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Cluster structures on quantum coordinate rings

C. Geil3, B. Leclerc, J. Schroer

Abstract

We show that the quantum coordinate ring of the unipotergsatpN (w) of a symmetric
Kac-Moody groupG associated with a Weyl group elemenhas the structure of a quantum
cluster algebra. This quantum cluster structure arisagat from a subcategory;, of the
module category of the corresponding preprojective algeBn important ingredient of the
proof is a system of quantum determinantal identities wicah be viewed as g-analogue
of aT-system. In casé& is a simple algebraic group of ty#e D, E, we deduce from these
results that the quantum coordinate ring of an open cell afrtig) flag variety attached G
also has a cluster structure.
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1 Introduction

Let g be the Kac-Moody algebra associated with a symmetric Camiatmix. Motivated by the
theory of integrable systems in statistical mechanics amsahiyim field theory, Drinfeld and Jimbo
have introduced its quantum enveloping algebidg). Let n denote the nilpotent subalgebra
arising from a triangular decomposition @fIn the case wheg is finite-dimensional, RingeRi]
showed that the positive padgy(n) of Uy(g) can be realized as the (twisted) Hall algebra of the
category of representations ou&p of a quiverQ, obtained by orienting the Dynkin diagram gf
This was a major inspiration for Lusztig’s geometric reafian ofUg(n) in terms of Grothendieck
groups of categories of perverse sheaves over varietieposentations @, which is also valid
wheng is infinite-dimensionalllul].

The constructions of Ringel and Lusztig involve the choi€am orientation of the Dynkin
diagram. In an attempt to get rid of this choice, Lusztig aept the varieties of representations
of Q by the varieties of nilpotent representations of its prggmtive algebra\ = A(Q), which
depends only on the underlying unoriented graph. He sholatdnhe can realize the enveloping
algebraJ (n) as an algebra df-valued constructible functions over these nilpotentetaes [Lul,
[Lu4]. The multiplication ofU (n) is obtained as a convolution-type product similar to thedpod
of the Ringel-Hall algebra, but using Euler charactersst€ complex varieties instead of number
of points of varieties over finite fields. Note that this reation ofU (n) is only available when
the Cartan matrix is symmetric.

One of the motivations of this paper was to find a similar caesion of the quantized en-
veloping algebr&q(n), as a kind of Ringel-Hall algebra attached to a category mesentations
of A. Unfortunately, there seems to be no simple wayafeforming Lusztig’s realization of
U (n). In this paper we try to overcome this difficulty by switchitaythe dual picture.

The dual oU (n) as a Hopf algebra can be identified with the algebjd] of regular functions
on the pro-unipotent groul attached taoi. Dualizing Lusztig’s construction, one can obtain for
each nilpotent representatiohof A a distinguished regular functiapy € C[N], and the product
¢x vy can be calculated in terms of varieties of short exact sempsewith end-termX andY
[GLS2]. For each elemenw of the Weyl groupW of g, the groupN has a finite-dimensional
subgroupN(w) of dimension equal to the length wf In particular, whery is finite-dimensional,
we haveN = N(wp), wherewy is the longest element 0¥. In [GLS6], we have shown that the
coordinate ringC[N(w)] is spanned by the functiorgsc whereX goes over the objects of a certain
subcategorys,, of modA). This category was introduced by Buan, lyama, Reiten andt 8to
[BIRS], and independently ifGLS4] for adaptablen. Moreover, we have proved th&fN(w)]
has a cluster algebra structure in the sense of Fomin andidshg [FZ2], for which the cluster
monomials are of the fornpt for rigid objectsT of €.

The algebraC[N] has a quantum deformation, which we denotefgin) (see belows[4.2),
and it is well known that the algebrady(n) and Aq(n) are in fact isomorphic. By works of
Lusztig and De Concini-Kac-Procegig(n) has a subalgebra,(n(w)), which can be regarded as
a quantum deformation dE[N(w)]. On the other hand, Berenstein and Zelevindg¥Z] have
introduced the concept of a quantum cluster algebra. Theg banjectured that the quantum
coordinate rings of double Bruhat cells in semisimple atgebgroups should have a quantum
cluster algebra structure.

In this paper, we introduce for evewyan explicit quantum cluster algebrgy o (4w), defined
in a natural way in terms of the categoey,. In particular, for every reachable rigid objectof
%w there is a corresponding quantum cluster monoiviiak .7y q) (4w). Our main result is the



following quantization of the above theorem G[S§].
Theorem 1.1 There is an algebra isomorphisrt .o7yq) (6w) = Aq(n(w)).

Note that quantizations of coordinate rings and quantimatiof cluster algebras are defined
in very different ways. For exampl,(n) = Uq(n) is given by its Drinfeld-Jimbo presentation,
obtained byg-deforming the Chevalley-Serre-type presentatiotJ¢ft). In contrast, quantum
cluster algebras are defined as subalgebras of a skew fieddi@fal functions ing-commuting
variables, generated by a usually infinite number of elemgnen by an inductive procedure.

As a matter of fact, there does not seem to be so many exanfglamorete” quantum cluster
algebras in the literature. Grabowski and Laun@& ] have shown that the quantum coordinate
rings of the Grassmannians @rn) (n > 2), Gr(3,6), Gr(3,7), and G(3,8) have a quantum
cluster algebra structure. Lamieall] [La2] has proved two particular instances of Theofen 1.1,
namely wherg has typeA, or A(ll) andw = ¢ is the square of a Coxeter element. Recently, the
existence of a quantum cluster structure on every algéppa(w)) was conjectured by Kimura
[Kil, Conj.1.1].

Now Theoreni1]1 provides a large class of such examplesydimg all algebrasy(n) for
g of type A/D,E. By takingg = sly and some special permutatiof € S,, one also obtains that
the quantum coordinate rin,(Mat(k,n—Kk)) of the space ok x (n—k)-matrices has a quantum
cluster algebra structure for every<lk < n. This may be regarded as a cluster structure on
the quantum coordinate ring of an open cell ofiGn). More generally, for any simply-laced
simple algebraic groufs, and any parabolic subgroupof G, we obtain a cluster structure on
the quantum coordinate ring of the unipotent radidalof P, which can be regarded as a cluster
structure on the quantum coordinate ring of an open cell@ptrtial flag varietys/P.

Note also that, by takingv equal to the square of a Coxeter element, our result giveg a Li
theoretic realization of all quantum cluster algebras @ased with an arbitrary acyclic quiver
(but with a particular choice of coefficients).

Our strategy for proving Theoreln 1.1 can be summarized &s\fl

Let Aq(g) be the quantum analogue of the coordinate ring construgtedaishiwara [K2].
We first obtain a general quantum determinantal identitjy) (Proposition3). This is a
g-analogue (and an extension to the Kac-Moody case) of arditental identity of Fomin and
Zelevinsky [FZ1]. We then transfer this identity #8y(n) (Propositiori 5.4). Here a little care must
be taken since the restriction map fra¥g(g) to Aq(n) is nota ring homomorphism. Appropriate
specializations of this identity give rise, for evesye W, to a systeni,, of equations (Proposi-
tion[5.8) allowing to calculate certain quantum minors dejdeg onw in a recursive way. This
system is ag-analogue of a -system arising in various problems of mathematical ptsyaied
combinatorics (seéNS]), and we believe it could be of independent interest. It tuiln out that
all quantum minors involved ilx,, belong to the subalgeb(n(w)), and that among them we
find a set of algebra generators.

On the other hand, we show that the generalized determindetgities of [GLSE, Theorem
13.1], which relate a distinguished subset of cluster et take exactly the same form as the
quantumT-systemZ,, when we lift them to the quantum cluster algebrgq (%4w). Therefore,
after establishing that the quantum tori consisting of thgal variables of the two systems are
isomorphic, we can construct an injective algebra homofrisnpk from </ (¢w) to the skew
field of fractionsFq(n(w)) of Aq(n(w)), and show that the image &fcontains a set of generators
of Ag(n(w)). Finally, using an argument of specializatign— 1 and our result of GLSE], we
conclude thak is an isomorphism from# g (i) t0 Aq(n(w)).
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Another motivation of this paper was the open orbit conjextf [GLS6, §18.3]. This conjec-
ture states that all functiorgr associated with a rigicdk-moduleT belong to the dual canonical
basis ofC[N]. It can be seen as a particular instance of the general piénaf Fomin and Zelevin-
sky according to which, in every cluster algebra coming frora ttieory, cluster monomials
should belong to the dual canonical basis. Since the duanieal basis ofC|N] is obtained by
specializing atj = 1 the basi3* of Aq(n) dual to Lusztig's canonical basis Of(n), it is natural
to conjecture that, more precisely, every quantum clustemamial Yt of .oy (¢w) is mapped
by k to an element oB*. In fact, it is not too difficult to show thak (Yr) always satisfies one
of the two characteristic properties Bf (see belowy12.3). But unfortunately, the second prop-
erty remains elusive, although Lamjisal[l, has proved it for all cluster variables in the two
special cases mentioned above.

Finally we note that it is well known that the algebragn(w)) are skew polynomial rings.
Therefore, by Theorefn 1.1, all quantum cluster algebrasi®fform </ q (4w) are also skew
polynomial rings, which is far from obvious from their defioh. One may hope that, conversely,
the existence of a cluster structure on many familiar quantoordinate rings will bring some
new insights for studying their ring-theoretic propertias/ery active subject in recent years (see
e.g.[BG|IGLL]MC] Y] and references therein).

2 The quantum coordinate ring Aq(g)

2.1 The quantum enveloping algebrdJq(g)

Let g be a symmetric Kac-Moody algebra with Cartan subalgebvée follow the notation ofK2),
§1]. In particular, we denote blythe indexing set of the simple roots (i € 1) of g, by P C t*
its weight lattice, byhi(i € 1) the elements oP* C t such thath;, a;) = &; are the entries of the
generalized Cartan matrix @f Sinceg is assumed to be symmetric, we also have a symmetric
bilinear form(-,-) ont* such that a;, a;) = aj.

The Weyl groupW < GL(t") is the Coxeter group generated by the reflectigner i € 1,
where

s(y) =y—(h,y)ai.
The length ofw € W is denoted by (w). We will also need the contragradient action/éfon P*.

LetUq(g) be the corresponding quantum enveloping algebf@(g-algebra with generators
&, fi (i€1),q" (he P*). We writet; = V. We denote byy(n) (resp. U(n_)) the subalgebra of
Uq(g) generated b (i 1) (resp. f (i €1)). Fori €1, letUq(g;) denote the subalgebrad§(g)
generated b, f;,q" (h e P*).

LetM be a (left)q(g)-module. Fot € P, letM, = {me& M | g"m= g*-"mfor everyh € P*}
be the corresponding weight spacevbf We say thaM is integrableif (i) M = @) cp M,, (ii) for
anyi, M is a direct sum of finite-dimensiontly(gi)-modules, and (iii) for anyn € M, there exists
| > 0suchthag, --- m=0 for anyis,...,ij € |. We denote byDin(g) the category of integrable
Uq(g)-modules. This is a semisimple category, with simple okjéue irreducible highest weight
modulesV (A) with highest weighA € P,, the monoid of dominant weights.



2.2 Bimodules
Let ¢ andx be theQ(q)-linear anti-automorphisms &fy(g) defined by
pe)="f. ¢(f)=a, ¢(d")=d" 21
g=q, f=f (@)=qg" (2.2)
A right Ug(g)-moduleN gives rise to a IeﬂJq(g)-moduIeN¢ by defining
X-n=n-¢(x), (neN, xeUq(g)). (2.3)

We say thal is an integrable right module K¢ is an integrable left module. In particular, for
A € P, we have an irreducible integrable right moduléA ) such thai"(A)? =V (A). Letm,
be a highest weight vector M(A), i.e.em, = 0 for anyi € I. Thenm, can be regarded as a
vectorny, € V'(A), which satisfies, fi = 0 for anyi € |. Equivalently,V'(A) is isomorphic to
the graded dual df (A ), endowed with the natural right actiond§(g). It follows that we have a
natural pairing(-,-), : V'(A) xV(A) — Q(q), which satisfiegn,,m), =1, and

(nx, M)y = (N, xm),, (meV(A), neV'(A), xeUqy(g)). (2.4)

We denote byOin(g°P) the category of integrable righly(g)-modules. Itis also semisimple, with
simple object&/"(A) (A € P,).

The tensor product a(q)-vector space¥'(A) ®V(A) has the natural structure ol (g)-
bimodule, via

X-(n@m)-y=(n-y)® (x-m), (X,y €Uqg(g), meV(A), neV'(A)). (2.5)

2.3 Dual algebra
LetUq(g)* = Homg(q) (Uq(g),Q(q)). This is alq(g)-bimodule, via
(X' LIJy)(Z) = L,U(yZX), (X7y7Z€ UQ(Q)J LnU S UCI(g)*) (26)

On the other handJqy(g) is a Hopf algebra, with comultiplication: Uq(g) — Uq(g) ® Uq(g)
given by

Ae)=e®l+toe, A(f)=fiot +ief, AQ)=dod" 2.7)
with counite: Uq(g) — Q(q) given by
g(e)=¢(f)=0, e(q") =1, (2.8)
and with antipodes given by
Se)=—t"'a, Sfi)=—fit, S)=q™" (2.9)
DualizingA, we obtain a multiplication obly(g)*, defined by
(WO)(X) = (y®6)(AX),  (W,8€Uq(g)", x€Uqg(g))- (2.10)

Later on it will often be convenient to use Sweedler's notath(x) = ¥ x1) ® X for the co-
multiplication. Using this notation[ (2.10) readg 6)(x) = ¥ ¢/(X1))0(X2)). Combining [2.6)
and [2.10) we obtain

X-(W0)-y="35 (X1 ¥-Y1) X2 - 0-Y)- (2.11)



2.4 Peter-Weyl theorem

Following KashiwaralK2} §7], we defineAq(g) as the subspace bf(g)* consisting of the linear
forms  such that the left submodulé(g)y belongs tdin(g), and the right submodulgUq(g)
belongs toOin(g°F). It follows from the fact that the categori€3n:(g) and Ot (g°P) are closed
under tensor product thag(g) is a subring otJy(g)*.

The next proposition of Kashiwara can be regarded@sialogue of the Peter-Weyl theorem
for the Kac-Moody groupss attached tgy (see [KP]). We include a proof for the convenience of
the reader.

Proposition 2.1 ([K2, Proposition 7.2.2]) We have an isomorphism of Uy(g)-bimodules

DV M) @V) = Aqa)

AePy

given by
d(n@m)(x) = (nNx, M)y, (meV(A), neV'(A), xe Uqy(g)).

Proof — It follows from (2.5) and[(26) tha® defines a homomorphism bf;(g)-bimodules from
@rep, VI(A) @V (A) toUg(g)*. SinceV(A) andV'(A) are integrable for alh € P,, we see that
Im® C Aq(g).

Let us show thatb is surjective. Lety € Aq(g). We want to show thaty € Im®. Since
V :=Uq(g)y is integrable, it decomposes as a (finite) direct sum of ircéade integrable modules.
Thus, without loss of generality, we may assume thas isomorphic tov (A) for someA € P;.
We may also assume thgit is a weight vector o¥/ (otherwise we can decompose it as a sum
of weight vectors). Sinc¥ :=Uq(g)y andW := ()Uq(g) are both integrable, we see that there
existk and| such thatg, ---g, - ¢ = (- fj,--- f;, = 0 for everyiy,... ik j1,..., )i €. Hence
Y(xa,---8a,) = P(fj - f;x) = 0 for everyx € Uqg(g). It follows that the linear forma € V*
defined bya(¢) = ¢ (1) takes nonzero values only on a finite number of weight spat&s o
Hencea s in the graded dual of, which we can identify t&"(A). Moreover,

Paw ) (x) = (a xP)) =akxP) =xP(1) = P(x)

for everyx € Uy(g). Thereforeyy = ®(a® ) belongs to In.

Now, @ is also injective. Indeed, if fon@ me V'(A) @V (A) we have®(n@m) = 0, then for
everyx € Uqg(g), (nx, m, =0. If n# 0, since(:, -), is a pairing betweeik"(A) andV(A) and
nUy(g) =V'(A), we get tham= 0 andn® m= 0. Hence the restriction 8b toV'(A) @V (A) is
injective. Finally, since the bimodul&&'(A) ®V (A) are simple and pairwise non-isomorphie,
is injective. O

In view of Propositio 211, we can think 8§(g) as ag-analogue of the coordinate ring of the
Kac-Moody group attached tgin [KP]. We therefore callAq(g) the quantum coordinate ring
Wheng is a simple finite-dimensional Lie algebr(g) is the quantum coordinate ring,(G) of
the simply-connected simple Lie group with Lie algelpratudied by many authors, seea. [J,
§9.1.1].



2.5 Gradings

Let Q C P be the root lattice. It follows from the defining relationsléf(g) that it is aQ-graded
algebra:

Ug(g) = @B Uq(0)a; (2.12)
aeQ
where
Ug(g)a = {x € Uq(g) | g"xq " = q"@x for all h € P*}. (2.13)
By Propositiorf Z.11, we have
Aq(g) = D Aqlg)ys. (2.14)
y,0€P
where
Aq(g)ys ={W e Aq(e) [d -y =g+ 10y forallr,l € P} (2.15)

Lemma 2.2 (a) With the above decompositioR(8) is a Px P-graded algebra.
(b) Forxe Uq(g)a, ¥ € Aq(g)y,s and ye Uq(g)p, we have xy-y € Aq(g)y-p.s+a-
(c) Forxe Uqg(9)a, ¥ € Aq(g)y.5, we havey(x) £ O only ifa = y— 3.

3 Determinantal identities for quantum minors

3.1 Quantum minors

For our convenience we reproduceitatis mutandis part of BZ2] §9.2]. Using the isomorphism
® from Propositio 21 we define for eaghe P, the element

A = d(ny @my) € Ag(g)aa- (3.1)

This is ag-analogue of a (generalized) principal minor, in the serfsgEd1l §1.4]. An easy
calculation shows that

M (fd'e)=¢e(f)qd™e(e),  (feUqy(n), he P*, ecUq(n)). (3.2)

For(u,v) € W xW, we choose reduced expressions(ijy), - - - ,i2,i1) andj = (jiw), - -+ j2, j1)
sothatu=s,, ---s,s, andv=s; , ---s;j,sj;. Next, we introduce positive roots

B = S, S» .”Sk—l(aik% = Sjlst'”Sjl—l(ajI% (1 <k< I(u)7 1<1< I(V))- (3.3)
Finally, for A € P,, we set
bk:(Bk>)‘)7 G :(M7)‘)7 (lSkSI(U), lSI SI(V)), (34)

and we define the (generalizegi)antum mino\,,) v € Aq(g) by

(@) (c1) 2 (by) (b))
Au()\)N()\) = (fh(v; fjll > AN (qll ...q|< > . (35)



Here, as usual, we denote IaSP (resp. fk>) the g-divided powers of the Chevalley generators.
Equivalently, forx € Uq(g) we have

b) (b ¢()
Bury v () = & (‘%(1”“'91.('”()) Xfi, fj(fl)) : (3.6)

It follows from the quantum Verma relationgu2], Proposition 39.3.7] thab) ) depends
only on the pair of weightgu(A),v(A)), and not on the choice af andv, or of their reduced
expressions andj. Moreover it is immediate thal, )y ) € Aq(8)un)vr)-

We have the following direct consequence of the definitioguaEntum minors.

Lemma 3.1 If I (su) =I(u) +1and I(s;v) = | (v) + 1 then

Asu(r)sjvir) = fj(C) “Dyryvn) -d”,

where b:= (aj,u(A)) > 0 (resp. ¢ := (aj,v(A)) > 0) is the maximal natural number such that
Dyr)vr) 'e.(b) = 0 (resp. fj(c) Dyryvn) # 0)-
It is convenient to identifyAy,) ) With an extremal vector of weightu(A),v(A)) in the
simpleUq(g) ® Uqg(g) highest weight modul¥"(A) ®V (A ). Thus, we have
fi-A, 5 =0if (a;,8) <0, &-4,5=0if (a;,8) >0, (3.7)
Ays-&=0if (ai,y) <0, Ays-fi=0if (ai,y) = 0. (3.8)
In particular, we haVéh(V) . Au()\)N()\) =0= Au()\)N()\) . ejuu) .
One may also identifA, 5 v(x) With a matrix coefficient iV (A ). To do that, let us first denote

by

. ¢@w) (c1)
My = f, " fi0m (3.9)

the extremal weight vector of (A) with weightv(A). Next, let(-, ), be the nondegenerate
bilinear form onV (A) defined by

(XM, ym)a = (M@ (), ymi)a, (XY € Uq(g))- (3.10)
Then, using[(3]1) and (3.6) we easily get

Dy vy (X) = (Myay, XMy )a s (x€Uq(g)). (3.11)

3.2 A family of identities for quantum minors

Let (@ )ici be the fundamental weightse.we have(h;, @) = (aj, @) = §;. We note that the
fundamental weights are only determined up Myanvariant element. Moreover, it is useful to
observe that

W —aj ifi=j,
() = 3.12
3(@) {wj otherwise. (3.12)

We can now state the main result of this section. Thisgsaaalogue oflfZ1, Theorem 1.17].



Proposition 3.2 Suppose that for,w € W and ic | we have (us) =1(u)+1andl(vs) =1(v)+ 1.
Then

-1 —aji
Dus (@) vs (@) Bu(@) vi@) = 9 Dus (@) @) Bu(@).vs (@) T DAu(éj),v(wj) (3.13)
J#I
holds in A(g).

The proof of this proposition will be given after some pregtam in Sectiorl_313 below, by fol-
lowing essentially the strategy oFZ1) §2.3]. We first continue to review material frofBZ2,
§9.2].

Lemma 3.3 Let € Aq(g)y5 and ¢’ € Aq(g)y & Foricl, assume that a (a;,0) and d =
(a;,8') are the maximal non-negative integers such thatyi # 0and f - ¢/ # 0. Then

(67 9) (1% 9) = 55 ().

This follows from the definition of the comultiplication &fy(g) and from [Z.1IL). Note that we
have an analogous result wheffas replaced byg and acts from the right. The next lemma is an
immediate consequence of Lemmal 3.1 and Lemma 3.3.

Lemma 3.4 LetA’, A" e P, U,V U V' eW, andij €|, be such that
(V) =1(V)+1, I(sv)=1(V)+1, I(su)=1U)+1, I(su")=I1")+1
Then, putting a= (aj, V(A') +V'(A")), and b= (aj, U'(A") +u’(A”)), we have

fJ(a) * (Au/(A/),VI(A/)AUII(A”),V”()\")) = AU/(/\/),Sj\/(/\/)AU”()\"),SJ'V"()\")7

b
(AU/()\/)N"()\/>AU//()\”)7V’/()\”)) M q( ) = AS U’()\’)N”()\/)ASU”()\”)N”(AN)'
The next lemma follows easily from LemraB.4 by induction lo@ length ofu andv.
Lemma 3.5 The quantum minors have the following multiplicative proye
Au()\),v(/\)Au(u),v(u) = Au(/\+u),v()\+u)7 (U7V€W7 A e P+)-
In particular, the factors of the second summand in the rigirid side of((3.13) pairwise commute.

The factors of the first summand in the right hand sidé of {8al$ commute with each other, as
shown by the following lemma.

Lemma 3.6 Suppose that for,w € W and i€ | we have (us) =1(u)+1and I(vg) = |(v) + 1.
Then

Dus (@), v(m) Bu(@) vs(@) = Dum).vs (@) Lus (@), v(m)-
Proof — Forx € Ug(n) we have
X-Dg (), g =X-B% -6 = £(X)A™ -6 = £(X)Ag(w), @ -
Similarly, fory € Ug(n_) we have

Dg. s@) Y=g s@)-
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By [BZ2, Lemma 10.2] we can then conclude that

As(m),m Am,s(m) = Am.s(m)As(m),m-

(In [BZ2], g is generally assumed to be finite-dimensional, but thisrapsion plays no role in
the proof of BZ2, Lemma 10.2].) This proves the lemma foe= v = e. The general case then
follows from successive applications of Lemmal 3.4. O

3.3 Proof of Proposition[3.2

With the help of LemmB3]4, we see by an easy induction on tigtheofu andv that it is sufficient
to verify the special case=v=e¢, i.e.

, ay
Bs(@)s(m)Ba.m — 0 lAs(m).m D s (@) = I;IijvJ‘I’J : (3.14)
J#1
N—_——
Y1 7}

Note that
V== @i =20 — 0 = W +S(@) € Py
A

Thus, by Lemma&3]5 we have
Yo =0 =7y, (3.15)

in particular the factors of/, commute. It follows from the definition @ that
(1) Yo(ly) =1,
(2) W2 € Aq(@)y.y»
(3) g-Yr=0=4yp-f;forall jcl.

Here 1, stands for the unit dfl4(g). By Propositio 211 these properties charactegizeniquely,
so it is sufficient to verify the properties (1) — (3) fopy.

Property (1). We use that for anyp, ¢ € Aq(g) we have(y ¢)(1ly) = ¢(ly)e(ly) since
A(ly) =1y ® 1y, and note that® = 1. Now, Ay g (i) = fi - A%, thusAg () (lu) = AP (i) =0.
Similarly, Ag (@), (1u) = 0 andAg 4 (1u) = 1. Finally,

hi _ q—hi
As (@) s (@) () =A% (g fi) =A% (filye) + A% (%) =0+1

Thusyn(1y) = 1.

Property (2). Recall thath, 5 € Aq(g),.5. SinceAq(g) is P x P-graded it follows from[(3.115)
that both summands af; belong toAq(g)y -

Property (3). SinceA(ej) =¢ej® 1+ g ® € the operatoe; - — acts onAy(g) as a “graded
g-derivation”,i.e.for ¢y € Aq(g),.5s andy’ € Aq(g)y,.5 We have

e - (W)= (e )¢ +q" Oy (e ). (3.16)
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Similarly,
W) -fi=w W f)+d " (- f)y. (3.17)
Now, for j # i we have(hj, @) = 0 and(hj,s(@)) = (hj, @ — o) = —a; > 0. Thus, by[(3I7),
the left multiplication bye; annihilates all the minors appearing i, and as a consequence
€ - Y =0.
It remains to show thag - ; = 0. To this end we observe first that Ay ) 5 (@) = Duw)m
for anyu e W. In fact,

hi —h
q [l _q [l
& - Duam).s(w) = (& i) - Byw).m = (fi&) - Bym)m + q—q 1 Dy(w),m

So, we can now calculate

& Y11= (8 Dy s@)laa —d (& Dsw)m)las@)
+q" A ) s (@) (@ - Barm) — AP T (@) g (8 - By s (@)
=Bs (@) wlm.m — qOAs(m)’mAmm =0. (3.18)

Finally, we have to show thap; - f; = 0 for all j € I. Again, for j # i we see by[(318) that
the mapx — x- f; annihilates all the minors occuring ifx. In order to see thap, - fi = 0, we
note that by LemmBa 3.6, we hatg () 5 A s (@) = La.s (@) Ls(m),m- TheN we can proceed as
in (3.18). Proposition 312 is proved.

4 The quantum coordinate ringsAq(b) and Aq(n)

4.1 The quantum coordinate ringAq(b)
LetUq(b) be the subalgebra tf,(g) generated by (i € 1) andg” (h € P*). We have

A(Ug(b)) C Uq(b) @Uq(b), S(Uqg(b)) € Uq(b), (4.1)

hencelUq(b) is a Hopf subalgebra. Therefore, as[in (2.10)b)* has a multiplication dual to the
comultiplication ofUgy(b). Clearly, the mag: Uqy(g)* — Uq(b)* given by restricting linear forms
from Uq(g) to Uqy(b) is an algebra homomorphism.

We defineAq(b) := p(Aq(g)). LetQ, = @i Nai. Fory,d € P, let Aq(b), 5 = p(Aq(9)y.5)-
SinceUq(b) € @geq, Uq(g)a, We have by Lemmia 2.2,

Aqb)= P Aq(b)ys. (4.2)

y—0€Qy

4.2 The quantum coordinate ringAq(n)

Recall thatUy(n) is the subalgebra dfy(g) generated by (i € 1). Because of(2]7), this isot
a Hopf subalgebra. Nevertheless, we can endgm)* with a multiplication as follows. Recall
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that everyy € Uq(b) can be written as &(q)-linear combination of elements of the fosng with
x € Ug(n) andh € P*. Giveny € Uy(n)*, we define the linear forny € Uq(b)* by

Gxd)=w(x),  (xeUg(n), heP). (4.3)

Clearly, 1: ¢ —  is an injective linear map. Moreover, sindgxd') = zx(l)qh ®x(2)qh, it
follows immediately from[(2.7]0) that

(@) (xd) = (@) (x). (W9 €Ug(n)*, xEUqg(n), he P). (4.4)
Thereforer (Ug(n)*) is a subalgebra dfq(b)*, and we can define
Y =17 9). (4.5)

We haveUg(n) = @gyeq, Ug(h)a, WhereUg(n)q = Uq(n) NUq(g)q is finite-dimensional for
everya € Q.. Let

= P Homyq, = P Aq(n)a € Ug(n)* (4.6)

aeQ. aeQ.

denote the graded dual bf(n). It is easy to see thaiy(n) is a subalgebra dily(n)* for the
multiplication defined in[(4]5). Moreover(Aq(n)) C Aq(b), and more precisely (4.3) shows that

[(Aq(n)a) = Aq(b)apo, (a€Qy). (4.7)
To summarizeAq(n) can be identified with the subalgebrigdq(n)) = Gyecq, Aq(b)a,0 Of Aq(b).

4.3 The algebra isomorphism betweer(n) and Ug(n)
Fori €1, letd € Endyq)(Ug(n)) be theg-derivation defined by (e;) = &; and
a(xy) = 3(y+ad™Uxa(y),  (x€Ug(n)a, y € Ug(n)): (4.8)

It is well known that there exists a unique nondegeneraterssimc bilinear form orJq(n) such
that(1,1) =1 and

(G(x),y)=(x,ay),  (X€Uq(n), yeUq(n), i €l). (4.9)

Denote byy the linear form org(n) given by gi(y) = (X, y). Then, the mapl: x — () is an
isomorphism of graded vector spaces frogin) to Ag(n).

Proposition 4.1 Let Ay(n) be endowed with the multiplication (4.5). Thehis an isomorphism
of algebras from |J(n) to Aq(n).

Proof — We need to show that

Bry(zd") = (P Py) (zd"),  (x,y,z€ Ug(n), he P). (4.10)
By linearity, we can assume that=¢g, --- g for someiy,...,in € |. By definition,
Ory(zd) = (. 2) = (&, &, (xy), ). (4.12)
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Let us assume, without loss of generality, thatUgy(n)q. It follows from (4.8) that
&, G, (xy) = anw)é“ ...(;jl(x)(;kr ...(;kl (y) (4.12)

where the sum is over all subséts= {k; < --- <k} of [L,m],J={]j1 <--- < ]s} is the comple-
ment ofK in [1,m], and

a(J,K):<hkl,a— Z aj>+---+<hkr,or— Z aj>.
jed, 1<ky jed; 1<k

Moreover, a summand of the r.h.s. 6f (4.12) can give a nonzentribution to [4.1l1) only if
a =3 jeyQj. Inthis case we have

U(J,K):<hkl, Z a,->+~-+<hk,, Z CTJ'>, (4.13)
jed, 1>k jed, 1>k

(Xy7 Z) = an(J’K) (Q,-l e Q,-sa X) (akl e akr ) y) (414)

and

On the other hand, it is easy to deduce fréml(2.7) that

A2) = ZqU(J.K)ajl ety ot 08, 8y

whereo (J,K) is again given by({4.13). It then follows from the definitiohgs, and i, that

(O By) (zd) = (B Gy) () = ZQU(J’K)(% w8 %) (8,6 Y) = Py(zd).

5 Determinantal identities for unipotent quantum minors

5.1 Principal quantum minors

LetA € P,, andu,v € W. The quantum minaf,) ) is calledprincipal whenu(A) = v(A). In
this case we have by LemrhaR.2 (c) thgt) ) (X) = 0 if x € Ug(g)o. Therefore the restriction

P(Byryvn)) € Ag(b) is given by

P(Dyyva)) (XA = e(x)q ™A, (x€Uq(n), he PY). (5.1)
Define
A\t()\)N()\) = Aynywvr) 0 SE Uqlg)s (5-2)
whereSis the antipode dfy(g).

Lemma5.1 (a) The principal quantum minoms(A,) v)) (VEW, A € P,) are invertible in
Aq(b), with inverse equal tqD(A\’;(A) V(A))'
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(b) The principal quantum minorp(Ay),v»)) are g-central in 4(b). More precisely, for
Y € Ay(b),,5 we have

PByx ) W =YY DY p(Ayay via))-

Proof — (a) First, we note than(Aj;(A) V(A)) belongs taA,(b). Indeed, leUy(b_) be the subalgebra
of Ug(g) generated byf; (i € I) andg (h € P*), andUé’ the subalgebra generated dfy(h € P*).

SinceSis an anti-automorphism &fq(g) which stabilizedJq(b), Uq(b_), andU0 it is clear that
Ay v generates an integrable lefegp.right) submodule obq(g)*. SoA* ) € Aq(g), and
P(BY ) vx)) € Ag(b). Now, it follows easily from the definition that

o) =e(x)g ™M (xe Ug(n), he P,
so that

(Avmvu) ) =3 Ay YAy vy (X ) = e(xd),

which proves (a).

(b) As for (a), it is enough to evaluate each side of the equoadit a typical elementd”
of Ug(b). Since the equation relates two elementsAgfb), . y(x).s1v(r), We may assume that
x € U,_s. By linearity, we may further assume that- g, ---§,, whereaqj, +--- +aj = y—9,
without loss of generality. Using (2.7), we have

(Byayvay - @) ) = 3 By vin) @) P X2 @) = Byay via) (b -t W (xel),

becausé,) vr) (Xa)d") # 0 only if X1, € Ug(g)o. Hence

(Bury vy - ) (xd) = VYA o (@) wxd)).

On the other hand it also follows from (2.7) that

(- Dyryvny) (xd) = > WX dM Ay v X2 @) = WA Ay v (@),

hence the result. O

5.2 Unipotent quantum minors

The quantum minoA( Avrn) belongs toAg(g)ya)va ), hence its restrictiop (Ayx va)) belongs
to Aq(b)u(r . Therefore, ifv(A) # 0, it does not belong to(Aq(n)). But a slight modification
does, as We shall now see.

We define thaunipotent quantum minor [ yx) by

Duyva) = P (Auwvm 'Aim,vm) : (5.3)
This is an element 0fq(b) (1 )—v(r),0 C 1 (Ug(n)*). In fact, the same calculation as in the proof of
Lemmd5.1 shows that fo«e Ug(n) andh € P*, we have
o0 (X) = By vy (XA By v (A7) = Byayvia) () = Dyayva) (X)- (5.4)
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Thus, we can regarDy).y(») as the restriction ttlg(n) of the quantum minod») v»). But we
should be aware that this restrictiomist an algebra homomorphism. For example, by Lerhmh 3.5
we have

Bur) vx) - Buyvin) = Bu(u) v - Bunyvr)s  (UVEW, A e Py,
The corresponding commutation relation for unipotent quianminors is given by the following

Lemma 5.2 Foru,ve W andA, u € P, we have

Proof — Let us write for ShOI’p(Au()\)N()\)) = Au()\)N()\) andp(A:‘/()\)’v()\)) = A;‘;(/\)’v(/\). We have,
by Lemmd5.11,

Dug)vn) Puy vy = Bu) v By v Buu), v o vip)

Similarly, Lemmd_3.b implies:

Lemma 5.3 Suppose that for,w € W and i€ | we have (ug) =I(u)+1and I(vg) =1(v) + 1.
Then

= qvs(@),us (@)~ (v(@), u@)) p

Dus (@), vw) Pu(w),vs (@) = u(@),vs (@) Dus (@), v(@)-

We can also regard the quantum unipotent minors as linearsfonUq(n) given by matrix coef-
ficients of integrable representations. Indeed, ugindljj3vte have

Duywn)(X) = (Myay, Xmyay)a,  (X€ Ug(n)). (5.5)
In particular, whernu = e we get the same quantum flag minors

Davo)(X¥) = (M, xmy)a,  (X€Ug(n)). (5.6)

as in Ki}, §6.1] (up to a switch frontJg(n_) to Ug(n)).
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5.3 A family of identities for unipotent quantum minors

We are now in a position to deduce from Proposifion 3.2 artafte identity satisfied by unipotent
guantum minors. Later on, we will see that particular casdsi@identity can be seen as quantum
exchange relations in certain quantum cluster algebras.
Asin §3.3, let us writey = @ + 5 (@), so that
—aj

Au(y,)y(y,) = DAu(wj)N(wj)? (5-7)
J#I

where, by LemmA3]5, the order of the factors in the rightshside is irrelevant.

Proposition 5.4 Suppose that for,w € W and ic | we have (us) =1(u)+1andl(vs) =1(v)+ 1.
Then

o Dus (@),vs (@) D), @) = 9" Dus (@), v(a) Put@).va (@) + Putyviy)
holds in Ay(n), where

A= (vs(@) u(@)-v(m)), B= (V@) u(w)-vs(@)).

Proof — Again let us write for ShOfp(Au()\)N()\)) = Au()\)N()\) andp(A\’; )\),V()\)) = A:’;()\)’V()\). We
apply the restriction homomorphism to the equality of Propositioéa.z, and we multiply both
sides from the right by

Bu(an) vl Buts (@), vis (@) = Dyvin)-
Note that all these minors commute by Lemma 3.5. The resatt tbllows directly from the
definition of unipotent quantum minors, and from Lenima 5)1 (b 0

It is sometimes useful to write the second summand of the-fighd side of Propositidn 3.4
as a product. It is straightforward to deduce fréml(5.7) aachind 5,11 (b) that we have

D € (D ) (5.8)
u(y)v(y) = d EI W@ v@)) .
J#I
where
C= 3 ajan(v(@), um) W@ + ;(‘;‘”)<v<wj>,u<wj>—v<w,->>. (5.9
J< JF#
itk
5.4 A quantum T-system

Leti = (i1,...,ir) € 1" be such that(s,---s,) =r. We will now deduce from Propositidn 5.4 a
system of identities relating the unipotent quantum minors

D(k,1;j) = Ds, s, (@), s, (@) 0<k<I<r jel). (5.10)

Here, we use the convention tHato,l; j) = D, 5,5 (), @quantum flag minar This system
can be viewed as g-analogue of ar-system, (seelﬂﬂ). It will allow us to express every
quantum minoD(k,I; j) in terms of the flag minor®(0,m;i).
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Note that, because df (3112), every quantum midgk,|; j) is equal to a minor of the form
D(b,d; j) whereip, =ig = j. When this is the case, we can simply williéb, d; j) = D(b,d). Note
that in particularD(b,b) = 1 for everyb. By convention, we writd(0,b) =Dg_ s .5, (w,)- We
will also use the following shorthand notation:

b™(j) = max({s<bl|is=]j}u{0}), (5.11)
b~ = max({s<blis=ip,}U{0}), (5.12)
pbj) = s,-s,(@) (5.13)

In (5.13) we understand that(0, j) = w;. Clearly, we havéd(b,d; j) = D(b™ (j),d™(])).

Proposition 5.5 Let1 < b < d <r be such thatj = ig =i. There holds

¢D(b,d)D(b".d") =g ED(b.d Db ,0) + Db ()d ()™ (5.14)
J#

where
A= (u(d7|)7 “(b_7|) - Il(d_a'))a B= (“(d_7|)7 “(b_7|) - H(da'))a
and

C= 5 aa(ud.j) bk —(di0)+ ;(‘?") ((d. ). u(b. )~ u(d. ).
i< IEA
j#izk

Proof — This follows directly from Proposition 5.4, (3.8), arid (.By taking

U=S; Sy ;s V=S, Sy ;s i =ip=iqg.

6 Canonical bases

6.1 The canonical basis ofJg(n)

We briefly review Lusztig's definition of a canonical basidiyn).

Recall the scalar produgt,-) onUg(n) defined in§4.3. In [Lu2l, Chapter 1], Lusztig defines
a similar scalar produdt, -). , using the sameg-derivationd (denoted byr in 1.2.13]) but
with a different normalizationie, ). = (1—qg~2)~L. It it easy to see thax,y) = 0 if and only if
(x,y)L =0, and ifx,y € Ug(n)g then

(XYL = (1—q2) %P (xy), (6.1)

where, for = ¥;ciaij, we set de@ = 5 c. This slight difference will not affect the definition of
the canonical basis below, and we will always (se instead of(-, ).
Let A = Q[g,q1]. We introduce the\-subalgebrdJ, (n) of Ug(n) generated by the divided

powersq(k) (iel, ke N). We define a ring automorphisri— X of Uq(g) by

d=q' §=e, Ti=f, (<. (6.2)
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This restricts to a ring automorphism G§(n).
The canonical basiB is anA-basis ofU, (n) such that

b=b, (beB). (6.3)
Moreover, for evenp, by € B the scalar produdtb,b') € Q(q) has no pole afj = «, and
(b, b)|g=e = By (6.4)

By this we mean that

n_ 80+ --agta
(bab) = K 7 7
aQq°+---+a&q+ag
with j <kwhenb# b/, andj =k,a; = a whenb=1b'. It is easy to see that if ah-basis olU, (n)
satisfies[(6.13) and[(8.4), then it is unique up to sign (Ee2)[ 14.2]). The existence @& is proved

in Part 2], and a consistent choice of signs is provided. Ofs®® is also aQ(q)-basis
of Ug(n).

(aiaaiIEZ7 aj #Oa ai(#O),

6.2 The dual canonical basis 0fJy(n)

Let B* be the basis oflq(n) adjoint toB with respect to the scalar product -). We call it the
dual canonical basisf Uy(n), since it can be identified vi& with the dual basis oB in Ag(n).

Note thatB* is not invariant under the bar automorphigm> X. The property oB* dual to
(6.3) can be stated as follows. Letbe the composition of the anti-automorphisnand the bar
involution, that is,o is the ringanti-automorphism ob,(n) such that

o@=qg’ oe)=e. (6.5)

ForB € Q., define
(B,B)

N(B) =5

Then, ifb € Uq(n)g belongs td3*, there holds

— degpB. (6.6)

o(b) =g Pp, (6.7)
(seeRe Kil).

6.3 Specialization atg = 1 of Ug(n) and Ag(n)

Recall thatJ, (n) is the A-submodule otJ4(n) spanned by the canonical baBisIf we regardC
as anA-module via the homomorphisop— 1, we can define

Ui(n) := C®aUs(n). (6.8)

This is aC-algebra isomorphic to the enveloping algebra).
Similarly, letAs (n) be theA-submodule of4(n) spanned by the basi(B*). Define

Al(n) = (C@AAA(I‘I). (69)

This is aC-algebra isomorphic to the graded duln)g,. This commutative ring can be identified
with the coordinate rind"[N] of a pro-unipotent pro-groupl with Lie algebra the completion
of n (see [GLSE)).
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6.4 Global bases obg(n_)

We shall also use Kashiwara’s lower global baBi%" of Ug(n_), constructed inK1]. It was
proved by Grojnowski and Lusztig thgt(B) = B'°Y, whereg is the anti-automorphism df (2.1).
Fori € I, we introduce thel-derivationseg and;e’ of Uq(n_), defined bye/(f;) =€ (fj) = §;
and, for homogeneous elementy € Ug(n_),
gxy) = €y+qrxd(y), (6.10)
€xy) = g y+xi€(y). (6.11)

Note thate = xo€ ox. Let us denote by, )k the Kashiwara scalar product big(n_). Itis the
unique symmetric bilinear form such th@t 1)x =1, and

(fix Yk = (X €(y)k,  (x€Ug(n-), yeUq(n_), i €l). (6.12)

It also satisfies

(X Yk = (€YK, (x€Ug(no), yeUg(n ), i€l). (6.13)

Let ¢ be the composition ap and the bar involution, that ig is the ringanti-automorphism of
Uq(g) such that

p@=q' d@)="f o(f)=a, B()=q" (6.14)
The following lemma expresses the compatibility betweaendtalar products angiderivations
onUg(n) andUg(n_).
Lemma6.1 (a) Foriel,wehavg€od =9o04.
(b) Forxy e Uqg(n) we have(x,y) = (9(x), §(Y))k-

Proof — As € 0@ and@ o & are both linear, it is enough to prove theto §(z) = 9 o §(z) for
any homogeneous elemertf Uqy(n). We prove this by induction on the degreezoff the degree

is 1, then this follows easily from the definition of all thes@ps. Then assume that the degree of
zis bigger than one. Then, without loss of generality, we c@mume thar = xy with degrees ok
andy smaller than the degree af Now

€@(xy) =i€@WPX) =a "PLe@y) )+ DY) i€ (@)

By induction on the degrees &fandy we can assume thg# (¢ (x)) = 9(&(x)) and;€(P(y)) =
?(a(y)), so that
E@00) = (4" P8 () +8(0y)) = B8 0)),

which proves (a). Then
@), 9(¥)k = @) f,9()k = @X),i€@Y)k = @), P(8(Y)k-

By induction on the degrees pBindy we can assume théd (x), 9 (& (Y)) )k = (X, &(Y)) = (ex,y),
which proves (b). O

Let B"P denote the upper global basisldf(n_). This is the basis adjoint B'°" with respect
to (-, -)x. By Lemmd6.1(b), we also ha®'P = §(B*).
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Let us denote by#(«) the crystal ofUy(n_), and byb., its highest weight element. The
elements oB'°" (resp. BUP) are denoted by (b) (b € #()) (resp. GP(b)). As usual, for
everyi € |, one denotes bg and f; the Kashiwara crystal operators @f(«). We will need the
following well known property of the upper global basis,d4K2), Lemma 5.1.1],[Ki, Corollary
3.16)):

Lemma 6.2 Let be %(w), and put k= max{j € N | (;&)}(G"P(b)) # 0}. Then, denoting by
(i€)® the kth g-divided power &, we have(ie)¥ (GUP(b)) € BUP. More precisely,

(i€)®(G*(b)) = G*°((&)"b),
where€' is the crystal operator obtained froB by conjugating with the involutior of (2.2).

The integek = max{j € N | (¢)1(G"P(b)) # 0} = max{j € N | (§)!(b) # O} is denoted by (b).
Similarly, the integek = max{j € N | (;¢)}(G"P(b)) # 0} = max{j € N | (&)I(b) # 0} is denoted
by & (b).

6.5 Unipotent quantum minors belong to B

Using the isomorphisn¥: Ug(n) — Aq(n) of 4.3, we can regard the unipotent quantum minors
Dy()v(n) as elements dfig(n). More precisely, letl ) yx) = Y1 (Dya)va)) be the element of
Ug(n) such that

Du(/\).v()\)(x) = (du()\),v(/\)7 X), (X S Uq(l‘l)). (615)
By a slight abuse, we shall also cdl},) () @ unipotent quantum minor. In this section we show:

Proposition 6.3 For everyA € Py and uv e W such that (A ) —v(A) € Q., the unipotent quan-
tum minor d,),(») belongs toB*. More precisely, writing u= Siw S V=Sj,, Sy and
defining iR and ¢ as in [3.4), we have

V) ’

dyryvn) =9 (Gup ((e*l(u))bl(u) ... (e*l)bl fj‘?(s;) fvj‘fllbo(,)) )

Proof — We proceed in two steps, and first consider the case wheris the unit ofw, that is,
the case of unipotent quantum flag mindjs,x). By (5.8), we have fok € Ug(n),

(drvir), X) = (M, XMy)a = (@ (X)mMy, My))a-

It is well known that the extremal weight vectarg,, belong to Kashiwara’s lower global basis
of V(A), and also to the upper global basis. More precisely, we have

_ £C(v) C o £Cl(v) C
My = G (fh(v) fillb)‘> - Gup(fh(v) fillb)‘> )

whereb, is the highest weight element of the crysté(A ) of V(A ). Hence we have

(drvir), X) = <¢(X)mA7 G (fﬁ':; FffbA))A : (6.16)
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o)
¢ (x) is any other element @&'°". Therefored, v is the element oB* given by

It follows from (6.18) that(dj (1. X) = 1 if ¢ (x) = GV (fwv) o ﬂ'cllboo), and(dy . ) = O
tCwv ~
d)\,v(/\) =0 (GUP (fhl((v)) fJ_‘Jllboo)) .

Now let us consider the general case whenss, , ---s; is non trivial. Fork =1,.. ., 1(u), write
U« =S, -+ S,;. Using Lemm&3]1, we have fare Ug(n),

b
Dua)vin) (X) = By ayvin) (X) = (Auk,l()\)y(A) d! k>> (X)
whereby = (i, Uk-1(A)) = max{j | Ay ;1) vir) 'e,(kj) # 0}. Now we can also write

b,
D) (09 = (dy w000 67%) = (8P 014000, %)

hence
Ay ) vy = (dk)(bk)duk—l()\)vv()‘)’

where(&)®) means thdth g-divided power of they-derivationd. Sinceug(A) —Vv(A) € Q,, the
restrictionp(Ay 1 ).vx)) is nonzero, hencl, = max{j | (&,)®dy, ) vx) # 0}. Applying @ and
assuming by induction okthat

duk—l()\)N()\) =9 (Gup ((é*kil)bkfl . (ékl)bl fJﬁl((\:;) . ﬁcllboo>>
we get by Lemma6l1(a) that
Pcvin) = (8) ) (G (& )P (@) T - Tt )

and
£C(v)

b=z, (8- @ b)),
Thus, applying Lemma@.2, we get that
~ = G £
(dy 1) vr)) =GP (( )P (&)™ i fjcllb°°) :

and the statement follows by induction kn O

7 Quantum unipotent subgroups

In this section we provide a quantum version of the coordimeatg C[N(w)] studied in [GLS#],
following [Lu2}, (S Ki].
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7.1 The quantum enveloping algebrdJqg(n(w))

We fixw € W, and we denote hgx}, the subset of positive roots of g such thatv(a) is a negative
root. This gives rise to a finite-dimensional Lie subalgebra

of n, of dimensionl(w). The graded dudl (n(w))g, can be identified with the coordinate ring
C[N(w)] of a unipotent subgrouf(w) of the Kac-Moody groug with Lie(N(w)) = n(w). (For
more details, seddLS6].)

In order to define @-analogue ol (n(w)), one introduces Lusztig’s braid group operation on
Uq(g) [Lu2]. Fori € I, Lusztig has proved the existence of)éq)-algebra automorphisik of

Uq(g) satisfying

T = ", (7.1)

Ti(e) = —t'f;, (7.2)

Ti(f) = -—sat, (7.3)

Te) = Y (Dareled”  (j#i), (7.4)
r+s=—(h.aj)

T = Y O AIuE0 (i), (7.5)
r+s=—(h.aj)

(This automorphism is denoted By ; in [Lu2].) For a fixed reduced decompositian=s, ---s;,
let us set, as il (313),

ThenA}, = {B,..., 5 }. We define following Lusztig, the corresponding quantunt k@etors:
E(Bd) =T - Ticu(&),  (I<k<r). (7.7)
It is known thatE (B«) € Ug(n)g,. Fora= (ay,...,a) € N', set
E(a):=E(B)™ - E(B)*), (7.8)

whereE (B¢)® denotes thekth g-divided power of (Bx). Lusztig has shown that the subspace of
Uq(n) spanned by E(a) | a< N'} is independent of the choice of the reduced wiotd(iy, ... . ,i1)
for w. We denote it byJg(n(w)). Moreover,

. ={E(a)|acN"} (7.9)

is a basis otJg(n(w)), which we call thePBW-basisattached ta.
In fact, Ug(n(w)) is even a subalgebra f(n). This follows from a formula due to Leven-
dorskii-Soibelman (se&i, 4.3.3]).
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7.2 The quantum coordinate ringAq(n(w))

Using the algebra isomorphisth: Uqg(n) — Aq(n) of[d.3, we can defindg(n(w)) := W(Ug(n(w)).
This is a subalgebra @(n)

Lusztig [Lu2, 38.2.3] has shown tha# is orthogonal, that i$E(a),E(b)) = 0 if a # b.
Moreover

(E(Bo),E(B) = (1—q 3%t (1<k<r), (7.10)
e f ()
I!]l {ak}l" , (7.11)
where by definition
a 1_ q72j
@ =[1 =y (7.12)
=1

Denote byZ?; the basis
E(a), (aeN") (7.13)

of Ug(n(w)) adjoint to.#%. We call 27" thedual PBW-basi®f Uy(n(w)) since it can be identified
via W with the basis of\q(n(w)) dual to#;. In particular we have the dual PBW generators:

E*(B) = (1—q %) ®BHEPR),  (1<k<r). (7.14)

7.3 Action of T; on unipotent quantum minors

Proposition 7.1 Let A € P™, and uv € W be such that ) —v(A) € Q,, and consider the
unipotent quantum minor,g) v )- Suppose thatu) = I(u) +1, and I(sv) =1(v) + 1. Then

Ti (duyain) = (L=a 2 @YD dga) quin).-
The proof will use Proposition 8.3 and the following lemmas.

Lemma 7.2 We have o =9 oT,.

Proof — This follows immediately from the definitions @f and ofT;. 0

The next lemma is a restatement of a result of Kimliia [Theorem 4.20], based on previous
results of Saito$d and Lusztig[Lu3]. Note that ourT; is denoted byf;* in [Ki].

Lemma 7.3 Let be #(w) be such that;(b) = 0. Then
T(G*(b) = (L—a) ) G (%7 (@)% b)),

whereg;*(b) := & (b) + (ai, wt(b)).
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Proof of Propositiorl 7J1 —By Lemmd_Z.2 and Propositién 6.3, we have
~x b ~\by £ GV ra
9 (Ti(dunan)) =T (G (8], - @) T - Fioha) ).

Let us write for shorb:= (& )P - (&)™ fvjlf'vg“ -+ £,%bs, € (). Then

&(b) = max{s| &-Ayn)va) # 0}

The assumptioh(sv) = 1(v) + 1 implies that(aj,v(A)) > 0, so by [[3.¥), we have (b) = 0, and
we are in a position to apply Lemrhal’.3. Because of the assomlggu) = | (u) + 1 we have

& (b) = max{s| Ay va) - € # 0} = (ai,u(A)),

and
¢i"(b) = & (b) + (ai,wt(b)) = (ai,u(A)) + (@i, v(A) — u(A)) = (i, V(A)).

Thus, again by Propositidn 6.3, we have

Ti(dyayvn)) = 9 (Ti(G™b))
:?p—((1_q2)(ai7v()\)—u()\))Gup(ﬂd’i*(b)(ék)sﬁ(b)b))
_ . — i\ £F ~ ~k F¢7(b) G ry
= (1— g 2)(@vA)-uA)g (Gup ((q )é (b)(quu))b'(u) SCHLIAL )fh?v())'” fjflboo)>
= (1—q 2@ dg ) su)-

7.4 Dual PBW generators are unipotent quantum minors
Recall from [Z.6) the definition of the roofk.

Proposition 7.4 Fork=1,...,r, we have

E*(Bd) = dalmsk—l(mk)7 S-Sy (@)
Proof — We haves, =dy s (m,). hence

E(B) = Tip Ty (dlﬂw Sk(mk)) :
Applying k— 1 times Proposition 711, we get

-2
E(Bk) = (1_ q )Ndsl“‘sk,l(mk)v Sl“‘Sk(mk)’

where
N = _(aik—ﬂ aik) - (aik—27 Sk—l(aik)) - (aip S, ”Sk—l(aik))'
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Now,

Bkzsl"'sk 1(aik)

= Qi + Z “ S (i) = Sy S (03 )
k—1

= i — Z (aim Sing1 " “Sy 1 (i) i
n=1

so that de@ = 1+ N. Hence,

ds, s, (@), 8,5 (@) = (1= a2 CHE(B) = E* ().

7.5 The skew fieldFg(n(w))

It is well known thatAq(n(w)) is an Ore domain. This follows for example from the fact thatis
polynomial growth (seeBZ2, Appendix]). Hencedq(n(w)) embeds in its skew field of fractions,
which we shall denote blyy(n(w)).

Recall the shorthand notation §#.4 for unipotent quantum minors.

Proposition 7.5 Let0 <b < d <r be such thatj = ig. Then the unipotent quantum minofid)
belongs to f(n(w)). In particular, the quantum flag minors(D,d) = Dg,, s,-s,(m,) belong to

Fq(n(w)).
Proof — If b=d~, by Propositio 714, we have(d~,d) = W(E*(B4)), SO

D(d™,d) € Ag(n(w)) C Fy(n(w)).

Recall the determinantal identity (5114). Arguing asi@LS6, Corollary 13.3], we can order the
set of minordD(b,d) (0<b < d <r) so that (i) the minor®(d—, d) are the smallest elements, and
(ii) the minorD(b~,d) is strictly bigger than all the other minors occuring[in @).1This allows
to express, recursivelp (b, d) as a rational expression in the min@sc—,c) (1 <c<r), and
shows thaD(b~,d) € Fq(n(w)). O

We will show later (see Corollafy 12.4) that, in fact, all gtam minorsD(b,d) are polyno-
mialsin the dual PBW-generatoi3(c™,c). Hence, they belong tag(n(w)).
7.6 Specialization atg = 1 of Aq(n(w))

Let Ay (n(w)) denote the freé\-submodule ofAy(n(w)) with basisW(Z%"). This integral form
of Aq(n(w)) is anA-algebra, independent of the choice of the reduced woloreover, if we
regardC as anA-module via the homomorphisom— 1, we can define

Ar(n(w)) := C @4 Ax(n(w)). (7.15)
This is aC-algebra isomorphic to the coordinate riigN(w)], (see [Kil, Theorem 4.39]). In
particular, ifDy(xvx) is @ unipotent quantum minor iy (n(w)), the element & Dy y(x) can

be identified with the corresponding classical mino€iiN (w)].
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8 Quantum cluster algebras

In this section we recall, following Berenstein and Zelskin [BZ2], the definition of a quantum
cluster algebra.

8.1 Based quantum tori

Let L = (A;) be a skew-symmetric x r-matrix with integer entries. Theased quantum torus
7 (L) is the Z[q*/?]-algebra generated by symbofs, ..., X%, X; %,..., X1 submitted to the re-
lations

XX =X =1, XX =d¥XX, (1<ij<r) (8.1)
Fora= (a,...,&) € Z", set
Xa-— q% Zi>jaiaj)\ijxfl...xraf' (8.2)
Then{X?|ac Z'} is aZ[q*'/?)-basis of.7 (L), and we have foa,b € Z',
XaxP — q% 2ixj (b —bia))Aj ath — g3i-j(abj—biaj)Aij xbya, (8.3)

Since.7 (L) is an Ore domain, it can be embedded in its skew field of frasti®.

8.2 Quantum seeds

Fix a positive integen < r. LetB = (bij) be anr x (r —n)-matrix with integer coefficients. The
submatrixB consisting of the first — n rows ofB is called theprincipal partof B. We will require
B to be skew-symmetric. We cdll anexchange matrix\We say that the paifL, B) is compatible
if we have

r
> bjAi=3gjd,  (1<j<r—n 1<i<r) (8.4)
=)

for some positive integet.

If (L,B) is compatible, the datun¥ = ((X1,...,%),L,B) is called aquantum seedh .Z.
The set{Xy,..., X} is called theclusterof ., and its elements theuster variables The cluster
variablesX; _n.1,...,X are calledrozen variablessince they will not be affected by the operation
of mutation to be defined now. The elemeXtswith ac N' are calledquantum cluster monomials

8.3 Mutations

Fork=1,...,r —n, we define themutation i (L, B) of a compatible pai(L,B). LetE be the
r x r-matrix with entries

aij if j#Kk,
8 =14 -1 ifi =)=k, (8.5)
max(0, —by) ifi#j=k

Let F be the(r —n) x (r —n)-matrix with entries

o ifi £k,
fij=< -1 ifi=j=Kk (8.6)
max(0,by;) if i =k# j.
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Thenpi(L,B) = (pk(L), pk(B)) where

pc(L) :=ETLE,  p(B):=EBF. (8.7)

Note that the mutatiop(B) of the exchange matrix is a reformulation of the classical defined

in [EZ2]. It is easy to check thaty(L,B) is again a compatible pair, with the same intedexs
in 8.4). Defined = (&],...,a;) anda’ = (&f,...,a’) by

, -1 if i =k, " -1 if i =k,
g = ., & = o (8.8)
max(0,by) if i #K, max(0, —by) ifi#k.

One then defines
x& 4 xa jfi=Kk,
) = 8.9
i (%) {Xi itk (8.9)

Berenstein and Zelevinsky show that the elemetits= i (X;) satisfy
XXE=qiXIX/,  (1<ij<r), (8.10)

where (L) = (Af;). Moreover they form dree generating seof .7, that is, one can write

X! = B(X®) where8 is aQ(q"/2)-linear automorphism of7, and(c',...,c) is aZ-basis ofZ'.
Therefore

H(-7) 1= ((H(Xa), - H (X)), t(L), p(B)) (8.11)

is a new quantum seed i, called themutation of.# in direction k Moreover, the mutation
operation is involutive, that igi(uk(-7)) = ..

Definition 8.1 The quantum cluster algebraz.(-) is the Z|q*/?]-subalgebra of the skew
field . generated by the union of clusters of all quantum seedsmddarom.#” by any sequence
of mutations.

The following basic result is called tlggiantum Laurent phenomenon

Theorem 8.2 ([BZ2]) The quantum cluster algebra/y»() is contained in the based quan-
tum torus generated by the quantum cluster variables of avgngquantum seed”’ mutation
equivalent to.

In the next sections we are going to construct a class of goaotuster algebras attached to
some categories of representations of preprojective edgeb

9 The categoryéy

We recall the main facts about the categ@ky and its maximal rigid objects, followindBIRS,
IGLS4,IGLSE].
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9.1 The preprojective algebra

Let Q be a finite connected quiver without oriented cycles, withesesetl, and arrow seQ;.
We can associate witQ a symmetric generalized Cartan mathx= (&;j )i jei, Wherea;; = 2 if

i = ], and otherwise;;j is minus the number of edges betweamd j in the underlying unoriented
graph. We will assume th#t is the Cartan matrix attached to the Kac-Moody algehithat is,

aj :<hl7al>:(alvaj)v (|>J€|) (91)

Let CQ be the path algebra of tiuble quiverQ of Q, which is obtained fron@ by adding
to each arrova: i — j in Q1 an arrowa’: j — i pointing in the opposite direction. Lét) be the
two-sided ideal ofCQ generated by the element

c= (a"a—aa").
acQ

The algebra B
N:=CQ/(c)
is called thepreprojective algebraf Q. Recall that for allX,Y € modA) we have
dimExt; (X,Y) = dimExt (Y, X). (9.2)
This follows for example from the following important forriau
dimExt; (X,Y) = dimHomn (X, Y) 4 dimHom (Y, X) — (dimX, dimY), (9.3)

where we identify the dimension vector d{rwith an element o), in the standard way.

We denote by (i € 1) the indecomposable injective-module with socle5. Here,S is the
one-dimensional simpl&-module supported on the vertexf Q. Note that the modulek are
infinite-dimensional ifQ is not a Dynkin quiver.

For aA-moduleM, let sog;j)(M) be the sum of all submodulés$ of M with U = S;. For
(j1,-..,]s) €15, there is a unique sequence

0=MgCM;C---CMsCM

of submodules oM such thatMp/M,_1 = sog; )(M/Mp_1). Define sog;,  i,(M) :=Ms. (In
this definition, we do not assume thdtis finite-dimensional.)

9.2 The subcategorys,
Leti = (ir,...,i1) be areduced expressionwfc W. For 1<k <r, let
Vi :=Vik == S0Gi,, i) (ﬂk) , (9.4)

and se¥; :=V; @ ---®V;. The moduley; is dual to the cluster-tilting object constructedBIRS),
Section II.2]. Define
% :=FaqV;) C mod(\).
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This is the full subcategory of méd) whose objects are quotient modules of a direct sum of a
finite number of copies of;. For j € I, letkj := max{1 <k <r [ix = j}. Definel; j :=V;y, and
set

li:i=li1®---Dlin.

The categorys; and the modulé; depend only onw, and not on the chosen reduced expression
of w. Therefore, we define
Cw =G, lw:=1.

Theorem 9.1 ([BIRS, Theorem 11.2.8]) For any we W, the following hold:
(a) éwis a Frobenius category. Its stable categdfy, is a 2-Calabi-Yau category.

(b) The indecomposable,,-projective-injective modules are the indecomposableatisum-
mands of ..

(c) Gw=Faqlw).
Note that in the case wheQ is a Dynkin quiver, that isg is a simple Lie algebra of type
A,D,E, andw = wy is the longest element W, then%,,, = modA).
9.3 Maximal rigid objects

For aA-moduleT, we denote by add") the additive closure of, that is, the full subcategory of
mod(/A) whose objects are isomorphic to direct sums of direct sundsiafitT. A A-moduleT is
calledrigid if Ext,l\(T,T) =0. LetT € % be rigid. We say that

e T is Gy-maximal rigidif Extk (T & X,X) = 0 with X € €,y impliesX € add(T);
e T is a%,-cluster-tilting modulef Ext} (T, X) = 0 with X € %, implies X € add(T).

Theorem 9.2 ([BIRS, Theorem 1.1.8]) For a rigid A-module T iné,, the following are equiva-
lent:

(&) T has r pairwise non-isomorphic indecomposable directmands;
(b) T is%,-maximal rigid;
(c) T is a%y-cluster-tilting module.

Note that, given Theorem 9.1, the proof (&[SI, Theorem 2.2] carries over to this more general
situation (seeGLS4, Theorem 2.2] in the case whenis adaptable).
9.4 The quiverl't and the matrix Bt

LetT=T1 - T, be a%,-maximal rigid module, with each summaridindecomposable.
Clearly each indecomposalitg,-injective modulel; j is isomorphic to one of th&’s, so, up to
relabelling, we can assume thiat . j = |; j for j = 1,...,n. Consider the endomorphism algebra
Ar :=Endn(T)°P. This is a basic algebra, with indecomposable projectiveutes

Pr. :=Hom\(T,Tp) (1 <i<r). (9.5)
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The simpleAr-modules are the head of the projectivesPr. One defines a quivdrt with
vertex set{1,...,r}, andd;; arrows fromi to j, whered;; = dim Ext,&T(Sﬁ,Srj). (This is known
as the Gabriel quiver of\r.) Most of the information contained iRt can be encoded in an
r x (r —n)-matrix Br = (bij)1<i<r, 1<j<r—n, given by

bij = (number of arrowg — i in I't) — (number of arrow$ — jin 7). (9.6)

Note thatBr can be regarded as an exchange matrix, with skew-symmeitnicigal part.

The next theorem gives an explicit description of the quiveihence also of the matri&r)
for certainé,-maximal rigid modules. FollowindgBFZ], we define a quiveF; as follows. The
vertex set of’j is equal to{1,...,r}. For 1<k <r, let

kK :=max({0}u{l<s<k—1|is=ik}), (9.7)
kT :=min({k+1<s<r|is=ixU{r+1}). (9.8)

For 1< st <r such thais # i, there arda;_j, | arrows fromstot providedt™ >s" >t >s. These
are called theordinary arrowsof I'j. Furthermore, for each £ s <r there is an arrove — s~
provideds™ > 0. These are thkorizontal arrowsof ;.

The following result generalize&SLS3, Theorem 1] (se€GLS4, Theorem 2.3] in the case
whenw is adaptable).

Theorem 9.3 ([BIRS, Theorem 11.4.1]) TheA-module Yis a%,,-maximal rigid module, and we
havely, =T.

9.5 Mutations of maximal rigid objects

We consider again an arbitra#g,-maximal rigid modul€T, and we use the notation [of 9.4.

Theorem 9.4 ([BIRS, Theorem 1.1.10]) Let T be a non-projective indecomposable direct sum-
mand of T.

(a) There exists a unique indecomposable modgilg Ty such that(T /Ty) & T," is €,-maximal
rigid. We call(T /Tx) @ T, themutation ofT in directionk, and denote it by (T).

(b) We haveB,, 1) = (Br).

(c) We havelimExtx (T, T) = 1. Let0O— Ty —» T, = T — 0and0— T, — T — T — O be
non-split short exact sequences. Then

I~ —bijk "~ bjk
nE @ W@
bjk <0 bjk>0

Note that again, given Theordm B.1, the proof @51, §2.6] carries over to this more general
situation.
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9.6 The modulesM[l, K]

In this section we assume that the reduced woilfixed. So for simplicity we often omit it
from the notation. Thus, fok=1,...,r, we may writeVy instead ofV; .. Moreover, we use the
convention thaty = 0.

For 1<k <1 <r such thaiy =i, =i, we have a natural embedding &fmodulesv- — V.
Following [GLSE, §9.8], we defineM(l, k] as the cokernel of this embedding, that is,

MK :=Vi Vi . (9.9)
In particular, we seMy := M[k,k], and
M=M =M@ BHM,. (9.10)

We will use the convention thad[l k] = 0 if k > |. Every moduleM]l, K] is indecomposable and
rigid. But note thatM is notrigid. Define

Kmin :=min{1<s<r |is=ik}, (9.11)
Kmax:=max{1l<s<r |ig=ik}. (9.12)

ThenVk = MK, knin] corresponds to aimitial interval. The direct sum of all moduld! [knax, K]
corresponding tdinal intervalsis also as,,-maximal rigid module, denoted bly.
By §10], for every modulX € %, there exists a chain

0=XoC X4 C -+ CX =X (9.13)

of submodules oK with X /X1 = M{(“‘, for some uniquely determined non-negative integes
Ther-tuplem(X) := (my,...,m) will be called theM-dimension vectoof X.

9.7 Dimensions of Hom-spaces

LetR=R = (ri) ther x r-matrix with entries

0 if k<1,
na=1{ 1 if k=1, (9.14)
(BK7B|) Ifk>|>

Proposition 9.5 Suppose that X € %, satisfyExtk (X,Y) = 0. Then

dimHomy (X,Y) = m(X)Rm(Y)T.

Proof — By [[GLSE, Proposition 10.5], for al¥ € %, with M-dimension vectom(Y), we have

dimHomn (Vk,Y) = dim Hom, (vk, @Mlﬁm””k) (9.15)
k
Moreover, theM-dimension vector of is given by
1 ifij=ixandj <Kk,
(M) = { ‘ : (9.16)
0 else.
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Therefore, we can restat€LS6, Lemma 9.8] as
dimHom (Vk,Y) = m(Vi) Rm(Y)T. (9.17)

Now, for X € 4,, we can find a short exact sequence®” — V' — X — 0 withV',V" € add(M).
Since Hom (V;, —) is exact on this sequence we conclude that

m(X) =m(V’) —m(V"). (9.18)
Finally, since Ext(X,Y) = 0, the sequence
0 — Homp (X,Y) — Homy (V')Y) — Homp (V")Y) — 0
is exact. Thus we can calculate

dimHomp (X,Y) = dimHomp (V',Y) — dimHomy (V",Y)
— (m(V') —m(v")) Rm(Y)T

=m(X)Rm(Y)T.
O
Lemma 9.6 Letl <b < d <r be such thaty =ig =1i. There holds
dimHomy(M[d,b"], M[d~,b]) = m(M[d,b])Rm(M[d*,b])T.
Proof — We have a short exact sequence
0— M[d~,b] - M[d,b]&M[d~,b"] — M[d,b"] — 0
with
m(M[d™,b]) — (M(M[d,b]) + m(M[d~,b%])) +m(M[d,b"]) = 0. (9.19)
Since

EXt}\(M[dvb+]v M[d_vb]) =1, EXt}\(M[dvb+]7 M[d7b]) = EXt}\(M[dvb+]7 M[d_>b+]) = Oa
this yields an exact sequence

0 — Homa(M[d, b*],M[d~, b]) — Homa (M][d,b*],M[d,b] & M[d~, b*]) —
— Homy(M[d,b*],M[d,b"]) — C — 0.

Applying Propositiori 95 to the second and third non-ttitgams yields the required equality, if
we take into accounf (9.119) and the fact that= 1. O
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Proposition 9.7 Let1 <b < d <rbe such thatj=iq =i. Let j,k € | with j ##iand k#i. There
holds

dimHomy(M[d, b*],M[d™,b]) = (dimVe, dimM[d~,b]) — (dimM[d~.b]);,

dim Homy (M[d, b],M[d~,b*]) = (dimVy, dimM[d~,b*]) — (dimM[d~, b*]);,

dimHom (M[d™(j), (b™(j)) "], M[d™ (k), (b~ (k)) *]) = (dimVy-j), dimM[d~ (k), (b~ (k))"])
— (dimM[d™ (k), (b™ (K))*]);-

Proof — By Lemmd 9.6,
dimHomp (M[d,b"],M[d~,b]) = dimHom, (M[d,b],M[d~,b]).
Moreover, Proposition 915 shows that
dimHomy (M[d,b],M[d™,b]) = dimHomx (Vg4,M[d ™, b]).
Now, it follows from (9.3) that
dimHom(Vy, M[d~, b]) = (dimVe, dimM[d~,b]) — (dimM[d",b]);.

Indeed,Vy andM[d~,b] belong to the subcategofys ... , andVy is projective-injective in this
category, with socl&. Therefore

dimHomM[d~,b],Vg) = (dimM[d~,b])i and Exk(M[d",b],Vyq) =0.

This proves the first equation. For the remaining two equatiee note that again, by Proposi-
tion[9.5, we can replace in the left hand s, b] by Vg, andM[d ™ (j), (b= (j))*] by Vy-(j). The
claim follows. 0

10 The quantum cluster algebra associated witl,

10.1 The cluster algebrac? (6w)

Following , [BIRS], [GLS6], we can associate with;, a (classical.e.not quantum) clus-
ter algebra. This is given by the initial seed

Z\/i = ((Xl,...,Xr),B\/i). (101)

Although this seed depends on the choice of a reduced eiqmedsr w, one can show that any
two matricesBy, andBy, are connected by a sequence of mutations. Therefore tiseclaigebra
is independent of this choice, and we denote itdy%,,). Moreover, every seed a¥ (4y) is of
the form

21 = ((XTlv"'vXTr)>§T)>

for a uniquez,-maximal rigid modulél =T; @ - -- & Ty, and some Laurent polynomiatg , . .., X,
in the variablesq = Xy, ,, ..., % = Xy,. These module¥ are those which can be reached from

33



using a sequence of mutations, and we called theamhable (It is still an open problem whether
every y-maximal rigid module is reachable or not.)jlfs another reduced expression foy it
is known thaty; is reachable fronV; [BIRS]. Therefore, the collection of reachalsg-maximal
rigid modules does not depend on the choice of

It was shown in|[GLS4, that there is a natural isomorphism fromi(%,,) to the coor-
dinate ringC[N(w)], mapping the cluster monomials to a subset of Lusztig’s dealicanonical
basis of C[N(w)].
10.2 The matrix Lt

LetT =Ti&--- & T be agy-maximal rigid module as if9.4. LetLt = (A;j) be ther x r-matrix
with entries
)\ij = dimHom,\(Ti,Tj)—dimHom,\(Tj,Ti), (lﬁi,j gr) (10.2)

Note thatLt is skew-symmetric. From now on we will use the following cenient shorthand
notation. Given twa\-modulesX andY, we will write

[X,Y]:=dimHomp(X,Y),  [X,Y]}:=dimExt(X,Y). (10.3)
Thus, we shall writéj; = [T, Tj] — [T}, Ti].
Proposition 10.1 The pair(Lt,Br) is compatible.
Proof — For 1< j <r—n,and 1<i, k<r, by Theoreni 914 (c) we have:

r
> b = [T, T+ [T/, T = [T{, Ti] = [T, T/"].
=

Let us first assume that j. Applying the functor Hom(T;, —) to the short exact sequence
0-Tj—T =T =0,
and taking into account th@'t'i,Tj]l =0, we get a short exact sequence
0— Homy(T;, Tj) — Hom,\(Ti,Tj’) — Hom (T, T}") — O,

therefore
[T, T = [T, 7]+ [T, T (10.4)

Similarly, applying the functor Hog(—, T;) to the same short exact sequence and taking into
account thafT*, Ti]* = 0, we get a short exact sequence

0 — Homp(T}", Ti) — Homa (T}, Ti) — Homa (T}, Ti) — O,

therefore

It follows that
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Arguing similarly with the short exact sequence
0T =T =T =0,
we obtain
T = [T, T = [T T = [T, T} + A (10.7)
HencezL:1 bkj)\ki = )\ij +)\ji =0.

Assume now that = j. Using that[Tj, T;]* = 1 and[T;, Tj]* = [T}, T

j/]l == [Tj,Tj”]l == 0, and
arguing as above, we easily obtain the relations

T3, T = [T, 71+ T3, T, (10.8)
T, T = [T, ]+ [T}, Tj] - 1, (10.9)
T, T = [T, T+ [T, Ty, (10.10)
[T, 7] = [T, 1]+ [T, T - L. (10.11)
It follows that ¥ _; bkjAk; = 2. Thus, in general,
i bijAki = 28,
K=1
which proves the proposition. O

Letk <r —n, so that the mutatiopy(T) is well-defined.

Proposition 10.2 We haveu(Lt) = L (1)-

Proof — Putpi(Lt) = (Afj). By definition,Aj; = Ajj if i or | is different fromk. Similarly, since
T and () differ only by the replacement dk by T, all entries inL,, 1) not situated on rovk
or columnk are equal to the corresponding entried.ef

If i =k, we have by definition ofi (L) and by Theorerh 914 (c)

r
A=Y esidsj= [T, Tj] = [T, T = [T, Ti] + [Tj, T — Ak
s=1

Thus, by [10.6), we get
A = [T T = (M1,
as claimed. The case= k follows by skew-symmetry. O
LetH; = (hy) be ther x r-matrix with entries

1 ifl=km A >0
hkl _ { | or somem > 0, (10.12)

0 otherwise.
Proposition 10.3 The matrix by, has the following explicit expression

Ly, = Hi(R — RNH;.

Proof — This follows immediately from Propositidn 9.5, if we notattthekth row of H; is equal
to theM-dimension vectom(V, k). O
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10.3 The quantum cluster algebrac/g>(%w)

Propositior Z0J1 and Propositibn 10.2 show that the fartity, Bt ), whereT ranges over alt;,-
maximal rigid modules reachable frovy gives rise to a quantum analogue of the cluster algebra
o/ (6w). We shall denote it byzy»(%y). For every reduced expressionf w, an explicit initial
guantum seed is given by

Ay = ((Xvi,17"'7xvi.r)7 Ly, gVu)?

where the matriceky, andBy, have been computed in Propositflon 10.3, and in SeEfidn 9.4.
The quantum seed corresponding to a reach@@lenaximal rigid moduleT =Ty &--- @ T,

will be denoted by N
1= (X1, X1,), L1, BT). (10.13)

For everya = (a,...,a) € N', we have a rigid moduld® := T & ---® T* in the additive
closure addT) of T. Following (8.2) and writind-t = (Ajj), we put

Xpa = X2 := q% YisjaayAij XTall .. -X%. (10.14)

Thus, denoting by%,, the set of rigid module® in the additive closure of some reachalslg-
maximal rigid module, we obtain a canonical labelling

Xz,  (RE Zw). (10.15)

of the quantum cluster monomials o2 (%w).

10.4 The element¥r

It will be convenient in our setting to proceed to a slightasg of the element&r. FOrR € %y,
we define
Yr:=q RR/ZXq. (10.16)

In particular, writingR = T2 as above, an easy calculation gives
Ye=q “RYE... v, (10.17)

where

= &a[T, Tj] +Z< > [Ti, Til. (10.18)

i<]

Note thata (R) is an integer (not a half-integer), so thé@tbelongs tdzZ[g*!][Yr,,-- -, Yr.]. More-
over, we have the following easy lemma.

Lemma 10.4 Let T be a reachabl&,,-maximal rigid module. For any f& inadd(T) we have

YrYs = g*FVres.

Proof — Write R= T2 ¢ --- @ T;* andS= T @ ---© T,>. We have

YoYs = qfo((R)fa(S)YTall .. 'Y'I?Yﬁl .. 'Y'It:r — q*a(R)fa(S)+Zi>j aibinjy_|§11+b1 .. -Y—F:H_br .
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On the other hand, using the obvious identity
a+b) [a . b Lab
2 ) \2 2 ’

a(ReS) =a(R)+a(S)+ Y (abj+ajbi)[T, T+ abi[T,Ti].

i<]

we see that

Hence, taking into accourt (10.2),

—a(R)—a(9 +iZaibinj = —a(Ro§+ Izabi [Ti, il +g€ubj [T, Tj] +gabj [T, Tj]
| = —-a(R®9+RS, | |
and the result follows. O
Note that because df(9.3) and the fact that eVeeyadd(T) is rigid, we have
R R = (dimR, dimR)/2, (10.19)

hence the exponent gfin (10.16) depends only on the dimension vector Riof R.

10.5 Quantum mutations

We now rewrite formulag (818) (8.9) for quantum mutationss.(6w), using the rescaled quan-
tum cluster monomial$g.

Let T be a%,-maximal rigid module, and I€fy be a non-projective indecomposable direct
summand oflT. Let u(T) = (T/Tk) © T, be the mutation of in directionk. By Theoreni 9.4,
we have two short exact sequences

O Tk—T, =TS =0, 0= T =T/ —=Tk—0, (10.20)

with T/, T € add(T /Tk). The quantum exchange relation between the quantum chestiebles
Y1, andYTk* can be written as follows:

Proposition 10.5 With the above notation, we have

Y Y, = d O (g Y 4 Yg).

Proof — We have

YTk*YTk = q_([Tk*7TIj]+[Tk7Tk])/2XTk* XTk

= qf([Tk*,Tk*]Jr[Tk,Tk])/Z <Xa’ —|—Xaﬂ> X-I-k’

where, if we write

T =PT, TW=PT°,

i£k i£k
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the multi-exponents’ anda” are given by
a=(a....a8 1, Laq,....q), @' =(@....a 1,—Lagq,....a).

Using [8.1),[(8:2), and(10.2), one obtains easily that
XX, = gTT=MeT) /ZXTk/> X' Xy, = q([Tl<N~Tk]7[TkaTIyD/szk//‘

Now, using twice[(9.8), we have

T T] = (dimTy, dimTy)/2 (10.21)
= (dimTc+dimT,, dimTx+dimT.;)/2 (10.22)
= [T, T + [T, T¢] + (dim T, dimTy) (10.23)
= [T T + [T, T+ [T Tl + [T, T — 1, (10.24)

and this is also equal ti¥,’,T,”]. Therefore, the exponent gf/? in front of Yy, in the product
Y1 Y5, is equal to

[Tk/7Tk] - [TkﬂTk/] + [TklﬂTk/] - [Tk*aTk*] - [Tk7Tk] = [Tk7Tk*] + [Tk*7Tk] -1- [Tk7Tk/] + [Tk/7Tk]
= 2([Tk*7Tk] - 1)7

where the second equality follows from (110.8) and (1L0.9nikirly, using [10.1D) and(10.11), we
see that the exponent q¥/2 in front of Yy in the productyr: Yy, is equal to ZT,", TyJ, as claimed.
O

10.6 The rescaled quantum cluster algebraszy(%w) and <7 (6w)

By definition, «712(6w) is aZ[q*/?-algebra. It follows from Lemmia10.4 and Proposition 10.5
that if we replace the quantum cluster variab¥gsby their rescaled versiong. we no longer
need half-integral powers @f So we are led to introduce the rescaled quantum clustebralge
g(Gw). This is defined as th&[g1]-subalgebra ofe/g/2(6w) generated by the elements,
whereT; ranges over the indecomposable direct summands of all abkch,,-maximal rigid
modules.

It turns out that in the sequel, in order to have a coefficiamg which is a principal ideal
domain, it will be convenient to slightly extend coefficieritom Z[g*!] to A = Q[g™?]. We will
denote by

%A(%W) =A ®Z[qi1] %(%W)

the corresponding quantum cluster algebra. Of course,abedoquantum tori of7(6w) (resp.
Ay (€w)) will be defined ovefZ[q™] (resp.overA).
10.7 The involutiono

We now define an involution o#7, (4y), which will turn out to be related to the involutiam of
Ug(n) defined ind6.2. For this reason we shall also denote iobyThis involution is a twisted-bar
involution, as defined by Berenstein and ZelevindBZ 2, $6].
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We first define an additive group automorphisnof the A-module A[Yg | R € add(V;)] by
setting

a(f(qYs) = f(@HgRR-dMRy. (fe A, ReaddV)). (10.25)
Clearly, o is an involution.

Lemma 10.6 o is a ring anti-automorphism.

Proof — We have

o(YrYs) = q RI0(Yres)
o RS -dm(ReS)+ReS RSy,

—  q GmR-dimS+RR+[SS+SRy, o
_ qfdimedimSwL[R.RH[SﬂYSYR
= 0(Ys)o(YRr).
O
The involutiono extends to an anti-automorphism of the based quantum torus
Ki=ANT1<i<r] (10.26)

which we still denote by. Moreover, we have

Lemma 10.7 For every indecomposable reachable rigid module U we have

O-(YU) _ q[U7U]_dimUYU )

Proof — By induction on the length of the mutation sequence, we mawrae that the result
holds for all indecomposable direct summaiiglef a ¢;,-maximal rigid moduleT . We then have
to check that it also holds f&y = T, = p(Tk). By Propositioi 10]5, we have

q[TkJ—k]_dirnTkYT‘< O-(YTk*) = q_[Tk*ka] <q[Tk/7Tk/]_d|mTk/+1YTk/ _|_q[TkN,Tk//]—d|mTk//YTkN) '
Using that dinTl, = dimT," = dim T+ dimT,", and [10.24), this becomes
Y0¥, ) = g Rl Tt (v, gy ) = g R-amToyg v

where the last equality comes again from Proposition] 1thBesjuantum mutations are involutive.
It follows thato(Yr:) = o« &I=dmTcyr. as claimed, and this proves the lemma. O

By Lemmal10.V,o restricts to an automorphism a#,(%,,), that we again denote bg.
Moreover, for any quantum cluster monomial, that is for gx@ementy; whereU is a reachable,
non necessarily indecomposable, rigid modul&jy there holds

G(YU) _ q[U,U]fdimU Y, = q(mu, dimU)/2—dimu Yy = qN(di_mU)YU7 (10.27)

where, for € Q,, N(B) is defined in[(6.6).
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11 Based quantum tori
In this section, we fix again a reduced ware- (i, ...,i1) for w, and we set

Ak:sl"’sk(mk)7 (k<r). (11.1)

11.1 Commutation relations

The next lemma is a particular case 82, Theorem 10.1]. We include a brief proof for the
convenience of the reader.

Lemma11.1 For 1<k < <r, we have in /(g):

(@@= (AeA) A

Aka\kAmp)\l = m|7A| Alﬂw}\k'

Proof — Sincek < |, we haveA| =s, ---s,(v), wherev =s, . ---s, (@,). Forx e Ug(n) and
y € Ug(n_), we have

X D @, = €X)Ag, @, , Ag, vy =€(Y)Ag, v
Therefore, using agaifBZ2, Lemma 10.2] as in the proof of LemrhaRB.6, we obtain that

q(ﬂkﬁh )_(mk7V)Am| ,VAmk,mk .

AmkmkAm|,v =
Now, usingl — k times Lemm&_3]4, we deduce from this equality that

= q(mkm| )= (@VIA

Amk,slwsk(mk) Awn 1SS (V) ), Sip Sy (V) Amk,sl---sk(mk)v

and taking into account théto, , v) = (s, --- S, (@, ), S; - S, (V) = (A, A1), we get the claimed
equality. O

Lemma 11.2 For 1<k <| <r, we have in /(n):

(@ —Ak @ +A1) D

Dka\kDmp)\l :q m|7)\| Dka\k'

Proof — This follows from Lemma 1111 using the same type of calcofatias in the proof of
Lemmd5.2. We leave the easy verification to the reader. 0

Lemmall.3For1<k<I <r, we have:

(@, — Ak, @+ A1) = M, Vil — M Vil

Proof — We have
(@, — Ak, @, +A) = (dimVik, 2@, —dimV ).

Since[Vik, Vi ]! = 0, using [@:B) we have

(dimVik, dimVi) = [Vik, Vi1 + M., Vikl-
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Hence,
(mk _)\ka W| +)\|) = z(di_m\/i,k7 ml) - [\/i,kv\/iJ] - [\/I| 7\/i.k]7
and we are reduced to show that
(dimVi i, @, ) = [Vik,Viil, (k<l). (11.2)

By Propositiori 1013, the right-hand side is equal to

> (Bams Bs) + &
m<0 s_<k(_m)
Is=1|

Since the left-hand side is equal¥@,o(Bm , @, ), it is enough to show that for every > 0,

(Bk(m) 9 M|) - z (Bk(m)7 BS) + dkil . (113)
Is=1|
Lett := max{s< k™ | is=i|}. Eq. [ITI.3) can be rewritten
(Bk(m)a At) - dkil . (114)
But the left-hand side of (11].4) is equal to
(31"'Sk<m)7l(aik)> Sy oS (@) = (s, '“Sk(m)fl(aik% Sy "'Sk<m)71(m|)) = (ai,, @) = i,

so [11.4) holds, and this provés (11.2). O

11.2 Anisomorphism of based quantum tori
By Propositior 7.6, the quantum flag minddg; », = D(0,k) belong toFy(n(w)). Let 7 be the
A-subalgebra ofg(n(w)) generated by thB ., (1<k<r).

k7

Lemma 11.4 The algebra?; is a based quantum torus ovér

Proof — By LemmaI1.R, the generatoli‘c‘mk.,\k pairwiseg-commute. So we only have to show
that the monomials

.
D%:= nDamkk’)\kv (a:(al>"'7af)€Nr)7
k
are linearly independent ovér. Suppose that we have a non-trivial relation

Z Ya(q)D? =0,

for somey,(q) € A. Dividing this equation (if necessary) by the largest poakg— 1 which
divides all the coefficienty,(q), we may assume that at least one of these coefficients is not
divisible byq— 1. Usind 6.8, we see that by specializing this identitg at 1 we get a non-trivial
C-linear relation between monomials in the correspondirgsital flag minors of [N]. But all
these monomials belong to the dual semicanonical basigNf (see [GLS6, Corollary 13.3]),
hence they are linearly independent, a contradiction. O

We note that Lemmla_11.4 also follows froidi] Theorem 6.20].
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Proposition 11.5 The assignment/y, — D%Ak (1 <k <r) extends to an algebra isomorphism
from ¥ to the based quantum torug.

Proof — By definition of the cluster algebra, (%), the elementéi.’vjfk1 generate a based quantum
torus overA, with g-commutation relations ’

Yo, Y, = q[Vi,k,Vi,l]*[Vu .Vi’k]YVuYVi,ka (1<k<l<r).

The proposition then follows immediately from Lemma11.2 aiemmd 11.B. O

12 Cluster structures on quantum coordinate rings

12.1 Cluster structures on quantum coordinate rings of uniptent subgroups

Consider the following diagram of homomorphismsAchlgebras:
Dy (Cu) — K — T — Fg(n(w)). (12.1)

Here, the first arrow denotes the natural embedding givehdydgquantum) Laurent phenomenon
[BZ2], the second arrow is the isomorphism of Proposition|11n8, the third arrow is the natu-
ral embedding. The compositian: <7y (6w) — Fy(n(w)) of these maps is therefore injective.
Recall the notatiom (n(w)) of §7.86.

Proposition 12.1 The imagex (.7, (6w)) contains A (n(w)).

Proof — Sincek is an algebra map, it is enough to show that its image conthamslual PBW-
generatorE*(By) (L <k<r).

It was shown in|[GLS6, §13.1] that there is an explicit sequence of mutationggimaximal
rigid modules starting frori; and ending ;. Each step of this sequence consists of the mutation
of a moduleM[d~,b] into a moduleM[d,b*], for some 1< b < d <r with iy =ig =i. The
corresponding pair of short exact sequences is

0— M[d™,b] = M[d~,b*]&M[d,b] — M[d,b*] — 0,
0— M[d,b*] — E@M[d(j).(b™(j))"]"* — M[d~,b] — 0.
jAi
Write
Tog :=M[d",b" ] M[d, b

and
Toa := E@MId™(j), (b~ (j) 717
j#i
Then, by Proposition 10.5, iw7, (4,) we have the corresponding mutation relation:

Vi Y- o) = QM0 L MIal (q_lYTk;d +YT&1) : (12.2)
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Moreover,
(Th) (T (Y2
—a —a -
Yo, = 0 i o Y, Y =d u YMid- (5,0 (1)) ]
|1

wherea (T}4) = [M[d~,b*], M[d, b]], and
a(Tpa) :gkaijaik[M [d™(j), (b (3)"],M[d™ (K), (b~ (k)" ]]

£ 3 (75 56 ()M 0

Note that for 1< k <| <r, andix = i; = j, one has
dimM[lL, K = p(k™, j) — p(l, ). (12.3)
Therefore, using Propositign 9.7 and the notation of Pritipod5.3, we see that
[M[d,b"], M[d™, b]] = (dimVg, dimM[d", b]) — (dimM[d", b]);
= (@ — pu(d, ), p(b™,1) — p(d™,1)) — (@, p(b™, 1) — p(d™,0))

= —(u(d,i), p(b,i) — p(d,i))
— A

Similarly we obtain that
a(Tgg) = —B, a(Tgg) = —C.

Therefore[(IZ.2) can be rewritten as
N
o Yiab Y- = O Y- o Y + o EIYAZ A (b)) (12.4)
J#I

We observe that this has exactly the same fornh_as|(5.14). fyitim of k one has
K(Wiy) = K(Mikkmin)) = D(0,K).

Hence all the initial variables of the systems of equatifi®s4) and[(5.14) are matched under the
algebra homomorphism. Therefore, by induction, it follows that(Yyq,+)) = D(b,d) for every
b < d. In particular,k Yy ) = D(k™, k) = E*(Bk), by Proposition 74. O

Proposition 12.2 The algebra«, (¢ ) is a Q,-graded freeA-module, with homogeneous com-
ponents of finite rank. Moreover,

k(s (G)a) = K (As(n(W))a),  (a € Qu).
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Proof — The A-module” is free, hence its submodul€), (%) is projective, and therefore free
sinceA is a principal ideal domain. It has a natu€l -grading given by

degvr :=dimR

for every indecomposable reachable rigid modBlen 4,,. The rank of<7, (6y)q is equal to
the dimension of theC-vector spaceC ®a 27y (6w)q, Which is equal to the dimension of the
corresponding homogeneous component of the (classiasdjecl algebraC 7 <7 (4,). Now,
by [GLSE], this is equal to the dimension &N (w)]4, that is, by§7.8, to the rank oA, (n(w))g.

O

Let o) (bw) := Q(q) ®a #4 (%w). The A-algebra homomorphism naturally extends to a
Q(0)-algebra homomorphism fromgy g (6w) to Fg(n(w)), which we continue to denote by.
We can now prove our main result:

Theorem 12.3 k is an isomorphism from the quantum cluster algebfg (4w) to the quantum
coordinate ring A(n(w)).

Proof — By constructionk is injective. By Proposition 1211, the image rofcontainsAqg(n(w)).
Finally, sincek preserves th@, -gradings, and since the homogeneous componemtg gf(¢w)
andAq(n(w)) have the same dimensions, by Proposition]12.2, we see that

K (e (Gw)) = Ag(n(W)).

The following Corollary proves the claim made at the end 8.

Corollary 12.4 All quantum minors [b,d) (1 < b < d <r) belong to 4(n(w)), and therefore
are polynomials in the dual PBW generator$(Bx) = D(k™,k) = Yu,.

Proof — As shown in the proof of Propositidn 12.D,(b,d) = k(Yy+]), and so belongs to
K (g (q)(Bw)) = Aq(n(w)), by Theorenf 1213. O

The following Corollary is aj-analogue of GLS6, Theorem 3.2 (i) (ii)].
Corollary 12.5  (a) “y(q)(%w) is an iterated skew polynomial ring.

(b) The sefYu(a) ==Yyt ---Yit |a= (as,...,a) € N'} is aQ(q)-linear basis ofe/yq) (Guw)-

Proof — This follows via the isomorphisrr from known properties of\g(n(w)). O

Corollary 12.6 Letg be a simple Lie algebra of type,,, E,, and letn be a maximal nilpotent
subalgebra ofy. LetA be the corresponding preprojective algebra of typeD), En. Then

(@) The quantum cluster algebragq (modA) is isomorphic to the quantum enveloping alge-
bra Ug(n).
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(b) In this isomorphism, the Chevalley generatqr§le< i < n) are identified with the quantum
cluster variables ¥ attached to the simpl&-modules S

Proof — (a) Takew to be the longest elemewn of the Weyl group. Hence(wp) = n, so

Aq(n(Wo)) = Aq(n) = Ug(n),

by Propositio4]1. On the other hafi&l, = mod(A), and this proves (a). Property (b) is then
obvious. O

We believe that Theorem 12.3 can be strengthened as follows.

Conjecture 12.7 The mapk restricts to an isomorphism from the integral fou#, (6,,) of the
quantum cluster algebra to the integral form ¢(w)) of the quantum coordinate ring.
12.2 Example

We illustrate our arguments on a simple example. We taEtype Az andw = wp. We choose
the reduced word= (ig, is,is,i3,i2,i1) = (1,2,3,1,2,1). Therefore

Bi=01, Bo=ai1+0az, Bz=02 Ba=01+02+03, Ps=02+03 [s=03.

Using the convention olGLS8, §2.4] for visualizing/A-modules, we can represent the summands
of V; as follows:

Vi=1 nglz V?,:l2

1 2 3
Vi="2 Vs=1_3 Vo= 2
4 3 ° 2 6 1

and the summands ®; as follows:
Mp=1 Mp=1, Mz =2
Mo="2_ Ms =2, M = 3
The sequence of mutations @ILS6, §13] consists here in 4 mutations.

Mutation 1: One mutates at; in the maximal rigid modul®/;. One has
pr(V1) = p(M[37,1)) = M[3,17] = M[3,3] = Ma.
This gives rise to the two short exact sequences (which caedskfrom the graph;):
0—-Vi—>Vz3—M3z—0, 0—Mz—V, —>V; —0.
By Propositiof 105, we thus have
Yus Y, = gMeVal (0%, +Y,) = a4 Y, + Yo,
since[Ms,V;] = 0. Using the notatiodM|l, k], this can be rewritten

Y Yviy =9 Yue + Yvpza- (12.5)
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Mutation 2: One mutates af3 in the maximal rigid modulg; (V;). One has
Ha(Va) = ps(M[67,1)) = M[6,17] = M[6,3] = , 3.
This gives rise to the two short exact sequences (which caeaskfrom the graplu ([i)):
0—Vs;— M3®dVe— M[6,3] — 0, 0—M[6,3] V5 —V3— 0.
By Propositiof 105, we thus have

MI6,3].vs] (q_lYMg@Ve +YV5) = q_lYMsYVG +YV57

Ymie.3 Yz = q
since[M|6, 3],Vs] = 0, and[Ms, Vs] = 0. Using the notatioM|l, k], this can be rewritten
Yuiea Ymiz = Yuza Yve + Yvs2- (12.6)
Mutation 3: One mutates at; in the maximal rigid modulgs (V). One has
Ho(V2) = p2(M[57,2]) = M[5,2"] = M[5,5] = Ms.
This gives rise to the two short exact sequences (which caeaskfrom the graplus s (T7)):
00—V, —Vs— Ms—0, 0— Ms— M3pVy—Vo— 0.
By Propositio 105, we thus have
YW, = ™MV (07 + Yingevs) = Y + QY Yo,
since[Ms, V] = 1, and[Ms, V4] = 0. Using the notatioM|l, k], this can be rewritten

Yms.5 YM2,2) = Ym[5.2 + AYMm[3.3 Va4 - (12.7)

Mutation 4: One mutates al; in the maximal rigid modulgn usps (Vi). One has
H1(M3) = p1(M[67,3]) = M[6,37] = M[6,6] = Me.
This gives rise to the two short exact sequences (which caeauskfrom the graply s (T)):
0— M3z — M[6,3] - Mg — 0, 0— Mg — M5 — M3z — 0.
By Propositiof 105, we thus have
Yivs Yt = Ao M) (e 3 + Y ) = 0 Muje 3 + Y,
since[Mg, M3] = 0. Using the notatioM|l, k], this can be rewritten

Yumeo Yvizg =d Yues + Ymss- (12.8)
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Now, in Ay(n) we have the following quanturfi-system given by Propositidn 5.5:

D(1,3)D(0,1) = q !D(0,3) +D(0,2), (12.9)
D(1,6)D(0,3) = q *D(1,3)D(0,6) +D(0,5), (12.10)
D(2,5)D(0,2) = D(0,5) +qD(1,3)D(0,4), (12.11)
D(3,6)D(1,3) = g *D(1,6) + D(2,5). (12.12)

By definition, the homomorphisik: </ q (ModA) — Fy(n) satisfies
K(Ympy) =D(0,1), Kk(Ywzy) =D(0,3), K(Ymey) =D(0,6),
K(Ympz2) =D(0,2), K(Yuis2) =D(0,5), K(Ymasg)=D(0,4).

Thus, comparingl(125) and (1P.9) we see théYy33) = D(1,3). Next, comparing[(12]16)
and [12.1ID) we see that(Yye3) = D(1,6). Next, comparing[(12]7) and (12]11) we see that
K (Ymiss) = D(2,5). Finally, comparing[(1218) an@ (12]12) we see th@iys¢ ) = D(3,6). Soin
particular, we have

K(Yw) =D(k K =E*(B),  (L<k<6).

This shows thak (.7 (modA)) containsAq(n). Comparing dimensions @, -homogeneous
components, as in Propositibn 12.2, shows i@tz q (ModA)) = Aq(n) = Ug(n).

In this isomorphism, the Chevalley generaterse,, es of Uq(n) correspond to the quantum
cluster variable¥y, , Yvs;, Yms, respectively. The quantum Serre relatmes = ese; corresponds
to the fact that

[M1,Mg] = [Mg,M1] =0,  [My,Mg]! =0.

To recover, for instance, the relatiefe, — (q-+q~1)ejexe; + €62 = 0, we start from the mutation
relations
YM3YM1 = qilYV3 +YV27 YMlYM3 = qilYVZ +YV3-

The first one is our first mutation above, and the second or®imttation back, in the opposite
direction (mutations are involutive). Eliminating, between these two equations, we get

Yir, Yts — 0 Y Y, = (1— 7 2)Ys,.
Since[My, V3]t = 0, [M1,V3] = 1, and[V3,M;] = 0, we have
Y YW = 05 Yy,

which yields
Y, Yt — O Y, Yius Yo, = i, Yis Y, — Y Y,

as expected.
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12.3 Canonical basis of/gq) (6w)

By [Ki}, §4.7], the subalgebrid,(n(w)) is spanned by a subsgt(w) of the dual canonical basi'
of Ug(n). Using the isomorphism : .o/yq) (6w) — Aq(n(w)) = Ug(n(w)), we can pull baclB*(w)
and obtain &(q)-basis ofa/y g (4w), which we shall call theanonical basis ot q) (4w), and
denote byZ(w) = {b(a) | a€ N'}. It may be characterized as follows. Recall the involutoof
) (6w) defined ind10.7. We will also denote by its extension taw/yq) (Gw)-

Proposition 12.8 For a= (ay,...,a ) € N, the vector lfa) is uniquely determined by the follow-
ing conditions:

(a) the expansion of(l) on the basigYu(c) | c € N'} is of the form

b(@) =Yu(@) + Y ac(a)Yu(c)
c#a

whereyac(q) € g 'Q[q '] for everyc # a;
(b) LetB(a) := F1<kr &Pk Theno(b(a)) = NF@)b(a).

Proof — This is a restatement in our setup [§i[ Theorem 4.26]. The same result was previously
obtained in[Lal] in a particular case. O

It follows from (10.27) that all quantum cluster monomiadisfy condition (b) of Proposi-
tion[I2.8. This is similar tdBZ2|, Proposition 10.9 (2)]. Unfortunately, it is not easy toy@ahat
guantum cluster monomials satisfy (a), so one can only canje

Conjecture 12.9 All quantum cluster monomialgYwhere R runs over the set of reachable rigid
modules ir6y, belong toZ(w).

It follows from the original work of Berenstein and Zelevkyg[BZ1] that the conjecture holds
in the prototypical Example_12.2, namely, fpe= sl, the dual canonical basis bfy(n) is equal to
the set of quantum cluster monomials. In this case, theréausters and 12 cluster variables
(including the frozen ones), which all are unipotent quamtainors.

We note that the conjecture is satisfied wiiker M[b, a] is one of the modules occuring in the
quantum determinantal identities. Inde&g, 4 is then a quantum minor, and belongs#iw)
by Propositior 6.13.

It is proved in [Lal, that the conjecture holds for all quantum cluster variabiden
g (q) (6w) is associated with the Kronecker quiver or a Dynkin quivetyple A, andw is the
square of a Coxeter element.

Conjecturd_12]9 would imply the open orbit conjecturel@EE6, §18.3] for reachable rigid
modules, by specializingto 1. It also appears as Conjecture 1.1 (2)Ki][

12.4 Quantum coordinate rings of matrices

Let g be of typeA,. Let | be a fixed integer between 1 andand sek=n+1—j. Letw be the
Weyl group element with reduced decomposition

W= (Sijil.. 'Sl)(SjJrlSj . SQ) e (S’]Snfl‘ S&)
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We denote by = (ij,ijk-1,...,i1) the corresponding word. It is well known (sédC]) that
for this particular choice ofy andw, Uq(n(w)) is isomorphic to the quantum coordinate ring
Aq(Mat(k, j)) of the space ok x j-matrices.

In this case®%,, is the subcategory of m@é\) generated by the indecomposable projechye
with simple top&. For 1<a<kand 1< b < j, the modulel has a unique quotierXy, with
dimension vector diXap = 0+ Oatr1+ -+ Onr1-p. Itis not difficult to check that

M= P X
1<a<k
1<b<j

Then, settingan := Y, € “4(¢w), We have that the elementg, satisfy the defining relations of
Aq(Mat(k, j)), namely

XabXac = OXacXab, (b<c), (12.13)
XacXoc = QXocXac; (a<b), (12.14)
XabXcd = XcdXab, (a<c, b>d), (12.15)
XabXed = XeaXab+ (0 — ) XadXcb, (a<c, b<d). (12.16)

Thus, Theorerh 1213 gives immediately

Corollary 12.10 The quantum coordinate ringifMat(k, j)) is isomorphic to the quantum cluster
algebra.oyq) (Gw)-

Example 12.11 The quantum coordinate rindy(Mat(3,3)) is isomorphic tdJg(n(w)) for g of
type As andw = 3951 4S3S54S3.  The categorys,, has finite representation tyf2,. Taking
i=(3,2,1,4,3,2,5,4,3), the direct indecomposable summand¥,aire

1=3 2 4 3 4 5
3
V4:23 V=12 4 V6:2345
4
3 3 224
V7:12 V8:1234 V9:12345
3
The direct indecomposable summandd/pfare
3
My = M, =3 M3 =
1=3 2 4 3 4 5
3 3 3
M4:2 M5:2 4 Mg = 2 45
3 3 3
7 1 2 8 1 2 4 9 1 2 4 5
In the identification ofAq(Mat(3,3)) with o7y q) (4w), we have
X11 = YMg, X12 = Y\, X13 = Ymy,
X21 = Y X22 = Yms, X23 = Ymy,
X31 = Yms, X32 = Yy, X33 = Y, -
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The quantum cluster algebrayyq) (4w) has finite cluster typ®y. Its ring of coefficients is the
skew polynomial ring in the variableg,, Y, Y, Y, Y. It has 16 non frozen cluster variables,
namely the 9 canonical generatdks, the 4 unipotent quantum minorg attached to the modules:

3 2%, 2%, 2%,
Ti= 2 4 To=13"5 Ta=1°3"5 Ta=13"5
135 2 4 4

and the elementy,, attached to the 2 modules

U= 220 a4 U, = 2”4
17,9953 %5 2—123345

with dimension vectoor; + 2as + 3a3 + 204 + as. These cluster variables form 50 clusters.

12.5 Quantum coordinate rings of open cells in partial flag vaeties

In this section, we assume thats a simple Lie algebra of simply-laced type. We briefly revie
some classical material, using the notationGEES, [GLS6].

Let G be a simple simply connected complex algebraic group withdlgebrag. LetH be
a maximal torus of5, andB, B~ a pair of opposite Borel subgroups containtdgvith unipotent
radicalsN,N~. We denote by;(t) (i € |,t € C) the simple root subgroups df, and byy;(t) the
corresponding simple root subgroupshbf.

We fix a non-empty subsétof | and we denote its complement By= | \ J. Let Bk be the
standard parabolic subgroup @fgenerated by and the one-parameter subgroups

Yk(t), (keK,teC).

We denote byNk the unipotent radical oBx. Similarly, letB, be the parabolic subgroup Gf
generated b~ and the one-parameter subgroups

Xk(1), (keK,teC).
The projective variet, \G is called apartial flag variety The natural projection map
m. G— B \G

restricts to an embedding bk into B, \G as a dense open subset.

Let Wk be the subgroup of the Weyl groMg generated by the reflectiorsg (k € K). This
is a finite Coxeter group and we denote s its longest element. The longest elemenWbfs
denoted bywyp. It is easy to check that

Nk = N (wowfy ), (12.17)

see[GLS6, Lemma 17.1]. It follows tha€[N (wowf )] can be identified with the coordinate ring
of the affine open chawy := m(Nk) of By \G. Therefore Aq(n(wowh )) can be regarded as the
quantum coordinate rindq( k) of Ok, and Theorerh 1213 implies:

Corollary 12.12 The quantum coordinate ringsfk ) is isomorphic to the quantum cluster al-
gebra.ayq) (G )-
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Example 12.13 Take G = SL(6), andJ = {3}. ThenB,\G is the Grassmannian @&;6) of 3-
dimensional subspaces@f, andNk = N(wowk ), wherew = wowf is as in Example12.11. Here,
N(w) can be identified with the open cefl of Gr(3,6) given by the non-vanishing of the first
Pliicker coordinate. The quantum cluster algesfgg) (¢w) of Exampld 12,11 can be regarded as
the quantum coordinate ring of.

Example 12.14 TakeG = SQ(8), of type D4. We label the vertices of the Dynkin diagram from
1 to 4 so that the central node is 3. Lkt {4}. ThenB,\G is a smooth projective quadric
2 of dimension 6, and\Nx can be regarded as an open c@llin 2. HereNx = N(w) where
W= wow’g = 935193 Itis easy to check that the elemelis (1 < k < 6) satisfy

YoV = Y, (<, i4+i#7), (12.18)
Y YMs = YMs Yy » (12.19)
Yt Y, = Yo, Yivs + (01— 0 ) Yt Yiw, (12.20)
Yt Yy = Yo, Yits + (01— ) (Yia, Yt — 0 Yo Vi, ), (12.21)

and that this is a presentation of the quantum coordinageAlyi<’). This shows that\(¢)
is isomorphic to the quantum coordinate ring of the space wfd4skew-symmetric matrices,
introduced by StricklandSt]. The categorys,, has finite representation typ& x A;. Hence,
there are 4 cluster variablé,, Yum,, Yms, Yvms, together with 4 frozen ones, name¥y, = Yy,
YV4 = Y|\/|4, and

Yos = Yo, Yits — O Y Yy Yo = Yt Yot — 0 Yia, Yivs + 0 Yt Yiw, -
Observe tha¥, coincides with the quantum Pfaffian @&1. There are 4 clusters

{YM17 YMz}J {YM17 YMs}J {YM67 Y|V|2}7 {YM67 YMs}'

Note that since all quantum cluster variables belong to &sstyYy (c) | c € N'}, Conjectur¢ 12]9
is easily verified in this case.
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