A is strongly compatible with the trace we have

(2.22) tr
(
〈 f1, . . . , fl−2, fl−1〉

A
l−1 fl · (−)

)
+ tr

(
fl−1〈 f1, . . . , fl−2, fl〉Al−1 · (−)

)
= 0.

Recalling that Koszul brackets are symmetric in their arguments, we see that

(2.23) tr
(
〈 f1, . . . , fl−2, fl−1〉

A
l−1 fl · (−)

)
= − tr

(
fl−1〈 f1, . . . , fl−2, fl〉Al−1 · (−)

)
=

= tr
(

fl−2〈 f1, . . . , fl−1, fl〉Al−1 · (−)
)

= − tr
(

fl〈 f1, . . . , fl−2, fl−1〉
A
l−1 · (−)

)
,

so

(2.24) tr
(
〈 f1, . . . , fl−2, fl−1〉

A
l−1 fl · (−)

)
= 0,

which is what we need. �

Proposition 9. The subspace Difftr(V) ⊂ Diff(V) is a Lie subalgebra.

Proof. Assume that A ∈ Difftr
≤k(V) and B ∈ Difftr

≤l(V). Let us examine the trace

(2.25) tr
(

f 〈 f1, . . . , fk+l−2〉
[A,B]
k+l−2 · (−)

)
,

which we rewrite, using Formula (2.13), as

(2.26)
∑

ItJ=k+l−2,
|I|=r≥1

tr
(

f 〈〈 fi1 , . . . , fir 〉
B
r , f j1 , . . . , f jk+l−2−r 〉

A
k+l−1−r · (−)

)
−

− (−1)deg(A) deg(B) tr
(

f 〈〈 fi1 , . . . , fir 〉
A
r , f j1 , . . . , f jk+l−2−r 〉

B
k+l−1−r · (−)

)
.

The first trace vanishes for r ≥ l + 1 because the operator B is of order at most l and also
for k + l − 1 − r ≥ k − 1 (that is, for l ≥ r) because A is of order at most k and is strongly
compatible with the trace. The second trace vanishes for r ≥ k + 1 because A is of order at
most k and for k + l − 1 − r ≥ l − 1 (that is, for k ≥ r) because B is of order at most l and is
strongly compatible with the trace. �
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3. Stabilisers in genus 0

In this section, we make a very particular choice of a CohFT: we consider CohFTs in
genus zero, and moreover, we only work with TFTs, that is we assume we are given the
classes

(3.1) αn ∈ H0(M0,n+1,C) ⊗ EndV (n).

The class α2 endows V with a structure of a graded commutative associative algebra. To
simplify the notation, we denote α2(x, y) by x · y, and by xy.

Let D =
∑

l≥1 Dlzl−1 ∈ End(V)[[z]] be an element of the Givental Lie algebra. It is
natural to ask when such an element preserves a given cohomological field theory.

Definition 12 (Commutative BV∞-algebra [26]). A commutative algebra V is said to be a
commutative BV∞-algebra if it is equipped with a collection of operators Dl, l ≥ 1, each Dl

being a differential operator of order at most l and of degree 2l − 3, such that
(∑

l≥1
Dl

)2

= 0.

Definition 13 (Chain multicomplex [35]). A chain multicomplex is a graded vector space
V together with a system of operators Dl : Vp → Vp+2l−3 satisfying the condition

(3.2)

∑
l≥1

Dl

2

= 0,

or, after separating the homogeneous components,

(3.3)
∑

i+ j=n

DiD j = 0.

Remark 3.1. This is the kind of structure that induces spectral sequences, see for exam-
ple [27, 10.3.16]. We are using the term “chain multicomplex” somewhat loosely: usually
chain multicomplexes are assumed to possess additional bi-gradings which are compatible
with the degrees of the operators Di, while our chain multicomplexes look like bigraded
chain multicomplexes with respect to the grading deg(Vp,q) = q − p.

We are now ready to formulate the main result of this section.

Theorem 1. Let V be a graded vector space. The Givental action of the element

D =
∑
l≥1

Dlzl−1 ∈ End(V)[[z]]

preserves a given V-valued TFT in genus 0 if and only if each linear operator Dk is a
differential operator of order at most k on the commutative algebra V.

Corollary 1. Let V be a chain multicomplex with the structure maps Dl, l ≥ 1. The
Givental action of the element D =

∑
l≥1 Dlzl−1 ∈ End(V)[[z]] preserves a given V-valued

TFT in genus 0 if and only if the commutative algebra V equipped with the operators Di is
a commutative BV∞-algebra.

Proof. First of all, let us note that because of the choice (3.1), the images D̂lzl−1.αn of the
classes αn under the action of the individual components of D are in different cohomolog-
ical degrees, so the Givental action of D preserves a TFT if and only if its components
preserve it, that is

(3.4) D̂lzl−1.αn = 0, for l ≥ 1.
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Note that for n < l + 1 these conditions are satisfied trivially for cohomological degree
reasons, since dimCM0,n+1 = n − 2.

Second, we shall express our conditions via correlators: taking a sequence of nonneg-
ative integers d0, d1, . . . , dn with l − 1 + d0 + d1 + · · · + dn = n − 2, we can compute the
intersection of D̂lzl−1.αn with

∏n
m=0 ψ

dm
m , thus obtaining the condition on an element of

EndV (n) instead. To take care of signs in subsequent computations, we introduce the n-ary
operations

(3.5) Fl( d1 d2 ··· dn
− − ··· − ; d0) = (−1)l

∫
M0,n+1

D̂lzl−1.αn ·

n∏
m=0

ψdm
m .

Substituting elements f1, . . . , fn ∈ V in such an operation, we get the system of identities

(3.6) Fl(
d1 d2 ··· dn
f1 f2 ··· fn ; d0) = 0, f1, . . . , fn ∈ V.

In fact, Formula (1.23) implies that

(3.7) Fl(
d1 d2 ··· dn
f1 f2 ··· fn ; d0) = 〈τd0+l−1τd1 · · · τdn〉0Dl( f1 f2 · · · fn)+

+ (−1)l
n∑

m=1

〈τd0τd1 · · · τdm+l−1 · · · τdn〉0 f1 · · ·Dl( fm) · · · fn+

+
∑

ItJ=n,|I|≥2,
i+ j=l−2

(−1) j+1〈τiτdI 〉0〈τd0τ jτdJ 〉0Dl( fI) fJ .

Showing, for every fixed l, that the system of identities (3.6) means precisely that Dl is
a differential operator of order at most l goes in several steps. First of all, we check that the
identity Fl( 0 0 ··· 0

f1 f2 ··· fn ; 0) = 0 is precisely the definition of a differential operator of order at
most l for n = l+1. Second, we check that for each n > l+1 the “most symmetric” identity
Fl( 0 0 ··· 0

f1 f2 ··· fn ; n − l − 1) = 0 coincides with Identity (2.10). To complete the proof, we use
the genus 0 topological recursion relations to prove the remaining identities by induction.

Let us use Formula (1.16) to make the formula (3.7) more explicit for d1 = · · · = dn = 0
(which is the case for the first two steps outlined above). Since 〈τpτn−2−pτ

n−2
0 〉0 =

(
n−2

p

)
, we

see that

(3.8) Fl( 0 0 ··· 0
f1 f2 ··· fn ; d0) = Dl( f1 f2 · · · fn)+

+ (−1)l
(
n − 2
l − 1

) n∑
m=1

f1 · · ·Dl( fm) · · · fn +
∑

ItJ=n,|I|≥2,
i=|I|−2,

j+d0=|J|−1

(−1) j+1
(
|J| − 1

j

)
Dl( fI) fJ ,

which, after putting d0 = n − l − 1 and eliminating J from the notation, becomes

(3.9) Dl( f1 f2 · · · fn) =
∑

I⊂n,|I|≤l

(−1)l−|I|
(
n − 1 − |I|

l − |I|

)
Dl( fI) fn\I ,

which is Identity (2.10). Therefore the identity

(3.10) Fl( 0 0 ··· 0
f1 f2 ··· fn ; 0) = 0

coincides with Formula (2.7) that defines a differential operator of order at most l, and the
identities

(3.11) Fl( 0 0 ··· 0
f1 f2 ··· fn ; n − l − 1) = 0

follow from it, see Proposition 5.
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It remains to complete the last step of the proof: the remaining identities follow from
the identities Fl( 0 0 ··· 0

f1 f2 ··· fn ; n − l − 1) = 0. This will be deduced from the following lemma.

Lemma 1. We have

(3.12) Fl(
d1+1 d2 ··· dn

f1 f2 ··· fn ; d0) + Fl(
d1 d2 ··· dn
f1 f2 ··· fn ; d0 + 1) =

=
∑

1∈I⊂n,
di1 +···+dir =|I|−2

〈τ0τdI 〉0Fl(
0 d j1 ··· d js
fI f j1 ··· f js

; d0)+

+
∑

1<I⊂n,
d0+di1 +···+dir =|I|−1

〈τd0τ0τdI 〉0 fI Fl(
d j1 ··· d js
f j1 ··· f js

; 0).

Proof. To prove this lemma, we shall examine the sum

(3.13) Fl(
d1+1 d2 ··· dn

f1 f2 ··· fn ; d0) + Fl(
d1 d2 ··· dn
f1 f2 ··· fn ; d0 + 1),

having in mind the symmetrised version of the genus 0 topological recursion relation (1.18).
Let us split that sum into several parts, according to Formula (3.7) and to the position

on the label 1 in the summands of that formula:

(3.14)
(
〈τd0+l−1τd1+1 · · · τdn〉0 + 〈τd0+lτd1 · · · τdn〉0

)
Dl( f1 f2 · · · fn),

(3.15) (−1)l (〈τd0τd1+l · · · τdm · · · τdn〉0 + 〈τd0+1τd1+l−1 · · · τdm · · · τdn〉0
)

Dl( f1) f2 · · · fn,

(3.16) (−1)l
n∑

m=2

(
〈τd0τd1+1 · · · τdm+l−1 · · · τdn〉0+

+〈τd0+1τd1 · · · τdm+l−1 · · · τdn〉0
)

f1 · · ·Dl( fm) · · · fn,

(3.17) ∑
{1}tItJ=n,|I|≥1,

i+ j=l−2

(−1) j+1
(
〈τiτd1+1τdI 〉0〈τd0τ jτdJ 〉0 + 〈τiτd1τdI 〉0〈τd0+1τ jτdJ 〉0

)
Dl( f1 fI) fJ ,

and

(3.18) ∑
{1}tItJ=n,|I|≥2,

i+ j=l−2

(−1) j+1
(
〈τiτdI 〉0〈τd0τ jτd1+1τdJ 〉0 + 〈τiτdI 〉0〈τd0+1τ jτd1τdJ 〉0

)
Dl( fI) f1 fJ .

Our goal now is to rewrite these sums so as to obtain directly the contributions from

(3.19)
∑

1∈I⊂n,
di1 +···+dir =|I|−2

〈τ0τdI 〉0Fl(
0 d j1 ··· d js
fI f j1 ··· f js

; d0)

and from

(3.20)
∑

1<I⊂n,
d0+di1 +···+dir =|I|−1

〈τd0τ0τdI 〉0 fI Fl(
d j1 ··· d js
f j1 ··· f js

; 0).
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There are several cases where we can apply the topological recursion relation (1.18)
directly. Applying it to (3.14), (3.15), (3.16), and (3.18), we recognise the respective
summands from (3.19) and (3.20). The only part of our sum where (1.18) cannot be applied
directly is (3.17), where d0 and d1 appear in different correlators. In the remaining part of
the proof, we shall concentrate on analysing that part.

Let us rewrite (3.17) using the topological recursion relation (1.18) in the forms

(3.21) 〈τiτd1+1τdI 〉0 = −〈τi+1τd1τdI 〉0 +
∑

KtL=I

〈τiτ0τdL〉0〈τ0τd1τdK 〉0

and

(3.22) 〈τd0+1τ jτdJ 〉0 = −〈τd0τ j+1τdJ 〉0 +
∑

KtL=J

〈τd0τ0τdL〉0〈τ0τ jτdK 〉0.

The sums on the right hand sides of (3.21) and (3.22) give most of the missing summands
in (3.19) and (3.20) respectively. The terms −〈τi+1τd1τdI 〉0 and −〈τd0τ j+1τdJ 〉0, on the other
hand, give rise to the terms

(3.23) (−1) j〈τi+1τd1τdI 〉0〈τd0τ jτdJ 〉0Dl( f1 fI) fJ

and

(3.24) (−1) j〈τiτd1τdI 〉0〈τd0τ j+1τdJ 〉0Dl( f1 fI) fJ

almost all of which can be grouped into pairs appearing with opposite signs and cancelling
one another. The two terms that remain are the first and the last one,

(3.25) (−1)l〈τ0τd1τdI 〉0〈τd0τl−1τdJ 〉0Dl( f1 fI) fJ ,

and

(3.26) 〈τl−1τd1τdI 〉0〈τd0τ0τdJ 〉0Dl( f1 fI) fJ

which are precisely the missing terms from (3.19) and (3.20) respectively. �

Using this lemma, we complete proof by induction. Indeed, (3.12) allows us to make
one of the di, for i > 0, smaller at the cost of either increasing d0 (keeping the sum
d0 + d1 + · · · + dn fixed) or decreasing n. Since we know, for a fixed l, that the identi-
ties hold for small n and for d1 = d2 = · · · = dn = 0 for all n, this is enough to complete
the third (and the last) step of the proof by induction. �

4. Stabilisers in genera 0 and 1

In this section, we shall explore the property of an operator to preserve a CohFT a bit
further, examining the conditions imposed by considering a TFT in genera 0 and 1. As we
remarked earlier, this corresponds to dealing with wheeled operads. Thus, we assume we
are given the classes

αn = α0,n+1 ∈ H0(M0,n+1,C) ⊗ EndV (n),(4.1)

βn = α1,n ∈ H0(M1,n,C) ⊗ EndV (n).(4.2)

Let us define a wheeled version of commutative BV∞-algebras; the reasoning behind
this definition can be recovered from homotopical calculations in Appendix A. We want to
emphasize that our definition of wheeled BV-algebras includes the Getzler relation (also
known as “1/12-axiom” for cyclic dg BV-algebras); Getzler was probably the first to have
understood the significance of that relation equation in the wheeled version of the op-
erad BV.
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Definition 14. [Wheeled commutative BV∞-algebra] A graded commutative algebra V
with a trace is said to be a wheeled commutative BV∞-algebra if it is equipped with a
collection of operators Dl, l ≥ 1, making it a commutative BV∞-algebra, for which, in
addition, the Getzler relation

(4.3)
1
12

tr(D2( f1) · (−)) = tr(D2( f1 · (−)))

holds, and the operators Dk for k ≥ 3 are strongly compatible with the trace.

We are now ready to formulate the main result of this section.

Theorem 2. Let V be a graded vector space. The Givental action of the element

D =
∑
l≥1

Dlzl−1 ∈ End(V)[[z]]

preserves a given V-valued TFT in genera 0 and 1 if and only if each linear operator
Dk is a differential operator of order at most k strongly compatible with the trace on the
commutative algebra V.

Corollary 2. Let V be a chain multicomplex with structure maps Dl, l ≥ 1. The Givental
action of the element D =

∑
l≥1 Dlzl−1 ∈ End(V)[[z]] preserves a given V-valued TFT in

genera 0 and 1 if and only if the commutative algebra V with a trace equipped with the
operators Di is a wheeled commutative BV∞-algebra.

Proof. Let us first outline the main new feature of this proof, in comparison to the genus 0
case. Following the same strategy as for the genus 0 result, we shall be able to prove that
the wheeled commutative BV∞-algebra constraints are satisfied if and only if the Givental
action of the element D =

∑
l≥1 Dlzl−1 ∈ End(V)[[z]] preserves the correlators of the corre-

sponding V-valued TFT in genera 0 and 1. In the genus 0 case, the whole cohomology ring
ofM0,n coincides with the tautological ring, so preserving a TFT in genus 0 is equivalent
to preserving all its correlators. For the genus 1, this is not the case, and extra arguments
are needed to conclude that preserving the correlators of a TFT is sufficient for a Givental
Lie algebra element to preserve that TFT. First of all, a standard argument (see e.g. [12])
shows that the intersection of the deformed classes defining the TFT with any tautological
class is equal to zero. It remains to note that formula (1.20) for the Givental Lie algebra
action implies that the deformations are given by tautological classes, and the Gorenstein
conjecture for the moduli spacesM1,n, n ≥ 1 [20, 36], proved recently in [38], ensures that
the tautological rings in genus 1 have perfect pairings, that is, if the intersection of a given
tautological class ξ with any other tautological class is equal to zero, then ξ = 0. Therefore,
it is sufficient to mimic the genus 0 approach, and to work with correlators only.

Because the TFT data consists of degree 0 classes, we conclude, as in the genus 0 case,
that the Givental action of D preserves a given TFT if and only if its components preserve
it, so we examine the vanishing conditions

(4.4) {α′(l), β′(l)} := D̂l.{α, β} = 0, for l ≥ 1 .

Because of Theorem 1, we already know that the genus 0 conditions mean that we obtain
a commutative BV∞-algebra structure. The genus one part of the proof begins similarly to
the proof of Theorem 1, but in fact follows largely from what we already know in genus
zero. By Proposition 7, the genus zero conditions guarantee that “in the presence of the
trace, Dl is of order at most l − 1”.

Similarly to the genus zero case, the vanishing conditions for the classes β′n(l) are sat-
isfied trivially for n < l − 1 for cohomological degree reasons, since dimCM1,n = n. For
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n ≥ l − 1, we shall express our conditions via correlators. For every sequence of nonnega-
tive integers d1, . . . , dn with l − 1 + d1 + · · · + dn = n, we compute the intersection of β′n(l)
with

∏n
m=1 ψ

dm
m , thus obtaining the condition on an element of EndV (n) instead. To take

care of signs in subsequent computations, we introduce the operations with n inputs and
no outputs

(4.5) Gl( d1 d2 ··· dn
− − ··· − ) := (−1)l

∫
M1,n

β′n(l) ·
n∏

m=1

ψdm
m .

Substituting elements f1, . . . , fn ∈ V in such an operation, we get the system of identities

(4.6) Gl(
d1 d2 ··· dn
f1 f2 ··· fn ) = 0.

Moreover, Formula (1.25) implies that

(4.7) Gl(
d1 d2 ··· dn
f1 f2 ··· fn ) = (−1)l

n∑
m=1

〈τd1 · · · τdm+l−1 · · · τdn〉1 tr( f1 · · ·Dl( fm) · · · fn · (−))+

+
∑

ItJ=n,|I|≥2,
i+ j=l−2

(−1) j+1〈τiτdI 〉0〈τ jτdJ 〉1 tr(Dl( fI) fJ · (−))+

+
1
2

∑
i+ j=l−2

(−1) j+1〈τiτd1 · · · τdnτ j〉0 tr(Dl( f1 . . . fn · (−))).

Examining the sum

(4.8)
1
2

∑
i+ j=l−2

(−1) j+1〈τiτd1 · · · τdnτ j〉0 tr(Dl( f1 . . . fn · (−))),

we see that the formula in the case l = 2 is substantially different from the case l > 2
(which accounts for the difference between the Getzler relation and the compatibility with
the trace): in the former case, this sum is just one summand

(4.9) −
1
2
〈τ2

0τd1 · · · τdn〉0 tr(Dl( f1 . . . fn · (−))),

while in the latter case it is an alternating sum of binomial coefficients (1.16) and therefore
vanishes. Hence we shall consider these cases separately.

Let us first consider the case l = 2. We first examine this identity for d1 = · · · = dn = 0
(this forces n = l − 1):

(4.10) G2( 0
f1 ) = 〈τ1〉1 tr(D2( f1) · (−)) −

1
2
〈τ3

0〉0 tr(D2( f1 · (−))) =

=
1

24
tr(D2( f1) · (−)) −

1
2

tr(D2( f1 · (−))),

so we recover the Getzler 1/12-relation.
Now we proceed with arbitrary d1, . . . , dn. Formula (4.7) in this case becomes

(4.11) G2( d1 d2 ··· dn
f1 f2 ··· fn ) =

n∑
m=1

〈τd1 · · · τdm+1 · · · τdn〉1 tr( f1 · · ·D2( fm) · · · fn · (−))−

−
∑

ItJ=n,|I|≥2

〈τ0τdI 〉0〈τ0τdJ 〉1 tr(D2( fI) fJ · (−)) −
1
2
〈τ2

0τd1 · · · τdn〉0 tr(D2( f1 . . . fn · (−)))
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Let us rewrite the mth summand in the first sum using the genus one topological recur-
sion relation (1.19) at the point m, obtaining

(4.12) 〈τd1 · · · τdm+1 · · · τdn〉1 =

 1
24
〈τ2

0τd1 · · · τdn〉0 +
∑

ItJt{m}=n

〈τdIτdmτ0〉0〈τ0τdJ 〉1


If we apply the Getzler 1/12-relation (which we already obtained examining (4.10)) to

the last term of (4.11), and group the result with the sum of the first terms of (4.12), the
result cancels because of Identities (2.15) and (2.19) (applied to the operator D2 of order 2,
those equations imply that it becomes an operator of order 1 in the presence of the trace).
Grouping together the remaining terms with the same J, we see that each of the groups
vanishes because of Identities (2.15) and (2.19).

Let us now consider the case l > 2. For d1 = d2 = · · · = dn = 0 (this forces n = l − 1),
we have

(4.13) Gl( 0 0 ··· 0
f1 f2 ··· fl−1

) = (−1)l
n∑

m=1

〈τl−1τ
l−2
0 〉1 tr( f1 · · ·Dl( fm) · · · fl−1 · (−))+

+
∑

ItJ=l−1

(−1)|J|+2〈τ|I|−2τ
|I|
0 〉0〈τ|J|+1τ

|J|
0 〉1 tr(Dl( fI) fJ · (−)) =

=

n∑
m=1

(−1)l

24
tr(Dl( fm) fl−1\{m} · (−)) +

∑
ItJ=l−1,
|I|≥2

(−1)|J|+2

24
tr(Dl( fI) fJ · (−)) =

=
1

24
tr(〈 f1, . . . , fl−1〉

Dl
l−1 · (−)),

and we obtain, up to a factor 1/24, Identity (2.18).
Let us show that all other identities Gl(

d1 d2 ··· dn
f1 f2 ··· fn ) = 0 follow from Identities (2.18)

and (2.20). For that, we shall prove the following lemma.

Lemma 2. We have

(4.14) Gl(
d1 d2 ··· dn
f1 f2 ··· fn ) =

= −
∑

ItJ=n,
di1 +···+dir =|I|+1

〈τ0τdi1
· · · τdir

〉1 tr
(

fI El−1

(
d j1 d j2 ··· d js
f j1 f j2 ··· f js

; 0
)
.(−)

)
+

+
1

24

∑
ItJ=n,

di1 +···+dir =|I|

〈τ3
0τdI 〉0 tr

(
fI El−2

(
d j1 d j2 ··· d js
f j1 f j2 ··· f js

; 0
)
.(−)

)
.

Here El−1 and El−2 denote the expressions analogous to Fl−1 and Fl−2 respectively (as
defined by Formula (3.7)), but based on the operator Dl, not Dl−1 and Dl−2.

Proof. Let us split (4.7) into separate parts, which we shall then treat individually. In the
first sum, we apply to the mth summand the genus one topological recursion relation (1.19)
at point m, obtaining

(4.15) 〈τd1 · · · τdm+l−1 · · · τdn〉1 =

(
1
24
〈τd1 · · · τdm+l−2 · · · τdnτ

2
0〉0+

+
∑

AtBt{m}=n

〈τdAτdm+l−2τ0〉0〈τ0τdB〉1

 .
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We shall leave the sum unchanged, and only transform the first term, where we apply the
topological recursion relation (1.17) at the points m, n + 1, n + 2 to get

(4.16)
1

24
〈τd1 · · · τdm+l−2 · · · τdnτ

2
0〉0 =

1
24

∑
KtLt{m}=n

〈τdKτdm+l−3τ0〉0〈τ
3
0τdL〉0.

The second sum in (4.7) has the terms with j = 0 and j ≥ 1; we consider them sepa-
rately. The terms with j = 0 have the coefficient

(4.17) −
∑

ItJ=n,|I|≥2

〈τl−2τdI 〉0〈τ0τdJ 〉1 = −
∑

AtB=n,|A|≥2

〈τl−2τdA〉0〈τ0τdB〉1,

which we shall keep intact, having only renamed the summation variables, while the terms
with j ≥ 1 are being rewritten using the genus one topological recursion relation (1.19) at
the point with label j, producing the coefficient

(4.18) (−1) j+1〈τiτdI 〉0

 1
24
〈τ j−1τdJτ

2
0〉0 +

∑
AtB=J

〈τdAτ j−1τ0〉0〈τ0τdB〉1

 .
In the latter formula, we do not transform the sum, but rewrite the first term (for every
j ≥ 2), where we apply the topological recursion relation (1.17) at the first point and the
last two points, replacing it by

(4.19)
(−1) j+1

24
〈τiτdI 〉0

 ∑
KtL=J

〈τdKτ j−2τ0〉0〈τ
3
0τdL〉0

 .
For j = 1, this rewriting cannot be performed, and we keep the corresponding term, just
renaming the summation variables:

(4.20)
1

24
〈τl−3τdI 〉0〈τ

3
0τdJ 〉0 =

1
24
〈τl−3τdK 〉0〈τ

3
0τdL〉0.

Now, examining the formulae above, we observe that they can be joined into two groups,
one consisting of the terms having the common numeric coefficient 1

24 〈τ
3
0τdL〉0, and the

other one having the common numeric coefficient 〈τ0τdB〉1. Examining these groups, we
obtain precisely Formula (4.14). �

Using this lemma, we complete the proof of our theorem, observing that since we al-
ready know that in the presence of the wheel the order of differential operators drops by
two, the genus zero result guarantees that all further identities are satisfied. �

Appendix A. Differential operator conditions and (wheeled) homotopy BV-algebras

In this appendix, we shall explain why it is natural to expect the differential operator
conditions in the homotopy BV context.

The definition of [26] is beautiful but somewhat ad hoc; there, the story starts from an
assumption that the operator

∑
l Dlzl−1 (defining the structure of a chain multicomplex on V ,

or, more informally, “a resolution of the relation ∆2 = 0”) has homogeneous components
that are differential operators of finite orders, which generally does not have to be true.
The paper [11], where a free resolution of the operad BV is obtained, gives a conceptual
explanation: it is shown there that a homotopy BV-algebra in which all higher homotopical
operations except for the unary ones vanish is a commutative BV∞-algebra in the sense of
[26].

In the wheeled case, a free resolution for BV is not readily available, so one has to
approach this problem from a different angle. The explanation below is along the lines
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of the Koszul–Tate approach to minimal models [25, 41]: to construct a minimal model,
we resolve cycles step by step, adding higher and higher homotopies killing the appearing
new cycles. It turns out that if we assume that all higher homotopies of arity two and
more vanish, the differential operator conditions for operators Dl acting on homotopy BV-
algebras appear naturally. This informal statement is formulated precisely and proved in
the remaining part of this section.

Recall that the operad BV is made up of the algebra of dual numbers

D := T (∆)/(∆2),

considered as an operad concentrated in arity 1, and the operad Com for commutative
algebras as follows. The operad BV is equal to the quotient of the coproduct (the free
product) of the operad D and the operad Com by the relation saying that ∆ is an order 2
operator:

(A.1) BV =
D∨Com

(∆ order 2)
.

The cobar construction Ω D¡ ∼
−→ D on the Koszul dual coalgebra D¡ of D is a resolution

of D. Its underlying algebra is the free algebra on a sequence of elements, also denoted
{Dl}l≥2 by a slight abuse of notation. Its differential is given by Formula (3.3).

Theorem 3. The differential of Ω D¡ induces a well defined differential on the quotient
operad

(A.2)
Ω D¡ ∨Com

(Dl order l, for l ≥ 2)
.

If a quotient dg operad

(A.3)
Ω D¡ ∨Com

(R)
is quasi-isomorphic to the operad BV, then the space of relations R contains the order l
relations for the operators Dl.

Proof. We begin with the second part of the statement. From the definition of BV-algebras,
D2 corresponds to ∆ and therefore, it must be a second order differential operator in any the
resolutions of BV. Let us prove that Dl must be a differential operator of order at most l
by induction, using l = 2 as the basis. Let us make the inductive step; by the inductive
hypothesis, we may assume that l ≥ 2 and Di for i = 2, . . . , l is a differential operator of
order i. Note that because of the homological degrees Equations (3.3) can be written in the
form

(A.4)
∑

i+ j=n

[Di,D j] = 0,

so

(A.5) [D1,Dl+1] = −
1
2

l∑
i=2

[Di,Dl+2−i].

Let us consider, as in Section 3, the composite of operations Fl+1( 0 0 ··· 0
− − ··· − ; 0) but viewed

in the resolution Ω D¡ ∨Com
(R)

∼
−→ BV of BV this time. It vanishes exactly when Dl+1 is a

differential operator of order l + 1. We compute its differential in the resolution and we
denote the result by Rl+1. That amounts to replacing Dl+1 everywhere in that composite
by − 1

2
∑l

i=2[Di,Dl+2−i]. In the absence of homotopies of arity 2 and higher up, all the
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differential operators in that sum are of order at most l + 1 because of Property (2.14), so
Rl+1 = 0, and the condition for Dl+1 to be a differential operator of order l + 1 is a cocycle.
(This proves the first statement.) Hence it has to be resolved using a homotopy of arity at
least 2, and that homotopy vanishes in the resolution by the assumption. �

In the genera 0 and 1 case, we work with the wheeled analogues of the aforementioned
operads. Let BV� denote the wheeled operad which encodes BV-algebras equipped with
a trace satisfying the Getzler 1/12-relation. The wheeled operads Com� and Ω� D¡ are
the wheelification of the corresponding operads, that is wheeled versions without any more
relations.

Theorem 4. The differential of Ω D¡ induces a well defined differential on the quotient
wheeled operad
(A.6)

Ω� D¡ ∨Com�

(Getzler 1/12-relation; Dl order l & strongly compatible with the trace, for l ≥ 2)
.

If a quotient wheeled dg operad

(A.7)
Ω� D¡ ∨Com

(R)

is quasi-isomorphic to the wheeled operad BV�, then the space of relations R contains the
Getzler 1/12-relation, the order l relations for the operators Dl and the strong compatibil-
ity with the trace.

Proof. For wheeled operads, the same strategy works, but instead of Property (2.14), we
shall use the notion of compatibility with the trace. Proposition 9 shows that to mimic the
proof in the operadic case, we need to deal with the basis of the induction carefully (since
in wheeled commutative BV∞-algebras the operator D2 is not strongly compatible with the
trace), and deal with the case [D2,Dl] which is the only term not covered by the induction
assumption. These terms are handled by the following lemma.

Lemma 3. Let D2 be a differential operator of odd degree and of order at most 2 satisfying
the Getzler 1/12-relation, and let Dl be a differential operator of odd degree and of order
at most l, which is strongly compatible with the trace. Then both the operators [D2,D2]
and [D2,Dl] are strongly compatible with the trace, as operators of order at most 3 and at
most l + 1 respectively.

Proof. We shall prove these statements simultaneously, mimicking the proof of Proposi-
tion 9. Namely, we rewrite tr( f 〈 f1, . . . , fk〉

[D2,Dl]
k · (−)) as

(A.8)
∑

ItJ=l,
|I|=r≥1

tr
(

f 〈〈 fi1 , . . . , fir 〉
Dl
r , f j1 , . . . , f jl−r 〉

D2
l+1−r · (−)

)
+

+ tr
(

f 〈〈 fi1 , . . . , fir 〉
D2
r , f j1 , . . . , f jk−r 〉

Dl
l+1−r · (−)

)
.

The first of the summands in each of the terms of this sum vanishes for l + 1 − r ≥ 2 (that
is for l− 1 ≥ r) by Proposition 7 because D2 is of order at most 2. The second one is equal
to the first one for l = 2, and for l > 2 vanishes for r ≥ 3 by Proposition 7 because D2 is of
order at most 2 and for l + 1 − r ≥ l − 1 (that is for 2 ≥ r) because Dl is of order at most l
and is strongly compatible with the trace. Therefore the only term that does not vanish a
priori is

(A.9) tr
(

f 〈〈 f1, . . . , fl〉
Dl
l 〉

D2
1 · (−)

)
.
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Let us prove that this term vanishes. Both the operator D2 and the operator Dl are of order
at most l, so we write

(A.10)
∑
∅,I⊂l+1

(−1)l+1−|I|Dl( fI) fl+1\I = 0

and

(A.11)
∑
∅,I⊂l+1

(−1)l+1−|I|D2( fI) fl+1\I = 0.

Let us apply D2 to Identity (A.10), apply (−1)lDl to Identity (A.11), add the results, and
compute the traces with respect to the input fl+1. Using the fact that traces vanish on
commutators, it is possible to cancel all the terms tr(D2(Dl( fI · (−)) fJ)) with the terms
tr(Dl(D2( fI · (−)) fJ)). It follows that

(A.12) tr

D2

 ∑
∅,I⊂l

(−1)l−|I|Dl( fI) fl\I · (−)


 +

+ (−1)l tr

Dl

 ∑
∅,I⊂l

(−1)l−|I|D2( fI) fl\I · (−)


 = 0.

The latter identity can be rewritten as

(A.13) tr
(
〈〈 f1, . . . , fl〉

Dl
l · (−)〉D2

1

)
+ (−1)l tr

(
〈〈 f1, . . . , fl〉

D2
l · (−)〉Dl

1

)
= 0.

For l > 2, the second term vanishes since already 〈 f1, . . . , fl〉
D2
l vanishes; for l = 2, the

two terms are the same. In either case, applying the Getzler 1/12-relation, we deduce that
(A.9) vanishes. �

Now everything is ready to finish the proof of Theorem 4. From the definition of
wheeled BV-algebras, D2 corresponds to ∆ and, hence, it should be a second order dif-
ferential operator satisfying the Getzler 1/12-relation in any resolution of BV� in the
absence of higher homotopies of arity ≥ 2. From the operadic proof, we already know
that each operator Dl is a differential operator of order at most l. Let us prove that, for
l ≥ 3, these operators are strongly compatible with the trace. We consider the composite of
the operations Gl( 0 0 ··· 0

− − ··· − ) and Gl( 0 0 ··· 1
− − ··· − ) in the resolution of the wheeled operad BV�.

They vanish precisely when Dl is strongly compatible with the trace. We compute their
differentials in the resolution and we denote the results by S l and Tl respectively. Comput-
ing the differential amounts to replacing Dl everywhere in that composite of operations by
− 1

2
∑l

i=2[Di,Dl+1−i]. In the absence of homotopies of arity 2 and higher, all the differential
operators in that sum are strongly compatible with the trace by Lemma 3, induction and
Proposition 9 (and for the basis of induction l = 3 — by the first part of Lemma 3), so
S l = Tl = 0. (This proves the first statement.) Therefore the condition for Dl to be strongly
compatible with the trace is a cocycle; so it has to be resolved using a homotopy of arity at
least 2. Finally that homotopy vanishes by assumption. This completes the proof. �

Appendix B. Generalised BCOV theory

In this Appendix, we explain a possible application of Corollaries 1 and 2.
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B.1. Motivation: classical BCOV theory. BCOV theory is a way to construct cohomo-
logical field theories from a differential graded BV-algebra, when the differential and the
BV-operator satisfy the Hodge condition.

A dg BV-algebra is made up of a mixed chain complex

(A, d,∆), d2 = ∆2 = d∆ + ∆d = 0,

equipped with a compatible commutative product. Let us describe various types of Hodge
conditions that occur for this setup.

Definition 15 (Hodge conditions).
� The compatibility relation

Ker d ∩ Ker ∆ ∩ (Im d + Im ∆) = Im d∆(B.1)

is called the d∆-condition [6].
� The mixed chain complex is called semi-classical [37] if every homology class

with respect to the differential d has a representative in the kernel of ∆.
� A Hodge-to-de Rham degeneration datum consists of a deformation retract

(A, d)h
$$ p // (H(A), 0) ,

i
oo(B.2)

such that

p(∆h)m−1∆i = 0 , for m ≥ 1 .(B.3)

It is easy to see that the following implications hold

(d∆-condition) =⇒ (semi-classical) =⇒ (Hodge-to-de Rham degeneration datum) .

Theorem 5 ([8]). The underlying homology groups of a dg BV-algebra equipped with a
Hodge-to-de Rham degeneration datum is endowed with a genus 0 cohomological field
theory structure extending the induced commutative product.

This theorem was first proved under the d∆-condition in [3, 31]. Explicit formulae
were given in [28]. It was shown under the semi-classical hypothesis in [37]. It was fi-
nally proved, in this most general form, in [8], using the Homotopy Transfer Theorem
(HTT for short) for the minimal model of the operad BV: the homology groups of a dg
BV-algebra can be endowed with a skeletal homotopy BV-algebra structure extending the
induced commutative product. Moreover, in the presence of Hodge-to-de Rham degener-
ation datum, the transferred operator ∆ and its higher homotopies vanish and one gets a
homotopy genus 0 CohFT with trivial differential. Therefore, its first stratum is a genus 0
CohFT.

The latter arguments can be applied to a commutative BV∞-algebra. The HTT says that
the transferred operators on homology are equal to

(B.4)
∑

l1+l2+···+lk−k=n,
l1,...,lk≥2

(−1)k−1 pDl1 hDl2 h . . . hDlk i .

Proposition 10. Let A be a commutative BV∞-algebra such that its operators {Dl}l≥1
satisfy the following condition with the underlying deformation retract on the homology
groups: ∑

l1+l2+···+lk−k=n,
l1,...,lk≥2

(−1)k−1 pDl1 hDl2 h . . . hDlk i = 0 .(B.5)
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In this case, the underlying homology groups are endowed with a genus 0 cohomological
field theory structure extending the induced commutative product.

It works like that only if we want to construct a CohFT on the operadic level; in the
wheeled operad case, we have to start with a finite dimensional wheeled BV-algebra with
the Hodge condition as an input (that is, we have to start with a finite-dimensional BV-
algebra that satisfies the Getzler relation), and in the modular operad case, we need again
a finite dimensional BV-algebra with the Hodge condition, satisfying the Getzler relation,
and equipped with a scalar product that is compatible with all the structure. The required
algebraic formalism was developed in [5, 3, 31, 28, 29, 40].

The main problem of this approach in genera higher than 0 is the requirement for the
input to be finite dimensional, since the basic examples of BV-algebras with the Hodge
condition [5, 33] are infinite-dimensional. In fact, we don’t know of any natural finite-
dimensional example of a wheeled BV-algebra satisfying the Hodge property.

There are different ways to resolve these kinds of problems. One of the possible ap-
proaches is discussed in the recent preprint [10], where a renormalization procedure is
proposed. The price for renormalization is actually the loss of the algebraic elegancy of
the BCOV theory. In the vein of [8], one could use the HTT for the associated wheeled
operad or, even better, wheeled properad, as in [34].

Another possible strategy is to look for natural examples of a structure weaker than
wheeled BCOV theory, where the same simple algebraic formalism would give explicit
formulae for the induced CohFT. Here we explain the explicit formulae for the induced
CohFT at the wheeled operad level for the input recollected from Theorems 2 and 3. To
this aim, we need an analogue of the Hodge condition (B.3) or (B.5) but this time for
wheeled commutative BV∞-algebras.

Of course, in genus 0, the formulae that we obtain must be specializations of the HTT
formulae in [8], but, using our results one can present them in a very simple way.

B.2. The construction. We consider a wheeled commutative BV∞-algebra on a vector
space V . Its structure, according to Theorems 1 and 2, can be described by a V-valued TFT
that consist of classes

(B.6) αn ∈ H0(M0,n+1,C) ⊗ Hom(V⊗n,V), n ≥ 3,

and

(B.7) βn ∈ H∗(M1,n,C) ⊗ Hom(V⊗n,C), n ≥ 1,

and the operators Dl of order at most l, for each l ≥ 1, such that the series

(B.8) D(z) :=
∞∑

l=1

Dlzl−1

satisfies D(z)2 = 0, and D̂(z).{α, β} = 0.

Definition 16 (Gauge Hodge condition). A wheeled commutative BV∞-algebra V is said
to satisfy the gauge Hodge condition if there exists a series A(z) =

∑∞
l=1 Alzl in End(V)[[z]]

such that

(B.9) exp(−A(z))D1 exp(A(z)) = D(z).

This definition relaxes the semi-classical Hodge condition: if we restrict ourselves to
the particular case D(z) = D1 + D2z, A(z) = A1z, and add the requirement A2

1 = 0, what we
obtain is precisely the semi-classical Hodge condition (see for example [40, Remark 5.4]).
It turns out that the conditions (B.5) and (B.9) are equivalent, see [7].
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Theorem 6. The following formula gives the structure of a wheeled operadic CohFT on
the cohomology H(V,D1):

(B.10) exp(Â(z)).{α, β}|H(V,D1) .

Proof. The proof is almost obvious. Indeed, general Givental theory implies that the col-
lection of classes exp(Â(z)).{α, β} defines a wheeled operadic CohFT on V . Equation (B.9)
implies, after quantisation, that

(B.11) D̂1 exp(Â(z)) = exp(Â(z))D̂.

Therefore, exp(Â(z)).{α, β} consists of D1-closed cohomology classes, and therefore, it can
be restricted to the D1-cohomology preserving the property of being a wheeled operadic
CohFT. �
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