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ON THE EISENSTEIN COHOMOLOGY OF ODD ORTHOGONAL

GROUPS

GERALD GOTSBACHER AND HARALD GROBNER

Abstract. The paper investigates a significant part of the automorphic, in
fact of the so-called Eisenstein cohomology of split odd orthogonal groups over
Q. The main result provides a description of residual and regular Eisenstein
cohomology classes for maximal parabolic Q-subgroups in case of generic coho-
mological cuspidal automorphic representations of their Levi subgroups. That
is, such identifying necessary conditions on these latter representations as well
as on the complex parameters in order for the associated Eisenstein series to
possibly yield non-trivial classes in the automorphic cohomology.

Introduction

The main objective of the effort to be unfolded here is to study the Eisenstein
cohomology of the Q-split odd orthogonal groups G = SO2n+1. Specifically, it is
the contribution to the latter stemming from maximal parabolic Q-subgroups that
is dealt with.

To put ourselves in medias res let g be the Lie algebra of the group of real
points of G, K a maximal compact subgroup therein and A(G) the (g,K)-module
of adèlic automorphic forms on G. If E is a finite dimensional irreducible rational
representation of G(R), the automorphic cohomology of G twisted by E is defined
to be H∗(g,K;A(G) ⊗ E). Let then P ⊂ G be a maximal parabolic Q-subgroup
with Levi subgroup L and maximal central Q-split torus A ⊆ L. We consider the
Eisenstein series EP (f,Λ) associated to a cohomological, globally generic, cuspidal
automorphic representation π of L(A), resp. an element f in the representation
induced from π and a complex parameter Λ ∈ a∗C. Langlands’ theory of Eisenstein
series ensures convergence of EP (f,Λ) on a right half plane with respect to Λ,
the existence of a meromorphic continuation to the entire complex plane a∗C and
gives a restriction on the location of its possible poles in terms of affine lines in it.
Moreover, EP (f,Λ) (resp. its residue) gives rise to an element of A(G) for fixed
but arbitrary Λ. In order for it to represent a class in the automorphic cohomology
Λ has to be of a specific form Λw involving what is called the set WP of Kostant
representatives w for P . At this point we are presented with the key task which is
to determine the cohomological cuspidal automorphic representations of L(A) and
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the Kostant representatives for P . With these data at hand it remains to decide
whether the given Eisenstein series is holomorphic or has a pole at the point Λw.
In solving the latter the general Theorems available in the theory of Eisenstein
cohomology provide us with a closing answer to the initial question, which roughly
assumes the following form: (see Theorems 25 & 26 as well as section 6 for the
precise statements)

Result. Let P be the standard maximal parabolic Q-subgroup of G = SO2n+1 with
Levi subgroup L ∼= GLk × SO2(n−k)+1. Further, let α be the only simple root
of G which does not vanish identically on A. Suppose given a non-trivial class
in H∗(g,K;A(G) ⊗ E) associated to a choice (π,w) of a cohomological, globally
generic, cuspidal automorphic representation π of L(A) and a Kostant represen-
tative w ∈ WP . As π = χ(σ⊗̂τ) with χ the central character, σ a cohomological
cuspidal automorphic representation of GLk and τ a cohomological, globally generic,
cuspidal automorphic representation of SO2(n−k)+1 in the residual case π is either
of the form

(1) dχ = Λw = k
2α, σ self-dual and such that the Rankin-Selberg L-function of

σ× τ does not vanish at 1
2 (a condition, which we set empty if k = n). If in

addition k is even and the central character of σ is trivial, then k ≥ 4 and
σ is a self-dual Weak Langlands functorial lift of a globally generic cuspidal
automorphic representation of SOk(A). Or

(2) dχ = Λw = kα, k 6= n is even and σ self-dual such that the Rankin-Selberg
L-function of σ × τ has a pole at 1.

The regular case pertaining to the situation that π either doesn’t meet either one of
conditions (1) and (2) or it does while producing regular values for the Eisenstein
series is settled in light of the description of regular Eisenstein classes available in
general.

Finally, we find lower and upper bounds for the degree of the Eisenstein class
constructible from the above in both the residual and the regular case.

The structure of the paper mirrors closely the steps mentioned in the above
outline:

Section 1 introduces the automorphic cohomology of a reductive algebraic Q-
group and provides a brief outline of Eisenstein cohomology. In particular, it
sketches the decomposition of the automorphic cohomology along the cuspidal sup-
port and gathers the main Theorems pertaining to the construction of cohomology
classes by means of Eisenstein series.

Section 2 gives a terse description of so-called Kostant data by virtue of a method
the idea behind which we learnt from N. Grbac. Its main advantage is to be seen in
a formulaic description of the action of Kostant representatives on arbitrary weights
on the Cartan subalgebra of g, and consequently of the Kostant data relevant to
the aforementioned construction.

Section 3 lists the cuspidal representations of the Levi subgroups with non-
trivial cohomology and provides lower and upper bounds for their contribution to
cohomology drawing from well-known results by a number of people (for precise
references cf. section 3).

Section 4 recounts H. Kim’s determination of the part of the residual spectrum
of G accounted for by the maximal parabolic Q-subgroups in order to derive the
possible poles of Eisenstein series.
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Finally, sections 5 and 6 present our results on residual and regular Eisenstein
cohomology classes for maximal parabolic Q-subgroups of G = SO2n+1.

On a final note, we want to remark that at the time of composing this work,
N. Grbac and J. Schwermer were addressing similar questions for split Sp2n. An
analogous result exists for split SLn, see [34]. The interested reader may also con-
sult the first author’s paper [15], where regular Eisenstein cohomology classes were
constructed for the inner forms SO(n, 2) of SOn+2 or the second author’s papers
[17] and [18] on residual and regular Eisenstein cohomology of Sp(2, 2) and Sp(1, 1).

Acknowledgements. The authors would like to thank Neven Grbac and Goran
Muic for valuable discussions. We are also grateful to Dihua Jiang, Joachim Schw-
ermer and Birgit Speh for helpful remarks. Both authors would like to thank the
Erwin Schrödinger Institute for Mathematical Physics, Vienna, for its hospitality,
where this paper took its final form. The second named author would also like to
thank the Max-Planck-Institut für Mathematik, Bonn, where the major part of this
work was written.

Notation and Conventions. Throughout this paper G will denote a connected,
reductive, but most often semisimple algebraic group over Q of rank rkQ(G) ≥ 1
with finite center. Lie algebras of groups of real points of algebraic groups will be
denoted by the same but gothic letter, e.g. g = Lie(G(R)). The complexification
of a Lie algebra will be denoted by subscript “C”, e.g. gC = g⊗R C.

We use the standard terminology and hypotheses concerning algebraic groups and
their subgroups to be found in [32] I.1.4-I.1.12. In particular, we assume that a
minimal parabolic subgroup P0 has been fixed and that KA = KR ×KAf

is a max-
imal compact subgroup of the group G(A) of adelic points of G which is in good
position with respect to P0 ([32], I.1.4). Then K = KR is maximal compact in
G(R), hence has an associate Cartan involution θ. If H is a subgroup of G, we let
KH = K ∩H(R).

Assume that L0 is the unique Levi subgroup of P0 which is invariant under θ
and N0 is an unipotent radical of P0 such that we have the Levi decomposition
P0 = L0N0. If we additionally denote by A0 a maximal, central Q-split torus
in L0 then we also get the Langlands decomposition P0 = M0A0N0. As usual,
M0 =

⋂
χ kerχ2, χ ranging over the group X(L0) of all Q-characters on L0. Let P

be a standard parabolic Q-subgroup of G with respect to P0. It has a unique Levi
decomposition P = LPNP , with LP ⊇ L0 and also a unique Langlands decompo-
sition P = MPAPNP with unique θ-stable split component AP ⊆ A0. If it is clear
from the context we will also omit the subscript “P”. We write ∆(P,A) for the set
of weights of the adjoint action of P with respect to AP . ρP denotes the half-sum
of these weights. In particular, ρ = ρP0 is the half sum of positive Q-roots of G
with respect to A0.
Extend the Lie algebra a of A(R) to a Cartan subalgebra h of g by adding a
θ-stable Cartan subalgebra b of m. The absolute root system of g is denoted
∆ = ∆(gC, hC), a simple subsystem (compliant with the requirement that posi-
tivity on the system of absolute roots shall be compatible with the positivity on
the set ∆Q of Q-roots given by the choice of the minimal pair (P0, A0)) is denoted
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∆◦. We also write ∆◦
M for the set of absolute simple roots of m with respect to b

(so ∆◦ = ∆◦
G). The Weyl group associated to ∆ is denoted W = W (gC, hC). We let

WP = {w ∈ W |w−1(α) > 0 ∀α ∈ ∆◦
M}. The elements of WP are called Kostant

representatives.
Using the fact that KA is in good position, we can extend the standard Harish-
Chandra height-function HP : P (A) → a∗ given by

∏
p |χ(p)|p = e〈χ,HP (p)〉, χ ∈

X(L) viewed as an element of a∗C, to a function on all of G(A) by setting HP (g) :=
HP (p), g = kp.

Let G be a connected, reductive group over Q and χ a central character. As
usual L2

dis(G(Q)\G(A)) (resp. L2
dis(G(Q)\G(A), χ)) denotes the discrete spectrum

of G (resp. the part of it consisting of functions with central character χ). It
can be written as the direct sum of the cuspidal spectrum L2

cusp(G(Q)\G(A))

(resp. L2
cusp(G(Q)\G(A), χ)) and the residual spectrum L2

res(G(Q)\G(A) (resp.

L2
res(G(Q)\G(A), χ)). By [12] the space L2

dis(G(Q)\G(A), χ), decomposes as direct
Hilbert sum over all irreducible, admissible representations π of G(A) with central
character χ, each of which occurring with finite multiplicity mdis(π). The same
is therefore true for the cuspidal (resp. residual) spectrum, if we replace the mul-
tiplicity by m(π) (resp. mres(π)). Every π can be written as a restricted tensor
product π = ⊗′

pπp, where p is a place of Q. i.e. either a rational prime or ∞ and
πp a local irreducible, admissible representation πp of G(Qp), [9]. Further, π is
(and therefore all πp are, simultaneously) unitary if and only if χ is. Then π is the

completed restricted tensor product π = ⊗̂
′
pπp.

For any G(A)-representation σ, we will write σ∞ for the space of its smooth vectors
and σ(K) for the space of K-finite vectors. Clearly, if σ is unitary, then σ∞

(K) is a

unitary (g,K,G(Af ))-module.

1. Generalities on Automorphic forms and Cohomology

1.1. We start our study with the space of automorphic formsA(G) = A(G(Q)\G(A))
on G(A). It is a (g,K,G(Af ))-module and hence it makes sense to talk about its
(g,K)-cohomology (to be called the automorphic cohomology of G) which we may
also twist by an irreducible rational representation E of G(R) of highest weight λ
on a finite-dimensional, complex vector space:

Hq(G,E) := Hq(g,K,A(G) ⊗ E).

Clearly, Hq(G,E) carries a G(Af )-module structure, induced from the action of
G(Af ) on A(G), which we shall now investigate.

In order to do so, we shall analyze the cohomological automorphic representations
π of G. Recall ([31], Prop. 2) that a representation π of G(A) is automorphic
if and only if it is an irreducible constituent of a globally (normalized) induced

representation Ind
G(A)
P (A)[σ], P being a parabolic subgroup of G and σ a cuspidal

automorphic representation of the Levi LP (A). Hence, cuspidal automorphic rep-
resentations of Levi subgroups LP will play a crucial role in the determination of
Hq(G,E). In fact, we may divide the space of automorphic forms into two parts,
A(G) = Acusp(G) ⊕ AEis(G), where Acusp(G) is the space of cuspidal automor-
phic forms and AEis(G) a natural complement spanned as a representation by all
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irreducible subquotients of induced representations Ind
G(A)
P (A)[σ] as above, but with

P proper. Therefrom the automorphic cohomology of G inherits a natural decom-
position as G(Af )-module:

(1) Hq(G,E) = Hq
cusp(G,E)⊕Hq

Eis(G,E).

1.2. Let us refine this decomposition even further. As one may guess from the
characterization of automorphic representations as subquotients of parabolically
induced representations, there should be somehow a refinement of (1) which in-
volves all parabolic subgroups P of G and cuspidal automorphic representations π
of LP (A). This is, indeed, true and we will briefly discuss this refined decomposi-
tion as it will serve as the starting-point of our further investigations.

First of all, A(G) admits a certain decomposition as a direct sum with respect
to the classes {P} of associate parabolic Q-subgroups P ⊆ G. This relies on such
a decomposition of the space VG of K-finite, left G(Q)-invariant, smooth functions
f : G(A) → C of uniform moderate growth, first proved by Langlands in a letter to
Borel, [29]. See also [3] Thm. 2.4: VG =

⊕
{P} VG({P}), where VG({P}) denotes

the space of elements f in VG which are negligible along Q for every parabolic Q-
subgroup Q ⊆ G, Q /∈ {P}. Putting AP (G) = VG({P}) ∩ A(G) we made the first
of two steps in the decomposition of A(G) alluded to above:

A(G) =
⊕

{P}

AP (G).

Observe that AG(G) ⊂ VG({G}) = L2
cusp(G(Q)\G(A))∞(K). Hence, we see that the

following holds:

Proposition 1.

Hq
cusp(G,E) = Hq(g,K,AG(G)⊗ E)

and
Hq

Eis(G,E) =
⊕

{P},P 6=G

Hq(g,K,AP (G)⊗ E).

1.3. Eisenstein series. We still want to take the second step in refining (1), mean-
ing that we want to decompose the summands Hq(g,K,AP (G)⊗E) involving cusp-
idal automorphic representations π of LP (A). We refer the reader to [11] for details
concerning this section.

We need some technical assumptions: For Q = LN = MAN associate to the
standard parabolic P , ϕQ is a finite set of irreducible representations π = χπ̃ of
L(A), with χ : A(R)◦ → C∗ a continuous character and π̃ an irreducible, uni-
tary subrepresentation of L2

cusp(L(Q)A(R)◦\L(A)) of L(A) whose central character
induces a continuous homomorphism A(Q)A(R)◦\A(A) → U(1) and whose infini-
tesimal character matches the one of the dual of an irreducible subrepresentation
of H∗(n, E). This just means that π̃ is a unitary, cuspidal automorphic representa-
tion of L(A) whose central and infinitesimal character satisfy the above conditions.
Finally, three further “compatibility conditions” have to be satisfied between these
sets ϕQ, skipped here and listed in [11], 1.2. The family of all collections ϕ = {ϕQ}
of such finite sets is denoted ΨP .



6 GERALD GOTSBACHER AND HARALD GROBNER

Now denote IQ,π̃ = Ind
G(Af )

Q(Af )
Ind

(g,K)
(l,KL)

[
π̃∞
(KL)

]m(π̃)

(unnormalized induction). For a

function f ∈ IQ,π̃, Λ ∈ a∗C and g ∈ G(A) we consider the Eisenstein series (formally)
defined as

EQ(f,Λ)(g) :=
∑

γ∈Q(Q)\G(Q)

f(γg)e〈Λ+ρQ,HQ(γg)〉.

If we set (a∗)+ := {Λ ∈ a∗C|ℜe(Λ) ∈ ρQ + C}, where C denotes the open, positive
Weyl-chamber with respect to ∆(Q,A), the series converges absolutely and uni-
formly on compact subsets of G(A)×(a∗)+. It is known that for fixed Λ the function
EQ(f,Λ) on G(A) is an automorphic form there and that the map Λ 7→ EQ(f,Λ)(g)
can be analytically continued to a meromorphic function on all of a∗C, cf. [32] p. 140
or [30] §7. It is known that the singularities Λ0 (i.e., poles) of EQ(f,Λ) lie along
certain affine hyperplanes of the form Rα,t := {ξ ∈ a∗C|〈ξ, α〉 = t} for some constant
t and some root α ∈ ∆(Q,A), called “root-hyperplanes” ([32] Prop. IV.1.11 (a) or
[30] p.131). Choose a normalized vector η ∈ a∗C orthogonal to Rα,t and assume that
Λ0 lies on no other singular hyperplane of EQ(f,Λ). Then define Λ0(u) := Λ0 + uη
for u ∈ C. If c is a positively oriented circle in the complex plane around zero which
is so small that EQ(f,Λ0(.))(g) has no singularities on the interior of the circle with
double radius, then

ResΛ0(EQ(f,Λ)(g)) :=
1

2πi

∫

c

EQ(f,Λ0(u))(g)du

is a meromorphic function on Rα,t, called the residue of EQ(f,Λ) at Λ0. Its poles
lie on the intersections of Rα,t with the other singular hyperplanes of EQ(f,Λ).
By this procedure one gets a function holomorphic at Λ0 in finitely many steps by
taking successive residues as explained above.

Now we are able to take the desired second step in the decomposition of the G(Af )-
module summand Hq(g,K,AP (G)⊗ E): For π = χπ̃ ∈ ϕP ∈ ϕ ∈ ΨP let AP,ϕ(G)
be the space of functions, spanned by all possible residues and derivatives of Eisen-
stein series defined via all f ∈ IP,π̃ at the value dχ. It is a (g,K,G(Af ))-module.
Thanks to the functional equations (see [32] IV.1.10) satisfied by the Eisenstein
series considered, this is well defined, i.e., independent of the choice of a represen-
tative for the class of P (whence we took P itself) and the choice of a representation
π ∈ ϕP . Finally, we get

Proposition 2 ([11] Thm.s 1.4 & 2.3; [32] III, Thm. 2.6). There is a direct sum
decomposition as G(Af )-module

(2) Hq
Eis(G,E) =

⊕

{P},P 6=G

⊕

ϕ∈ΨP

Hq(g,K,AP,ϕ(G)⊗ E).

Remark 3. Notice, that the second statement entails the claim that the G(Af )-
module Hq

Eis(G,E) is generated by derivatives and residues of cuspidal Eisenstein

series associated to Λ ∈ C.

1.4. How does this refined decomposition (2) help us in determining the G(Af )-
module Hq

Eis(G,E)? It allows us to construct classes in the Eisenstein cohomology
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by lifting classes associated to cuspidal automorphic representations π̃. In order to
have this procedure readily available we will now recall the notion of classes of type
(π,w), π ∈ ϕP , w ∈ WP .

Therefore, let π = χπ̃ ∈ ϕP and consider the symmetric tensor algebra

Sχ(a
∗) =

⊕

n≥0

n⊙
a∗C,

⊙n
a∗C being the symmetric tensor product of n copies of a∗C, as module under aC:

Via the natural identification aC
∼
→ a∗C it is an aC-module acted upon by ξ ∈ aC ∼= a∗C

via multiplication with 〈ξ, ρP +dχ〉+ξ (within the symmetric tensor algebra). This
explains the subscript “χ”. We extend this action trivially on lC and nC to get an
action of the Lie algebra pC on the Banach space Sχ(a

∗). We may also define a
P (Af )-module structure via the rule

q ·X = e〈dχ+ρP ,HP (q)〉X,

for q ∈ P (Af ) and X ∈ Sχ(a
∗). There is a continuous linear isomorphism

Ind
G(Af )

P (Af )
Ind

(g,K)
(l,KL)

[
π̃∞
(KL) ⊗ Sχ(a

∗)
]m(π̃) ∼

→ IP,π̃ ⊗ Sχ(a
∗),

so in particular one can view the right hand side as a (g,K,G(Af ))-module by
transport of structure. Doing this, it is shown in [10], pp. 256-257, that

Hq(g,K, IP,π̃ ⊗ Sχ(a
∗)⊗ E) ∼=

(3)
⊕

w∈WP

−w(λ+ρ)|aC
=dχ

Ind
G(Af )

P (Af )

[
Hq−l(w)(m,KM , (π̃∞)(KM ) ⊗

◦Fw)⊗ Cdχ+ρP
⊗ π̃

∞f

f

]m(π̃)

.

Here ◦Fw is the irreducible, finite dimensional representation of M(C) with highest
weight µw := w(λ + ρ) − ρ|bC

and Cdχ+ρP
the one-dimensional, complex P (Af )-

module on which q ∈ P (Af ) acts by multiplication by e〈dχ+ρP ,HP (q)〉. A non-trivial
class in a summand of the right hand side is called a cohomology class of type (π,w),
π ∈ ϕP , w ∈ WP (this notion was first introduced in [35] p. 56).
Further, since L(R) ∼= M(R) × A(R)◦, π̃∞ can be viewed as an irreducible, uni-
tary representation of M(R). Therefore, a (π,w) type consists of an irreducible
representation π = χπ̃ whose unitary part π̃ = π̃∞⊗̂π̃f has at the infinite place
an irreducible, unitary representation π̃∞ of the semisimple group M(R) with non-
trivial (m,KM )-cohomology with respect to ◦Fw.

1.5. The Eisenstein map. In order to construct Eisenstein cohomology classes,
we start from a class of type (π,w). By (1.4) we can assume that dχ = −w(λ+ρ)|aC

and that this point lies inside the closed, positive Weyl chamber defined by ∆(P,A).

Reinterpret Sχ(a
∗) as the Banach space of formal, finite C-linear combinations

of differential operators ∂ν

∂Λν on the complex, ℓ-dimensional vector space a∗C. It is
understood that some choice of Cartesian coordinates z1(Λ), ..., zℓ(Λ) on a∗C has
been fixed and ν = (n1, ..., nℓ) ∈ Nℓ

0 denotes a multi-index with respect to these.
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As a consequence of [32] Prop. IV.1.11, there exists a polynomial 0 6= q(Λ) on a∗C
such that for every f ∈ IP,π̃ the function

Λ 7→ q(Λ)EP (f,Λ)

is holomorphic at dχ. Since AP,ϕ(G) can be written as the space which is generated
by the coefficient functions in the Taylor series expansion of q(Λ)EP (f,Λ) at dχ, f
running through IP,π̃, (cf. [11]) we are able to define a surjective homomorphism
of (g,K,G(Af ))-modules EP,π

IP,π̃ ⊗ Sχ(a
∗)

EP,π
// AP,ϕ(G)

f ⊗
∂ν

∂Λν
7→

∂ν

∂Λν
(q(Λ)EP (f,Λ)) |dχ.

and hence get a well-defined homomorphism in cohomology:

(4) Hq(g,K, IP,π̃ ⊗ Sχ(a
∗)⊗ E)

Eq
π−→ H∗(g,K,AP,ϕ(G)⊗ E).

There are the following results. The first one deals with the regular (i.e. holomor-
phic) case:

Theorem 4 ([35], Thm. 4.11). Suppose [β] ∈ Hq(g,K, IP,π̃⊗Sχ(a
∗)⊗E) is a class

of type (π,w), represented by a homomorphism β, such that for all elements f⊗ ∂ν

∂Λν

in its image, EP,π(f ⊗ ∂ν

∂Λν ) = ∂ν

∂Λν (q(Λ)EP (f,Λ)) |dχ is just the regular value
EP (f, dχ) of the Eisenstein series EP (f,Λ), which is assumed to be holomorphic
at the point dχ = −w(λ+ ρ)|aC

inside the closed, positive Weyl chamber defined by
∆(P,A). Then Eq

π([β]) is a non-trivial Eisenstein cohomology class

Eq
π([β]) ∈ Hq(g,K,AP,ϕ(G)⊗ E).

Parts of the residual case are treated in [17]. For sake of simplicity we also
assume that P is self-associate. Put

IP,π̃,Λ := Ind
G(Af )

P (Af )
Ind

(g,K)
(l,KL)

[
π̃∞
(KL) ⊗ CΛ+ρP

]m(π̃)

= IP,π̃ ⊗ CΛ+ρP

and recall the standard intertwining operators M(Λ, π̃, v) : IP,π̃,Λ → IP,v(π̃),v(Λ),
see [32], II, associated to Λ ∈ a∗C, π̃ and certain Weyl group elements v ∈ W (A) :=

NG(Q)(A(Q))/L(Q). If f ∈ IP,π̃, we write fΛ = fe〈Λ+ρP ,HP (.)〉 ∈ IP,π̃,Λ. If
M(Λ, π̃, v) has a pole at Λ = Λ0, then we assume to have normalized it to a
function N(Λ, π̃, v), which is holomorphic and non-vanishing in a region containing
Λ0. Put

W (A)res = {v ∈ W (A)|M(Λ, π̃, v) has a pole of order ℓ = dim aC at Λ = dχ}.

This means that the order of the pole is maximal and implies that the longest
element w0 of W (A) (as a reduced word in the simple reflections generating W (A))
will be inside W (A)res. We have the following

Theorem 5 ([17], Thm. 2.1). Let [β] ∈ Hq(g,K, IP,π̃ ⊗ Sχ(a
∗) ⊗ E) be a class

of type (π,w). If all Eisenstein series EP (f,Λ), f ⊗ 1 in the image of β, have
a pole of maximal possible order ℓ = dim aC at dχ = −w(λ + ρ)|aC

inside the
closed, positive Weyl chamber defined by ∆(P,A) and if ImN(dχ, π̃, w0) is a direct
summand of

∑
v∈W (A)res

ImN(dχ, π̃, v), then Eq
π([β]) contributes at least in degree

q′ := q + dimN(R)− 2l(w), l(w) the length of w.
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Remark 6. Theorem 5 can always be applied to non-holomorphic Eisenstein series
coming from self-associate maximal parabolic subgroups P , since then W (A) has
exactly one non-trivial element. We recall further that Eisenstein series associated
to non-self-associate maximal parabolic subgroups are always holomorphic in the
region Re(Λ) ≥ 0. See also [32].

Theorem 5 is complemented by the following result

Theorem 7 ([33], Thm. III. 1). Let σ be a residual, cohomological (with respect
to a non-regular coefficient module E) representation of G(A) which equals (via the
constant term map) the image ImN(dχ, π̃, w0) at Λ = dχ of the normalization of
an intertwining operator M(Λ, π̃, w0) which has a pole of maximal order at Λ = dχ.
Suppose further that dχ is inside the open, positive Weyl chamber defined by ∆(P,A)
and that π̃∞ is a tempered representation of L(R). If r is the lowest degree in
which σ has non-trivial (g,K)-cohomology, then the image of Hr(g,K, σ ⊗ E) in
Hr

Eis(G,E) is non-trivial and consists of residual Eisenstein cohomology classes.

2. Odd orthogonal groups and their maximal parabolic Q-subgroups

2.1. The main objective of this paper is to calculate Eisenstein cohomology of the
odd orthogonal group, thus pursuing the above ideas for this case. We will focus on
the subspaces Hq(g,K,AP,ϕ(G)⊗E) coming from a maximal parabolic Q-subgroup
P . In this section we provide the algebraic group data for the latter.

From now on G denotes the split odd orthogonal group SO2n+1 over Q of Q-rank
n ≥ 3. The algebra of diagonal matrices hC in gC determines a Cartan subalgebra
as before and we denote by ∆◦ = {α1, ..., αn} the set of simple roots of gC. If we
write εi for the linear functional extracting the i-th entry of hC, the set ∆◦ is given
by αi = εi − εi+1 for i < n and αn = εn. Now, the simple root αk determines the
unique crossed Dynkin diagram

αk

. . . . . . >◦ ◦ ◦ × ◦ ◦ ◦ ◦

Ak−1 Bn−k

with the k-th node replaced by a cross, which in turn corresponds to the unique
standard maximal parabolic Q-subgroup Pk ⊂ G, Pk = LkNk = MkAkNk with
Levi factor Lk

∼= GLk × SO2l+1, l = n− k. The correspondence is by means of the
requirement that αk is the only simple root that does not vanish identically on (ak)C.

Furthermore, since dimNk = |∆+| − |∆+
Mk

|, we see that dimNk = k(2n− k)−
(
k
2

)
.

It is easy to check that associate classes and conjugacy classes of maximal parabolic
Q-subgroups Pk ⊂ G coincide in this case, hence all n maximal parabolic subgroups
are self-associate.

There is a canonical isomorphism h∗ ∼= a∗k ⊕ b∗k, which allows to restrict weights on
hC in a canonical way to its direct summands. If β =

∑n
i=1 βiεi, we see by the very

definition of ak and bk that β|(ak)C = 1
k

∑k
i=1

(∑k
i=1 βi

)
εi and hence β|(bk)C =

∑n
i=1 βiεi −

1
k

∑k
i=1

(∑k
i=1 βi

)
εi. Moreover, we get ρPk

= k(2n−k)
2 αk|(ak)C .
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2.2. Kostant data. Let us now turn to the Kostant representatives w ∈ WPk .
In particular, we shall calculate the evaluation points Λw := −w(λ + ρ)|(ak)C of
Eisenstein series EPk

(f,Λ). Rereading Lemma 4.3 in [42] in view of this latter
calculation we prefer to identify the elements w ∈ WPk in the form set forth by the
following

Proposition 8. For each k, 1 ≤ k ≤ n, the Kostant representatives WPk are
parameterized by the set Sk of all ordered pairs (I, J) of disjoint subsets I, J of
N≤n = {1, 2, ..., n} satisfying |I| + |J | = k. A parametrization is given as follows:
Let i = |I| and j = |J |, so we can write I = {i1, ..., ii}, J = {j1, ..., jj} and
R := N≤n\I ∪ J = {r1, ..., rn−k}. Then the element w(I,J) ∈ WPk corresponding to
the pair (I, J) is given by
w(I,J)(εil) := −εk+1−l for il ∈ I,
w(I,J)(εjl) := εl for jl ∈ J and
w(I,J)(εrl) := εk+l for rl ∈ R.

Proof. First of all we notice that |WPk | = 2k
(
n
k

)
= |Sk|. So we only need to show

that w(I,J) ∈ WPk . But since

w−1
(I,J)(αl) =






εjl − εjl+1
1 ≤ l ≤ j− 1

εj
j

− εi
i

l = j

εik−l
− εik−l+1

j + 1 ≤ l ≤ k − 1
εrl−k

− εrl−k+1
k + 1 ≤ l ≤ n− 1

εrn−k
l = n

w(I,J) ∈ WPk by the very definition of WPk . �

Remark 9. The description of w ∈ WPk as in the Proposition is seen to amount
to the one given in [42] by observing that Xk

j = {w(I,J)|j = j} (in the notation of
[42]), where the k here corresponds to the i there.

Writing w(I,J) as a word in the simple reflections, the next Lemma is immediate.

Lemma 10. Let m := max({l : jl < i ∀i ∈ I} ∪ {0}). Then the length of w(I,J)

is

l(w(I,J)) =
i∑

l=1

(2n− k − il + 1) +

j∑

l=1

(jl − l)−

j∑

l=m+1

|{i ∈ I : i < jl}|.

As announced in the beginning of this section, we want to determine the evalu-
ation points Λw = −w(λ + ρ)|(ak)C . In what follows, we will write λ =

∑n
i=1 λiεi.

Using our parametrization of the Kostant representatives a straight forward com-
putation shows

Proposition 11.

−w(I,J)(λ+ ρ)|(ak)C =

(
i∑

l=1

(λil − il)−

j∑

l=1

(λjl − jl) + (i − j)(n+
1

2
)

)
αk|(ak)C

Let us write t(I,J) for the above coefficient of αk in −w(I,J)(λ + ρ)|(ak)C . Then
t(I,J) is always a half-integer. Now we compute the highest weights µw(I,J)

=

w(I,J)(λ + ρ) − ρ|(bk)C of the irreducible M(C)-modules ◦Fw(I,J)
by subtracting

w(I,J)(λ + ρ) − ρ|(ak)C = −
(
1
k t(I,J) + n− k

2

)∑k
l=1 εl from w(I,J)(λ + ρ) − ρ, cf.

section 2.1.
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Proposition 12. We have

µw(I,J)
=

j∑

l=1

(λjl − jl + l +
1

k
t(I,J) + n−

k

2
)εl

−

i∑

l=1

(λi
i−l+1

− i
i−l+1 − j− l + n+ 1−

1

k
t(I,J) +

k

2
)ε

j+l

+

n−k∑

l=1

(λrl − rl + k + l)εk+l

Next, we recall that we may assume that ◦Fw is isomorphic to its contragredient
representation ◦F̌w . This is due to [2], where it is proved that the existence of a
square-integrable automorphic representation of Lk(A) which is cohomological with
respect to ◦Fw implies that ◦Fw is self-dual. In particular, if ◦Fw is not self-dual,
then there is no cuspidal automorphic representation π̃ which has non-trivial coho-
mology when twisted by ◦Fw.

The finite-dimensional representation ◦Fw being self-dual is equivalent to

(5) − wLk
(µw) = µw,

where we wrote wLk
for the longest element of the Weyl group of Lk(C). By prop.

12, we see that

−wLk
(µw(I,J)

) = −

j∑

l=1

(λjl − jl + l +
1

k
t(I,J) + n−

k

2
)εk−l+1

+
i∑

l=1

(λi
i−l+1

− i
i−l+1 − j − l+ n+ 1−

1

k
t(I,J) +

k

2
)εk−j−l+1

+

n−k∑

l=1

(λrl − rl + k + l)εk+l

Assume that i < j and (5) holds. Then comparing the coefficient of ε
i+1 in

−wLk
(µw) to the coefficient of ε

i+1 in µw leads to the equality

(6) λj
i+1 + λj

j

+
2

k
t(I,J) + 2n+ 1 = j

i+1 + j
j

.

As remarked at the end of section 1.3, we may assume by the work of J. Franke
that t(I,J) ≥ 0. But then the left hand side in (6) is greater or equal to 2n + 1,
while the right hand side is at most 2n. This is a contradiction. So we may assume
from now on that i ≥ j.

In order to make the determination of poles of Eisenstein series as simple and
efficient as possible, we shall try to find restrictions on the range of evaluation
points. In this sense, the following Proposition will be crucial for us.

Proposition 13. There is no w = w(I,J) ∈ WPk satisfying −wLk
(µw) = µw and

0 ≤ t(I,J) <
k
2 .
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Proof. First assume j > 0. Suppose that we found a w = w(I,J) ∈ WPk satisfying

−wLk
(µw) = µw and 0 ≤ t(I,J) <

k
2 . Then equation (5) implies that the coefficient

of ε1 in −wLk
(µw) and the coefficient of ε1 in µw must be equal and since j > 0,

this reads as

(λi1 − λj1)− (i1 − j1) =
2

k
t(I,J),

implying

0 ≤ (λi1 − λj1)− (i1 − j1) < 1.

If j1 > i1 then λi1 ≥ λj1 , leading to (λi1 − λj1 )− (i1 − j1) ≥ 1. But if j1 < i1 then
λi1 ≤ λj1 and this yields (λi1 − λj1)− (i1 − j1) ≤ −1. A contradiction.
Now assume j = 0. Then i = k and by prop. 12 we see that

t(I,J) =

k∑

l=1

(λil − il) + k(n+
1

2
) ≥

k

2
.

This proves the claim. �

We shall also see now that there are only very few Kostant representatives w =
w(I,J) giving rise to the lowest possible, positive point Λw = k

2α|(ak)C .

Proposition 14. Suppose −wLk
(µw(I,J)

) = µw(I,J)
and t(I,J) =

k
2 . Then, depend-

ing on the parity of k,
I = {i1, ..., ii = n}, J = {i1 + 1, ..., i

i−1 +1}, λil = λil+1, 1 ≤ l ≤ i− 1 and λn = 0
if k is odd,
I = {i1, ..., i k

2
}, J = {i1 + 1, ..., i k

2
+ 1}, λil = λil+1, 1 ≤ l ≤ k

2 if k is even. In

particular the length of such an w(I,J) is unique and given by

l(w(I,J)) =

{
k−1
2 (2n− 3(k−1)

2 ) + (n− k + 1) if k is odd
k
2 (2n− 3k

2 + 1) if k is even.

Proof. Recall i ≥ j. Comparing the coefficients of εl, 1 ≤ l ≤ j, in −wLk
(µw(I,J)

)
and in µw(I,J)

gives us as in the proof of Proposition 13

(λil − λjl)− (il − jl) =
2

k
t(I,J) = 1.

Therefore jl = il + 1 and λil = λil+1 for 1 ≤ l ≤ j. This shows the claim, if
i = j (which forces k to be even). So assume that i > j. Inserting jl = il + 1 and
λil = λil+1 into the formula for t(I,J) given in Proposition 11, yields

i∑

l=j+1

il − n(i − j) =

i∑

l=j+1

λil ≥ 0.

But the left hand side of this equation is less or equal to 0, with equality if and
only if i = j + 1 and i

i

= n.
The formula for the length of w(I,J) is now a direct consequence of Lemma 10.
Hence the claim. �

Assume for the rest of this section that k < n and that k is even. As we will see
in section 4.2, we need to know which w = w(I,J) ∈ WPk give rise to Λw = kα|(ak)C

for such k. There are more possibilities than in the case of k
2 and we classify them

in the next Proposition. We omit the technical proof, as it is completely analogous
to the proof of Proposition 14
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Proposition 15. Suppose −wLk
(µw(I,J)

) = µw(I,J)
and t(I,J) = k < n is even.

Then, one of the following holds,

(i) I = {i1, ..., ii−1 = n− 1, i
i

= n}, J = {i1 + 1, ..., i
i−2 + 1}, λil = λil+1 + 1,

1 ≤ l ≤ i − 2, λn−1 = λn = 0 and

l(w(I,J)) = k(n−
3k

4
+

1

2
) + 1,

(ii) I = {i1, ..., ii−1 = n − 1, i
i

= n}, J = {i1 + 2, ..., i
i−2 + 2}, λil = λil+1,

1 ≤ l ≤ i − 2 and

k(n−
3k

4
+ 1)− ⌊

k − 2

4
⌋ ≤ l(w(I,J)) ≤ k(n−

3k

4
+ 1),

(iii) I = {i1, ..., i k
2
}, J = {i1 + 1, ..., i k

2
+ 1}, λil = λil+1 + 1, 1 ≤ l ≤ k

2 and

l(w(I,J)) = k(n−
3k

4
+

1

2
),

(iv) I = {i1, ..., i k
2
}, J = {i1 + 2, ..., i k

2
+ 2}, λil = λil+1, 1 ≤ l ≤ k

2 and

k(n−
3k

4
+ 1)− ⌊

k

4
⌋ ≤ l(w(I,J)) ≤ k(n−

3k

4
+ 1),

In any case,

(7) k(n−
3k

4
+

1

2
) ≤ l(w(I,J)) ≤ k(n−

3k

4
+ 1)

3. Cohomological cuspidal representations

3.1. As a second ingredient to Eisenstein cohomology we shall determine the co-
homological (unitary) cuspidal automorphic representations π̃ ∈ ϕPk

of Lk(A). It
is clear that π̃ = σ⊗̂τ , where σ (resp. τ) is a cohomological, unitary cuspidal au-
tomorphic representation of GLk(A) (resp. SO2l+1(A)). Further, a representation
is cohomological if and only if its infinite component is. Let us first consider the
GLk-factor.

3.2. Recall that σ∞ is actually a representation of the semisimple part of GLk(R),
which is SL±

k (R). If k = 1 then σ∞ must be the same character as the one of
the coefficient module in cohomology and if k = 2, it must be a discrete series
representation. So suppose k > 2. The cohomological irreducible, unitary rep-
resentations σ∞ of SL±

k (R), k > 2, are implicitly classified in [41] Thm. 4.2.2.
Let us recall this result shortly for the case of generic representations. This is no
restriction, since cuspidal automorphic representations of GLk(A), k ≥ 2, are all
globally generic (cf. [39] corollary on p. 190). Let a = ⌊k

2⌋, b = k − 2a and put

M(R) =
∏a

i=1 SL
±
2 (R)× {±1}b. Then we can say

Proposition 16 ([41] Thm. 4.2.2). If σ∞ is a generic, cohomological, irreducible,
unitary representation of SL±

k (R), k > 2, then

σ∞ = Ind
SL±

k
(R)

P (R) [σ1 ⊗ ...⊗ σa+1 ⊗ CρP
].

Here P (R) = M(R)A(R)◦N(R) is a parabolic subgroup of SL±
k (R) with semisimple

part M(R) as above and σi is either the trivial representation or a discrete series
representation of SL±

2 (R).
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This Proposition together with our above considerations implies the following
remarkable fact: A generic, cohomological, irreducible, unitary representation σ∞

of SL±
k (R), k ≥ 2, is necessarily tempered (because it is fully and unitarily induced

from a discrete series representation). Hence, by [4] III, Prop. 5.3, we can conclude

Proposition 17. Let σ be a cuspidal automorphic representation of GLk(A), k ≥
1, as above. If σ has non-zero cohomology in degree q then

1

2

(
k(k − 1)

2
+ ⌊

k

2
⌋

)
≤ q ≤

1

2

(
(k − 1)(k + 4)

2
− ⌊

k

2
⌋

)
.

See also [34] Thm. 3.3 for a similar result.

3.3. Let us now turn to the SO2l+1-factor and a cohomological, cuspidal auto-
morphic representation τ of it. We suppose that τ∞ is locally generic. Combining
Kostant’s characterization of generic Harish-Chandra modules in [27] with Vogan’s
description of large Harish-Chandra modules in [43] Thm. 6.2, we see that again τ∞
must be induced from a discrete series representation. Furthermore, the Gelfand-
Kirillov dimension (cf. [43] for a definition) of τ∞ must be maximal; that is equal
to l2 in our present case. On the other hand τ∞ is cohomological, whence it is
an Aq(λ)-module in the sense of Vogan and Zuckerman ([44]). By checking which
Aq(λ)-modules of SO(l+1, l)◦(R) are actually of Gelfand-Kirillov dimension l2, we
see that τ∞ must be a discrete series representation. Hence we have proved

Proposition 18. If τ∞ is a generic, cohomological, irreducible unitary represen-
tation of SO(l + 1, l)(R) then it is in the discrete series.

By [4] II, Thm. 5.4 we therefore have

Proposition 19. Let τ be a cuspidal automorphic representation of SO2l+1(A) as
above. If τ has non-zero cohomology in degree q then

q =
l2 + l

2
.

3.4. Putting our Propositions 17 and 19 together we can finally conclude by the
Künneth rule ([4] 1.3) the following

Theorem 20. Let π̃ ∈ ϕPk
be a cuspidal automorphic representation of Lk(A)

having a generic archimedean component π̃∞. If π̃ has non-trivial cohomology in
degree q then

1

2

(
k(k − 1)

2
+ ⌊

k

2
⌋+ l2 + l

)
≤ q ≤

1

2

(
(k − 1)(k + 4)

2
− ⌊

k

2
⌋+ l2 + l

)
.

4. Poles of Eisenstein series

4.1. We will now calculate the possible poles of our Eisenstein series. By the
Langlands “Square-Integrability Criterion”, [32], Lemma I.4.11, this amounts to
determining the part of the residual spectrum of G(A) = SO2n+1(A) which is given
by the maximal parabolic subgroups Pk, a task that was achieved by H. Kim in
[25]. For the convenience of the reader and for sake of completeness of our presen-
tation we repeat his arguments briefly. Still our results here will be in a somewhat
different guise.
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Let now π = ⊗̂
′
πp be a (cohomological) globally generic cuspidal automorphic rep-

resentation of a maximal Levi subgroup Lk(A) = GLk(A)×SO2l+1(A), 1 ≤ k ≤ n,
l = n − k. As already remarked earlier, such a representation is necessarily of the
form π = σ⊗̂τ , where σ is a cuspidal representation of GLk(A) and τ a generic,
cuspidal representation of SO2l+1(A). It enjoys Strong Multiplicity One, combin-
ing the results Thm. 4.4 in [19], and Thm. 9 in [13]. Hence, by the multiplicity
one Theorem for GLk, m(π) = m(τ) holds and following Arthur’s Conjecture, even
m(τ) = 1 should be true. We will not assume this. We identify Λ = tαk ∈ (ak)

∗
C

with s = t
k ∈ C if k < n and with s = 2t

n ∈ C if k = n, following [38], p. 552. We
will also omit the subscript ”k”.

Let f ∈ IP,π then fs = fe(s+ρP )HP (.) ∈ IP,π,s. The holomorphic behavior of the
Eisenstein series EP (f, s) is the same as the one of its constant term along P (cf.
[30], [32], IV.1.10), which can be rewritten as

EP (f, s)P = fs +M(s, π)fs.

HereM(s, π) is the standard intertwining operator (cf. section 1.5) of (g,K,G(Af ))-
modules

M(s, π) : IP,π,s → IP,w0(π),−s

M(s, π)fs(g) =

∫

N(Q)∩w0N(Q)w−1
0 \N(A)

fs(w
−1
0 ng)dn,

w0 the only non-trivial element in W (A) = NG(Q)(A(Q))/L(Q). Therefore the
poles of EP (f, s) are determined by the interplay of the poles and zeros of M(s, π).
By twisting π by an appropriate imaginary power of the absolute value of the de-
terminant we may and will assume that all poles are real, that is s = ℜe(s) in the
sequel.

Let S be the finite set of places containing the archimedean one and the places
where π ramifies. Using the Langlands-Shahidi method (cf. [28, 37, 38]) we see

that for suitably normalized, L(Zp)-fixed functions f̃s,p

M(s, π)fs =
⊗

p∈S

A(s, πp)fs,p ⊗
∏

p/∈S

L(s, σp × τp)L(2s, σp, Sym
2)

L(1 + s, σp × τp)L(1 + 2s, σp, Sym
2)
f̃s,p.

if k < n and

M(s, π)fs =
⊗

p∈S

A(s, πp)fs,p ⊗
∏

p/∈S

L(s, σp, Sym
2)

L(1 + s, σp, Sym
2)
f̃s,p.

if k = n. Here L(s, σp × τp) is the (local) Rankin-Selberg L-function associated to

πp = σp⊗̂τp and L(s, σp, Sym
2) is the (local) symmetric square L-function of σp.

For convenience, we distinguish the cases k < n and k = n in what follows.

4.2. k < n. Shahidi defined the L-functions L(s, σp × τp) and L(s, σp, Sym
2) also

for the places p ∈ S. By [25], Prop. 4.1,

N(s, πp) =
L(1 + s, σp × τp)L(1 + 2s, σp, Sym

2)

L(s, σp × τp)L(2s, σp, Sym
2)

A(s, πp)

is holomorphic and non-zero for s ≥ 0. Therefore
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Proposition 21. There is an f ∈ IP,π such that the Eisenstein series EP (f, s) has
a pole at s = s0, s0 > 0, if and only if

L(s, σ × τ)L(2s, σ, Sym2)

L(1 + s, σ × τ)L(1 + 2s, σ, Sym2)

has a pole at s = s0.

It is well-known ([25, 24]) that L(s, σ × τ) is meromorphic with possible poles
only at s = 0, 1 and non-vanishing for s > 1. Similarly, L(s, σ, Sym2) is holomorphic
for s ≥ 1 (except possibly at s = 1) and non-zero there. Hence, the poles of M(s, π)
in s > 0 are the ones of

(8) L(s, σ × τ)L(2s, σ, Sym2)

and so - by what we just observed - we conclude that the only possible poles of
Eisenstein series EP (f, s) in the region s ≥ 1

2 are at s = 1
2 , 1. This is enough for

us, as we will only need to consider Eisenstein series at s ≥ 1
2 , cf. Proposition

13. Just for completeness, let us remark that it is not known, if L(2s, σ, Sym2) has
poles in the remaining region 0 < s < 1

2 . But it is shown in Cor. 3.2 of [16] that

this is not the case, i.e., L(2s, σ, Sym2) is holomorphic for 0 < s < 1
2 , if Arthur’s

Conjecture as formulated in section 30 of [1] (see also section 2 of [16] for a precise
reformulation adapted to this purpose) on the discrete spectrum holds. However,
we will not need this.

Let us render the above more precise. If σ is not self-dual, then both L-functions
in (8) are entire. So let us from now on assume that σ is self-dual.

Let us first consider the case s = 1
2 . Then the pole can originate only from the

symmetric square L-function. If either k is odd or the central character ωσ of σ is
non-trivial, then this is the case, i.e., L(2s, σ, Sym2) has a pole at s = 1

2 . This is
well-known and can be seen as follows: The statement for odd k is a consequence
of the Rankin-Selberg convolutions of either [5] or [23]. If k is even, but ωσ 6= 1,
then the corresponding assertion is proved in Prop. 3.7 of [25]. So, let now k = 2
and ωσ ≡ 1. Then L(2s, σ, Sym2) is holomorphic at s = 1

2 . This is clear by the
following easy consideration: Recall that

(9) L(s, σ × σ) = L(s, σ, Sym2)L(s, σ,∧2)

has a simple pole at s = 1, because σ is supposed to be self-dual. We also may
replace all L-functions by their partial analogues with respect to the set S without
changing this assertion, since σ∞ is as cohomological representation of discrete se-
ries, whence all σp are tempered ([8], Thm. I.6, together with [7], Thm. 5.6) and
so the local L-functions of σp are holomorphic and non-vanishing for s > 0. But for
p /∈ S, L(s, σp,∧

2) = L(s, ωσp
), which has a pole at s = 1 as ωσ ≡ 1 by assumption

and so together with (9) we see that L(s, σ, Sym2) must be holomorphic at s = 1.

In order to understand the situation better in the case of even k ≥ 4 and ωσ ≡ 1,
we reformulate it in terms of the Weak Langlands Functoriality. The references for
this are [6], [13], [14] and [40]. Suppose that k ≥ 4 is even and that the central
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character of σ is trivial. In this situation we know by automorphic descent that
if L(2s, σ, Sym2) has a pole at s = 1

2 , then σ is the Weak Langlands Functorial
Lift from a globally generic cuspidal automorphic representation of SOk(A). On
the other hand, if L(2s, σ, Sym2) is holomorphic at s = 1

2 , then automorphic de-
scent tells us that σ is the Weak Langlands Functorial Lift from a globally generic
cuspidal automorphic representation of SOk+1(A). We may conclude that σ will
therefore not be a Weak Langlands Functorial Lift from a cuspidal automorphic
representation of SOk(A). We remark that s = 1

2 means t = k
2 and get the follow-

ing

Proposition 22 (Poles for s = 1
2 ). There is an f ∈ IP,π such that the Eisenstein

series EP (f, s) has a pole at s = 1
2 if and only if

(1) (In case k ≥ 4 is even and ωσ ≡ 1): σ is a self-dual Weak Langlands
functorial lift of a globally generic cuspidal automorphic representation of
SOk(A) and L(12 , σ × τ) 6= 0.

(2) (In case k is odd or ωσ 6= 1): σ is self-dual and L(12 , σ × τ) 6= 0.

The case s = 1 is similar. There the pole can originate only from the Rankin-
Selberg L-function. It is entire, if k is not even, [25]. But we know that L(2, σ, Sym2) 6=
0. Hence we get the following

Proposition 23 (Poles for s = 1). There is an f ∈ IP,π such that the Eisenstein
series EP (f, s) has a pole at s = 1 if and only if σ is self-dual, k is even and
L(s, σ × τ) has a pole at s = 1.

Observe that s = 1 corresponds to t = k.

4.3. k = n. The remaining case k = n is treated in complete analogy to the previous
one. We only have to observe that there is no Rankin-Selberg L-function appearing
in the normalization factor. Again,

N(s, πp) =
L(1 + s, σp, Sym

2)

L(s, σp, Sym
2)

A(s, πp)

is holomorphic and non-vanishing for s > 0, see [25], Prop. 4.1, so the poles of
M(s, π) with P = Pn and s > 0 are determined by the holomorphic behavior of
the quotient

L(s, σ, Sym2)

L(1 + s, σ, Sym2)
.

As observed before, L(1 + s, σ, Sym2) is holomorphic and non-vanishing at s > 0,
so we have to analyze L(s, σ, Sym2). If k = n, it will be enough for us to consider
the region s ≥ 1, see Proposition 13. Hence we can deduce that the only possible
pole of an Eisenstein series which interests us can be at s = 1. As our parameter
s comes from Λ = ns

2 αn in the case k = n, we see that actually t must be n
2 . We

have therefore proved

Proposition 24 (Poles for s = 1). There is an f ∈ IP,π such that the Eisenstein
series EP (f, s) has a pole at s = 1 if and only if

(1) (In case n ≥ 4 is even and ωσ ≡ 1): σ is a self-dual Weak Langlands
functorial lift of a globally generic cuspidal automorphic representation of
SOn(A).

(2) (In case n is odd or ωσ 6= 1): σ is self-dual.
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4.4. Beyond genericity. Let us remark on the case of non-generic cuspidal auto-
morphic representations π of Lk. First of all, we know that such representations re-
ally exist. This was proved in [20] by showing that SO2l+1 has CAP-representations,
i.e. cuspidal automorphic representations τ which are nearly equivalent to a sub-
quotient of AEis(G). CAP representations are expected to give counterexamples
to the naively generalized Ramanujan Conjecture, which says that for each cusp-
idal automorphic representation τ all local components τp are tempered. On the
other hand, reinterpreting Shahidi’s conjecture in [36] on the holomorphy of local
L-functions associated to tempered local representations, each tempered local L-
packet should contain a locally generic irreducible admissible representation. Jiang
and Soudry have proved this conjecture for SO2l+1 by virtue of [21] and [22]. So
vaguely speaking in terms of L-packets, cuspidal automorphic forms should disinte-
grate into the generic ones and the other part containing the CAP representations
- each world being non-empty. Still, generic cuspidal representations should “gen-
erate” the whole cuspidal spectrum in the following way: It is conjectured (cf. [20]
Conj. 1.1) that for each cuspidal automorphic representation τ of SO2l+1(A) there
is a (possibly not proper) parabolic subgroup P ′ = L′N ′ and a generic cuspidal
automorphic representation τ ′ of L′ such that τ is nearly equivalent to an irre-

ducible constituent of Ind
SO2l+1(A)
P ′(A) [τ ′]. For SO2l+1 the cuspidal datum (P ′, τ ′) is

an invariant for τ (up to near equivalence), see [20] Cor. 3.3.(3). In this setup,
generic cuspidal representations τ should be characterized by P ′ being the whole
group SO2l+1 and CAP representations by P ′ being proper.

5. Residual Eisenstein Cohomology

5.1. Residual Eisenstein Classes for k < n. We are ready to state the first of
our two main Theorems.

Theorem 25. Let 0 6= [β] be a class of type (π,w), π = χπ̃ ∈ ϕPk
with π̃ = σ⊗̂τ

a globally generic cuspidal automorphic representation of Lk(A) and w ∈ WPk

represented by a homomorphism the image of which contains only functions f ⊗1 ∈
IPk,π̃ for which EPk

(f,Λ) has a pole at the point Λw = −w(λ+ ρ)|(ak)C ∈ C. Then:

(1) π = χ(σ⊗̂τ) is either of the form
(a) dχ = Λw = k

2α|(ak)C , σ a self-dual cuspidal automorphic representation

of GLk(A) and such that L(12 , σ× τ) 6= 0. If in addition k is even and
ωσ ≡ 1, then k ≥ 4 and σ is a self-dual Weak Langlands functorial lift
of a globally generic cuspidal automorphic representation of SOk(A).
Or

(b) dχ = Λw = kα|(ak)C , k even and σ a self-dual cuspidal automorphic
representation of GLk(A) such that L(s, σ × τ) has a pole at s = 1.

(2) The degree q′ of the residual Eisenstein cohomology class constructible from
Eq

π([β]) as in Theorem 5 is necessarily in the following range
(a) If dχ = k

2α|(ak)C

1

2
(n2 + n)− ⌈

k

2
⌉ ≤ q′ ≤

1

2
(n2 + n)− 1.

(b) If dχ = kα|(ak)C

1

2
(n2 + n)− k ≤ q′ ≤

1

2
(n2 + n)− 1 .
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Proof. Part (1) follows directly from our Propositions 22 and 23. For (2) we insert
the formula from Proposition 14 for the length of w = w(I,J) ∈ WPk giving rise to

t(I,J) =
k
2 into the equation q′ = q−2l(w(I,J))+dimNk(R) and then use the bounds

for q − l(w) established in Theorem 20. We do the same for w = w(I,J) ∈ WPk

giving rise to t(I,J) = k, using Proposition 15 (7). This then proves (2). �

5.2. Residual Eisenstein Classes for k = n. It remains to settle the case of the
Siegel parabolic subgroup. We prove

Theorem 26. Let 0 6= [β] be a class of type (π,w), π = χπ̃ ∈ ϕPn
with π̃ = σ a

cuspidal automorphic representation of Ln(A) = GLn(A) and w ∈ WPn represented
by a homomorphism the image of which contains only functions f ⊗ 1 ∈ IPn,π̃ for
which EPn

(f,Λ) has a pole at the point Λw = −w(λ + ρ)|(an)C ∈ C. Then:

(1) π = χσ is of the form
dχ = Λw = n

2α|(an)C and σ is self-dual. If in addition n is even and
ωσ ≡ 1, then n ≥ 4 and σ is a self-dual Weak Langlands functorial lift
of a globally generic cuspidal automorphic representation of SOn(A).

(2) The degree q′ of the residual Eisenstein cohomology class constructible from
Eq

π([β]) as in Theorem 5 is necessarily in the following range

1

2
(n2 + n)− ⌈

n

2
⌉ ≤ q′ ≤

1

2
(n2 + n)− 1.

Proof. As before, part (1) follows already from Proposition 24. For (2) we again
insert the formula from Proposition 14 for the length of w = w(I,J) ∈ WPn giving
rise to t(I,J) =

n
2 into the equation q′ = q−2l(w(I,J))+dimNn(R) and then use the

bounds for q − l(w) established in Theorem 20, respectively in Proposition 17. �

5.3. A remark on the lower bound. Recall that by [44], Table 8.2, n is the low-
est possible degree in which there could be non-trivial, square-integrable, residual
Eisenstein cohomology other than that coming from the trivial representation. In
fact, n ≤ 1

2 (n
2 +n)−⌈k

2 ⌉ for all n ≥ 2 and k, resp. n ≤ 1
2 (n

2 +n)− k for all n ≥ 3
and even k. We do not know if the lower bounds established by us in Theorems 25
and 26 are in fact sharp.

6. Regular Eisenstein Cohomology

6.1. We conclude the paper discussing regular Eisenstein cohomology classes.
Therefore, let 0 6= [β] be a class of type (π,w), π = χπ̃ ∈ ϕPk

with π̃ = σ⊗̂τ
a globally generic cuspidal automorphic representation of Lk(A) and w ∈ WPk .

Obviously, if either dχ is neither k
2α|(ak)C nor kα|(ak)C or if π̃ is not of the form

described in Theorem 25 (1) or 26 (1), then for any f ∈ IPk,π̃ the associated Eisen-
stein series EPk

(f,Λ) will be holomorphic at Λ = dχ. This is the content of our
section 4. In particular, in this case, the image of a homomorphism β representing
the class [β] can contain only tensors f ⊗ dν

dΛν for which the associated Eisenstein

series EPk
(f,Λ) is holomorphic at Λ = dχ. If in addition ν = 0, i.e. dν

dΛν = 1, then
Eq

π([β]) is a non-trivial regular Eisenstein cohomology class in degree q with

1

2

(
k(k − 1)

2
+ ⌊

k

2
⌋+ l2 + l

)
+l(w) ≤ q ≤

1

2

(
(k − 1)(k + 4)

2
− ⌊

k

2
⌋+ l2 + l

)
+l(w),

see Theorem 4 and Theorem 20.
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6.2. Now let dχ and π̃ be as in Theorem 25 (1) or 26 (1), i.e., there are f ∈ IPk,π̃

such that the associated Eisenstein series EPk
(f,Λ) has a pole at Λ = dχ. Still,

if f gives rise to a local component fs,p ∈ kerA(s, π̃p), where s is according to
dχ either 1

2 or 1, then the zero A(s, π̃p)fs,p = 0 will cancel the simple pole of the
global operator M(s, π̃) and again EPk

(f,Λ) will be holomorphic at Λ = dχ. Let
0 6= [β] be a class of type (π,w), represented by a homomorphism β whose image

in IPk,π̃ ⊗ Sχ(a
∗) consists of tensors f ⊗ dν

dΛν with f as above. That is, f gives rise

to a local component fs,p ∈ kerA(s, π̃p), s =
1
2 , 1. Then (cf. section 1.5)

EPk,π(f ⊗
dν

dΛν
) = EPk

(f, dχ)

if ν = 1. Assuming this, it follows now again from Theorem 4 that Eq
π([β]) is a

non-trivial regular Eisenstein cohomology class. Its degree q is bounded by

1

2

(
k(k − 1)

2
+ ⌊

k

2
⌋+ l2 + l

)
+l(w) ≤ q ≤

1

2

(
(k − 1)(k + 4)

2
− ⌊

k

2
⌋+ l2 + l

)
+l(w),

see Theorem 20.
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