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THE TERNARY COMMUTATOR OBSTRUCTION

FOR INTERNAL CROSSED MODULES

MANFRED HARTL AND TIM VAN DER LINDEN

Abstract. In finitely cocomplete homological categories, co-smash products
give rise to (possibly higher-order) commutators of subobjects. We use binary
and ternary co-smash products and the associated commutators to give char-
acterisations of internal crossed modules and internal categories, respectively.
The ternary terms are redundant if the category has the Smith is Huq prop-
erty, which means that two equivalence relations on a given object commute
precisely when their normalisations do. In fact, we show that the difference
between the Smith commutator of such relations and the Huq commutator of
their normalisations is measured by a ternary commutator, so that the Smith
is Huq property itself can be characterised by the relation between the latter
two commutators. This allows to show that the category of loops does not
have the Smith is Huq property, which also implies that ternary commutators
are generally not decomposable into nested binary ones.

Thus, in contexts where Smith is Huq need not hold, we obtain a new
description of internal categories, Beck modules and double central extensions,
as well as a decomposition formula for the Smith commutator. The ternary
commutator now also appears in the Hopf formula for the third homology with
coefficients in the abelianisation functor.

Introduction

Internal crossed modules in a semi-abelian category [38] were introduced by
Janelidze in the article [36]. His starting point is the desired correspondence be-
tween crossed modules and internal categories, which determines the basic proper-
ties that crossed modules should satisfy. His definition is based on the concept of
internal action which he introduced with Bourn in [17] and which is further worked
out in the article [9].

He explains that the extension of the case of groups to semi-abelian catego-
ries is not entirely without difficulties. The most straightforward description of
the concept of crossed module merely gives so-called star-multiplicative graphs—in
which the composition of morphisms is only defined locally around the origin—and
not the internal groupoids one would expect, in which every composable pair of
morphisms can actually be composed. This defect can be mended, as it is indeed
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2 MANFRED HARTL AND TIM VAN DER LINDEN

done in [36]. Unfortunately, the resulting characterisation of internal crossed mod-
ules becomes slightly more complicated than expected after considering the groups
case.

This gave rise to the question, whether every star-multiplicative graph can be
equipped with a unique internal groupoid structure. It turns out [53] that the
gap between the two is precisely as big as the gap between the Huq commutator
of normal subobjects and the Smith commutator of internal equivalence relations.
That is to say, in a semi-abelian category they are equivalent if and only if the
Smith is Huq condition holds. This explains why the difference between the two
concepts is invisible in the category of groups, in fact in any of the concrete algebraic
categories where internal crossed modules were ever studied: all of those are strongly
protomodular (and action accessible), which as we know implies the Smith is Huq
condition.

Introducing ternary commutators gives a different view on the situation, more
natural in a sense: just as internal groupoids can be described as internal reflexive
graphs with a certain binary (Smith) commutator being trivial, now we can say
that internal groupoids may also be described as internal star-multiplicative graphs
for which a certain ternary (Higgins) commutator is zero. Equivalently, a certain
coherence condition involving ternary co-smash products holds for the associated
internal precrossed module (satisfying the Peiffer condition). A byproduct of this
analysis is that the context is enlarged to a non-exact setting (being careful with
the notion of star-multiplicativity), as we may mostly work in finitely cocomplete
homological categories instead of semi-abelian ones.

Internal actions. It is well known that every split epimorphism of groups is a
semi-direct product projection. This fact gives rise to an equivalence between the
category PtBpGpq of split epimorphisms of groups (with chosen splitting) with
codomain B and the category of B-groups. Similarly [17, 9], in a semi-abelian
category A, internal actions correspond to split epimorphisms. Furthermore, since
the kernel functor PtBpAq Ñ A is monadic for every object B in A, the internal
actions are defined as the algebras over the corresponding monad.

The right adjoint A Ñ PtBpAq sends an object X of A to the epimorphism@
1B
0

D
: B `X Ñ B split by ιB : B Ñ B `X. As a consequence, the induced monad

pB5p´q, µB , ηBq on A is defined, as a functor, by

B5X “ Ker
`@

1B
0

D
: B `X Ñ B

˘
.

Hence a B-action on X is a morphism ξ : B5X Ñ X satisfying the algebra axioms,
and any such ξ corresponds to a split epimorphism X ˙ξ B Õ B.

In contrast to the presentation in [17, 9] we are interested in replacing B5X with
the object B bX which can be defined via the split short exact sequence

0 ,2 B bX

ψ �(

✤ ,2 ,2 B5X

ξ

��

✤ ,2 X

1Xx�

lr
ηBX

lr ,2 0

X

(A)

(of solid arrows). The dotted arrow ξ in this diagram represents an action in the
sense of [17, 9], while the dotted arrow ψ is the morphism we are interested in
replacing ξ with. Assuming that diagram (A) commutes, observing that ξ and 1X
are jointly epic, we can say that ξ and ψ determine each other. We think of ψ as a
“fragment” of ξ which, however, determines it [31].

Our strategy is to characterise internal crossed modules through such fragments
of actions B bX Ñ X instead of the morphisms B5X Ñ X which determine them.
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Thus we shall actually be considering the algebras of the endofunctor Bbp´q rather
than those of the monad pB5p´q, µB , ηBq.

The disadvantage of this approach is that we have to keep track of whichB b p´q-
algebras, that is, which morphisms B bX Ñ X, do determine an action—especially
since we shall be working in a non-exact context where, as explained in [51], only
certain pB5p´q, µB , ηBq-algebras will correspond to split epimorphisms. The ad-
vantage is that the object BbX turns out to be a co-smash product, and these can
be used to define (higher-order) commutators:

Commutators via co-smash products. Here the basic idea—which was dis-
covered independently in [31] and [48]—is that the co-smash product or tensor
product [21]

K b L “ Ker
`@

1K 0
0 1L

D
: K ` L Ñ K ˆ L

˘

of objects K, L in a finitely cocomplete homological category behaves as a kind of
“formal commutator” of K and L. If now k : K Ñ X and l : L Ñ X are subobjects
of an object X , then their (Higgins) commutator rK,Ls ď X is the image of
the induced morphism

K b L
✤ ,2ιK,L ,2 K ` L

A
k
l

E

,2 X.

Using higher co-smash products it is easy to extend this definition to higher-order
commutators: for instance, given a third subobject m : M Ñ X of X , the ternary
commutator rK,L,M s ď X is the image of the composite

K b LbM
✤ ,2ιK,L,M ,2 K ` L`M

B
k
l
m

F

,2 X,

where ιK,L,M is the kernel of

K ` L`M

C
ιK ιK 0
ιL 0 ιL
0 ιM ιM

G

,2 pK ` Lq ˆ pK `Mq ˆ pL `Mq.

The basic properties of the (binary) Higgins commutator are explored in the arti-
cles [31] and [48]. In the former it is also explained how this commutator is related
to internal actions. We shall recall some of this in sections 2 and 3.

The ternary commutator obstruction. One of the main results of the present
paper is that the Smith is Huq condition for finitely cocomplete homological cate-
gories may be expressed in terms of co-smash products as the vanishing of a ternary
commutator.

Indeed, we prove that for equivalence relations R and S on X with normalisa-
tions K, L Ÿ X , respectively, the relations R and S centralise each other in the
sense of Smith [62] if and only if the commutators rK,Ls and rK,L,Xs are trivial.
Since rK,Ls “ 0 precisely when K and L commute in the sense of Huq [34], the
object rK,L,Xs is the ternary commutator obstruction for the Smith is Huq
condition, that is, rK,L,Xs ď rK,LsHuq precisely when the Huq commutator is
the normalisation of the Smith commutator.

The fact that in the category of groups and in other familiar algebraic catego-
ries the Smith is Huq condition holds, agrees with the fact that here all ternary
commutators are expressible in terms of binary ones. In general, though, ternary
commutators cannot be written in terms of repeated binary commutators.

This new viewpoint on the Smith is Huq condition gives new examples of cat-
egories which satisfy it. A nilpotent category of class 2 is a semi-abelian category
whose identity functor is quadratic, which means that it has a trivial ternary co-
smash product [30]. Hence, almost by definition, any such category satisfies Smith
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is Huq. In particular, the Smith is Huq condition holds for modules over a square
ring, and specifically for algebras over a nilpotent operad of class two [3].

On the other hand, the category of loops (quasigroups with an identity) does not
satisfy Smith is Huq: we give an example of a loop X with an abelian subloop A

and elements a P A, x P X such that the associator element va, a, xw is non-trivial.
(In fact, one of the first examples of a non-associative structure ever considered will
do, see Example 4.9. Freese and McKenzie give another example of this situation
in their book [29].) This proves that the ternary commutator rA,A,Xs, which
contains all such associator elements, need not vanish even when the binary com-
mutator rA,As does. As a consequence, Loop is not action accessible or strongly
protomodular—though it is well known to be semi-abelian [8].

Characterisation of internal crossed modules. We shall consider quadruples
pG,A, µ, Bq in which G and A are objects, µ : A bG Ñ A determines an action of G
on A, and B : A Ñ G is a morphism. We prove that such a quadruple is a crossed
module if and only if the following three diagrams commute.

AbG
µ ,2

Bb1G

��

A

B

��
G bG

cG,G
,2 G

AbA
cA,A ,2

1AbB

��

A

A bG
µ

,2 A

AbA bG
µ2,1 ,2

1AbBb1G

��

A

A bG bG
µ1,2

,2 A

The first diagram expresses the precrossed module condition which says that the
morphism B is G-equivariant with respect to µ and the conjugation action cG,G of G
on itself [40]. Quadruples which satisfy this first condition correspond to internal
reflexive graphs. Commutativity of the middle diagram is the so-called Peiffer con-
dition: the conjugation action cA,A of A on itself coincides with the pullback B˚pµq
of µ along B. Quadruples which satisfy the first two conditions correspond to Peiffer
graphs in the sense of [47], which admit some kind of composition locally around
the origin, and which are equivalent to having a star-multiplicative graph structure
([36, 47], see also [53]). The diagram on the right commutes when the local com-
position of the star-multiplication extends to a globally defined internal groupoid
structure.

Internal categories in a homological category. Our analysis of internal crossed
modules depends on a new characterisation of internal categories in terms of com-
mutators, valid in any finitely cocomplete homological category. Let us just mention
here that an internal reflexive graph

R
d ,2

c
,2 Gelr d˝e “ c˝e “ 1G

will be an internal category when either of the following equivalent conditions holds
(Theorem 5.2):

¨ rKerpdq,Kerpcqs “ 0 “ rKerpdq,Kerpcq, Rs;
¨ rKerpdq,Kerpcqs “ 0 “ rKerpdq,Kerpcq, Impeqs;
¨ the morphism cA,R : AbR Ñ A induced by the conjugation action of R

on A “ Kerpdq factors through 1A b c : A bR Ñ A bG;
¨ cA,R “ pe˝cq˚pcA,Rq.

Beck modules. As a special case we find a new characterisation of the concept
of Beck module—which, via [17, 18], is the same things as an abelian action—
in terms of tensor products: a G-action on an abelian object A determined by a
morphism ψ : A bG Ñ A is a G-module structure on A if and only if a certain
induced morphism ψ2,1 : A bAbG Ñ A is trivial.
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An application in homology. We give a concrete application of these results
in semi-abelian homology. First we characterise double central extensions [27, 35,
37, 60] in terms of binary and ternary commutators, and then we apply the main
result of [27] obtain a Hopf formula for the third homology of an object Z with
coefficients in the abelianisation functor:

H3pZ, abq –
K ^ L^ rX,Xs

rK,L,Xs _ rK,Ls _ rK ^ L,Xs

whereK, LŸX are the kernels induced by a double presentation of Z. This formula
is valid in any semi-abelian category with enough projectives, whether the Smith is
Huq condition holds or not.

Structure of the text. In Section 1 we sketch the categorical context in which
we shall be working. Section 2 is devoted to co-smash products and (higher-order)
commutators. Section 3 discusses semi-direct products. In Section 4 we give a
characterisation of the Smith is Huq condition in terms of ternary commutators—
Theorem 4.6, the key result of the paper—and a formula for the Smith commutator
of equivalence relations in terms of a binary and a ternary commutator of normal
subobjects (Theorem 4.16). We also find a characterisation of double central ex-
tensions (Proposition 4.18) which yields an explicit version of the Hopf formula for
the third homology of an object (Theorem 4.19). This leads to Section 5 where
we give new characterisations of internal categories and internal crossed modules
(Theorem 5.2, Theorem 5.6). In Section 6 we characterise Beck modules in similar
terms (Theorems 6.2, 6.7).

1. The categorical context

1.1. Pointed categories. A pointed category is a category with a zero object,
that is, an object which is at the same time initial and terminal.

1.2. Regular and exact categories. Recall that a regular epimorphism is the
coequaliser of some parallel pair of morphisms. A regular category is a finitely
complete category having a pullback-stable (regular epi, mono)-factorisation sys-
tem. Given a morphism f : X Ñ Y , we write impfq : Impfq Ñ Y for the mono-part
in this image factorisation of f . If M ď X is a subobject of X then we write
fpMq for the direct image ofM along f : it is the image of f˝m, wherem : M Ñ X

is a monomorphism that represents the subobject.
Regular categories provide a natural context for working with relations. We

denote the kernel relation (= kernel pair) of a morphism f : X Ñ Y (that is, the
pullback of f along itself) by pX ˆY X, f1, f2q. A regular category is said to be
Barr exact when every equivalence relation is effective, which means that it is
the kernel pair of some morphism [1].

1.3. Homological and semi-abelian categories. A pointed category with pull-
backs is called protomodular [10] if and only if the Split Short Five Lemma holds.
If, moreover, the pointed category is regular, then protomodularity is equivalent to
the (Regular) Short Five Lemma. This means that, given a commutative diagram

0 ,2 A1 ✤ ,2 ,2

a

��

X 1 p1

,2,2

x

��

G1

g

��
0 ,2 A ✤ ,2 ,2 X

p
,2,2 G

with regular epimorphisms p, p1 and their kernels, if a and g are isomorphisms
then also x is an isomorphism. We usually denote the kernel of a morphism f
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by pKerpfq, kerpfqq, and say that a morphism is proper when its image is a normal
monomorphism (= a kernel). IfM ď X is a normal subobject then we writeM ŸX .

A homological category [7] is a category which is pointed, regular and proto-
modular. This is a context where many of the basic diagram lemmas of homological
algebra hold. In particular, here the notion of (short) exact sequence has its
full meaning: it is a regular (hence, in this context, normal) epimorphism with its
kernel such as

0 ,2 A ✤ ,2 a ,2 X
p ✤ ,2 G ,2 0.

This short exact sequence is called split when there exists a section (or splitting)
s : G Ñ X of p, that is, a morphism s such that p˝s “ 1G.

Note that a split epimorphism p : X Ñ G may have many splittings. When just
one splitting s is chosen, the pair pp, sq is called a point (over G). The category
of points PtpAq is defined by taking points in A (considered as diagrams p˝s “ 1G)
as objects and natural transformations between points as morphisms. The points
over a given object G form the full subcategory PtGpAq “ p1G Ó pA Ó Gqq of PtpAq.

In a finitely cocomplete homological category, any comparison morphism
@
1X 0
0 1Y

D
: X ` Y Ñ X ˆ Y

is a regular epimorphism.
A Mal’tsev category [22] is by definition a finitely complete category in which

every reflexive relation is necessarily an equivalence relation. It is well known that
any finitely complete protomodular category satisfies this property [11]. Further-
more, the Mal’tsev property is preserved by slicing. This is a context in which
many of the basic constructions in commutator theory make sense. In a Mal’tsev
category, internal categories are automatically internal groupoids.

A semi-abelian category is a homological category which is exact and has binary
sums [38]. In a semi-abelian category, the direct image of a kernel along a regular
epimorphism is still a kernel. In this context, the existence of binary sums entails
finite cocompleteness.

We shall always work in a finitely cocomplete homological category [7] A unless
explicitly mentioned otherwise. Some proofs need a semi-abelian [38] environment;
we always explain where and why.

2. Co-smash products and commutators

We explain how co-smash products [21] in a finitely cocomplete homological cat-
egory give rise to (higher-order) commutators. We start with some basic definitions
and properties, we give some examples and recall how the binary commutator is a
categorical version of the Higgins commutator [31, 33, 48].

2.1. Notations for sums and products. In a pointed category with finite sums,
we denote the coproduct inclusion Xk Ñ X1 ` ¨ ¨ ¨ `Xn by ιXk or by ιk, and its
canonical retraction X1 ` ¨ ¨ ¨ `Xn Ñ Xk by ρXk or ρk.

Dually, when working in a pointed category with finite products, we denote the
product projection X1 ˆ ¨ ¨ ¨ ˆXn Ñ Xk by πXk or πk and its canonical section

x0, . . . , 1Xk , . . . , 0y : Xk Ñ X1 ˆ ¨ ¨ ¨ ˆXn

by σXk or σk.

Definition 2.2. [21] In a finitely complete and cocomplete pointed category A, we
call co-smash product or tensor product

Ân
k“1Xk “ X1 b ¨ ¨ ¨ bXn of objects
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X1, . . . , Xn, n ě 2 the kernel

nâ
k“1

Xk
✤ ,2 ,2

nž

k“1

Xk
r ,2

nź

k“1

ž

j‰k

Xj

where r is the comparison morphism determined by

πš
j‰mXj

˝r˝ιXl “

#
ιXl if l ‰ m

0 if l “ m

for l, m P t1, . . . , nu. The kernel morphism is usually denoted ιX1,...,Xn .

We shall only consider co-smash products in situations where A is at least finitely
cocomplete homological.

Example 2.3. Let us make explicit what happens in the lowest-dimensional cases,
which are essential in the present article. If n “ 2 then we obtain a short exact
sequence

0 ,2 X b Y
✤ ,2 ιX,Y ,2 X ` Y

A
1X 0
0 1Y

E
✤ ,2 X ˆ Y ,2 0

for any X , Y in A. Note that the object X bY is denoted X ˛Y in the article [48].
If n “ 3 and X , Y , Z are objects of A, then we consider the morphism

X ` Y ` Z

C
ιX ιX 0
ιY 0 ιY
0 ιZ ιZ

G

,2 pX ` Y q ˆ pX ` Zq ˆ pY ` Zq,

which need no longer be a regular epimorphism; the co-smash product X b Y b Z

is its kernel.

Example 2.4. In the case of groups we have

X b Y “ xrx, ys | x P X, y P Y y

where rx, ys “ xyx´1y´1. So X b Y is a kind of “formal commutator” of X and Y
as explained in [48] and [31]. This fact gives rise to the definition of commutators
in terms of co-smash products.

Given groups X , Y and Z with chosen elements x, y and z, respectively, the
ternary commutator word

xyx´1y´1zyxy´1x´1z´1 “ rrx, ys, zs

is an example of an element of X b Y b Z.

Example 2.5. [21] Let K be a commutative ring with unit and consider the cat-
egory CAlgK of non-unitary commutative K-algebras. Here the co-smash product
X b Y is the tensor product X bK Y over K.

Example 2.6. In a pointed variety of algebras V , an element of a sum X ` Y `Z

is of the shape
tpx1, . . . , xk, y1, . . . , yl, z1, . . . , zmq

where t is a term of arity k ` l ` m in the theory of V and x1, . . . , xk P X , y1,
. . . , yl P Y and z1, . . . , zm P Z. This element belongs to the co-smash product
X b Y b Z if and only if

$
’&
’%

tpx1, . . . , xk, y1, . . . , yl, 0, . . . , 0q “ 0 in X ` Y ,

tpx1, . . . , xk, 0, . . . , 0, z1, . . . , zmq “ 0 in X ` Z,

tp0, . . . , 0, y1, . . . , yl, z1, . . . , zmq “ 0 in Y ` Z.

Here 0 denotes the unique constant of the theory of V .



8 MANFRED HARTL AND TIM VAN DER LINDEN

Remark 2.7. It follows easily from the definitions that the sequence (A) is exact.

Remark 2.8. A tensor product X b Y b Z in A may be obtained as a cross-
effect of the functor X b p´q : A Ñ A, evaluated in the pair pY, Zq. This yields an
alternative (inductive) definition of co-smash products, which allows for different
proof techniques and also a different intuition.

The concept of cross-effect of a functor between abelian categories was introduced
by Eilenberg and Mac Lane in the article [25], where it was used in the study of
polynomial functors. This definition does, however, not generalise to non-additive
contexts. The approach due to Baues and Pirashvili [5], worked out in the case of
groups, does extend easily to more general situations. Let us briefly recall from [31,
32] how.

Let F : C Ñ D be a functor from a pointed category with finite sums C to a
pointed finitely complete category D. The n-th cross-effect of F is the functor

crnpF q : Cn Ñ D

defined by cr1pF qpXq “ Ker
`
F p0q : F pXq Ñ F p0q

˘
and, for n ą 1,

crnpF qpX1, . . . , Xnq “ KerprF q,

with

rF : F pX1 ` ¨ ¨ ¨ `Xnq Ñ
nź

k“1

F pX1 ` ¨ ¨ ¨ ` xXk ` ¨ ¨ ¨ `Xnq

as in Definition 2.2, modulo the F . The usual notation for cross-effects is

F pX1| ¨ ¨ ¨ |Xnq “ crnpF qpX1, . . . , Xnq.

When F is the identity functor 1A of A we clearly find the co-smash product

X1 b ¨ ¨ ¨ bXn “ 1ApX1| ¨ ¨ ¨ |Xnq.

Coming back to the claim made at the beginning of this remark: writing down
the relevant 3 ˆ 3 diagram, it is easy to check that indeed, X b Y b Z may be
obtained as the second cross-effect pX |´qpY |Zq of the functor pX |´q “ X b p´q
evaluated in the pair of objects pY, Zq.

This principle may be used in the proof of the following result.

Proposition 2.9. Co-smash products preserve regular epimorphisms: for instance,
so do the functors X b p´q : A Ñ A and p´q b Y b Z : A Ñ A.

Proof. This was proved for binary co-smash products in [48] and extended to binary
cross-effects (of functors which preserve regular epimorphisms and the zero object)
in [31]. The case of ternary co-smash products now follows. For higher-degree co-
smash products a proof is obtained via a similar argument and induction on the
degree. �

Remark 2.10. As explained in [21] and [30, 31], tensor products need not be
associative. Nevertheless there are always comparison morphisms

pX1 b ¨ ¨ ¨ b Xiq bXi`1 b ¨ ¨ ¨ bXn Ñ
nâ
k“1

Xk

induced by bracketing inside a co-smash product. When n “ 3, for instance, we
find the dotted arrow between the kernels in the diagram

0 ,2 pX b Y q b Z

��

✤ ,2ιXbY,Z,2 pX b Y q ` Z ,2

ιX,Y `1Z

��

pX b Y q ˆ Z

ιX,Y ˆxιZ,ιZy

��
0 ,2 X b Y b Z

✤ ,2
ιX,Y,Z

,2 X ` Y ` Z ,2 pX ` Y q ˆ pX ` Zq ˆ pY ` Zq.
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2.11. Joins and the sum decomposition. For subobjects

L ,2 l ,2 X Mlr
mlr

of an object X in a finitely cocomplete homological category we write

L_M “ Im
`@

l
m

D
: L`M Ñ X

˘
.

If L^M “ 0 and L is normal in L_M then we write L_M “ L¸M . Note that
this occurs precisely when there is a split short exact sequence

0 ,2 L ✤ ,2 l ,2 L_M
✤ ,2M ,2lr

m
lr 0,

which justifies the semi-direct product notation (see Section 3). Like for the sum,
morphisms defined on L¸M are completely determined by the effect on L and M ,
so we write them in a column.

The following result is crucial: it gives us a formula which expresses the commu-
tator of a join as a join of commutators (Proposition 2.22), which will in turn be
used to decompose complicated commutators into less complicated ones.

Lemma 2.12. [31] Suppose that A is a finitely cocomplete homological category
and X, Y and Z are objects of A. Then we have a decomposition

X b pY ` Zq “
`
pX b Y b Zq ¸ pX b Y q

˘
¸ pX b Zq.

We write ι
Xbp´q
Y,Z : X b Y b Z Ñ X b pY ` Zq for the canonical inclusion.

Proof. In other words, we have split short exact sequences

0 ,2 W ✤ ,2 k ,2 X b pY ` Zq
1XbρZ✤ ,2X b Z ,2lr
1XbιZ
lr 0

and

0 ,2 pX b Y b Zq
✤ ,2 l ,2 W

p1XbρY q˝k✤ ,2
X b Y ,2lr

m
lr 0.

There are only two things to be shown: that there is indeed a splitting m for the
morphism p1XbρY q˝k, and that l is the kernel of this split epimorphism p1XbρY q˝k.
First of all, the morphism m is the factorisation of

1X b ιY : X b Y Ñ X b pY ` Zq

over k. Secondly, k˝l is the intersection of k and the kernel of

1X b ρY : X b pY ` Zq Ñ X b Y ,

so it is X b Y b Z as explained in Remark 2.8. Note that ι
Xbp´q
Y,Z “ k˝l. �

2.13. Co-smash products induce higher-order commutators. We obtain the
following categorical notion of commutator (of arbitrary length n) which was first
introduced in [48] for n “ 2 and in [31] for all n ě 2. It is more thoroughly studied
in [30].

Definition 2.14. Let X be an object of a finitely cocomplete homological category.
The n-fold commutator morphism of X is the composite morphism

cXn : X b ¨ ¨ ¨ bX
✤ ,2ιX,...,X ,2X ` ¨ ¨ ¨ `X

∇X ,2X.
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When xi : Xi Ñ X for 1 ď i ď n are subobjects of X , their commutator is the
subobject

rX1, . . . , Xns “ Im
`
X1 b ¨ ¨ ¨ bXn

x1b¨¨¨bxn ,2X b ¨ ¨ ¨ bX
cXn ,2X

˘

“ Im
`
X1 b ¨ ¨ ¨ bXn

ιX1,...,Xn ,2X1 ` ¨ ¨ ¨ `Xn

C x1

...
xn

G

,2X
˘

of X .

Example 2.15. In [30] the n-fold commutator rX, . . . , Xs “ ImpcXn q is determined
for the categories of groups and of loops. In the former, this term coincides with
the n-th term of the lower central series; for loops, however, this is not true: it
here coincides with the n-th term of the commutator-associator-filtration recently
introduced by Mostovoy [55, 56] who realised that from several viewpoints the
latter should be regarded as the “right” notion of lower central series for loops. In
particular, the lower central series defined in terms of co-smash products as above
does not coincide with the concept considered in [34].

The binary commutator rK,Ls is also studied in [48], where it is called the
Higgins commutator. It is an conceptual generalisation of the commutator which
was introduced by Higgins in a varietal context [33]. This definition should also be
compared with the Huq commutator, as indeed in general, the two are different—
but not too different.

2.16. The Huq commutator. By definition, a coterminal pair

K
k ,2 X L

llr

of morphisms in a homological category Huq-commutes [14, 16, 34] if and only if
there is a (necessarily unique) morphism ϕ such that the diagram

K
x1K ,0y

z�⑧⑧
⑧⑧
⑧ k

�$❄
❄❄

❄❄

K ˆ L ϕ ,2 X

L
x0,1Ly

Zd❄❄❄❄❄ l

:D⑧⑧⑧⑧⑧⑧

is commutative. We shall mainly be interested in the case where k and l are normal
monomorphisms (= kernels). The Huq commutator

rk, lsHuq : rK,LsHuq Ñ X

of k and l is the smallest normal subobject of X that should be divided out to
make k and l commute—so that they do commute if and only if rK,LsHuq “ 0.
This object may be obtained through the colimit Q of the outer square above, as
the kernel of the (regular epi)morphism X Ñ Q. In a homological category, an
object X is abelian if and only if rX,XsHuq “ 0.

Remark 2.17. In contrast with the Huq commutator, the Higgins commutator
rK,Ls need not be normal inX , not even when bothK and L are normal subobjects
of X . In fact, the Huq commutator rK,LsHuq of K, L Ÿ X is the normal closure
of rK,Ls, so that rrK,Ls, Xs _ rK,Ls “ rK,LsHuq by the following proposition,
which is not explicitly needed further on:

Proposition 2.18. [31] If K, L ď X in a semi-abelian category then the normal
closure of K in the join K _ L is rK,Ls _K. �
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Remark 2.19. In a Mal’tsev category A, an object A is said to be abelian if
and only if it carries a (necessarily unique) internal Mal’tsev operation: that is, a
morphism g : AˆA ˆA Ñ A for which gpx, x, zq “ z and gpx, z, zq “ x [41, 58].
As soon as A is moreover pointed, such an internal Mal’tsev operation is the same
thing as an internal abelian group structure. However, in general, the two concepts
are different. To avoid confusion, we denote the full subcategory of A determined
by the abelian objects MalpAq, and we write AbpAq for the category of internal
abelian groups in A.

For instance, an abelian object in the category of groups is an abelian group,
and an abelian associative algebra over a field is a vector space (equipped with a
trivial multiplication).

Note that an object X in a finitely cocomplete homological category is abelian
if and only if its commutator morphism cX2 is trivial: indeed, rX,Xs “ 0 precisely
when rX,XsHuq “ 0.

Remark 2.20. The higher-order commutators are generally not built up out of
iterated binary commutators (Remark 2.10, Example 2.15, Example 4.9).

The following basic properties will be useful throughout the text.

Proposition 2.21. [30] Let X1, . . . , Xn be subobjects of an object X in A.

(o) Commutators are reduced: if Xi “ 0 for some i then rX1, . . . , Xns “ 0.
(i) Commutators are symmetric: for any permutation σ P Σn,

rX1, . . . , Xns – rXσ´1p1q, . . . , Xσ´1pnqs.

(ii) Commutators are preserved by direct images: for f : X Ñ Y regular epi,

f rX1, . . . , Xi, . . . , Xns “ rfpX1q, . . . , fpXiq, . . . , fpXnqs.

(iii) Commutators are monotone: if M ď Xi then

rX1, . . . , Xi´1,M,Xi`1, . . . , Xns ď rX1, . . . , Xi´1, Xi, Xi`1, . . . , Xns.

(iv) Removing brackets enlarges the object:

rrX1, . . . , Xis, Xi`1, . . . , Xns ď rX1, . . . , Xi, Xi`1, . . . , Xns.

(v) Removing duplicates enlarges the object: if Xi “ Xi`1 then

rX1, . . . , Xi, Xi`1, Xi`2, . . . , Xns ď rX1, . . . , Xi, Xi`2 . . . , Xns.

(vi) When A is semi-abelian, if X1 _ ¨ ¨ ¨ _Xn “ X then rX1, . . . , Xns ŸX.

Proof. (o) If Xi “ 0 then the morphism πš
j‰iXj

˝r in Definition 2.2 becomes an

isomorphism. Hence X1 b ¨ ¨ ¨ b Xn is zero. For (i) it suffices to note that the
definition of X1 b ¨ ¨ ¨ bXn is symmetric in the objects X1, . . . , Xn. Statement (ii)
is a consequence of Proposition 2.9. (iii) holds because the inclusion of M into Xi

gives a morphism

X1 b ¨ ¨ ¨ bXi´1 bM bXi`1 b ¨ ¨ ¨ bXn Ñ X1 b ¨ ¨ ¨ bXi´1 bXi bXi`1 b ¨ ¨ ¨ bXn

which induces the needed inclusion of commutators. The inclusion in (iv) is induced
by the bracketing comparison

pX1 b ¨ ¨ ¨ bXiq bXi`1 b ¨ ¨ ¨ bXn Ñ X1 b ¨ ¨ ¨ bXi bXi`1 b ¨ ¨ ¨ bXn

from Remark 2.10 and the fact that tensor products preserve regular epimorphisms,
Proposition 2.9. The inclusion in (v) is obtained through (possibly higher-order
versions of) the folding operations introduced in Notation 2.23 below. For the
proof of (vi) it suffices to recall that in a semi-abelian category, the direct image of
a kernel along a regular epimorphism is still a kernel. �
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Proposition 2.22. Commutators satisfy a distribution rule with respect to joins:

rX1, . . . , Xn, A1 _ ¨ ¨ ¨ _Ams “
ł

1ďkďm
1ďi1ă...ăikďm

rX1, . . . , Xn, Ai1 , . . . , Aim s.

Proof. We show that for all X in A and A, B ď X the equality

rX,A_Bs “ rX,A,Bs _ rX,As _ rX,Bs

holds, and refer to [30] for the general case, of which the proof is similar. Lemma 2.12
tells us that

X b pA `Bq “ pX bAbBq ¸ pX bAq
˘

¸ pX bBq.

Using the equalityA_B “ Imp
@
a
b

D
: A`B Ñ Xq and the fact thatXbp´q preserves

regular epimorphisms (Proposition 2.9), we may embed the co-smash products into
the respective sums and take images of the composites with the inclusions 1X , a
and b into X to obtain the needed join decomposition of the commutator. �

Notation 2.23. Given objectsX and Y in A, we consider the folding operations

S
X,Y
1,2 : X b Y b Y Ñ X b Y and S

X,Y
2,1 : X bX b Y Ñ X b Y .

The one on the left is induced by

X b Y b Y
ιX,Y,Y ,2 X ` Y ` Y

1X`∇Y ,2 X ` Y

A
1X 0
0 1Y

E

,2 X ˆ Y

being trivial, as indeed the diagram

X ` Y ` Y

1X`∇Y

��

r ,2 pX ` Y q2 ˆ pY ` Y q

pρX˝π1qˆ∇Y

��
X ` Y A

1X 0
0 1Y

E ,2 X ˆ Y

commutes, and the one on the right is given by the analogous argument.

Proposition 2.24. Suppose that A is finitely cocomplete homological. Let X be an
object of A. Then any split right-exact sequence

Y
B ,2 V

p ✤ ,2 Zlr
s

lr ,2 0

gives rise to a split exact sequence

pX b Y b Zq ¸ pX b Y q

B
S
X,V
1,2 ˝p1XbBbsq

1XbB

F

,2 X b V
1Xbp ✤ ,2

X b Z ,2lr
1Xbs

lr 0. (B)

Proof. Consider the diagram of solid arrows

pX b Y b Zq ¸ pX b Y q

B
ι
Xbp´q
Y,Z

1XbιY

F

,2

❴��

X b pY ` Zq
1XbρZ✤ ,2

1Xbx B
s y
❴��

X b Z ,2 0

0 ,2 Kerp1X b pq
✤ ,2 ,2 X b V

1Xbp

✤ ,2 X b Z ,2 0.

Its top row is exact by Lemma 2.12; in particular, the top left morphism is proper:
in the notation of Lemma 2.12, its image is W . Moreover, 1X b x B

s y is a regu-
lar epimorphism by the protomodularity of A and by Proposition 2.9, which says



THE TERNARY COMMUTATOR OBSTRUCTION 13

that X b p´q preserves regular epimorphisms. By the uniqueness of image factor-
isations, the kernel of 1X b p is equal to

im
´

p1X b x B
s yq˝

A
ι
Xbp´q
Y,Z

1XbιY

E¯
“ im

´A
S
X,V
1,2 ˝p1XbBbsq

1XbB

E¯
.

Hence the sequence (B) is exact. �

3. Semi-direct products

Internal actions were first introduced in [17], then studied in detail in [9]. As
explained in the introduction, following [31], we shall manipulate internal actions
through co-smash products. More precisely, given a split epimorphism p with split-
ting s corresponding to an algebra ξ : B5X Ñ X, we study the properties of the
point pp, sq in terms of the restriction ψ : B bX Ñ X of ξ to B b X rather than
via ξ itself. The present section sketches how this works; for more details we refer
to [31].

3.1. Basic analysis. Suppose that A and G are objects of A and ψ : A bG Ñ A

is a morphism for which the induced morphism kψ “ q˝ιA in the diagram

A

ιA

�'

kψ

$,
A bG

ψ

7B

ιA,G
,2

ιA˝ψ ,2
A`G

q ✤ ,2 CoeqpιA,G, ιA˝ψq “ Q

is a monomorphism. We may then write A ¸ψ G “ Q and call the object Q the
semi-direct product of A and G along ψ, as it fits into the diagram

0 ,2 A bG
✤ ,2 ιA,G ,2

ψ

��

A `G
xρA,ρGy✤ ,2

q

��

ρG

�)

A ˆG

πG

��

,2 0

0 ,2 A ✤ ,2
kψ

,2 A ¸ψ G
pψ ✤ ,2 G

ιG

_i

,2lr
sψ

lr 0.

The rows are short exact sequences, pψ is induced by ρG : A`G Ñ G and sψ “ q˝ιG.
That is to say, if kψ is a monomorphism then the morphism ψ : AbG Ñ A gives

rise to a point ppψ, sψq : A ¸ψ G Õ G. It is not difficult to see that conversely, any
point pp, sq : X Õ G will give rise to such a ψ through the diagram with short exact
rows

0 ,2 A bG
✤ ,2 ιA,G ,2

ψ

��

A `G
xρA,ρGy ✤ ,2

x as y
��

A ˆG

πG

��

,2 0

0 ,2 A ✤ ,2
a

,2 X
p ✤ ,2 Glr
s

lr ,2 0,

and that the two constructions are each other’s inverse.
Hence a morphism ψ : A b G Ñ A is induced by an action if and only if the

above-mentioned condition holds. (Compare with the analysis of actions worked
out in [51].) We shall then say that ψ induces or determines an action and
sometimes, abusively, that ψ is an action. Note that here we consider ψ as a
morphism defined on A bG instead of GbA as in the introduction.

Example 3.2. In the category of groups a morphism ψ : A bG Ñ A induces an
action if and only if the function

pg, aq ÞÑ g ¨ a “ ψpgag´1a´1qa
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is a G-group structure, that is, it does not only satisfy the rules 1 ¨ a “ a and
pgg1q ¨ a “ g ¨ pg1 ¨ aq, but also g ¨ paa1q “ pg ¨ aqpg ¨ a1q. This agrees with the fact
that in Gp, semi-direct products correspond with G-groups rather than with general
actions; see the detailed discussion in [31].

Example 3.3. For any object X , the morphism

cX,X “ cX2 “ ∇
2
X˝ιX,X : X bX Ñ X

induces an action of X on itself called the conjugation action [40], which corres-
ponds to the split short exact sequence

0 ,2 X ✤ ,2x1X ,0y ,2 X ˆX
π2 ✤ ,2 X ,2lr

x1X ,1Xy
lr 0.

Proposition 3.4. [31] Let n : N Ñ X be a normal monomorphism. Then the
unique morphism cN,X : N bX Ñ N for which the diagram

N bX
cN,X ,2

nb1X

��

N❴��
n

��
X bX

cX,X
,2 X

commutes determines an action, called the conjugation action of X on N . This
process is natural in the sense that any commutative diagram as on the left

N ,2
❴��

��

N 1
❴��

��
X ,2 X 1

N bX ,2

cN,X

��

N 1 bX 1

cN
1,X1

��
N ,2 N 1

gives a commutative diagram as on the right.

Proof. Writing q : X Ñ Q for the cokernel of n, we see that

q˝cX,X˝pnb 1Xq “ cQ,Q˝pq b qq˝pnb 1Xq “ cQ,Q˝p0 b qq “ 0,

so cX,X˝pn b 1Xq factors over n. This cN,X satisfies the condition of 3.1. �

Proposition 3.5 (Co-universal property of the semi-direct product, [31]). Consider
an action induced by ψ : A bG Ñ A and morphisms

A
f ,2 Z G.

glr

Then there exists a (necessarily unique) morphism
@
f
g

D
: A ¸ψ G Ñ Z such that@

f
g

D
˝kψ “ f and

@
f
g

D
˝sψ “ g if and only if the diagram

A bG
ψ ,2

fbg

��

A

f

��
Z b Z

cZ
2

,2 Z

commutes.

Proof. The morphism
@
f
g

D
: A` G Ñ Z factors over q : A `G Ñ A¸ψ G because

@
f
g

D
˝ιA˝ψ “ f˝ψ “ cZ2 ˝pf b gq “ ∇Z˝ιZ,Z˝pf b gq

“ ∇Z˝pf ` gq˝ιA,G “
@
f
g

D
˝ιA,G.

This factorisation is clearly unique. Now
@
f
g

D
˝sψ “

@
f
g

D
˝q˝ιG “ g and

@
f
g

D
˝kψ “@

f
g

D
˝q˝ιA “ f , which finishes the “if”-part of the proof. �
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Example 3.6. The trivial action of an object G on an object A is induced
by the zero morphism 0: A bG Ñ A. Here the semi-direct product A ¸0 G is
A ˆ G and p0 is the product projection πG : A ˆG Ñ G. Hence two coterminal
morphisms f and g as in Proposition 3.5 Huq-commute if and only if cZ2 ˝pf b gq
is trivial. This of course also follows immediately from the fact that A ˆ G is the
cokernel of ιA,G : A bG Ñ A `G and the equality cZ2 ˝pf b gq “

@
f
g

D
˝ιA,G.

Example 3.7 (Centrality). The conjugation action cN,X of an object X on a
normal subobjectNŸX is trivial if and only ifN is central inX , which means that
n : N Ñ X and 1X : X Ñ X Huq-commute [14]; indeed n˝cN,X “ cX,X˝pn b 1Xq.
(Compare with Theorem 3.2.4 in [23].)

Starting from conjugation actions we may again construct various new actions
by the following device, of which the proof is immediate from 3.1.

Proposition 3.8. [31] Suppose that ψ : AbG Ñ A induces an action, m : M Ñ A

is a monomorphism and h : H Ñ G a morphism. Suppose that M is H-stable

under ψ, that is, ψ˝pm b hq : M b H Ñ A factors through a (necessarily unique)
ϕ : M b H Ñ M such that ψ˝pm b hq “ m˝ϕ. Then ϕ induces an action of H
on M . �

Notation 3.9. If M “ A in the above proposition then we write ϕ “ h˚pψq

A bH
h˚pψq ,2

1Abh
��

A

A bG
ψ

,2 A

and call ϕ the pullback of ψ along h. This choice of terminology is explained by the
fact that the above diagram matches the morphism of split short exact sequences

0 ,2 A ✤ ,2 kϕ ,2 A ¸ϕ H
pϕ ✤ ,2

1A¸h
��

H

h

��

,2lr
sϕ

lr 0

0 ,2 A ✤ ,2
kψ

,2 A ¸ψ G
pψ ✤ ,2 G ,2lr
sψ

lr 0.

It is well known that now the right hand side square of the diagram is a pullback [13].
In fact, one easily sees that it is also a pushout.

Example 3.10. If N ŸX as in Proposition 3.4 then

n˚pcN,Xq “ cN,N “ cN2 .

Indeed, n˝cN,X˝p1N b nq “ cX,X˝pn b 1Xq˝p1N b nq “ cX2 ˝pn b nq, which equals
n˝cN2 by naturality of conjugation actions.

Example 3.11. If ψ : A bG Ñ A determines an action then

ψ “ cA,A¸ψG˝p1A b sψq “ s˚
ψpcA,A¸ψGq.

This means that the action determined by ψ coincides with the restriction to G of
the conjugation action of the semi-direct product A ¸ψ G on A.

3.12. The induced higher-order operations. Internal actions induce certain
higher-order operations defined as follows.

Notation 3.13. Let A and G be objects and ψ : AbG Ñ A a morphism. Consider
n ě 2 and 1 ď k ď n´ 1. Define ψk,n´k to be the composite morphism

ψk,n´k : A b ¨ ¨ ¨ bA bGb ¨ ¨ ¨ bG
S
A,G
k,n´k ,2 A bG

ψ ,2 A.
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In particular, if we take ψ “ cN,X to be induced by the conjugation action of an
object X on some normal subobject N ŸX , then we get morphisms

c
N,X
k,n´k : N b ¨ ¨ ¨ bN bX b ¨ ¨ ¨ bX Ñ N.

Note that cN,X1,1 “ cN,X . Also the higher-order operations cN,Xk,n´k are interrelated,
the generic relation being the following one:

Lemma 3.14. For any normal monomorphism n : N Ñ X the equality

c
N,X
2,1 “ c

N,X
1,2

˝p1N b nb 1Xq : N bN bX Ñ N

holds. In particular, cX,X2,1 “ c
X,X
1,2 “ cX3 .

Proof. Post-compose with n and use the commutative diagrams obtained by inject-
ing the various co-smash products into the corresponding sums. �

This coherence condition in terms of ternary co-smash products will appear again
in the analysis of crossed modules: see for instance Theorem 5.6 below. We shall
also investigate some closely related structures such as Beck modules, which satisfy
variations of this condition (see Section 6).

4. The Smith is Huq condition

We explain how the Smith is Huq condition for finitely cocomplete homological
categories may be expressed in terms of co-smash products as the vanishing of a
ternary commutator. Thus a condition which is about locally defined internal cat-
egorical structures admitting a global extension is characterised as a computational
obstruction. This is the key point of the present article—all results in the ensuing
sections are based on it.

Theorem 4.4 characterises when two given equivalence relations R, S on a com-
mon object X commute in the Smith sense: if K and L, respectively, denote their
denormalisations, then

rK,Ls “ 0 “ rK,L,Xs

is a necessary and sufficient condition. This immediately gives a characterisation of
the Smith is Huq condition (Theorem 4.6) and a formula for the Smith commutator
in terms of co-smash products (Theorem 4.16). We also find a characterisation of
double central extensions (Proposition 4.18), which allows us to make the Hopf
formula for the third homology of an object in any semi-abelian category with
enough projectives explicit (Theorem 4.19).

4.1. The Smith commutator. Consider a pair of equivalence relations pR,Sq on
a common object X

R

r1 ,2

r2
,2 X∆Rlr ∆S ,2 S,

s1
lr

s2lr

and consider the induced pullback of r1 and s2.

R ˆX S
πS ,2

πR

��

S

s2

��
R

r1
,2 X

The equivalence relations R and S are said to Smith-commute [62, 58, 16] if and
only if there is a (necessarily unique) morphism θ (a connector between R and S)
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for which the diagram

R
x1R,∆S˝r1y

z�⑧⑧
⑧⑧
⑧ r2

�$❄
❄❄

❄❄

R ˆX S θ ,2 X

S
x∆R˝s2,1Sy

Zd❄❄❄❄❄ s1

:D⑧⑧⑧⑧⑧⑧

is commutative. The connector θ is a partially defined Mal’tsev operation on X , as
the diagram commutes precisely when θpx, x, zq “ z for px, zq P S and θpx, z, zq “ x

for px, zq P R. It is also the same thing as a pregroupoid structure [44, 42] on
the span pd “ coeqpr1, r2q, c “ coeqps1, s2qq.

The Smith commutator rR,SsS of R and S is the smallest equivalence rela-
tion on X that should be divided out to make R and S commute, so that they do
commute if and only if rR,SsS “ ∆X . This equivalence relation may be obtained
through the colimit Q of the outer square above, as the kernel pair of the (regular
epi)morphism X Ñ Q.

4.2. The Smith is Huq condition. The normalisation K of an equivalence
relation pR, r1, r2q on X is the monomorphism

r2˝kerpr1q : K “ Kerpr1q Ñ X.

A monomorphism is called an ideal if and only if it is the normalisation of some
(necessarily unique) equivalence relation [12]. In a homological category, ideals are
direct images of kernels along regular epimorphisms—see [48] for an in-depth ana-
lysis. For now, it suffices to note that the normalisation of an effective equivalence
relation is always a kernel; conversely, any normal subobject N ŸX (in the strong
sense that it may be represented by a kernel) admits a denormalisation RN , the
kernel pair of its cokernel. This process determines an order isomorphism between
the normal subobjects of X and the effective equivalence relations on X , which in
the semi-abelian case coincides with the correspondence between ideals and equiv-
alence relations.

It is well known that Smith-commuting equivalence relations always have Huq-
commuting normalisations [16]. However, the converse need not hold: Janelidze
gave a counterexample in the category of digroups [7, 15], which is a semi-abelian
variety, even a variety of Ω-groups [33]. (See also Example 4.9.) Thus arises a
property homological categories may or may not have:

Definition 4.3. A homological category satisfies the Smith is Huq condition
(SH) if and only if two effective equivalence relations on a given object always
commute as soon as their normalisations do.

It turns out that the condition (SH) is fundamental in the study of internal
categorical structures: it is shown in [53] that, for a semi-abelian category, this
condition holds if and only if every star-multiplicative graph is an internal groupoid.
As explained in [36] and in Section 5 of the present article, this is important when
characterising internal crossed modules.

The Smith is Huq condition is known to hold for pointed strongly protomodular
exact categories [16] (in particular, for any Moore category [59]) and for action
accessible categories [19, 23] (in particular, for any category of interest [54, 57]).
Well-known examples are the categories of groups, Lie algebras, associative alge-
bras, non-unitary rings, and (pre)crossed modules of groups.

Theorem 4.4. In a finitely cocomplete homological category, consider effective
equivalence relations R and S on X with normalisations K, L Ÿ X, respectively.
Then the following are equivalent:
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(i) R and S Smith-commute;
(ii) rK,Ls “ 0 “ rK,L,Xs. �

Hence a homological category satisfies (SH) if and only if for every pair of effective
equivalence relations of which the normalisations commute, the ternary commutator
obstruction vanishes. The proof is an obvious application of the following funda-
mental lemma (take β “ 1). The basic admissibility condition which appears in
it was first discovered by Martins–Ferreira [49, 50]. (Incidentally, we believe that
Lemma 4.5 answers part of the question asked in the concluding section of that
paper; see also [52].) We shall consider diagrams of shape

A
f ,2

α
�$❄

❄❄
❄❄

❄❄
❄ B

r
lr

s
,2

β

��

C
glr

γ
z�⑧⑧
⑧⑧
⑧⑧
⑧⑧

D

(C)

with f˝r “ 1B “ g˝s and α˝r “ β “ γ˝s. By taking the pullback of f with g, any
diagram such as (C) may be extended to a diagram

C

e2z�⑧⑧
⑧⑧
⑧

g �$❄
❄❄

❄❄
γ

!)
A ˆB C

πC
:D⑧⑧⑧⑧⑧

πA �$❄
❄❄

❄❄
B

rz�⑧⑧
⑧⑧
⑧⑧

s
Zd❄❄❄❄❄

β ,2 D

A

f
:D⑧⑧⑧⑧⑧⑧

e1
Zd❄❄❄❄❄

α

5=

in which the square is a double split epimorphism (that is, also the obvious squares
involving splittings commute). The triple pα, β, γq is said to be admissible with
respect to pf, r, g, sq if and only if there exists a (necessarily unique) morphism
ϑ : A ˆB C Ñ D such that ϑ˝e1 “ α and ϑ˝e2 “ γ.

Lemma 4.5. Given any diagram (C), let k : K Ñ D be the image of α˝kerpfq,
l : L Ñ D the image of γ˝kerpgq and β : B Ñ D the image of β. Then the triple
pα, β, γq is admissible with respect to pf, r, g, sq if and only if

rK,Ls “ 0 “ rK,L,Bs.

Proof. We decompose A, C and AˆBC into semi-direct products and then analyse
in terms of the induced actions what it means for ϑ to exist. There are unique ϕ
and ψ that give rise to the morphisms of split short exact sequences

0 ,2 K ✤ ,2 kerpfq ,2 A
f ✤ ,2

B ,2lr
r

lr 0

0 ,2 K ✤ ,2
kϕ

,2 K ¸ϕ B

ρ –

LR

pϕ ✤ ,2
B ,2lr

sϕ
lr 0

and

0 ,2 L ✤ ,2 kerpgq ,2 C
g ✤ ,2

B ,2lr
s

lr 0

0 ,2 L ✤ ,2
kψ

,2 L¸ψ B

σ –

LR

pψ ✤ ,2
B ,2lr

sψ
lr 0.
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By Notation 3.9 we obtain the commutative diagram with exact rows

0 ,2 K ✤ ,2 kζ ,2 K ¸ζ pL ¸ψ Bq

κ–

��

pζ ✤ ,2 L¸ψ B ,2lr
sζ

lr

σ–

��

0

0 ,2 K ✤ ,2 xkerpfq,0y ,2 A ˆB C

πA

��

πC ✤ ,2 C

g

��

,2lr
e2“xr˝g,1Cy
lr 0

0 ,2 K ✤ ,2
kerpfq

,2 A
f ✤ ,2 B ,2lr
r

lr 0

in which ζ “ pg˝σq˚pϕq “ ϕ˝p1K b pψq. Now write k “ α˝kerpfq : K Ñ D and
l “ γ˝kerpgq : L Ñ D. If the desired morphism ϑ exists then

ϑ˝κ “ ϑ˝
@

xkerpfq,0y
e2˝σ

D
“ ϑ˝

@
x1A,s˝fy˝kerpfq

e2˝σ

D
“

@
ϑ˝e1˝kerpfq
ϑ˝e2˝σ

D

“
@
α˝kerpfq
γ˝σ

D
“

B
α˝kerpfq@
γ˝kerpgq

β

D
F

“
A

k@
l
β

D E
.

Conversely, if the morphism

ϑ1 “
A

k@
l
β

D E

exists then ϑ “ ϑ1˝κ´1 satisfies the relevant constraints: it is clear from the above
calculation that ϑ1˝κ´1˝e2 “ γ and that ϑ1˝κ´1˝e1˝kerpfq “ α˝kerpfq, but we also
have

ϑ1
˝κ´1

˝e1˝r “ ϑ1
˝κ´1

˝x1C , s˝fy˝r “ ϑ1
˝κ´1

˝xr, sy “ ϑ1
˝κ´1

˝xr˝g, 1Cy˝s

“ ϑ1
˝κ´1

˝e2˝s “ γ˝s “ β “ α˝r.

Thus ϑ1˝κ´1˝e1 “ α. It follows that the desired morphism ϑ exists if and only if ϑ1

exists, which according to Proposition 3.5 is the case if and only if the diagram

K b pL¸ψ Bq
ζ ,2

kb
@
l
β

D
��

K

k

��
D bD

cD,D
,2 D

(D)

commutes. To find conditions for this to happen we use sequence (B) from Propo-
sition 2.24 in order to decompose the object K b pL ¸ψ Bq in three parts, via the
regular epimorphism
C

S
K,L¸ψB

1,2 ˝p1Kbkψbsψq

1Kbkψ
1Kbsψ

G
: pK b LbBq ` pK b Lq ` pK bBq Ñ K b pL¸ψ Bq.

First note that by Example 3.11 and by naturality the conjugation actions we have

k˝ζ˝p1K b sψq “ k˝ϕ˝p1K b pψq˝p1K b sψq “ k˝ϕ “ k˝cK,K¸ϕB˝p1K b sϕq

“ cD,D˝pk b
@
k
β

D
q˝p1K b sψq “ cD,D˝pk b βq

“ cD,D˝pk b
@
l
β

D
q˝p1K b sψq,

so that Diagram (D) always commutes on K bB.
Next, k˝ζ˝p1K b kψqq “ k˝ϕ˝p1K b pψq˝p1K b kψq “ k˝ϕ˝p1K b 0q “ 0. Hence,

for the equality

k˝ζ˝p1K b kψq “ cD,D˝pk b
@
l
β

D
q˝p1K b kψq



20 MANFRED HARTL AND TIM VAN DER LINDEN

to hold, the morphism cD,D˝pk b lq “ cD2 ˝pk b lq˝pk1 b l1q has to be trivial. (Here
we write k “ k˝k1, and similarly for l and β.) Noting that k1 b l1 is a reg-
ular epimorphism by Proposition 2.9, we see that cD,D˝pk b lq “ 0 precisely
when rK,Ls “ ImpcD2 ˝pk b lqq is trivial.

Finally,

k˝ζ˝S
K,L¸ψB
1,2

˝p1K b kψ b sψq “ k˝ϕ˝p1K b pψq˝S
K,L¸ψB
1,2

˝p1K b kψ b sψq

“ k˝ϕ˝S
K,B
1,2

˝p1K b pψ b pψq˝p1K b kψ b sψq

“ k˝ϕ˝S
K,B
1,2

˝p1K b 0 b 1Bq

is zero, while

cD,D˝pk b
@
l
β

D
q˝S

K,L¸ψB
1,2

˝p1K b kψ b sψq

“ cD,D˝S
D,D
1,2

˝pk b
@
l
β

D
b

@
l
β

D
q˝p1K b kψ b sψq

“ cD3 ˝pk b l b βq

“ cD3 ˝pk b l b βq˝pk1 b l1 b β1q.

As k1 b l1 b β1 is a regular epimorphism by Proposition 2.9, this tells us that
Diagram (D) commutes on KbLbB if and only if rK,L,Bs “ ImpcD3 ˝pkb lbβqq
is zero, which concludes the proof. �

Theorem 4.6. The following are equivalent:

(i) the Smith is Huq condition holds;
(ii) any two effective equivalence relations on a given object commute as soon

as their normalisations do;
(iii) any two equivalence relations on a given object commute as soon as their

normalisations do;
(iv) for all ideals K, L of X we have rK,L,Xs ď rK,LsHuq.

Proof. Conditions (i) and (ii) are equivalent by definition. The equivalence between
(ii) and (iii) is Remark 2.4 in [53], but may also be obtained using Lemma 4.5. Now
suppose that (iii) holds and consider normal subobjects K and L of X . Divide out
their Huq commutator

0 ,2 rK,LsHuq ✤ ,2 ,2 X
q ✤ ,2 Q ,2 0

and write qpKq, qpLq ď Q for the direct images of K and L along q. By Proposi-
tion 2.21.ii we obtain a diagram

rK,L,Xs
��

��

✤ ,2

t}

rqpKq, qpLq, Qs
��

��
0 ,2 rK,LsHuq ✤ ,2 ,2 X

q

✤ ,2 Q ,2 0

and a factorisation of rK,L,Xs over rK,LsHuq. Indeed, rqpKq, qpLq, Qs is zero
by Theorem 4.4, as rqpKq, qpLqs “ qrK,Ls “ 0. Finally, (iv) ñ (ii) is again a
consequence of Theorem 4.4. �

This at once yields a new class of examples.

Example 4.7. A nilpotent category of class 2 is a semi-abelian category whose
identity functor is quadratic, which means that it has a trivial ternary co-smash
product [30]. Hence, almost by definition, any such category satisfies (SH). In
particular, the Smith is Huq condition holds for modules over a square ring, and
specifically for algebras over a nilpotent algebraic operad of class two [3].
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Example 4.8. If K, L and M are normal subgroups of a group G then

rK,L,M s “ rK, rL,M ss _ rL, rM,Kss _ rM, rK,Lss

by a result in [30]. Hence in Gp all ternary commutator words are essentially of the
shape considered in Example 2.4.

This of course also gives (SH). So far it is not clear which categories allow a
similar decomposition of their ternary commutators.

For instance, the semi-abelian variety Loop of loops and loop homomorphisms
forms a counterexample. We show that it does not satisfy the Smith is Huq condi-
tion, which also implies that this category is neither action accessible nor strongly
protomodular.

Example 4.9. A loop is a quasigroup with unit, an algebra

pA, ¨, z, {, 1q

of which the multiplication ¨ and the left and right division z and { satisfy the
axioms

y “ x ¨ pxzyq y “ xzpx ¨ yq

x “ px{yq ¨ y x “ px ¨ yq{y

and 1 is a unit for the multiplication, x ¨1 “ x “ 1 ¨x. We shall sometimes write xy
for x ¨ y. The variety Loop of loops is semi-abelian (as mentioned for instance
in [8]). Loops are “non-associative groups”, and indeed an associative loop is the
same thing as a group. It is easily seen that the abelian objects in Loop are precisely
the abelian groups—which are not to be confused with the objects in the variety
of commutative loops, which have a commutative, but possibly non-associative,
multiplication.

The associator of three elements x, y, z of a loop X is the unique element
vx, y, zw of X such that pxyqz “ vx, y, zw ¨ xpyzq. Hence vx, y, zw is equal to pxy ¨ zq{
px ¨yzq. Given three normal subloops K, L and M of X , we write vK,L,Mw for the
associator subloop of X determined by K, L and M : this is the normal subloop
of K _ L _ M generated by the elements vx, y, zw, where either px, y, zq or any of
its permutations is in K ˆ LˆM .

It is clear that the object vK,L,Mw is a subloop of the ternary commutator
rK,L,M s, as for any associator element vx, y, zw, the associators v1, y, zw, vx, 1, zw
and vx, y, 1w are trivial (Example 2.6).

In order to prove that the category Loop does not satisfy the Smith is Huq con-
dition, it suffices to give an example of a loop X with an abelian normal subloop A
of X such that rA,A,Xs is non-trivial. Then by Theorem 4.4 the denormalisa-
tion RA of A does not Smith-commute with itself, even though rA,As “ 0. In fact,
in our example, already the associator vA,A,Xw is non-trivial. (Universal algebra-
ists have known about the bad behaviour of commutators in the category of loops
for a long time. A different example is given in [29, Exercise 5.10].)

We take X to be the well-known (and historically important) loop of order eight
occurring in relation with the hyperbolic quaternions: it is the set

t1,´1, i,´i, j,´j, k, ku

with multiplication determined by the rules

ij “ k “ ´ji

jk “ i “ ´kj ii “ jj “ kk “ 1

ki “ j “ ´ik
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and the expected behaviour for ´1. The subset t1,´1, j,´ju of L forms a normal
subloop A of index two, isomorphic to the Klein four-group V – Z2 ˆ Z2. Now
j ¨ ji “ jp´kq “ ´i while jj ¨ i “ i, so

1 ‰ vj, j, iw P vA,A,Xw ď rA,A,Xs.

4.10. Decomposition of the Smith commutator. The above Theorem 4.4 leads
to a formula for the Smith commutator of two equivalence relations in terms of
binary and ternary commutators of their normalisations: Theorem 4.16.

Proposition 4.11. [31, 48] In a semi-abelian category, for K, L ď X, the subob-
ject K is normal in K _ L if and only if rK,Ls ď K. In particular,

(i) K ŸX if and only if rK,Xs ď K;
(ii) a morphism f : X Ñ Y is proper if and only if the composite morphism

cY2 ˝pf b 1Y q factors through Impfq. �

Remark 4.12. [31] The characterisation (i) of normal subobjects is valid in a
finitely cocomplete homological category if and only if this category is semi-abelian.

Lemma 4.13 (cf. Remark 2.17). For any K, L ď X in a semi-abelian category,
the join rK,L,Xs _ rK,Ls is normal in X.

Proof. Consider first the quotient q of X by rK,L,Xs, then the direct image
of rK,Ls along q.

rK,Ls
��

��

✤ ,2 rqpKq, qpLqs
��

��
0 ,2 rK,L,Xs

✤ ,2 ,2 X
q

✤ ,2 Q ,2 0

Note that rK,L,Xs is normal in X by Proposition 2.21.vi. To prove our claim we
only need to show that the commutator rqpKq, qpLqs is normal in Q “ qpXq. But

rrqpKq, qpLqs, qpXqs ď rqpKq, qpLq, qpXqs “ qrK,L,Xs “ 0

by Proposition 2.21 so that the result follows from Proposition 4.11. �

Remark 4.14. If we now consider M ď X such that K _ L_M is X then

rK,L,M s _ rK,Ls “ rK,L,Xs _ rK,Ls.

Indeed, freely using the rules from Proposition 2.21, we see that

rK,L,K _ L_M s “ rK,L,K,L,M s _ rK,L,K,Ls _ rK,L,L,M s

_ rK,L,K,M s _ rK,L,Ks _ rK,L,Ls _ rK,L,M s

ď rK,L,M s _ rK,Ls _ rK,L,M s

_ rL,K,M s _ rL,Ks _ rK,Ls _ rK,L,M s

“ rK,L,M s _ rK,Ls,

while the other inclusion is obvious.

Remark 4.15. If K, LŸX are such that K _ L “ X then rK,Ls “ 0 suffices for
the denormalisations R of K and S of L to commute in the Smith-sense [28]. In
other words, when rK,Ls is trivial, the ternary commutator rK,L,Xs is trivial as
well. By Remark 4.14 this also follows from

rK,L,Xs _ rK,Ls “ rK,L, 0s _ rK,Ls “ rK,Ls.
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Theorem 4.16. In a semi-abelian category, given equivalence relations R and S

on X with normalisations K, LŸX, the Smith commutator rR,SsS is the left-hand
side equivalence relation

prK,L,Xs _ rK,Lsq ¸γ X

B
0
0
1X

F

,2
C

rk,l,1X s
rk,ls
1X

G,2
Xsγlr rK,Ls ¸γ X

@
0
1X

D
,2

B
rk,ls
1X

F,2 X
sγlr

where γ is the conjugation action of X on rK,L,Xs _ rK,Ls. If K _ L “ X

then rR,SsS simplifies to the above right-hand side equivalence relation.

Proof. The equivalence relation in the statement above is the denormalisation of
the normal subobject rK,L,Xs _ rK,Ls of X considered in Lemma 4.13. By The-
orem 4.4 it satisfies the same universal property as rR,SsS, hence the two coincide.
The further refinement is just Remark 4.15. �

4.17. An application to homology. One situation where expressing the Smith
commutator in terms of tensor products yields immediate results is in semi-abelian
homology. For instance, according to [27] the Hopf formula for the third homology
object H3pZ, abq of an object Z with coefficients in the abelianisation functor

ab : A Ñ AbpAq : A ÞÑ A{rA,AsHuq

depends on a characterisation of the double central extensions in A. Such a charac-
terisation was given in [60] in terms of the Smith commutator: a double extension
such as (E) below is central if and only if

rR,SsS “ ∆X “ rR ^ S,∇X sS.

Here ∇X is the largest equivalence relation on X , the denormalisation of 1X , and
R and S are the kernel relations of d and c, respectively. If (SH) holds then this
condition may be reformulated in terms of the Huq commutator, and when A

has enough projectives this makes it possible to express H3pZ, abq as a quotient
of commutators. So far, however, it was unclear how to obtain a similar explicit
formula in categories that do not satisfy (SH).

Recall that a double extension in a semi-abelian category A is a pushout
square (E) of which all arrows are regular epimorphisms [27]. A double presen-
tation of an object Z is a double extension such as (E) in which the objects X , D
and C are (regular epi)-projective. Higher extensions were introduced in [27] follow-
ing [35] and [37] in order to capture the concept of higher centrality which is useful
in the study of semi-abelian (co)homology: see, for instance, the articles [26, 27, 61].

Proposition 4.18. Given a double extension

X
c ,2

d

��

C

g

��
D

f
,2 Z

(E)

in a semi-abelian category, write K “ Kerpcq and L “ Kerpdq. Then (E) is central
if and only if

rK,L,Xs “ rK,Ls “ rK ^ L,Xs “ 0.

Proof. Via Theorem 4.4 this is an immediate consequence of [60, Theorem 2.8]. �
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Theorem 4.19. Let A be a semi-abelian category with enough projectives. Let Z be
an object in A and (E) a double presentation of Z with K “ Kerpcq and L “ Kerpdq.
Then

H3pZ, abq –
K ^ L^ rX,Xs

rK,L,Xs _ rK,Ls _ rK ^ L,Xs
.

If A is monadic over Set then these homology groups are comonadic Barr–Beck
homology [2] with respect to the canonical comonad on A.

Proof. This follows from Proposition 4.18 and the main result of [26]; see also [27].
Note that by Lemma 4.13 and Proposition 2.21.vi, the denominator is indeed normal
in X so that the formula makes sense. �

Remark 4.20. Note that in the groups case [20] the ternary commutator in the
above formula is invisible, as it is contained in rK,Ls.

5. Internal crossed modules

Internal crossed modules were introduced in the article [36]. Here we study
them from the viewpoint of co-smash products. We obtain a new characterisation
which involves a higher coherence condition. This condition does not appear in any
of the usual categories where crossed modules have been considered so far, such as
groups, Lie algebras and associative algebras: it expresses the property (SH) needed
to extend a star-multiplication to an internal category structure in arbitrary semi-
abelian categories, or even finitely cocomplete homological ones—see [36, 53].

5.1. Internal categories. The analysis of the Smith is Huq condition in terms
of higher-order commutators yields new conditions for an internal reflexive graph
to be an internal category (or, equivalently, an internal groupoid); cf. [45] for the
equivalence between (i) and (ii) in the case of groups.

Theorem 5.2. Consider an internal reflexive graph pR,G, d, c, eq in a finitely
cocomplete homological category.

R
d ,2

c
,2 Gelr d˝e “ c˝e “ 1G

The following are equivalent:

(i) pR,G, d, c, eq is an internal category;
(ii) rKerpdq,Kerpcqs “ 0 “ rKerpdq,Kerpcq, Rs;
(iii) rKerpdq,Kerpcqs “ 0 “ rKerpdq,Kerpcq, Impeqs;
(iv) the morphism cA,R : A bR Ñ A induced by the conjugation action of R

on A “ Kerpdq factors through 1A b c : A bR Ñ A bG;
(v) cA,R “ pe˝cq˚pcA,Rq.

Proof. Theorem 4.4 implies that (i) and (ii) are equivalent, because the given reflex-
ive graph is a groupoid if and only if the kernel pairs of d and c Smith-commute [58].
It is clear that (ii) implies (iii), while the equivalence between (i) and (iii) may be
obtained via Lemma 4.5. In fact, (ii) also follows from (iii) by a direct commutator
calculation using Proposition 2.21, since R “ A_ Impeq.

The equivalence between (iii) and (iv) is a consequence of Proposition 2.24.
Finally, if cA,R “ c˚pϕq then

e˚pcA,Rq “ e˚pc˚pϕqq “ pc˝eq˚pϕq “ ϕ,

so that cA,R “ c˚pe˚pcA,Rqq “ pe˝cq˚pcA,Rq. �
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Condition (ii) on commuting kernels says that a reflexive graph pR,G, d, c, eq
with a multiplication m : Kerpdq ˆ Kerpcq Ñ R defined locally around 0 as in

0
β

�
✌✌
✌✌
✌

¨ ¨

α
T]✶✶✶✶✶
γ

lr
mpβ, αq “ γ

such that m˝x1Kerpdq, 0y “ kerpdq and m˝x0, 1Kerpcqy “ kerpcq admits a globally
defined multiplication (that is, an internal category structure) if and only if the
obstruction rKerpdq,Kerpcq, Rs vanishes. Similar “local to global” properties were
studied in [47, 53] after they appeared naturally in [36]. Since both are relevant in
what follows, we briefly recall their definition; see [47, 53] and Remark 5.7 for more
details and a proof that the structures are equivalent.

Consider a reflexive graph pR,G, d, c, eq and the pullback

R ˆG Kerpdq

πR

��

πKerpdq ,2 Kerpdq

B“c˝kerpdq

��
R

d
,2 G.

The reflexive graph pR,G, d, c, eq is a star-multiplicative graph [36] when there is
a (necessarily unique) morphism ς : R ˆG Kerpdq Ñ Kerpdq such that the conditions
ς˝xkerpdq, 0y “ 1Kerpdq and ςxe˝B, 1Kerpdqy “ 1Kerpdq hold.

¨
β

�
✌✌
✌✌
✌

¨ 0

α
T]✶✶✶✶

γ
lr

ζpβ, αq “ γ

0
β

�
✌✌
✌✌
✌

α

��✶
✶✶
✶✶

¨ ¨
γ

lr
ωpβ, αq “ γ

It is said to be a Peiffer graph [47] when there is a (necessarily unique) morphism
ω : Kerpdq ˆ Kerpdq Ñ R such that ω˝x1Kerpdq, 0y “ kerpdq and ω˝x1Kerpdq, 1Kerpdqy “
e˝c˝kerpdq.

5.3. Precrossed modules and crossed modules. A precrossed module is a nor-
malisation of a reflexive graph, while a crossed module is a normalisation of an
internal groupoid. We describe these structures in terms of co-smash products.

A precrossed module in a finitely cocomplete homological category A may be
encoded as a quadruple pG,A, µ, Bq where G and A are objects in A, µ : A bG Ñ A

determines an action of G on A, and B : A Ñ G is a G-equivariant morphism with
respect to the action determined by µ and the conjugation action of G on itself,
respectively. In other words, the diagram

A bG
µ ,2

Bb1G

��

A

B

��
G bG

cG,G
,2 G

(F)

commutes. Together with the obvious morphisms, the precrossed modules in A

form a category PXModpAq.

Proposition 5.4. The category PXModpAq is equivalent to RGpAq.

Proof. This is an extension of the equivalence between actions and split epimorph-
isms. Given a precrossed module pG,A, µ, Bq, the action µ corresponds to a split
exact sequence

0 ,2 A ✤ ,2kerpdq ,2 R
d ✤ ,2

c

✤ ,2 G ,2lrelr 0
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where R “ A ¸µ G. Proposition 3.5 gives a unique morphism c : R Ñ G such
that B “ c˝kerpdq and c˝e “ 1G precisely when (F) commutes. �

Definition 5.5. A precrossed module pG,A, µ, Bq is a crossed module if its as-
sociated reflexive graph is an internal category. This gives us the full reflective [58]
subcategory XModpAq of PXModpAq.

Janelidze analysed this concept of crossed module using internal actions in semi-
abelian categories [36]. Here the actions are treated differently, and thus we obtain
a different characterisation, which is moreover valid in a non-exact context:

Theorem 5.6. A precrossed module pG,A, µ, Bq in a finitely cocomplete homological
category is a crossed module if and only if it satisfies the following two additional
conditions:

(i) the conjugation action of A on itself coincides with the pullback of µ
along B, that is, cA,A “ B˚pµq so that the diagram

A bA
cA,A ,2

1AbB

��

A

A bG
µ

,2 A

(G)

commutes;
(ii) the diagram

A bAbG
µ2,1 ,2

1AbBb1G

��

A

A bG bG
µ1,2

,2 A

(H)

commutes.

Proof. Using Lemma 2.12, we decompose the object R in such a way that the fifth
condition of Theorem 5.2 falls apart in three distinct statements. One of those is
the commutativity of (G), a second one is the commutativity of (H), and a third
one is trivially satisfied.

Indeed, R “ A¸µ G, so that we may consider the pair of parallel morphisms

ppA bA bGq ¸ pA bAqq ¸ pA bGq
✤ ,2 Ab pA `Gq

1Abq✤ ,2 A b pA ¸µ Gq
cA,R ,2

pe˝cq˚pcA,Rq

,2 A.

On A b G these morphisms coincide, as q˝ιG “ e : G Ñ A ¸µ G “ R by definition
of e, and

pe˝cq˚pcA,Rq˝p1A b eq “ e˚ppe˝cq˚pcA,Rqq “ pe˝c˝eq˚pcA,Rq

“ e˚pcA,Rq “ cA,R˝p1A b eq.

On A b A they coincide if and only if the diagram (G) commutes. To see this,
recall that q “

@
kerpdq
e

D
: A `G Ñ A ¸µ G “ R, so that q˝ιA is the monomor-

phism kerpdq : A Ñ R. Then

kerpdq˝cA,R˝p1A b kerpdqq “ kerpdq˝cA,A

by naturality of conjugation actions (Proposition 3.4), and

kerpdq˝pe˝cq˚pcA,Rq˝p1A b kerpdqq “ kerpdq˝cA,R˝p1A b pe˝cqq˝p1A b kerpdqq

“ kerpdq˝cA,R˝p1A b eq˝p1A b pc˝kerpdqqq

“ kerpdq˝µ˝p1A b Bq.



THE TERNARY COMMUTATOR OBSTRUCTION 27

Hence cA,A “ µ˝p1A b Bq if and only if cA,R and pe˝cq˚pcA,Rq coincide on A bA.
Similarly, cA,R and pe˝cq˚pcA,Rq coincide on A b A b G precisely when (H)

commutes. For a proof, consider the commutative diagrams

A bAbG

ι
Abp´q
A,G

��

ιA,A,G

$,◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗
1Ab1Abe ,2 AbA bR

ιA,A,R

$,◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗

Ab pA `Gq
ιA,A`G

,2

1Abq

��

A `A`G

1A`q

��

1A`1A`e ,2 A`A `R

B ιA
ιR˝kerpdq

ιR

F

nu
C

kerpdq
kerpdq
1R

G

ou

kerpdq`kerpdq`1R

��

A bR

cA,R

��

ιA,R ,2 A `R
@
kerpdq
1R

D

��
A
✤ ,2

kerpdq
,2 R R `R `R

∇
3

R

lr

and

A bAbG
1Ab1Abe,2

S
A,G
2,1

��
µ2,1

�"

AbA bR
ιA,A,R

#+
S
A,R
2,1

��
A bG

µ

��

1Abe ,2 AbR

cA,R

��

ιA,R ,2 A`R
@
kerpdq
1R

D

��

A `A`R

kerpdq`kerpdq`1R

��

∇A`1Rlr

A A
✤ ,2

kerpdq
,2 R R `R `R

∇
3

R

lr

which show that µ2,1 “ cA,R˝p1A b qq˝ι
Abp´q
A,G . Similar diagrams show that

µ1,2˝p1A b B b 1Gq “ pe˝cq˚pcA,Rq˝p1 b qq˝ι
Abp´q
A,G ,

and these two equalities together are precisely what we need to prove our claim. �

Alternatively, in this proof we could have used Sequence (B) as in the proof of
Lemma 4.5.

Remark 5.7. Condition (i) could be called the Peiffer condition. It means that
the reflexive graph induced by pG,A, µ, Bq is a Peiffer graph: the commutativity
of (G) gives us a morphism of split short exact sequences

0 ,2 A ✤ ,2x1A,0y ,2 A ˆA
π2 ✤ ,2

ω
��

A

B
��

,2lr
x1A,1Ay
lr 0

0 ,2 A ✤ ,2
kerpdq

,2 R
d ✤ ,2

G ,2lr
e

lr 0

as in Example 3.3. The conditions kerpdq “ ω˝x1A, 0y and e˝B “ ω˝x1A, 1Ay tell
us that ω is a Peiffer structure on pR,G, d, c, eq. By Proposition 3.7 in [53] this
is equivalent to the reflexive graph being star-multiplicative in the sense of [36],
or—when A is semi-abelian—the condition that kerpdq and kerpcq commute.

The star-multiplication on pR,G, d, c, eq may also be obtained directly from the
commutativity of (G). Indeed, via the co-universal property of semi-direct products
(Proposition 3.5) we see that the needed morphism

ζ : A ¸B˚pµq A “ R ˆG A Ñ A

exists if and only if B˚pµq “ cA,A.
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Hence a semi-abelian category satisfies (SH) if and only if the coherence condi-
tion (ii) always comes for free: every precrossed module that satisfies the Peiffer
condition is a crossed module.

In a non-exact context this is not quite true. As explained in the last paragraph
of [53], in order that (SH) be equivalent to the condition “all star-multiplications
come from internal category structures”, a slight strengthening of the definitions of
star-multiplicative graph and of Peiffer graph imposes itself. Thus asking that (ii)
always follows from (i) in a finitely cocomplete homological category seems formally
stronger than assuming (SH), as the Peiffer condition (i) only gives a “weak” star-
multiplication.

Examples 5.8. In the case of augmented (= non-unitary) associative algebras
we recover the definition of crossed modules due to Dedecker and Lue [24, 46]
and Baues [4], and in the case of Lie algebras the one considered by Kassel and
Loday [43]. Note, however, that in all these categories the coherence condition (H)
comes for free, because all of them have the Smith is Huq property. So the de-
scription in terms of star-multiplicative graphs of [36] would have given the same
result.

6. Beck modules

As explained in [18], there is a subtle difference between the concept of exten-
sion with abelian kernel—any short exact sequence

0 ,2 A ✤ ,2 a ,2 X
p ✤ ,2 G ,2 0 (I)

where the kernel A is abelian—and the notion of abelian extension, a regular
epimorphism p : X Ñ G which is an abelian object in the slice category pA Ó Gq.
Since “abelian object” here means that p admits an internal Mal’tsev operation,
this amounts to the condition rR,RsS “ ∆X where R is the kernel relation of p.
It is clear that the difference between the two concepts is again an instance of the
Smith is Huq condition.

While abelian extensions are abelian objects in a slice category pA Ó Gq, Beck
modules [6, 2] are abelian groups in pA Ó Gq or, equivalently, abelian objects in the
category of points PtGpAq. Hence from [17, 18] it follows immediately that modules
are abelian actions. In the present section we obtain a further refinement in terms
of (higher-order) tensor products, valid in a context where Smith is Huq need not
hold.

Given an object G of a finitely cocomplete homological category A, a G-module
or Beck module over G is an abelian group in the slice category pA Ó Gq. Thus
a G-module pp,m, sq consists of a morphism p : X Ñ G in A, equipped with a
multiplication m and a unit s as in the commutative triangles

X ˆG X
m ,2

pˆ ��✹
✹✹

✹ X

p�	✡✡
✡✡
✡

G

G
s ,2

✹✹
✹✹
✹

✹✹
✹✹
✹ X

p�	✡✡
✡✡
✡

G

satisfying the usual axioms. (Here we write XˆGX for the kernel pair of p, and we
put pˆ “ p˝m “ p˝π1 “ p˝π2.) In particular we obtain a split short exact sequence

0 ,2 A ✤ ,2kerppq ,2 X
p ✤ ,2

G ,2lr
s

lr 0 (J)

where A is an abelian object in A and p is split by s. Furthermore, since as an
abelian extension it carries an internal Mal’tsev operation, the morphism p satisfies
rX ˆG X,X ˆG XsS “ ∆X . Conversely, given the splitting s of p, this latter
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condition makes it possible to recover the multiplication m. We write ModGpAq for
the category AbpA Ó Gq “ MalpPtGpAqq of G-modules in A.

Examples 6.1. [6] In the category Gp, a Beck module over G is the same thing
as a classical module over the group-ring ZG. When A is an additive category, the
kernel functor determines an equivalence ModGpAq » A. In the category CAlgK
of commutative (non-unitary) algebras over a commutative ring K, a Beck module
over G is a G-module with a trivial multiplication. It is worth considering this
latter example more in detail.

An internal G-action on an object A is a morphism ξ : G5A Ñ A. Now here,
G5A – A ` pA bK Gq and ξ˝ιA “ 1A. So the restriction ψ : A bK G Ñ A of ξ to
the tensor product A bK G is nothing but the usual presentation of a G-module
structure on A.

Theorem 6.2. Let A be an abelian object endowed with a G-action determined by
ψ : A bG Ñ A. Then the following are equivalent:

(i) pA,ψq is a G-module;
(ii) pG,A, ψ, 0q is a crossed module;
(iii) ψ2,1 : AbA bG Ñ A is trivial.

Proof. Let (J) be the split short exact sequence induced by ψ. Then pA,ψq is a
G-module if and only if the reflexive graph

X
p ,2

p
,2 Gslr

is an internal category. Since p˝kerppq “ 0 this proves (i) ô (ii).
Since A is abelian, already rA,As “ 0. So Theorem 5.6 tells us that Condition (ii)

holds precisely when ψ2,1 “ ψ1,2˝p1A b 0 b 1Gq “ 0, that is, when (iii) holds. �

Remark 6.3. Condition (iii) is equivalent with requiring that ψp,q “ 0 for all p ě 2

since these morphisms ψp,q clearly factor through ψ2,1.

Example 6.4. The situation considered in Example 4.9 is actually a loop action
of the cyclic group of order two Z2 on the Klein four-group V – A which is not a
module structure. Indeed, the short exact sequence

0 ,2 A ✤ ,2 ,2 X
✤ ,2 t1, iu ,2lrlr 0

is split by the inclusion of Z2 – t1, iu in X . (But the subloop t1, iu is not normal
in X , as ij ¨ j “ kj “ ´i R t1, iu although 1j ¨ j “ 1.) Hence X – V ¸ψ Z2

for some action ψ : V b Z2 Ñ V in the category of loops. Now pV, ψq cannot be
a Z2-module, as we know that rRA, RAsS ‰ ∆X ; so ψ2,1 must be non-trivial—and
indeed, ψ2,1vj, j, iw “ ´1.

Example 6.5. In a semi-abelian variety of algebras V , consider an abelian ob-
ject A and a G-action determined by ψ : A b G Ñ A. Then the coherence condi-
tion ψ2,1 “ 0 which must hold for ψ to induce a module structure may be expressed
as follows (cf. Example 2.6):

$
’&
’%

tpa1, . . . , ak, ak`1, . . . , ak`l, 0, . . . , 0q “ 0 in A `A

tpa1, . . . , ak, 0, . . . , 0, g1, . . . , gmq “ 0 in A `G

tp0, . . . , 0, ak`1, . . . , ak`l, g1, . . . , gmq “ 0 in A `G

ñ

ψptpa1, . . . , ak`l, g1, . . . , gmqq “ 0,

for any term t of arity k` l`m in the theory of V and all a1, . . . , ak`l P A and g1,
. . . , gm P G. We believe this is a basic condition; certainly it is of the same level of
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complexity as for instance the characterisation of ideals due to Ursini [63], valid in
semi-abelian varieties [39].

Lemma 6.6. Consider a short exact sequence (I). If p is split by s then the
conjugation action of X on A admits a factorisation cA,X “ ψp˝p1A b pq if and

only if A is abelian and cA,X2,1
˝p1A b 1A b sq “ 0.

Proof. By Proposition 2.24, the morphism cA,X factors through 1A b p when

cA,X˝S
A,X
1,2

˝p1A b ab sq and cA,X˝p1A b aq

are trivial. But cA,X˝p1A b aq “ a˝cA,A by naturality of the conjugation action,

and cA,X1,2
˝p1A b a b sq “ c

A,X
2,1

˝p1A b 1A b sq by Lemma 3.14. �

Theorem 6.7. Let A be an abelian object endowed with a G-action determined
by ψ : A b G Ñ A. Then pA,ψq is a G-module if and only if the conjugation
action of A ¸ψ G on A factors through the given G-action on A via the projection
pψ : A ¸ψ G Ñ G. In other words,

cA,A¸ψG “ ψ˝p1A b pψq “ p˚
ψpψq.

Proof. We pass via Condition (iii) in Theorem 6.2. Recall that X “ A ¸ψ G. Ap-
plying Lemma 6.6 to the split extension

0 ,2 A ✤ ,2 kψ ,2 A ¸ψ G
pψ ✤ ,2

G ,2lr
sψ

lr 0

shows that cA,X : AbX Ñ A factors through the morphism 1Abpψ precisely when

c
A,X
2,1

˝p1A b 1A b sψq “ 0. However,

c
A,X
2,1

˝p1A b 1A b sψq “ cA,X˝S
A,X
2,1

˝p1A b 1A b sψq

“ cA,X˝p1A b sψq˝S
A,G
2,1

“ ψ˝S
A,G
2,1 “ ψ2,1.

Now suppose that cA,X does factor as a composite morphism c˝p1A b pψq; then
c “ c˝p1A b pψq˝p1A b sψq “ cA,X˝p1A b sψq “ ψ, which proves our claim. �
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