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ARITHMETIC MATROIDS, TUTTE POLYNOMIAL

AND TORIC ARRANGEMENTS

MICHELE D’ADDERIO∗ AND LUCA MOCI†

Abstract. We introduce the notion of an arithmetic matroid, whose main example
is given by a list of elements of a finitely generated abelian group. In particular, we
study the representability of its dual, providing an extension of the Gale duality to
this setting.

Guided by the geometry of generalized toric arrangements, we provide a combi-
natorial interpretation of the associated arithmetic Tutte polynomial, which can be
seen as a generalization of Crapo’s formula for the classical Tutte polynomial.

Introduction

Who can imagine a simpler object than a finite list of vectors?
Nevertheless, several mathematical constructions arise from such a list X: hyper-

plane arrangements and zonotopes in geometry, box splines in numerical analysis, root
systems and parking functions in combinatorics are only some of the most well-known
examples. More recently, Holtz and Ron in [16], and Ardila and Postnikov in [1]
introduced various algebraic structures capturing a rich description of these objects.

A central role in this framework is played by the combinatorial notion of matroid,
which axiomatizes the linear dependence of the elements of X.

If the list X lies in Zn, an even wider spectrum of mathematical objects appears.
In their recent book [9], De Concini and Procesi explored (among other things) the
connection between the toric arrangement associated to such a list and the vector par-
tition function. Inspired by earlier work of Dahmen and Micchelli ([5], [6]), they view
this relation as the discrete analogue of the one between hyperplane arrangement and
multivariate spline. This approach has also surprising applications to the equivariant
index theory ([10], [11], [12]). While the spline and the hyperplane arrangement only
depend on the “linear algebra” of X, the partition function and the toric arrangement
are also influenced by its “arithmetics”.

In fact, in order to have effective inductive methods, one needs to enlarge the picture
from Zn to its possible quotients, i.e. finitely generated abelian groups.

In this paper we introduce the notion of an arithmetic matroid : this is going to be a
matroid M together with a multiplicity function m (see the definition in Section 1.3).
This object axiomatizes both the linear algebra (via the matroid) and the arithmetics
(via the multiplicity function) of a list of elements in a finitely generated abelian
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di Matematica ”Guido Castelnuovo” (Roma).

1

http://arxiv.org/abs/1105.3220v3


group. When an arithmetic matroid actually comes from such a list we will say that
it is representable.

We introduce also the notion of a dual arithmetic matroid, and show that the dual
of a representable matroid is representable. We provide an explicit construction that
extends the Gale duality to our setting (Theorem 2.2).

To every arithmetic matroid (M,m) we associate an arithmetic Tutte polynomial

M(x, y) :=
∑

A⊆X

m(A)(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A),

where X is the list of vectors of M. When the multiplicity function m is trivial (i.e.
m ≡ 1), this gives the classical Tutte polynomial of the underlying matroid M. When
(M,m) is representable, this is the polynomial defined in [23], where it is shown to have
several applications to vector partition functions, toric arrangements and zonotopes (cf.
also [4]).

For representable arithmetic matroids, the positivity of the coefficients of the asso-
ciated arithmetic Tutte polynomial was established in [23], while the understanding of
their meaning was left as an open problem.

The main result of this paper is to provide a combinatorial interpretation of the
arithmetic Tutte polynomial of any arithmetic matroid, showing in particular the pos-
itivity of its coefficients (see Theorem 7.2, and Section 5.2-5.3 for related definitions).
Our interpretation can be seen as an extension of the one given by Crapo in [3] for the
classical Tutte polynomial (see Section 3.1): in fact, when the multiplicity function is
trivial, we recover exactly Crapo’s formula.

Our combinatorial ideas have their roots in the notion of a generalized toric ar-

rangement, which provides the geometric inspiration and motivation of our work (see
Section 4).

The paper is organized in the following way.
In the first section we give the definition of an arithmetic matroid, we introduce the

notion of the dual and representability, and provide examples of both representable
(Section 1.4) and non-representable (Section 1.5) arithmetic matroids.

In the second section we prove that the dual of a representable matroid is repre-
sentable.

In the third section we introduce the arithmetic Tutte polynomial and several other
basic notions and constructions.

The fourth section provides motivational background: it is an overview on gener-
alized toric arrangements, which are the geometric counterpart of the combinatorics
developed in this paper.

This inspires and motivates the definitions given in the fifth section, in which we
introduce the main ingredients of our construction.

We then provide the combinatorial interpretation of the arithmetic Tutte polyno-
mial: in the basic case of molecules (sixth section), and in the general case (seventh
section).

Finally in the last section we make a remark on log-concavity and unimodality.
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1. Arithmetic matroids: definitions and examples

1.1. Some notation. We will use the word list as a synonymous of multiset. Hence
a list may contain several copies of the same element.

We will use set-theoretic notation such as A ⊆ X to say that A is a sublist of X,
A ∪ B to denote the merge of two sublists A,B ⊆ X, or A = ∅ to denote the empty
list. In particular with A ∩B we mean the intersection as sublist. Hence for example
if in X there are two distinct copies of the same element, one appearing only in A and
the other only in B, the intersection of the two sublists does not contain any of the
two copies, although the set-theoretic intersection contains the element. Similarly for
A \ B. By abuse of notation we sometimes denote a list with curly brackets, instead
of using the more appropriate round bracket notation.

Given a list X, P(X) is the power set of X, i.e. the set of all sublists (including the
empty list) of X.

1.2. Classical matroids. A matroid M = MX = (X, I) is a list of vectors X with a
set I ⊆ P(X), whose elements are called independent sublists, satisfying the following
axioms:

(1) the empty list is independent;
(2) every sublist of an independent sublist is independent;
(3) let A and B be two independent sublists and assume that A has more elements

than B. Then there exists an element a ∈ A \ B such that B ∪ {a} is still
independent.

A maximal independent sublist is called a basis. It easily follows from the axioms
that the collection of the bases determines the matroid structure.

The last axiom implies that all the bases have the same cardinality, which is called
the rank of the matroid.

Recall that M is equipped with a rank function rk : P(X) → N ∪ {0}, which
is defined by rk(A) := the maximal cardinality of an independent sublist of A, for
every A ∈ P(X). Notice that the independent sublists are precisely the sublists whose
cardinality equals the rank. So the rank function determines the matroid structure.

The axioms of a matroid can be given in several ways (see [26]). We state them in
terms of the rank function, since they turn out to be more suitable for our work.

A matroid M = MX = (X, rk) is a list of vectors X with a rank function rk :
P(X) → N ∪ {0} which satisfies the following axioms:

(1) if A ⊆ X, then rk(A) ≤ |A|;
(2) if A,B ⊆ X and A ⊆ B, then rk(A) ≤ rk(B);
(3) if A,B ⊆ X, then rk(A ∪B) + rk(A ∩B) ≤ rk(A) + rk(B).
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Notice in particular that the first axiom implies that rk(∅) = 0.
The dual of the matroid M = (X, I) is defined as the matroid with the same list X

of vectors, and with bases the complements of the bases of M. We will denote it by
M

∗. Notice that the rank function of M∗ is given by rk∗(A) := |A|−rk(X)+rk(X\A).
In particular the rank of M∗ is the cardinality of X minus the rank of M.

We say that v ∈ X is dependent on A ⊆ X if rk(A ∪ {v}) = rk(A), while we say
that v ∈ X is independent on A if rk(A ∪ {v}) = rk(A) + 1.

1.3. Arithmetic matroids. An arithmetic matroid is a pair (MX ,m), whereMX is a
matroid on a list of vectors X, and m is a multiplicity function, i.e. m : P(X) → N\{0}
has the following properties:

(1) if A ⊆ X and v ∈ X is dependent on A, then m(A ∪ {v}) divides m(A);
(2) if A ⊆ X and v ∈ X is independent on A, then m(A) divides m(A ∪ {v});
(3) if A ⊆ B ⊆ X and B is a disjoint union B = A ∪ F ∪ T such that for all

A ⊆ C ⊆ B we have rk(C) = rk(A) + |C ∩ F |, then

m(A) ·m(B) = m(A ∪ F ) ·m(A ∪ T ).

(4) if A ⊆ B ⊆ X and rk(A) = rk(B), then

µB(A) :=
∑

A⊆T⊆B

(−1)|T |−|A|m(T ) ≥ 0.

(5) if A ⊆ B ⊆ X and rk∗(A) = rk∗(B), then

µ∗B(A) :=
∑

A⊆T⊆B

(−1)|T |−|A|m(X \ T ) ≥ 0.

When B = X we will denote µB(A) and µ
∗
B(A) by µ(A) and µ

∗(A) respectively.
We will discuss further these axioms in Remarks 3.2 and 3.6.

Remark 1.1. The idea of enriching the matroid structure with a multiplicity function
was hinted in [23]. However no axioms were given for this function, so the concept
remained vague. We have chosen the name “arithmetic matroid” to avoid confusion
with previous constructions, and to emphasize the meaning of the multiplicity function.

By abuse of notation, we sometimes denote by M both the arithmetic matroid and
its underlying matroid.

We define the dual of an arithmetic matroid (MX ,m) as the pair (M∗
X ,m

∗), where
M

∗
X is the dual of MX , and for all A ⊆ X we set m∗(A) := m(X \ A). The following

lemma shows that this is in fact an arithmetic matroid.

Lemma 1.2. The dual of an arithmetic matroid is an arithmetic matroid.

Proof. We need to show that m∗ is a multiplicity function. It is immediate to check
that the axioms (1) and (2) are dual to each others, i.e. the axiom (2) is equivalent to

(1∗) if A ⊆ X and v ∈ X is independent on A in the dual, i.e. rk∗(A ∪ {v}) =
rk∗(A) + 1, then m∗(A) divides m∗(A ∪ {v}),

while axiom (1) is equivalent to

(2∗) if A ⊆ X and v ∈ X is dependent on A in the dual, i.e. rk∗(A∪{v}) = rk∗(A),
then m∗(A ∪ {v}) divides m∗(A).
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So clearly they are both satisfied in the dual.
The same is clearly true for axioms (4) and (5).
To check the third axiom, we notice that it is in fact “self-dual”. More precisely, let

A ⊆ B ⊆ X and B be a disjoint union B = A ∪ F ∪ T such that for all A ⊆ C ⊆ B
we have rk∗(C) = rk∗(A) + |C ∩ F |. Notice that for C := B this implies rk∗(B) =
rk∗(A) + |F |, i.e.

|B| − rk(X) + rk(X \B) = |A| − rk(X) + rk(X \ A) + |F |

or

(1.1) rk(X \A) = rk(X \B) + |B| − |A| − |F | = rk(X \B) + |T |.

Also, X \ A is a disjoint union X \A = (X \B) ∪ T ∪ F . For A ⊆ C ⊆ B, we have
(X\B) ⊆ (X\C) ⊆ (X\A). We want to show that rk(X\C) = rk(X\B)+|(X\C)∩T |,
so that we are in the hypothesis of axiom (3), and therefore we get

m∗(A) ·m∗(B) = m(X \ A) ·m(X \B)

(by axiom (3)) = m((X \B) ∪ F ) ·m((X \B) ∪ T )

= m((X \B) ∪ (X \ (X \ F ))) ·m((X \B) ∪ (X \ (X \ T )))

= m(X \ (B ∩ (X \ F ))) ·m(X \ (B ∩ (X \ T )))

= m(X \ (A ∪ T )) ·m(X \ (A ∪ F ))

= m∗(A ∪ T ) ·m∗(A ∪ F ).

We have

|C| − rk(X) + rk(X \ C) = rk∗(C)

= rk∗(A) + |C ∩ F |

= |A| − rk(X) + rk(X \ A) + |C ∩ F |,

and this implies

rk(X \ C) = rk(X \A) + |A|+ |C ∩ F | − |C|

= rk(X \A)− |C ∩ T |

(by (1.1)) = rk(X \B) + |T | − |C ∩ T |

= rk(X \B) + |(X \ C) ∩ T |,

as we wanted. �

Remark 1.3. Notice that setting m(S) = 1 for all the sublists S ⊆ X of vectors in a
matroid we get trivially a multiplicity function, and hence a structure of an arithmetic
matroid. In this case we call m trivial. In fact this multiplicity function does not add
anything to the matroid structure. In this sense the notion of an arithmetic matroid
can be seen as a generalization of the one of a matroid. Of course there are more
interesting examples.
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1.4. The main example. The prototype of an arithmetic matroid (which in fact
inspired our definition) is the one that we are going to associate now to a finite list
X of elements of a finitely generated abelian group G. We recall that such a group is
isomorphic to Gf ⊕Gt, where Gt is the torsion subgroup of G, which is finite, and Gf
is free abelian, i.e it is isomorphic to Zr for some r ≥ 0. Notice that in general we have
many choices for Gf , while Gt is intrinsically defined.

Given a sublist A ⊆ X, we will denote by 〈A〉 the subgroup of G generated by the
underlying set of A.

We define the rank of a sublist A ⊆ X as the maximal rank of a free (abelian)
subgroup of 〈A〉. This defines a matroid structure on X.

For A ∈ P(X), let GA be the maximal subgroup of G such that 〈A〉 ≤ GA and
|GA : 〈A〉| <∞, where |GA : 〈A〉| denotes the index (as subgroup) of 〈A〉 in GA. Then
the multiplicity m(A) is defined as m(A) := |GA : 〈A〉|.

Since we are interested in the multiplicities, clearly we can always assume (and we
will do it) that 〈X〉 has finite index in G: otherwise we just replace G by GX , i.e. the
maximal subgroup of G in which 〈X〉 has finite index.

Notice that m(∅) equals the cardinality of Gt. In particular m(∅) = 1 if and only if
G is free abelian.

We need to check that the function m that we just defined is a multiplicity function.
The first axiom is easy to check. We already observed that the second axiom for m
is just the first axiom for the dual. Hence it would follow from the first one if we can
realize the dual arithmetic matroid as a list of elements in a finitely generated group
as we just did. This is the content of the next section.

The third axiom for m is proved in the following lemma.

Lemma 1.4. Given two lists A and B of elements of G such that A ⊆ B, and let

B be the disjoint union B = A ∪ T ∪ F such that for every A ⊆ C ⊆ B we have

rk(C) = rk(A) + |C ∩ F |. Then

m(A) ·m(B) = m(A ∪ T ) ·m(A ∪ F ).

Proof. We take the chance here to fix some notation and make some general remark
that we will use later in this work.

Recall that for any subgroup H of G we have H = Hf ⊕Ht, where Ht is the torsion
subgroup of H, and Hf is free abelian. We will call GH the maximal subgroup of G
in which H has finite index. Notice that GH = (GH)f ⊕Gt.

Remark 1.5. Let G be a finitely generated abelian group, H ≤ G a subgroup. With
the notation above we have G = Gf⊕Gt and H = Hf⊕Ht, where necessarily Ht ≤ Gt.
Notice that, since by the isomorphism theorem

H +Gt
Gt

∼=
H

H ∩Gt
=
H

Ht

∼= Hf ,

we can choose a suitable H ′
f ≤ Gf such that H + Gt = H ′

f ⊕ Gt, for which we must
have

H ′
f
∼=
H ′
f ⊕Gt

Gt
=
H +Gt
Gt

∼= Hf .

6



But again by the isomorphism theorem

G

H +Gt
∼=

G/Gt
(H +Gt)/Gt

=
(Gf ⊕Gt)/Gt
(H ′

f ⊕Gt)/Gt
∼=
Gf
H ′
f

and
H +Gt
H

∼=
Gt

H ∩Gt
=
Gt
Ht
,

so

|G : H| = |G : H +Gt| · |H +Gt : H| = |Gf : H ′
f | · |Gt : Ht|.

Therefore, as long as we are interested in the multiplicities, eventually replacing H =
Hf ⊕Ht by H

′ := H ′
f ⊕Ht, we can always assume (and we will do it) that Hf ⊆ Gf .

Given a list S ⊆ X, we will write GS for G〈S〉. Notice also that by definition, rk(S)
is the rank of 〈S〉f (as free abelian group), and m(S) = |GS : 〈S〉|. Moreover, for
S ⊆ X, we let (cf. Remark 1.5) 〈S〉f ⊆ (GS)f , so that we have

m(S) = |GS : 〈S〉| = |(GS)f ⊕Gt : 〈S〉f ⊕ 〈S〉t|

= |(GS)f : 〈S〉f | · |Gt : 〈S〉t|.

Observe that if U ⊆ V ⊆ X and rk(U) = rk(V ), then GU = GV .
By the isomorphism theorem we have

〈B〉/〈A ∪ F 〉 ∼= 〈A ∪ T 〉/(〈A ∪ T 〉 ∩ 〈A ∪ F 〉).

Claim. It follows by our assumptions that 〈A ∪ T 〉 ∩ 〈A ∪ F 〉 = 〈A〉.

proof of the Claim. We will prove the two inclusions.
Let g ∈ 〈A ∪ T 〉 ∩ 〈A ∪ F 〉, so

g =
∑

a∈A

αaa+
∑

t∈T

βtt =
∑

a∈A

γaa+
∑

f∈F

δff

where the α’s, β’s, γ’s and δ’s are integers.
Let F ′ ⊆ F be the subset of F for which the corresponding coefficients δ’s are

nonzero. If F ′ = ∅, then g =
∑

a∈A γaa ∈ 〈A〉.
If F ′ 6= ∅, then, letting C := A ∪ F ′ we have by assumption

rk(C) = rk(A) + |F ′|.

But ∑

f∈F ′

δff =
∑

f∈F

δff =
∑

a∈A

αaa+
∑

t∈T

βtt−
∑

a∈A

γaa ∈ 〈A ∪ T 〉

and rk(A ∪ T ) = rk(A) (just set C := A ∪ T ), therefore

rk(C) ≤ rk(A) + |F ′| − 1,

a contradiction.
The other inclusion is obvious. �
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So we have

(1.2) 〈B〉/〈A ∪ F 〉 ∼= 〈A ∪ T 〉/〈A〉.

Observing that rk(B) = rk(A ∪ F ) and rk(A ∪ T ) = rk(A), we have

m(A ∪ F )

m(B)
=

|GA∪F : 〈A ∪ F 〉|

|GB : 〈B〉|
=

|GB : 〈A ∪ F 〉|

|GB : 〈B〉|

= |〈B〉 : 〈A ∪ F 〉|

(by (1.2)) = |〈A ∪ T 〉 : 〈A〉|

=
|GA : 〈A〉|

|GA : 〈A ∪ T 〉|
=

|GA : 〈A〉|

|GA∪T : 〈A ∪ T 〉|

=
m(A)

m(A ∪ T )
,

as we wanted.
This completes the proof of the lemma. �

The fourth axiom form is a consequence of Lemma 4.1 (see Section 4 for the relevant
definitions): for A ⊆ B and rk(A) = rk(B), we have that µB(A) equals the number of
connected components of

HA \
⋃

B⊇T)A

HT .

Therefore it is clearly nonnegative.
The fifth axiom for m is the dual of the fourth one, and again it will follow from the

realization of the dual arithmetic matroid by a list of elements in a finitely generated
abelian group, which is proved in the next section.

1.5. Representability. We recall that a (classical) matroid is said to be representable
in characteristic 0 or 0-representable if it is realized by a list of vectors in Rn.

We say that an arithmetic matroid is representable if it is realized by a list of elements
in a finitely generated abelian group.

By “realized” we mean that the rank and the multiplicity functions are defined as
in the Example 1.4.

We say that an arithmetic matroid is:

• 0-representable if its underlying matroid is;
• torsion-free if m(∅) = 1;
• GCD if its multiplicity function satisfies the GCD rule:
m(A) equals the greatest common divisor (GCD) of the multiplicities of the
maximal independent sublists of A, i.e.

m(A) := GCD({m(B) | B ⊆ A and |B| = rk(B) = rk(A)}).

Remark 1.6. If an arithmetic matroid is representable, then it is clearly 0-representable
(just tensor with the rational numbers Q). Moreover, if it is also torsion-free, then it
is easily seen to be GCD (cf. Remark 2.3).

This provides two classes of examples of non-representable arithmetic matroids:

8



Example 1.7. Let M be non-0-representable. For example, consider the Fano matroid,
i.e. the matroid defined by the 7 nonzero elements of F3

2, where F2 is the field with
two elements. Then every multiplicity function (e.g. the trivial one) will make it into
a non-representable arithmetic matroid.

Example 1.8. Let us take X = {a, b, c} and define M as the matroid on X having
bases {a, b}, {b, c} and {a, c} . Clearly, M is realized by three non-collinear vectors
in a plane. Now set the multiplicities of the bases to be 2 and all the others to be
1. It is easy to check that this is an arithmetic matroid, but it is not GCD, since
m(X) = 1 6= 2. Hence it is not representable.

2. Representability of the dual

In this section we prove that the dual of a representable arithmetic matroid is still
representable. Our construction gives an extension of the Gale duality [14] to our
setting.

Consider an arithmetic matroid M represented by a list X of elements of a finitely
generated abelian group G. We are looking for a finitely generated abelian group G′

and a finite list X ′ of its elements representing the matroid M
∗.

Remark 2.1. Notice that of course we need to have |X| = |X ′|. Also, the rank of M∗

must be |X| minus the rank of M.

We start with a presentation of our finitely generated abelian group G as Zr ⊕
(Z/d1Z) ⊕ (Z/d2Z) ⊕ · · · ⊕ (Z/dsZ), where di divides di+1 for i = 1, 2, . . . , s − 1. It
is well known that such a presentation exists and it is unique up to isomorphism.
We realize this presentation as a quotient Zr+s/〈Q〉, where Q is the list of vectors
q1, q2, . . . , qs ∈ Zr+s, where qi has di in the (r + i)-th position, and 0 elsewhere. We
remember the order in which the elements of the list Q are given.

Now a finite list X ⊆ G is given by a list of cosets X = {v1, v2, . . . , vk}, where of
course with vi we denote the coset vi + 〈Q〉 for vi ∈ Zr+s. We choose representatives
vi ∈ Zr+s for the cosets, which are determined up to linear combinations of elements

from Q. We set X̃ := {v1, v2, . . . , vk} a list of elements in Zr+s. Also in this case we

remember the order in which the elements of X̃ are given.

Hence we consider the (r + s) × (k + s) matrix [X̃ ⊔ Q], whose columns are the

elements from X̃ in the given order first and from Q in the given order next. We call

(X̃Q)t the list of its rows in the given order from top to bottom, which are vectors in

Zk+s. Hence we set G′ := Zk+s/〈(X̃Q)t〉, and X ′ := {e1, e2, . . . , ek} will be the list of
cosets in G′, where as usual ei ∈ Zk+s denotes the vector with 1 in the i-th position
and 0 elsewhere.

We call (M′,m′) the arithmetic matroid associated to the pair (G′,X ′).
We denote {1, 2, . . . , k} by [k], and for S ⊆ [k] we denote by Sc its complement in

[k], and we set vS := {vi ∈ X | i ∈ S} and eS := {ei ∈ X ′ | i ∈ S}.
The main result of this section is the following theorem.

Theorem 2.2. The bijection eS ↔ vS for S ⊆ [k] is an isomorphism of arithmetic

matroids between M
′ and M

∗, i.e. it preserves both the rank and the multiplicity

functions.
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Proof. We start with some easy observations. Take a sublist A ⊆ X̃ of elements of
Zr+s, and set A := {a | a ∈ A} ⊆ X a list of elements of G. Then 〈A ∪Q〉/〈Q〉 ∼= 〈A〉,
where on the left we are taking subgroups in Zr+s, while on the right we are taking a
subgroup of G. Hence the rank of A will be the same as the rank of 〈A∪Q〉 minus the
rank of 〈Q〉.

Moreover, the multiplicity of A in G is the same as the multiplicity of A∪Q in Zr+s.
In fact let 〈T 〉/〈Q〉 be the maximal subgroup of G in which 〈A〉 has finite index, where
T ⊆ Zr+s. Then

|〈T 〉/〈Q〉 : 〈A ∪Q〉/〈Q〉| = |〈T 〉 : 〈A ∪Q〉|

and 〈T 〉 is clearly the maximal subgroup of Zr+s in which 〈A ∪Q〉 has finite index.

Of course analogous observations apply to the sublists of G′, with (X̃Q)t in place of
Q.

So to compute the ranks and the multiplicities of lists of elements in G or G′ (which
is what we need to do if we want to check that our map is an isomorphism of arithmetic
matroid) we can reduce ourself to compute them in Zr+s or Zk+s respectively.

Remark 2.3. Notice also that in Zm, to compute the multiplicity of a list of elements, it
is enough to see the elements as the columns of a matrix, and to compute the greatest
common divisor of its minors of order the rank of the matrix (cf. [28, Theorem 2.2]).

We introduce a useful notation: given a list Y of vectors in Zm given in some order,
we denote by [Y ] the matrix whose columns are the elements of Y in the given order.

Given S ⊆ [k], we want to compute the rank of eS. Following our observations, first

we want to compute the rank of [eS ⊔ (X̃Q)t], where eS := {ei | i ∈ S} and this is the
matrix whose columns are the elements of eS in some order first and the elements of
(X̃Q)t in the given order next.

Notice that the matrix [eS ⊔ (X̃Q)t] looks like



[eS ] [X̃]t

0 · · · 0
...

...
0 · · · 0

[Q]t




where the upper t denotes the transpose of the matrix.

So the rank of [eS ⊔ (X̃Q)t] will be |S| (looking at the |S| rows indexed by S) plus
the rank of vSc ∪Q (looking at the other rows), where vSc := {vi | i ∈ Sc}. But as we
already observed the rank of eS is the same as the rank that we just computed minus

the rank of [(X̃Q)t], which is the rank of X̃ ∪Q. Hence we just showed that the rank
of eS is

|S| − rk(X̃ ∪Q) + rk(vSc ∪Q) = |S| − (rk(X̃ ∪Q)− rk(Q)) + (rk(vSc ∪Q)− rk(Q)).

As we already observed rk(X̃ ∪Q)− rk(Q) and rk(vSc ∪Q)− rk(Q) are the ranks of
X and vSc = X \ vS in the original matroid, hence the rank of eS is precisely the rank
of vS in the dual.

Let us compute the multiplicity of eS. Using Remark 2.3, we have to compute the

greatest common divisor of the minors of maximal rank in the matrix [eS ⊔ (X̃Q)t].

10



Notice that any nonzero minor of maximal order must involve all the rows indexed by
S, otherwise we can clearly get a nonzero minor of higher order using the missing rows.
But a nonzero minor of maximal order involving the rows indexed by S is clearly plus
or minus a nonzero minor of maximal order in the matrix [vSc ∪ Q]. But those are
exactly the minors that we use to compute the multiplicity of vSc .

This proves that m′(eS) = m(vSc) = m∗(vS), completing the proof of the theorem.
�

This completes the proof that the “main example” (Section 1.4) gives indeed an
arithmetic matroid.

3. Arithmetic Tutte polynomial and deletion-contraction

3.1. The classical Tutte polynomial. TheTutte polynomial TX(x, y) = T (MX ;x, y)
of the matroid MX = (X, rk) is defined (in [31]) as

TX(x, y) :=
∑

A⊆X

(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A).

From the definition it is clear that TX(1, 1) is equal to the number of bases of the
matroid.

Although it is not clear from the definition, the coefficients of the Tutte polynomial
are positive, and they have a nice combinatorial interpretation. In fact, the Tutte
polynomial embodies two statistics on the list of the bases called internal and external

activity.
Let us fix a total order on X, and let B be a basis extracted from X.
We say that v ∈ X \ B is externally active on B if v is dependent on the list of

elements of B following it (in the total order fixed on X). We say that v ∈ B is
internally active on B if v is externally active on the complement Bc := X \B in the
dual matroid (where Bc is a basis).

The number e(B) of externally active elements is called the external activity of B,
while the number i(B) = e∗(Bc) of internally active elements is called the internal

activity of B.
The following result is proved in [3].

Theorem 3.1 (Crapo).

TX(x, y) =
∑

B⊆X
Bbasis

xe
∗(Bc)ye(B).

Hence the coefficients of TX(x, y) count the number of bases having given internal
and external activities.

3.2. Arithmetic Tutte polynomial. Following [23], we associate to an arithmetic
matroid MX its arithmetic Tutte polynomial MX(x, y) =M(MX ;x, y) defined as

(3.1) MX(x, y) :=
∑

A⊆X

m(A)(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A).

11



This polynomial has many applications. In particular it encodes much combinatorial
information on toric arrangements (as we will recall in Section 4), on zonotopes ([4]),
and on Dahmen-Micchelli spaces ([23], [6], [5]; see also [9], [17], [19] for related topics).

It has been shown in [23] that if MX is representable, the coefficients of this poly-
nomial are positive.

Our main goal will be to give a combinatorial interpretation of this polynomial for
any arithmetic matroid. By doing this, we will also extend the positivity result.

But before that, we want to discuss briefly the connection between the axioms that
we gave for an arithmetic matroid and this polynomial.

Remark 3.2. We make some remark on the independence of the axioms of a multiplicity
function.

Consider the matroid on X1 = {t}, where rk(X1) = 0. Setting m(X1) = 2 and
m(∅) = 3, we have that m satisfies all the axioms of a multiplicity function, except the
first one.

Consider the matroid on X2 = {f}, where rk(X2) = 1. Setting m(X2) = 3 and
m(∅) = 2, we have that m satisfies all the axioms of a multiplicity function, except the
second one.

The next two examples were suggested to us by Petter Brändén.
Consider the matroid on X3 = {f, t}, where rk({f}) = rk({f, t}) = 1 and rk({t}) =

rk(∅) = 0, i.e. {f} is the only basis. Setting m({f}) = m({f, t}) = m(∅) = 2 and
m({t}) = 1 we have thatm satisfies all the axioms of a multiplicity function, except the
third one. Moreover, applying formula (3.1) we would get MX3

(x, y) = x+ y+ xy− 1.
Consider the matroid on X4 = {t1, t2, t3, t4}, where rk(X4) = 0. Setting m(∅) = 4,

m({ti}) = 2 for i = 1, 2, 3, 4, and m equal one for all the other sublists, we have that
m satisfies all the axioms of a multiplicity function, except the fourth one. Moreover,
applying formula (3.1) we would get MX4

(x, y) = y4 + 4y − 1.
Consider the matroid on X5 = {f1, f2, f3, f4}, where rk(A) = |A| for all A ⊆ X,

i.e. X5 is the only basis. Setting m(X5) = 4, m(A) = 2 for A ⊆ X and |A| = 3,
and m equal one for all the other sublists, we have that m satisfies all the axioms of a
multiplicity function, except the fifth one. Moreover, applying formula (3.1) we would
get MX5

(x, y) = x4 + 4x− 1.
Summarizing, each of the axioms of a multiplicity function is independent on the

other ones. Moreover, even dropping only axiom (3) or only axiom (4) or only axiom
(5) we can get an arithmetic Tutte polynomial with negative coefficients. In this sense,
without those axioms we would get a “non-combinatorial” object.

3.3. Deletion and contraction. We introduce two fundamental constructions. Re-
call that given a matroid MX and a vector v ∈ X, we can define the deletion of MX as
the matroid MX1

, whose list of vectors is X1 := X \ {v}, and whose independent lists
are just the independent lists of MX contained in X1. Notice that the rank function
rk1 of MX1

is just the restriction of the rank function rk of MX .
Given an arithmetic matroid (MX ,m) and a vector v ∈ X, we define the deletion

of (MX ,m) as the arithmetic matroid (MX1
,m1), where MX1

is the deletion of MX

and m1(A) := m(A) for all A ⊆ X1 = X \ {v}. It is easy to check that this is in fact
an arithmetic matroid.

12



Recall that given a matroid MX and a vector v ∈ X, we can define the contraction

of MX as the matroid MX2
, whose list of vectors is X2 := X \ {v}, and whose rank

function rk2 is given by rk2(A) := rk(A ∪ {v}) − rk({v}), where of course rk is the
rank function of MX .

Given an arithmetic matroid (MX ,m) and a vector v ∈ X, we define the contraction
of (MX ,m) as the arithmetic matroid (MX2

,m2), whereMX2
is the contraction of MX

and m2(A) := m(A ∪ {v}) for all A ⊆ X2 = X \ {v}. It is easy to check that this is in
fact an arithmetic matroid.

Example 3.3. If an arithmetic matroid (MX ,m) is represented by a listX of elements of
G, it is easy to check that the deletion corresponds to the arithmetic matroid (MX1

,m1)
of the sublist X1 := X \ {v}, while the contraction corresponds to the arithmetic
matroid (MX2

,m2) of the list X := {a+ 〈v〉 | a ∈ X \ {v}} of cosets in G/〈v〉.

Observe that the deletion of v ∈ X in MX corresponds to the contraction of v ∈ X
in M

∗
X , and viceversa the contraction of v ∈ X in MX corresponds to the deletion of

v ∈ X in M
∗
X .

3.4. Free, torsion, and proper vectors. Given an element v ∈ X, we denote by
rk1 and rk2 the rank function of the deletion and the contraction by v respectively.

We say that v ∈ X is:

• free if both rk1(X \ {v}) = rk(X \ {v}) = rk(X) − 1 and rk2(X \ {v}) =
rk(X)− 1;

• torsion if both rk1(X \ {v}) = rk(X) and rk2(X \ {v}) = rk(X);
• proper if both rk1(X \ {v}) = rk(X) and rk2(X \ {v}) = rk(X) − 1.

Observe that any vector of a matroid is of one and only one of the previous three
types.

Example 3.4. If we look at the arithmetic matroid represented by a list X of elements
of G, the torsion vectors are precisely the torsion elements in the algebraic sense, while
a free vector will be an element of G which is not torsion and such that the sum
〈X \ {v}〉 ⊕ 〈v〉 is direct.

Remark 3.5. A vector is free in a matroid if and only if it is torsion in its dual. While
a vector is proper in a matroid if and only if it is proper in its dual.

Moreover, suppose that v and w are two distinct vectors, and we make a deletion
with respect to w. If v is free or torsion, then it is again free or torsion respectively
in the deletion matroid. While if v is proper, then it can be proper or free, but not
torsion in the deletion matroid.

Dually, if we make a contraction with respect to w, then if v is free or torsion, then
it is again free or torsion respectively in the contraction matroid. While if v is proper,
then it can be proper or torsion, but not free in the contraction matroid.

3.5. Molecules. We define a molecule as an arithmetic matroid that does not have
proper vectors.

Hence a molecule will be given by a list of the form X = {f1, f2, . . . , fr, t1, t2, . . . , ts},
where the fi’s are free vectors, and the tj’s are torsion vectors.

Notice that by Remark 3.5 the dual of a molecule is still a molecule.
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Remark 3.6. Notice that in the assumption of axiom (3) of a multiplicity function, we
are simply asking that if we do the deletion of the elements of X\B and the contraction
of the elements of A we are left with a molecule, whose only basis is going to be F .

Looking at the underlying matroid, a molecule consists of a (unique) basis plus a
bunch of rank 0 elements. For example, in the 0-representable case, the latter ones
would just correspond to a bunch of zeros.

The classical Tutte polynomial of such a matroid turns out to be very simple: for
our X it would correspond to the monomial xrys, where r is the rank of the matroid,
and s is the number of rank 0 elements.

In fact, by deletion-contraction, one can reduce the computation of the classical
Tutte polynomial (but also the proof of several properties of a matroid) to the singletons
(which are necessarily torsion or free), which are usually called the atoms of the matroid
(this justifies our molecules).

But we will see that the arithmetic Tutte polynomial of a molecule is not so simple.
In fact, we will give our combinatorial interpretation first in the case of molecules.
Then we will extend it to the general case. Indeed, to prove the general case, we will
apply recursively deletion-contraction for all the proper vectors, reducing ourselves to
the molecules.

3.6. Direct sum. Given two matroids MX1
= (X1, I1) and MX2

= (X2, I2), we can
form their direct sum: this will be the matroid MX = MX1

⊕MX2
whose list of vectors

is the disjoint union X := X1⊔X2, and where the independent lists will be the disjoint
unions of lists from I1 with lists from I2. Hence for any sublist A ⊆ X, the rank
rk(A) of A will be the sum of the rank rk1(A ∩X1) of A ∩X1 in MX1

with the rank
rk2(A ∩X2) of A ∩X2 in MX2

.
If the two matroids are 0-representable in two vector spaces V1 and V2 respectively,

the direct sum matroid corresponds of course to the matroid of the list X := X1 ⊔X2

in the direct sum V1 ⊕ V2, with the obvious identification of the the subspaces V1 and
V2.

It follows immediately from the definition of the Tutte polynomial that in this case

TX(x, y) = TX1
(x, y) · TX2

(x, y).

Given two arithmetic matroids (MX1
,m1) and (MX2

,m2) we define their direct sum
as the arithmetic matroid (MX ,m), where MX := MX1

⊕ MX2
, and for any sublist

A ⊆ X = X1 ⊔X2, we set m(A) := m1(A ∩X1) ·m2(A ∩X2). It is easy to check that
this is indeed an arithmetic matroid.

Again, it is clear from the definition of the arithmetic Tutte polynomial that in this
case

MX(x, y) =MX1
(x, y) ·MX2

(x, y).

If the two arithmetic matroids are represented by a list X1 of elements of a group
G1 and a list X2 of elements of a group G2, then, with the obvious identifications,
X := X1 ⊔ X2 is a list of elements of the group G := G1 ⊕ G2, and the arithmetic
matroid associated to this list is exactly the direct sum of the two.

Example 3.7. Consider a molecule given by a list X = {f1, f2, . . . , fr, t1, t2, . . . , ts} of
elements of a group G = Gf ⊕Gt, where the fi’s are free and the tj’s are torsion. In
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this case, up to changing some fi by adding some element of Gt (cf. Remark 1.5),
we can assume {f1, f2, . . . , fr} ⊆ Gf . Then we can regard this as a direct sum of the
arithmetic matroid associated to the list Xf := {f1, f2, . . . , fr} of elements of Gf and
Xt := {t1, t2, . . . , ts} of elements of Gt.

Hence in this case

MX(x, y) =MXf
(x, y) ·MXt(x, y).

4. Geometry of the generalized toric arrangement

The aim of this section is to explain the geometrical ideas underlying the combina-
torial concepts studied in this paper, and motivating them. A reader only interested in
the combinatorics may skip this section without affecting the comprehension of what
follows.

4.1. Generalized tori. Let G = Gf ⊕Gt be a finitely generated abelian group, where
Gt denotes the torsion subgroup of G, and Gf is some free abelian group, and define

T (G) := Hom(G,C∗).

T (G) has a natural structure of abelian linear algebraic group. In fact it is the direct
sum of a complex torus T (Gf ) (whose dimension is the rank as free abelian group of
Gf ) and of the finite group T (Gt) dual to Gt (and isomorphic to it). Topologically,
this is the disjoint union of |Gt| copies of the torus T (Gf ).

Moreover, G is identified with Hom(T (G),C∗), the group of characters of T (G):
indeed given λ ∈ G and t ∈ T (G) = Hom(G,C∗) we set

λ(t) := t(λ).

In the same way, we can define

TR(G) := Hom(G,S1)

where we set S1 := {z ∈ C | |z| = 1}. Then TR(G) has a natural structure of abelian
compact real Lie group, having G as its group of characters. Again, G is identified with
Hom(T (G),S1). In fact the functor Hom( · ,S1) gives rise to the so-called Potryagin

duality.
When it is not ambiguous, we will denote T (G) by T and TR(G) by TR.

4.2. Generalized toric arrangements. Let X ⊆ G be a finite list, spanning a finite
index subgroup of G. The kernel of every character λ ∈ X is a subvariety in T (G):

Hλ :=
{
t ∈ T | λ(t) = 1

}
.

More precisely, Hλ is the union of a bunch of connected components of T (G) if the
rank of {λ} is zero, and a (not necessarily connected) hypersurface of T (G) if the rank
of {λ} is one.

The collection T (X) = {Hλ | λ ∈ X} is called the generalized toric arrangement

defined by X on T .
We denote by R(X) the complement of the arrangement in T :

R(X) := T \
⋃

λ∈X

Hλ.
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We also denote by C(X) the set of all the connected components of all the intersections
of the subvarieties Hλ, ordered by reverse inclusion and having as minimal elements
the connected components of T .

Of course we will have similar definitions for TR. We will denote with a subscript
“R” these real counterparts (e.g. R(X)R).

In particular, when G is free, T is a torus and T (X) is called the toric arrangement

defined by X. Such arrangements have been studied for instance in [8], [22], [13].
In particular, the complement R(X) has been described topologically in [25], [7] and
geometrically in [24]. In this description the poset C(X) plays a major role, analogous
to that of the intersection poset for hyperplane arrangements (see [8], [24])

4.3. Relations with the arithmetic Tutte polynomial. In this subsection we
recall some facts, which were proved in [23].

Given A ⊆ X let us define

HA :=
⋂

λ∈A

Hλ.

The following fact is a simple consequence of Pontryagin duality:

Lemma 4.1. m(A) is equal to the number of connected components of HA.

Then the arithmetic Tutte polynomial is deeply related with generalized toric ar-
rangements, and in fact it was introduced to study them. We recall some results from
[23].

Theorem 4.2. (1) The number of connected components of R(X)R is MX(1, 0).

(2) the Poincaré polynomial of R(X) is qnMX

(
2q+1
q , 0

)
.

(3) the characteristic polynomial of C(X) is (−1)nMX(1− q, 0).

Since rank(Gf ) = dim(T ), the maximal (in the reverse order!) elements of C(X)
are 0-dimensional, hence (since they are connected) they are points. We denote by
C0(X) the set of such elements, which we call the points of the arrangement. For every
p ∈ C0(X), let us define

Xp := {λ ∈ X|p ∈ Hλ} .

Then we have:

Lemma 4.3.

MX(1, y) =
∑

p∈C0(X)

TXp(1, y).

This lemma will be the starting point of our combinatorial interpretation, as we will
explain in the next section.

5. Towards the combinatorial interpretation

5.1. General considerations. We want to give a combinatorial interpretation of the
arithmetic Tutte polynomial. Let us look at a very easy but already nontrivial example.
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Example 5.1. Consider the list

X = {v1 := (1, 1), v2 := (1,−1)} ⊆ Z2.

In this case we only have two free vectors, which together form the only basis of
the matroid MX . Here the multiplicity function is given by m(X) = 2 and m(∅) =
m({v1}) = m({v2}) = 1.

If we compute the polynomial MX(x, y) using the defining formula we get

MX(x, y) = x2 + 1.

Notice that the dual matroid M
∗
X is a rank 0 matroid, whose only basis is the empty

list. Moreover in the dual arithmetic matroid (M∗
X ,m

∗) the empty list has multiplicity
2.

We start our analysis with some general considerations. First of all we observe
that specializing at x = 1 and y = 1 the polynomial MX(x, y) we get the sum of the
multiplicities of the bases of the matroid. Notice also that the bases in the matroid MX

correspond bijectively with the bases of M∗
X under the involution of complementing

with respect to X, and in fact by definition the multiplicity of a basis in (MX ,m) is
the same as the multiplicity of the complement in the dual (M∗

X ,m
∗).

Hence, keeping in mind what Crapo did with the Tutte polynomial, it is natural
to try to interpret the polynomial MX(x, y) as a sum over the bases counted with
multiplicity of monomials in y and x, whose exponents give some statistics on the
basis and its complement (in the dual) respectively.

Already in the very simple Example 5.1 we see one of the difficulties of our task: in
this example we only have one basis counted with multiplicity 2 both in (MX ,m) and
in (M∗

X ,m
∗), but the two monomials are distinct!

The problem here is that the monomials of MX(x, y) are counted by a list and not
just a set. Moreover, apparently for identical elements of the list the statistic may
differ.

It turns out that a key ingredient for the understanding of the combinatorics behind
the polynomialMX(x, y) is a suitable list of maximal rank sublists of X. The geometric
considerations exposed in the previous section suggested us to look at them in the first
place.

5.2. Two fundamental lists. Starting with our arithmetic matroid (MX ,m), we
construct a list LX of maximal rank sublists of X in the following way.

To every maximal rank sublist S of X we associate the nonnegative (axiom (4))
integer

µ(S) :=
∑

T⊇S

(−1)|T |−|S|m(T ).

Then the list LX is defined as the list in which each maximal rank sublist S appears
µ(S) many times.

Notice that if we extract the bases from our list LX , each basis B will show up exactly
m(B) times: in fact, by inclusion-exclusion, each basis B will appear

∑
µ(T ) = m(B)

times, where the sum is taken over the sublists T that contain B.
Dually, we construct the list L∗

X in the same way from the dual arithmetic matroid
(M∗

X ,m
∗).
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Example 5.2. We consider again the Example 5.1. In this case we have LX = (X,X),
while L∗

X = (X, ∅).

We introduce the following notation. The list of pairs (B,T ), where B is a basis,
B ⊆ T and T ∈ LX , counted with multiplicity µ(T ), will be denoted by B. The
corresponding list in the dual will be denoted by B∗.

5.3. Local external activity. We already observed that the multiplicity of the basis
B in MX is the same as the multiplicity of the basis Bc in M

∗
X . So it is now natural

to interpret the polynomial MX(x, y) as a sum over the elements of B of monomials in
x and y:

For every such pair (B,T ) we define the statistic e(B,T ) to be the local external

activity of the basis B in the list T , i.e. the number of elements of T \ B that are
externally active on B. Notice that the torsion elements of T are always active (if
you don’t want to deal with the empty list, this is a convention). Dually, we define

e∗(Bc, T̃ ) in the same way for the basis Bc in the dual and Bc ⊆ T̃ ∈ L∗
X .

More explicitly we would like to see MX(x, y) as
∑
xe

∗(Bc,T̃ )ye(B,T ).

Example 5.3. We consider again the Example 5.1. In this case we have two identical
pairs (X,X) in the original arithmetic matroid, where obviously e(X,X) = 0, while
in the dual we have two distinct pairs (∅,X) and (∅, ∅), where e∗(∅,X) = 2 and
e∗(∅, ∅) = 0.

In fact in this case the polynomial MX(x, y) is x
2 + 1.

Remark 5.4. This definition of local external activity is motivated by Lemma 4.3.
Indeed, this lemma tells us that the exponents of y are the external activities of the

bases computed in the lists Xp, hence they are the local external activities e(B,T ).
Therefore, at least for a representable arithmetic matroid, we have:

MX(1, y) =
∑

(B,T )∈B

ye(B,T ).

Furthermore, since the dual of a representable matroid is still representable, we have
a dual toric arrangement. The same considerations then allow to conclude that

MX(x, 1) =
∑

(Bc,T̃ )∈B∗

xe
∗(Bc,T̃ ).

In order to conclude our construction we need to face a nontrivial problem.

5.4. The matching problem. The problem here is again that we have a list of pairs
and not just a set. So a pair (B,T ) can appear several times, as we have seen in the

example above, and it needs to be matched with a suitable pair (Bc, T̃ ). In the last
example we didn’t have the problem of the matching since the statistic for the y was
always 0. But in general there could be many choices.

In general we have the problem of matching a pair (B,T ) with a suitable pair (Bc, T̃ ).
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6. The molecular case

In this section we consider the special case of a molecule, i.e. of an arithmetic
matroid M in which there are no proper vectors (see Section 3.5). Hence M is given
by a list X of the form

X = {f1, f2, . . . , fr, t1, t2, . . . , ts}

where the fi’s are free vectors, and the tj’s are torsion vectors.
We want to find a combinatorial interpretation of the polynomial MX(x, y) in this

case. As we have seen in the previous section, we have the problem of matching the

pairs (B,T ) ∈ B, where B is a basis, B ⊆ T and T ∈ LX , with the pairs (Bc, T̃ ) ∈ B∗,

where Bc is of course a basis in the dual, Bc ⊆ T̃ and T̃ ∈ L∗
X .

In the special case that we are considering the matching will be done in the following
way.

The idea is that we want to match the copies of a pair (B,T ) ∈ B evenly among

the copies of pairs (Bc, T̃ ) ∈ B∗, and viceversa. With this we mean the following.

Let ℓ((B,T ), (Bc, T̃ )) be the number of copies of (B,T ) that we match with copies of

(Bc, T̃ ). Than for distinct T1 and T2 in LX we want that

µ(T1)

µ(T2)
=
ℓ((B,T1), (B

c, T̃ ))

ℓ((B,T2), (Bc, T̃ ))

for every T̃ ∈ L∗
X . Dually, we want also

ℓ((B,T ), (Bc, T̃1))

ℓ((B,T ), (Bc, T̃2))
=
µ∗(T̃1)

µ∗(T̃2)

for distinct T̃1 and T̃2 in L∗
X , and for every T ∈ LX .

We call this property equidistribution of the matching. Before showing that this is
in fact possible, we assume that we can do that, and we make some remarks.

Let us call ψ = ψB such a bijection between B and B∗. Then notice that this
bijection is in fact unique up to identification of the copies of the same pairs.

Let us set

MX(x, y) :=
∑

(Bc,T̃ )∈B∗

xe
∗(Bc,T̃ )ye(ψ

−1(Bc,T̃ )).

Now notice that the equidistribution property implies that this polynomial is in
fact a product of two polynomials, one in x and one in y. In fact we have that
MB(x, y)·MBc(x, y) is an integer multiple ofMX(x, y), whereMB(x, y) is a polynomial
in x, since clearly there is no external activity on B, and MBc(x, y) is a polynomial in
y, since clearly there is no external activity in the dual (cf. Example 6.3).

Remark 6.1. Suppose that our arithmetic matroid is representable in a group G =
Gf ⊕Gt. If we denote by MXf

(x, y) the arithmetic Tutte polynomial of the list Xf :=
{f1, f2, . . . , fr} of elements of Gf , and by MXt(x, y) the arithmetic Tutte polynomial
of the list Xt := {t1, t2, . . . , ts} of elements of Gt, then we already observed in Example
3.7 that

MX(x, y) =MXf
(x, y) ·MXt(x, y).
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In fact, in this case MB(x, y) = m(∅) ·MXf
(x, y) while MBc(x, y) =MXf

(x, y), so that
MB(x, y) ·MBc(x, y) = m(∅) ·MX(x, y) (cf. Example 6.3).

We can now give our combinatorial interpretation of the arithmetic Tutte polynomial
in the molecular case.

Theorem 6.2. If (MX ,m) is an arithmetic matroid with no proper vectors, then

MX(x, y) =MX(x, y) =
∑

(Bc,T̃ )∈B∗

xe
∗(Bc,T̃ )ye(ψ

−1(Bc,T̃ )).

Before proving this theorem, we show an example.

Example 6.3. Let

X = {a := (1, 2, 0), b := (2, 0, 1), c := (0, 0, 2), d := (0, 0, 3)} ⊆ G := Z2 ⊕ Z/6Z.

We have no proper vectors, so the only basis is B = {a, b}, while c and d are two
torsion vectors.

A straightforward computation shows that

MX(x, y) = 4 + 6y + 2x+ 2x2 + 3x2y + 3xy + 2y2 + x2y2 + xy2

= (y + 2)(y + 1)(x2 + x+ 2).

Observe also that M{a,b}(x, y) = 6(x2 + x+ 2), while M{c,d}(x, y) = (y + 2)(y + 1), so
their product is a multiple of (in fact m(∅) = 6 times) MX(x, y) as it should be.

To compute the multiplicities we look at the matrix



1 2 0
2 0 1
0 0 2
0 0 3
0 0 6




whose rows are representatives of the elements of X in Z3 together with the vector
q := (0, 0, 6), where we think of G = Z2 ⊕ Z/6Z as Z3/〈q〉. Following Remark 2.3, we
can compute the multiplicities of A ⊆ X by looking at the greatest common divisor of
the nonzero minors of maximal rank that we can extract from the corresponding rows
of our matrix, together with the last row q.

We have m(∅) = 6, m({a}) = 6, m({b}) = 12, m({c}) = 2, m({d}) = 3, m({a, b}) =
24, m({a, c}) = 2, m({a, d}) = 3, m({b, c}) = 4, m({b, d}) = 6, m({c, d}) = 1,
m({a, b, c}) = 8, m({a, b, d}) = 12, m({a, c, d}) = 1, m({b, c, d}) = 2, m(X) = 4.

To construct the list LX , we look at the maximal rank sublists of X, and we compute
their µ’s. So first take µ(X) = m(X) = 4 copies of X. Then we take µ({a, b, c}) =
m({a, b, c})−µ(X) = 8− 4 = 4 copies of {a, b, c}, µ({a, b, d}) = m({a, b, d})−µ(X) =
12− 4 = 8 copies of {a, b, d}, and finally µ({a, b}) = m({a, b})− (µ(X) + µ({a, b, c}) +
µ({a, b, d})) = 24−16 = 8 copies of {a, b}. Hence, using an exponential notation for the
number of copies of an element in a list, we have LX = (X4, {a, b, c}4, {a, b, d}8, {a, b}8).

Doing the same procedure in the dual, we get L∗
X = (X6, {a, c, d}6, {c, d}12).

Let us compute the external activities of the pairs of B and B∗. Here it is ex-
tremely easy, since all the elements that are not in the basis are active. Hence
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e({a, b},X) = 2, e({a, b}, {a, b, c}) = e({a, b}, {a, b, d}) = 1 and e({a, b}, {a, b}) = 0,
while e∗({c, d},X) = 2, e∗({c, d}, {a, c, d}) = 1 and finally e∗({c, d}, {c, d}) = 0.

Now the bijection ψ: we have to equidistribute the pairs in B with the pairs in

B∗. Let us call ℓ((B,T ), (Bc, T̃ )) the number of copies of (B,T ) ∈ B that needs to be

matched with the same amount of copies of (Bc, T̃ ) ∈ Bc. Then we can only have

ℓ(({a, b},X), ({c, d}, {c, d})) = ℓ(({a, b}, {a, b, c}), ({c, d}, {c, d}))

= ℓ(({a, b}, {a, b, d}), ({c, d}, {c, d}))

= ℓ(({a, b}, {a, b}), ({c, d}, {c, d})) = 2

and all the others equal to 1. So our polynomial will be

MX(x, y) = 4 + 6y + 2x+ 2x2 + 3x2y + 3xy + 2y2 + x2y2 + xy2 =MX(x, y)

as it should be.

Let us see why such a bijection ψ = ψB should always exists.
Notice that in this case we have only one basis B := {f1, f2, . . . , fr}. Moreover, by

axiom (3) for m, we have that m(B) ·m(Bc) = m(∅) ·m(X), and hence m(B) divides
m(∅) ·m(X).

Also m(X) divides m(S) for every S ⊇ B, which are exactly the maximal rank
sublists of X. In particular we have m(B) = m(X) · c(B) for some c(B).

In fact m(X) divides each µ(S): recursively it divides each µ(T ) for every T % S,
and it divides m(S), hence it divides µ(S) = m(S)−

∑
T%S µ(T ).

Say that µ(T ) = m(X) · a(T ), where a(T ) ∈ N ∪ {0}. Moreover

m(B) =
∑

T⊇B

µ(T ) = m(X) ·




∑

T⊇B

a(T )


 = m(X) · c(B),

so that the a(T )’s give a partition of c(B). But since m(B) = m(X) · c(B) divides
m(X) ·m(∅), we have that c(B) divides m(∅).

Dually, we have that Bc is the only basis, so analogously m(∅) = m∗(X) divides

every m∗(T̃ ) and hence every

µ∗(T̃ ) := m∗(T̃ )−
∑

S̃%T̃

(−1)|S̃|−|T̃ |m∗(S̃)

for every T̃ ⊇ Bc, which are the maximal rank sublists in the dual. In particular

m∗(Bc) = m(B) = m(∅) · c∗(B) = m∗(X) · c∗(B) for some c∗(B). Say µ∗(T̃ ) =

m∗(X) · a∗(T̃ ) = m(∅) · a∗(T̃ ).
Then again

m(B) = m∗(Bc) =
∑

T̃⊇Bc

µ∗(T̃ ) = m∗(X) ·




∑

T̃⊇Bc

a∗(T̃ )


 = m∗(X) · c∗(B),

which divides m∗(X) · m∗(∅) = m(∅) · m(X) so that the a∗(T̃ )’s give a partition of
c∗(B) which divides m(X) = m∗(∅).
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We are now in a position to define an equidistributed matching of the pairs in B
with the pairs in B∗ in this case.

Consider a pair (B,T ) ∈ B, which appears with multiplicity µ(T ) = m(X)·a(T ) 6= 0,

so a(T ) ≥ 1. Now each pair (Bc, T̃ ) in B∗ appears with multiplicity µ∗(T̃ ) = m(∅) ·

a∗(T̃ ) 6= 0, so that a∗(T̃ ) ≥ 1, and the sum of these multiplicity is m(∅) · c∗(B). Since
c∗(B) divides m(X), we can match our m(X) · a(T ) many pairs (B,T ) evenly among

the copies of the pairs (Bc, T̃ ). More precisely, if m(X) = h · c∗(B), then we match

h · a(T ) · a∗(T̃ ) many copies of (B,T ) with (Bc, T̃ ), and this for all (Bc, T̃ ) ∈ B∗. We
set

ℓ((B,T ), (Bc, T̃ )) := h · a(T ) · a∗(T̃ ).

Observe now that for distinct T1, T2 ∈ LX and for any T̃ ∈ L∗
X we have

µ(T1)

µ(T2)
=
m(X) · a(T1)

m(X) · a(T2)
=
h · a∗(T̃ ) · a(T1)

h · a∗(T̃ ) · a(T2)
=
ℓ((B,T1), (B

c, T̃ ))

ℓ((B,T2), (Bc, T̃ ))
;

also, for distinct T̃1, T̃2 ∈ L∗
X and for any T ∈ LX we have

µ∗(T̃1)

µ∗(T̃2)
=
m(∅) · a∗(T̃1)

m(∅) · a∗(T̃2)
=
h · a(T ) · a∗(T̃1)

h · a(T ) · a∗(T̃2)
=
ℓ((B,T ), (Bc, T̃1))

ℓ((B,T ), (Bc, T̃2))
.

This shows that the matching ψ = ψB that we just defined is equidistributed.
Now that we have a good definition of our polynomial MX(x, y), we can turn our

attention to the proof of Theorem 6.2.
In order to prove the theorem, we will resort to a deletion-contraction recursion for

the polynomial MX(x, y).

Lemma 6.4. If (MX ,m) is an arithmetic matroid with no proper vectors, and v ∈ X
is a free vector, then

MX(x, y) = (x− 1)MX1
(x, y) +MX2

(x, y),

where MX1
(x, y) and MX2

(x, y) denote the arithmetic Tutte polynomial associated to

the deletion and the contraction arithmetic matroid with respect to v, respectively.

Before proving the lemma, let us see an example.

Example 6.5. If we compute the arithmetic Tutte polynomials of the deletion and the
contraction of the vector b in the Example 6.3 we get

MX1
(x, y) = 2x+ 3xy + xy2 = (y + 2)(y + 1)x

and

MX2
(x, y) = 4 + 6y + 4x+ 6xy + 2y2 + 2xy2 = 2(y + 2)(y + 1)(x+ 1).

So

(x− 1)MX1
(x, y) +MX2

(x, y) = (y + 2)(y + 1)(x2 + x+ 1) =MX(x, y)

as it should be.
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proof of the Lemma. For v ∈ A ⊆ X we have rk1(A \{v}) = rk2(A \{v}) = rk(A)− 1,
where rk1 and rk2 are the rank functions of the deletion and the contraction by v
respectively, since v is free. Hence

MX(x, y) =
∑

A⊆X

m(A)(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A)

=
∑

v/∈A⊆X

m(A)(x − 1)rk(X)−rk(A)(y − 1)|A|−rk(A)

+
∑

v∈A⊆X

m(A)(x − 1)rk(X)−rk(A)(y − 1)|A|−rk(A)

=
∑

v/∈A⊆X

m1(A)(x− 1)rk1(X\{v})+1−rk1(A)(y − 1)|A|−rk1(A)

+
∑

v∈A⊆X

m2(A \ {v})(x − 1)rk2(X\{v})−rk2(A\{v})(y − 1)|A\{v}|−rk2(A\{v})

= (x− 1)MX1
(x, y) +MX2

(x, y).

�

Notice that dually we have the following immediate corollary.

Lemma 6.6. If (MX ,m) is an arithmetic matroid with no proper vectors, and v ∈ X
is a torsion vector, then

MX(x, y) =MX1
(x, y) + (y − 1)MX2

(x, y),

where MX1
(x, y) and MX2

(x, y) denote the arithmetic Tutte polynomial associated to

the deletion and the contraction arithmetic matroid with respect to v, respectively.

We will now prove that the polynomial MX(x, y) satisfies the same recurrences.

Lemma 6.7. If (MX ,m) is an arithmetic matroid with no proper vectors, and v ∈ X
is a free vector, then

MX(x, y) = (x− 1)MX1
(x, y) +MX2

(x, y),

where MX1
(x, y) and MX2

(x, y) denote the arithmetic Tutte polynomial associated to

the deletion and the contraction arithmetic matroid with respect to v, respectively.

Proof. We have

MX(x, y) =
∑

(Bc,T̃ )∈B∗

xe
∗(Bc,T̃ )ye(ψ

−1(Bc,T̃ ))

=
∑

(Bc,T̃ )∈B∗

v∈T̃

xe
∗(Bc,T̃ )ye(ψ

−1(Bc,T̃ )) +
∑

(Bc,T̃ )∈B∗

v/∈T̃

xe
∗(Bc,T̃ )ye(ψ

−1(Bc,T̃ )).

Since v is a free vector, it is contained in B. So it never acts on B. Dually, v is torsion
in the dual and v /∈ Bc, hence it is always externally active on Bc.
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Let us consider the elements of B∗ involved in the left summand. We clearly have
∑

(Bc,T̃ )∈B∗

v∈T̃

xe
∗(Bc,T̃ )ye(ψ

−1(Bc,T̃ )) = x ·
∑

(Bc,T̃ )∈B∗

v∈T̃

xe
∗(Bc,T̃\{v})ye(ψ

−1(Bc,T̃ )).

We want to show that

(6.1)
∑

(Bc,T̃ )∈B∗

v∈T̃

xe
∗(Bc,T̃\{v})ye(ψ

−1(Bc,T̃ )) =
∑

(Bc,S̃)∈B∗
1

xe
∗(Bc,S̃)ye(ψ

−1

1
(Bc,S̃)),

where B∗
1 denotes the list of pairs corresponding to (the dual of) the deletion of v, and

ψ−1
1 = ψ−1

B\{v} is the bijection between B∗
1 and B1 in the deletion of v. If we can show

this, then we have

x ·
∑

(Bc,T̃ )∈B∗

v∈T̃

xe
∗(Bc,T̃\{v})ye(ψ

−1(Bc,T̃ )) = x ·
∑

(Bc,S̃)∈B∗
1

xe
∗(Bc,S̃)ye(ψ

−1

1
(Bc,S̃))

= xMX1
(x, y).

We make two remarks. First of all, for (Bc, T̃ ) ∈ B∗ with v ∈ T̃ we have

µ∗1(T̃ \ {v}) = µ∗X\{v}(T̃ \ {v}) =
∑

T̃\{v}⊆A⊆X\{v}

(−1)|A|−|T̃\{v}|m∗
1(A)

=
∑

T̃\{v}⊆A⊆X\{v}

(−1)|A|−|T̃\{v}|m((X \ {v}) \ A)

=
∑

T̃\{v}⊆A⊆X\{v}

(−1)|A|−|T̃\{v}|m(X \ (A ∪ {v}))

=
∑

T̃⊆A′⊆X

(−1)|A
′|−|T̃ |m(X \ A′)

=
∑

T̃⊆A′⊆X

(−1)|A
′|−|T̃ |m∗(A′) = µ∗X(T̃ ) = µ∗(T̃ ).

Moreover, there exists a positive integer h such that for every (B,T ) ∈ B we have

(6.2) h · µ1(T \ {v}) = h · µX\{v}(T \ {v}) = µX(T ) = µ(T ).

In fact, by axiom (2) for m, m(X) = h ·m(X \ {v}) for some positive integer h. Then,
by axiom (3) for m, for all T ⊆ A ⊆ X,

m(X) ·m(A \ {v}) = m(X \ {v}) ·m(A),

which implies that m(A) = h ·m(A \ {v}). This immediately gives (6.2).
The first remark guarantees that both sides of (6.1) have the same number of sum-

mands. The second one guarantees that the restriction of ψ−1 to the elements in the
left hand side of (6.1) is still equidistributed, and hence guarantees that it is in fact
ψ−1
1 . Then we already observed that the local activities correspond in the right way.
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For the other summand we have∑

(Bc,T̃ )∈B∗

v/∈T̃

xe
∗(Bc,T̃ )ye(ψ

−1(Bc,T̃ )) =
∑

(Bc,T̃ )∈B∗

xe
∗(Bc,T̃\{v})ye(ψ

−1(Bc,T̃ ))

−
∑

(Bc,T̃ )∈B∗

v∈T̃

xe
∗(Bc,T̃\{v})ye(ψ

−1(Bc,T̃ )).

From what we have just seen, the second summand is clearly −MX1
(x, y). For the

first summand, notice that in the contraction of v we have m2(A) = m(A ∪ {v}) for
every A ⊆ X2 = X \ {v}. Since every maximal rank sublist S of X contains v, its
multiplicity is the same as the multiplicity of S \{v} in the contraction of v, and these

are exactly the maximal rank sublists of X2 = X \ {v}. For (Bc, S̃) ∈ B∗
2 (remember

S̃ ⊆ X2 := X \ {v}) we have

µ∗(S̃) + µ∗(S̃ ∪ {v}) =
∑

S̃⊆A⊆X

(−1)|A|−|S̃|m∗(A) +
∑

S̃∪{v}⊆A⊆X

(−1)|A|−|S̃∪{v}|m∗(A)

=
∑

S̃⊆A⊆X

(−1)|A|−|S̃|m∗(A)−
∑

S̃⊆A⊆X
v∈A

(−1)|A|−|S̃|m∗(A)

=
∑

S̃⊆A⊆X

v/∈A

(−1)|A|−|S̃|m∗(A) =
∑

S̃⊆A⊆X2

(−1)|A|−|S̃|m(X \ A)

=
∑

S̃⊆A⊆X2

(−1)|A|−|S̃|m((X2 \ A) ∪ {v})

=
∑

S̃⊆A⊆X2

(−1)|A|−|S̃|m2(X2 \ A)

=
∑

S̃⊆A⊆X2

(−1)|A|−|S̃|m∗
2(A) = µ∗2(S̃).

Notice also that we are taking the sum over all the pairs, but we are computing the
external activity e∗ by removing v from the elements of L∗

X . So we get the same result
as if we did it in the contraction of v. Finally, the bijection ψ is clearly equidistributed,
hence it corresponds to the bijection ψ2 of the contraction. Therefore

∑

(Bc,T̃ )∈B∗

xe
∗(Bc,T̃\{v})ye(ψ

−1(Bc,T̃ )) =
∑

(Bc,S̃)∈B∗
2

xe
∗(Bc,S̃)ye(ψ

−1

2
(Bc,S̃)) =MX2

(x, y).

This concludes the proof of the lemma. �

Again, dually we have the following immediate corollary.

Lemma 6.8. If (MX ,m) is an arithmetic matroid with no proper vectors, and v ∈ X
is a torsion vector, then

MX(x, y) =MX1
(x, y) + (y − 1)MX2

(x, y),
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where MX1
(x, y) and MX2

(x, y) denote the arithmetic Tutte polynomial associated to

the deletion and the contraction arithmetic matroid with respect to v, respectively.

Remark 6.9. Notice that in order to prove these lemmas we didn’t use any specific
order on the list of vectors X: this is because the only elements that could be acting
on the basis were torsion, and hence they were acting anyway, no matter the order on
X. In the general case, to deal with the proper vectors an order will be useful.

We can now prove Theorem 6.2.

proof of Theorem 6.2. Applying the previous Lemmas and the observation that free
and torsion elements remains free and torsion respectively under deletion and contrac-
tion, we reduce the problem to check the equality MX(x, y) =MX(x, y) in the case of
an empty list. But in this case both polynomials are obviously equal to m(∅). �

7. The general case

For the general case, we want to define for each basis B in X a matching ψB of the

pairs in B of the form (B,T ) with the pairs in B∗ of the form (Bc, T̃ ), and then “join”
them together in a matching ψ from B to B∗.

First of all we fix a total order on the elements of X.
For each basis B inX, denote by BB the sublist of pairs of B whose first coordinate is

B. For each pair (B,T ) in this list, we ignore the elements of T that are not externally
active on B, identifying the pairs that differ only for such nonactive elements. We do
the same for Bc in B∗

Bc . We claim that we can match evenly these pairs and we call ψB
such an equidistributed matching. Then ψ will be just the “join” of these matchings.

Remark 7.1. Notice that in general the matching ψ depends on the order that we
choose.

Before showing that such a matching ψ exists, we show how we will use it.
We define

MX(x, y) :=
∑

(B,T )∈B

xe
∗(ψ(B,T ))ye(B,T ),

where ψ is the matching that we just described.
The following theorem is the main result of this paper.

Theorem 7.2. If (MX ,m) is an arithmetic matroid, then

MX(x, y) =MX(x, y) =
∑

(B,T )∈B

xe
∗(ψ(B,T ))ye(B,T ),

where ψ is the bijection between B and B∗ described above.

Remark 7.3. Notice that, even if in general the matching ψ depends on the order that
we choose, the polynomial MX(x, y) =MX(x, y) will not depend on it.

Also, observe that in the special case when all the multiplicities are equal to 1
the arithmetic Tutte polynomial reduces just to the classical Tutte polynomial of the
matroid. Moreover in this case LX = (X) = LX∗ , and our combinatorial description
corresponds exactly to the one given by Crapo in Theorem 3.1. In this sense our result
can be seen as a generalization of Crapo’s Theorem.

26



Let us first look at an example.

Example 7.4. Let X = {a := (3, 3, 0), b := (−6,−6,−6), c := (0, 0, 3), d := (0, 0, 12)} ⊆
Z3. Here we take as the group G the maximal subgroup of Z3 in which 〈X〉 has finite
index. The rank of the arithmetic matroid MX associated to the pair (G,X) (i.e. of
〈X〉) is 2, and the bases are {a, b}, {a, c}, {a, d}, {b, c} and {b, d}.

The multiplicities are m(∅) = 1, m({a}) = m({c}) = m({c, d}) = 3, m({b}) = 6,
m({a, c}) = m({a, b, c}) = m({a, c, d}) = m(X) = 9, m({d}) = 12, m({a, b}) =
m({b, c}) = m({a, b, d}) = m({b, c, d}) = 18, m({a, d}) = 36, m({b, d}) = 72.

We have

LX = (X9, {b, c, d}9, {a, b, d}9, {a, d}18, {b, d}45)

and

L∗
X = (X, {b, c, d}2 , {a, c, d}5, {a, b, d}2, {a, b, c}11, {a, c}55, {a, d}10, {b, c}22,

{b, d}4, {c, d}10).

We set the order a < b < c < d, so in B we have e({a, d},X) = e({b, c},X) =
e({b, d}, {b, c, d}) = e({b, d}, {a, b, d}) = 1, e({b, d},X) = 2 and all the others are
0, while in B∗ we have e∗({b, c},X) = e∗({b, c}, {a, b, c}) = e∗({b, d}, {a, b, d}) =
e∗({b, d},X) = e∗({c, d}, {a, c, d}) = e∗({c, d}, {b, c, d}) = 1, e∗({c, d},X) = 2 and
all the others are 0.

For example, for the basis {a, d} we distinguish X9, which contain the active vector
c, from {a, b, d}9 and {a, d}18, which don’t contain any active vector. Hence we have
9 pairs which give a y and 27 pairs which give a 1 to match. In the dual, for the
basis {b, c}, we distinguish X and {a, b, c}11, which contain the active vector a, from
{b, c, d}2 and {b, c, d}22. Hence we have 12 pairs which give a x and 24 pairs which
give a 1 to match. Therefore we have a summand 3xy+6y+9x+18 = 3(x+2)(y+3).

Doing the same with all the other bases we get

MX(x, y) = x2 + 19x+ 88 + 3xy + 33y + 9y2 =MX(x, y),

as it should be.

Let us now prove the existence of the matching.

Lemma 7.5. The equidistributed matchings ψB defined before exist.

Proof. To show that such matchings ψB exist we apply the following algorithm. Recall
that we fixed an order on X.

If X has no proper vectors, we use the matching ψB that we constructed in the
molecular case.

If not, we look at the greatest proper vector v in X. There are two cases: v ∈ B or
v /∈ B.

In the first case we do a contraction of v, carrying the order on X over on X2 =
X \ {v}. Notice that in this case B \ {v} is still a basis, and what was active on B
is now active on B \ {v}, while what was not active on B is not active on B \ {v}.
Moreover, since m2(A) = m(A ∪ {v}) for A ⊆ X2, for S ⊆ X2 such that S ⊇ B \ {v}
we have µ2(S) = µ(S ∪ {v}). So the list (B2)B\{v}, where B2 is as usual the list of the
contraction, may be derived from BB by removing v from both elements of each pair.
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In the second case, notice that v is not active on B. This time we make a deletion
of v. Notice that B is still a basis in the deletion matroid. Moreover what was active
on B it remains active, and what was not active on B it remains nonactive. Also, if
S ⊆ X1 := X \ {v} is such that S ⊇ B, then

µ(S) + µ(S ∪ {v}) =
∑

T⊇S

(−1)|T |−|S|m(T ) +
∑

T⊇S∪{v}

(−1)|T |−|S∪{v}|m(T )

=
∑

T⊇S

(−1)|T |−|S|m(T )−
∑

T⊇S
v∈T

(−1)|T |−|S|m(T )

=
∑

T⊇S

v/∈T

(−1)|T |−|S|m(T ) = µ1(S).

So (B1)B\{v}, where B1 is the list corresponding to the deletion, can be obtained again
from BB by removing v from both elements (in fact in the first does not appear) of its
pairs.

Notice that these cases are dual of each other, meaning that a proper vector in B
corresponds to a proper vector not in Bc in the dual, and viceversa.

So in both cases what we are really doing is to ignore the element v, either if it is
in the basis (and hence dually nonactive) or it is nonactive (and hence dually in the
basis).

We iterate this procedure until we get a molecule. But in this case we can implement
the equidistributed bijection that we constructed in the previous section: this is going
to be our ψB . �

We now want to prove Theorem 7.2. We will use the appropriate deletion-contraction
recursion for the proper vectors.

Lemma 7.6. If (MX ,m) is an arithmetic matroid with, and v ∈ X is a proper vector,

then

MX(x, y) =MX1
(x, y) +MX2

(x, y),

where MX1
(x, y) and MX2

(x, y) denote the arithmetic Tutte polynomial associated to

the deletion and the contraction arithmetic matroid with respect to v, respectively.

This lemma has been proved in [23]. We repeat here the proof for completeness.
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Proof. We have

MX(x, y) =
∑

A⊆X

m(A)(x− 1)rk(X)−rk(A)(y − 1)|A|−rk(A)

=
∑

v/∈A⊆X

m(A)(x − 1)rk(X)−rk(A)(y − 1)|A|−rk(A)

+
∑

v∈A⊆X

m(A)(x − 1)rk(X)−rk(A)(y − 1)|A|−rk(A)

=
∑

v/∈A⊆X

m1(A)(x− 1)rk1(X\{v})−rk1(A)(y − 1)|A|−rk1(A)

+
∑

v∈A⊆X

m2(A \ {v})(x − 1)rk2(X\{v})−rk2(A\{v})(y − 1)|A\{v}|−rk2(A\{v})

= MX1
(x, y) +MX2

(x, y).

�

Example 7.7. Let X = {a := (2,−1), b := (−1, 2), c := (1, 1)} ⊆ Z2. If we compute the
arithmetic Tutte polynomials associated to the deletion and contraction of the proper
vector c we get

MX1
(x, y) = x2 + 2 and MX2

(x, y) = x+ 2 + 3y,

so that

MX1
(x, y) +MX2

(x, y) = x2 + x+ 4 + 3y =MX(x, y),

as it should be.

We will now prove that the polynomial MX(x, y) satisfies the same recurrence.

Lemma 7.8. Let (MX ,m) be an arithmetic matroid, and let us fix an order on the

vectors X. If v ∈ X is the greatest proper vector, then

MX(x, y) =MX1
(x, y) +MX2

(x, y),

where MX1
(x, y) and MX2

(x, y) denote the arithmetic Tutte polynomial associated to

the deletion and the contraction arithmetic matroid with respect to v, respectively.

Proof. We have

MX(x, y) =
∑

(B,T )∈B

xe
∗(ψ(B,T ))ye(B,T ) =

∑

T∈LX

∑

B⊆T
B basis

xe
∗(ψ(B,T ))ye(B,T )

=
∑

T∈LX

∑

B⊆T

v/∈B basis

xe
∗(ψ(B,T ))ye(B,T ) +

∑

T∈LX

∑

B⊆T
v∈B basis

xe
∗(ψ(B,T ))ye(B,T ).

In the first summand we take all the bases not containing v, and when we compute
the statistics, since v is the greatest vector, it does not act externally on these bases.
Moreover, in the dual it is contained in every basis Bc, so it does not act externally
on them too. Also, recall from the proof of Lemma 7.5 that, for the bases involved in
this summand, the bijections ψB of which ψ is made up of correspond exactly to the
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bijections in the deletion of v. Therefore this summand is the same as the polynomial
of the deletion MX1

(x, y).
For the second summand, since v is proper also in the dual, we can make the dual

reasoning, getting that this is the polynomial MX2
(x, y) of the contraction by v. This

completes the proof. �

We can now prove Theorem 7.2.

proof of Theorem 7.2. Fix an order on the vectors X. Applying iteratively this last
recurrence to the greatest proper vectors, we can reduce the problem to the molecular
case.

But this case is the content of Theorem 6.2. �

8. A remark on log-concavity

We recall some well-known definitions. A sequence of positive integers {am} is

• unimodal if a1 ≤ · · · ≤ ak−1 ≤ ak ≥ ak+1 ≥ am for some k;
• log-concave if a2k ≥ ak−1ak+1 for every k.

It is easy to see that log-concavity implies unimodality. We say that a polynomial in
one variable is log-concave (resp. unimodal) if the sequence of (the absolute values
of) its coefficients is. Log-concavity problems are widely studied in combinatorics: the
reader can refer to the surveys [29], [2], [30].

In the early ’70s Rota, Heron and Welsh ([27], [15], [32]) conjectured that the char-
acteristic polynomial of a hyperplane arrangement is log-concave. Recently, a proof
has been proposed in [18].

Another famous conjecture is the following one. Let M be a matroid on a list X,
and ik be the number of its independent sublists of rank k. In [21] Mason conjectured
that the sequence {ik} is log-concave. Mason’s conjecture has been recently proved by
Matthias Lenz in [20].

Notice that the above statements can be rephrased in terms of the Tutte polynomial.
Namely the Rota-Heron-Welsh conjecture claims that for any (0-representable) matroid
M, T (M; 1 − q, 0) is log-concave. On the other hand, Mason’s conjecture claims that
T (M; q + 1, 1) is log-concave.

The following example, which has been suggested to us by Matthias Lenz, shows that
the corresponding evaluations of the arithmetic Tutte polynomial are not log-concave.
Notice that by Theorem 4.2, this implies that the characteristic polynomial of a toric
arrangement is not necessarily log-concave.

Example 8.1. Let X := {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (1, 1, 1, 5)} ⊆ Z4. Then

MX(1− q, 0) = 5− 4q + 6q2 − 4q3 + q4

and

MX(1 + q, 1) = 5 + 4q + 6q2 + 4q3 + q4

are not unimodal.
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