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THE MINIMAL MODEL FOR THE BATALIN-VILKOVISKY OPERAD

GABRIEL C. DRUMMOND-COLE AND BRUNO VALLETTE

ABSTRACT. The purpose of this paper is to explain and to generalize, lmotopical way, the result of
Barannikov-Kontsevich and Manin which states that the dyifgy homology groups of some Batalin-Vilko-
visky algebras carry a Frobenius manifold structure. Te #xtent, we first make the minimal model for the
operad encoding BV-algebras explicit. Then we prove a hopyotransfer theorem for the associated notion
of homotopy BV-algebra. The final result provides an exiemsif the action of the homology of the Deligne-
Mumford-Knudsen moduli space of genGscurves on the homology of some BV-algebras to an action via
higher homotopical operations organized by the cohomotifghe open moduli space of genus zero curves.
Applications in Poisson geometry and Lie algebra cohomplagd to the Mirror Symmetry conjecture are
given.
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INTRODUCTION

The notion of aBatalin-Vilkovisky algebraor BV-algebrafor short, is made up of a commutative prod-
uct, a Lie bracket and a unary operator, which satisfy soraioas. This notion now appears in many
fields of mathematics like

<

ALGEBRA: Vertex (operator) algebra8pr86 LZ93], Chevalley-Eilenberg cohomology of Lie
algebrasKos83, bar construction ofd . -algebrasTTW11],
ALGEBRAIC GEOMETRY. Gromov-Witten invariants and moduli spaces of curves fi¢ua co-
homology, Frobenius manifoldsBK98, Man99 LS07], chiral algebras (geometric Langlands
program) BD04, FBZ04],
DIFFERENTIAL GEOMETRY. the sheaf of polyvector fields of an orientable (resp. Fwissr
Calabi-Yau) manifold Kos85 Ran97 Kon03, the differential forms of a manifold (Hodge de-
composition in the Riemannian cas&K98, TT00, Sulld, Lie algebroids KS95 Xu99, Rog09,
Lagrangian (resp. coisotropic) intersectioB&09 BG1(,
NONCOMMUTATIVE GEOMETRY: the Hoschchild cohomology of a symmetric algebfd (0,
Tra08 Gin06 Men09 and the cyclic Deligne conjecturé&Kpu08 TZ06, Cos07 KS09 BB09],
non-commutative differential operatoiG$1Q,
TopPoLoGY. 2-fold loop spaces on topological spaces carrying an acifahe circle [5et943,
topological conformal field theories, Riemann surfacestp44, string topology £S99,
MATHEMATICAL PHYSICS: BV quantization (gauge theoryBl/81, Wit90, Sch93Rog09, BRST
cohomology [Z93, Sta9§, string theory Wit92, WZ92, Zwi93, PS94, topological field theory
[Get943, Renormalization theoryJG11].
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Nearly all the examples of BV-algebras appearing in theeaf@mtioned fields actually have some homol-
ogy groups as underlying spaces. Therefore they are sordewtud a higher structure: that otemotopy
BV-algebra.

Algebra and homotopy theories do not mix well together arprithe study of the homotopy properties
of algebraic structures often introduces infinitely many tégher operations of higher arity. So one uses
the operadic calculus to encode them.

The study of the homotopy properties of algebraic strustofen introduces infinitely many new higher
operations of higher arity.

This is the case for Batalin-Vilkovisky algebras, which dat have homotopy invariance properties,
like the transfer of structure under homotopy equivalenses [V10, Section10.3]. To solve this, we
have defined, inGCTV0Y, a notion ofhomotopy Batalin-Vilkovisky algebxgith the required homotopy
properties. To do so, we have constructed a quasi-freectifitsant, resolution of the oper#)’ encoding
Batalin-Vilkovisky algebras, using the inhomogeneousz(bsiuality theory.

While quite “small”, this resolution carries a non-triviaiternal differential; so it is not minimal in
the sense of D. SullivarSul77. The purpose of the present paper is to go even further apdoiuce
the minimal model of the operaflV, that is, a resolution as a quasi-free operad with a decoatp®s
differential and a certain grading on the space of genesator

The first main result of this paper is the following compuatof the homology groups of the bar
construction for the operafl) as a deformation retract.

Theorem (2.1). The various maps defined in Sectibform the following deformation retract in the cate-
gory of differential grade®-modules

(C BV = (aBV',d,) 72 (H.(BBV) = T°(5) & S~ Grav*,0).
whered denotes a unary operator of degrzewvhereS—! is the operadic desuspension and whéreiv is

the operad Gravity isomorphic to the homolaby (Mo, ,+1) of the moduli space of genOscurves with
marked points.

This result provides the space of generators for the minimadel of the operad). But, on the
opposite to the Koszul duality theory, this gradedhodule is not endowed with a cooperad structure but
with a homotopy cooperagdtructure. This means that there are higher decompositapsmwhich split
elements, not only int@ but also inta3, 4, etc. Finally, the differential of the minimal model is maade
of these decomposition maps.

Let us recall that the problem of making minimal models eipin algebraic topology is related to
the following notions. Sullivan modelsS[il77 are dg commutative algebras generated by the (dual of
the) rational homotopy groups X @ Q of a topological spac&’, where the differential is given by the
Whitehead products. Quillen model91ii69 are dg Lie algebras generated by the (dual of the) rational
homology groupd7°® (X, Q) of a topological spac&’, where the differential is given by the Massey prod-
ucts. The Steenrod algebra is an inhomogenous Koszul algetiose Koszul dual dg algebra is the
algebra, seeqri7(. The minimal model of the Steenrod algebra is generatetidyhderlying homology
groups of theA algebra and the differential is related to the Adams spes¢guenceBCK ™66, Wan67.
Recall that the\ algebra is the first page of the Adams spectral sequencehwbimputes the homotopy
groups of spheres.

SULLIVAN QUILLEN STEENROD BATALIN -VILKOVISKY
free commutative Lie algebra associative algebra operadT(—)
algebraS(—) Lie(—) T(-)
generators TeX ®Q H*(X,Q) A H* (Mo pni1) ®T0)

differentials of
differential | Whitehead brackets Massey products| Adams spectral homotopy cooperad
sequence

The operad3V behaves exactly in the same way as the Steenrod algebraesjtikeat to the inhomo-
geneous Koszul duality theory, seB8CTV09. But, in contrast to the Steenrod algebra, we are able to
compute, in this paper, the underlying homology groupsKibszul dual (co)operad together with its
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algebraic structure. We also provide a topological exglandor our result. It was shown by E. Getzler
[Get94d that the operadV is the homology of the framed little discs operad. Its mirlimadel is gen-
erated by a homotopy cooperad extension of the coopEfdd1, ,,+1) by a free resolutio™(§) of the
circle St.

We call the algebras over the minimal model of the opdsadskeletal homotopy Batalin-Vilkovisky
algebras since they involve fewer generating operations than thimnof a homotopy BV-algebra given
in [GCTV0Y9. We provide new formulae for the homotopy transfer theofenalgebras over a quasi-free
operad on a homotopy cooperad. To prove them, we have tainteoa new operadic method, based on a
refined bar-cobar adjunction, since the classical methbfls/i.0, 10.2] (classical bar-cobar adjunction),
and of A. Berglund Ber09 (homological perturbation lemma) failed to apply. Thiseg the homotopy
transfer theorem for skeletal homotopy BV-algebras.

The dA-condition, also called thdd-lemma ordd*-lemma in PGMS74, is a particular condition,
coming from Kahler geometry, between the two unary opesatthe underlying differentiad and the
BV-operatorA. Under this condition, S. Barannikov and M. Kontsevig#iKp8], and Y.I. Manin Man99
proved that the underlying homology groups of a dg BV-algetarry a Frobenius manifold structure.
Such a structure is encoded by the homology opéiadM, 1) of the Deligne-Mumford-Knudsen
moduli space of stable genQgurves. Its is also called an hypercommutative algebrd(ava compatible
non-degenerate pairing). Tree formulae for such a stradtave been given by A. Losev and S. Shadrinin
[LSO7.

We show that these results are actually a consequence dbtieereentioned homotopy transfer theorem.
This allows us to prove them under a weaker and optimal cimmditalled the non-commutative Hodge-
to-de Rham condition. We recover the Losev-Shadrin formalad thereby explain their particular form.
Moreover our approach gives higher non-trivial operatiavisich are necessary to recover the homotopy
type of the original dg BV-algebra.

Theorem(7.8). Let(A4,d,e, A, (,)) be adg BV-algebra with non-commutative Hodge-to-de Rhayarde
eration data.

The underlying homology groupf( A, d) carry a homotopy hypercommutative algebra structure, tvhic
extends the hypercommutative algebras of M. KontsevictSaB@rannikoyBK9g], Y.l. Manin[Man99,
A.Losevand S. ShadifihS07), and J.-S. ParkPar07, and such that the rectified dg BV-algefitac( H (A))
is homotopy equivalent td in the category of dg BV-algebras.

In geometrical terms, this lifts the action of the operad ofduli space of genus stable curves (coho-
mological field theory) into a certain action of the coopesathe open moduli space of genGicurves
(extended cohomological field theory):

H.+1(M0,n+l) ............... S EndH(A)
l (BK—M—LS—P]
He(Moni1) -

We conclude this paper with applications to the Poisson g#giriie algebra cohomology and the Mir-
ror Symmetry conjecture. To conclude, this paper developshbomotopy theory for dg BV-algebras (ho-
motopy skeletal BV-algebrase-quasi-isomorphisms) necessary to study the Mirror Symnoetnjecture,
in the same way as the homotopy theory of dg Lie algebras wastogprove the deformation-quantization
of Poisson manifolds by M. Kontsevich iK¢n03.

Some of the results of the present paper were announceédGiv(9. While we were typing it, V.
Dotsenko and A. Khoroshkin computed ID{09] the homology of the bar construction of the opetid
without the action of the symmetric groups. They used thepethdent method of Grobner basis for shuffle
operads developed iDK10].

The paper is organized as follows. We begin by recalling thezkil resolution of the operd8l’ given
in [GCTVO0Y. In the second section, we compute the homology of the Katzal dg cooperadVi and
we write it as a deformation retract B/ In the third section, we recall the notion of homotopy caaple
with its homotopy properties: the homotopy transfer theofer homotopy cooperads. With these tools
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in hand, we produce the minimal model of the opeld at the end of Sectiofi. In a fourth section,
we describe the associated notion of algebra, called siélemotopy BV-algebras. Sectidgndeals with

a generalization of the bar-cobar adjunction between aisesiad homotopy cooperads. The last section
contains the homotopy transfer theorem for skeletal hopyoBWV-algebras and the extension of the result
of Barannikov-Kontsevich and Manin.

The reader is supposed to be familiar with the notion of anagband operadic homological algebra,
for which we refer to the bookilV10]. In the present paper, we use the same notations as useid in th
reference.

We work over a fieldK of characteristi® and all theS-modulesM = {M (n)},cn are reduced, that is,
M(0) =0.

1. RECOLLECTION ON HOMOTOPYBV-ALGEBRAS

In this section, we recall the main results &@CTV0Y needed in the rest of the text. In loc.cit., we
made explicit a resolution of the oper&Y using the Koszul duality theory. It is given by a quasi-free
operad on a dg cooperad, which is smaller than the bar catistnof 5.

1.1. BV-algebras.

Definition 1.1 (Batalin-Vilkovisky algebras) A differential graded Batalin-Vilkovisky algebrar dg BV-
algebrafor short, is a differential graded vector spdek d ) endowed with

> asymmetric binary produetof degred,
> a symmetric bracket, ) of degreet1,
> a unary operatoA of degree+1,

such thatl 4 is a derivation with respect to each of them and such that

>> the produce is associative,
> the bracket satisfies the Jacobi identity

(o)) +(C),)-(123) + ((,),).(321) =0,

> the produce and the bracket, ) satisfy the Leibniz relation

<"'.'> = (<"'> .') + ('. <'7'>)'(12)’
> the unary operatoA satisfiesA? = 0,
> the bracket is the obstruction to being a derivation with respect to the prodeict

(=) = A-e-) = (A(-) o) = (-2 A(),
> the operaton is a graded derivation with respect to the bracket
A((=-) + (AG)-) + (5 A() = 0.
The operad encoding BV-algebras is the operad defined byaengand relations
BY :=T(V)/(R),
whereT (V) denotes the free operad on thenodule
V=K e ®Ky(, ) ®KA,

with K, being the trivial representation of the symmetric gr&dp The space of relationB is the subs-
module of 7 (V') generated by the relations* given above. The basis elements(, ), A are of degree
0, 1, and 1. Since the relations are homogeneous, the oprdd graded by this degree, termed the
homological degree

We denote byCom the operad generated by the symmetric prosuand the associativity relation.
We denote byLie; the operad generated by the symmetric bragket and the Jacobi relation; it is the
operad encoding Lie algebra structures on the suspensespace. The opergtgoverning Gerstenhaber
algebras is defined similarly. Its underlyiSgmodule is isomorphic t6'om o Lie;, on which the operad
structure is given by means of distributive laws, 98&10, SectionS.6].
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1.2. Quadratic analogue. We consider the homogeneous quadratic analg@fdeof the operad3). This
operad is defined by the same spaces of generttarsd relations except for the inhomogeneous relation

A A
N/ N/ N/ N /
° — ° — ° — ()
I I I I
A
which is changed into the homogenous relation:
A

N/ N/ /S

A
We denote this homogenous quadratic space of relationgibyThis operacyBY = T(V)/(qR) is
also given by means of distributive laws on enodule

aBY = Go D = Com o Lie; o K[A]/(A?)
whereD := K[A]/(A?) is the algebra of dual numbers, s€&]TV09, Propositiors].

)

1.3. Koszul dual cooperad of the operadiBV. We denote by the homological suspension, which shifts
the homological degree by1. Recall that thekoszul dual cooperadf a quadratic operad@ (V') /(qR)

is defined as the sub-cooperé(sV, s2qR) C T¢(sV) cogenerated by the suspensigii of V' with
corelators in the double suspensietyR of qR, see [V10, Chapter 7]. Namely, it is the “smallest”
sub-cooperad of the cofree cooperadsdhwhich contains the corelatosdqR.

We denote bys¢ := Endg,—: = {Hom((Ks™1)®" Ks~1)},cn thesuspensiogooperad of endomor-
phisms of the one dimensional vector spacéK concentrated in degreel. The desuspensiastC of a
cooperad’ is the cooperad defined by the aritywise tensor producteddlie Hadamard tensor product,
(8C)(n) = (8¢ ®@u C)(n) := S§°(n) ® C(n). The underlyingS-module of the Koszul dual cooperad of
qBV is equal to

gBVI = T°(6) o S°Comf o S°Lie®
whereT(§) = K[d] = D' is the counital cofree coalgebra on a deg2egenerators := sA, where
Lie¢ = Lie* is the cooperad encoding Lie coalgebras and wligse§ = Com™*, is the cooperad
encoding cocommutative coalgebra structures on the ssgpeaf a space, se&[CTV09, Corollary4].
The degree of the elements in

Ké™ ® §°Com$(t) ® 8°Lie(p1) ® ... ® S°Lie®(p:) C qBV!
isn+t+2m—2,forn=p +--- +ps.
1.4. Koszul dual dg cooperad of the operad3V. We consider the map : qR — V defined by
NN NN
I I I I

A
and 0 on the other relations of R, so that the graph op is equal to the space of relatiodd The
induced mapgBY' — sV extends to a square-zero coderivatinon the cooperadBV', see GCTV09

Lemmab5]. The dg cooperad

BV := (gBV',d,)
is called theKoszul dual dg cooperadf the inhomogeneous quadratic opefd.

We use the notatior for the ‘symmetric’ tensor product, that is, the quotientlnd tensor product
under the permutation of terms. In particular, we denoté’By» L, ® --- ® L; a generic element of
T¢(5) o S¢Com§ o S¢Lie with L; € S¢Lie¢, fori = 1,...,t; the elements a§“Com§ being implicit.
Under these notations, the coderivatihnis explicitly given by

t
(1) do(0" @ L1 OO L) = (-1 ' RL1 0 0L O L] -0 Ly,
=1
whereL; ® L is Sweedler-type notation for the imagefunder the binary part
S¢Lie® — S°Lief(2) ® (§°Lie® ® S°Lie®) — S°Lie® © S°Lie®
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of the decomposition map of the coopergtiicc. The sign, given by the Koszul rule, is equalgo=
(IL1] +-- -+ |L;—1]). The image ofl,, is equal tod whenm = 0 or whenL; € S°Lie’(1) = K| for all .

Remark. Let us denote the linear dual ofby # := ¢*. This is an element of homological degre&.
The Koszul dual operad is defined h8)' := SqBVi* = S @y qBVi*, whereS stands for the endo-
morphism operad := Endf,-.. Up to a degree shift, the Koszul dual dg ope := (qBV',!d,),
when viewed as a cohomologically graded differeriigh||-operad, corresponds to the Beilinson-Drinfeld
operad BD04, CG11.

1.5. Koszul resolution of the operadBY. We denote by3V ., the quasi-free operad given by the cobar
construction o3V

BVoo := QBV = (T (s 'qBV'), d = dy + dy),

whered; is the unique derivation which extends the internal diffitied ¢, and whered, is the unique
derivation which extends the infinitesimal (or partial) omguct of the cooperadBVi, see [V10, Sec-

tion 6.5]. The total derivationd = d; + d squares to zero and faithfully encodes the algebraic struc-
ture of the dg cooperad oBVi. The space of generators of this quasi-free operad is igummto
T¢(5) o S°Coms§ o 8¢ Lie€, up to coaugmentation and desuspension.

Theorem 1.2. [GCTVO09, Theorent] The operad3) . is a resolution of the operatlV
BVo = OBV = (T(s 'qBV), d = di +dy) = BY.

It is called theKoszul resolutiorof BY. Notice that it is much smaller than the bar-cobar resatutio
OB BY = BY. The Koszul resolution and the bar-cobar resolution arb agdratic. But they are not
minimal resolutions: they are both quasi-free operads witlifferential which is the sum of a quadratic
term (d-) and anon-trivial linear term(d,).

Algebras over the operall),, are calledhomotopy BV-algebrasFor an explicit description of this
algebraic notion together with its homotopy propertiesyefer the reader ta3CTV09.

1.6. Homotopy transfer theorem for homotopy BV-algebras. We consider the data

w(CH (A, da) == (H, dyy)

K2

of two chain complexes, wheieandp are chain maps and whehehas degreé. It is called ahomotopy
retractwhen idy — ip = dah + hd 4 and when, equivalently,or p is a quasi-isomorphism. If, moreover,
the compositei is equal to iy, then it is called aleformation retract

Theorem 1.3. [GCTV09 Theorem33] Any homotopy BV-algebra structure ghtransfers toH through
a homotopy retract such thaextends to amo-quasi-isomorphism.

2. THE HOMOLOGY OFBVi AS A DEFORMATION RETRACT

The purpose of this section is to construct an explicit auting homotopy for the chain complex
BV := (gBV',d,). This is a necessary ingredient for the construction of thrérmal model of the operad
BV given in the next section. As a byproduct, this computes tradlogy of the bar construction of the
operadBV in terms of the homology of the moduli spagd, ,,; of genus) curves. The main result of
this section is the following theorem.

Theorem 2.1. The various maps defined in this section form the followirfgrdeation retract:

oQH C(qBVi ~2T0)®Ghd, 207 ' ®@dy) 2(T (6) @10 1® G /Im dy = T°(5) ® S~ Grav*,0).
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FIGURE 1. Example of a planar representation of a tree with ordeegtices

2.1. Trees. A reduced rooted trees a rooted tree whose vertices have at least one input. Wadmrthe
category of reduced rooted trees with leaves labeled higdgtfrom 1 to n, denoted byTree. The trivial
tree| is considered to be part dfree. Since the trees are reduced, there are only trivial isohismps of
trees. So we identify the isomorphism classes of trees Wétirees themselves; séé/[L0, Appendix C]
for more details.

We consider the planar representation of reduced treesdaaiy shuffle trees, see E. Hoffbetkdf10,
2.8], V. Dotsenko and A. KhoroshkirfJK10, 3.1], and [LV10, 8.2]. We define a total order on the vertices
of a tree by reading its planar representation from letafthe root by following the internal edges without
crossing them. See Figutdor an example.

2.2. Free operad and cofree cooperadThe underlyingS-module of the free opera@ (V') on anS-
moduleV is given by the direct surdp, ... t(V'), wheret(V') is the treewise tensor module obtained
by labeling every vertex of the treewith an element o’ according to the arity and the action of the
symmetric groups. The operadic composition map is givethtagrafting of trees. Dually, the underlying
S-module of the conilpotent cofree cooperad(V) is equal to the same direct sum over trees and its
decomposition map is given by cutting the trees horizoyitalte [VV10, Chaptei5] for more details.

The subcategory of trees withvertices is denoted b'y'ree(”). The number of vertices endows the free
operad7 (V) = @, 7(V)™ and the conilpotent cofree cooperdd(V) = @, o 7¢(V)™ with
a weight grading. We represent a labeled tregy, . .., v, ), using the aforementioned total order on
vertices.

2.3. Coderivations on the cofree cooperad Coderivations on cofree cooperads are characterized by the
projection onto the space of generators. In other words,

Lemma 2.2. Letn be a homogeneous morphisii(A) — M of gradedS modules. Then there exists a
unique coderivatio,, on7°(M) extending;, given on an element Gi°(M ) represented by a decorated
tree by applying; to any subtree.

This is a classical generalization of the characterizatfocoderivation for cofree coalgebras. Here are
two simple but useful examples, for more details 48&LD, Section6.3.14].

(1) If 5 factors through the projection®(M) — T<(M)(") = M, thend,) is given on a decorated
tree as a signed sum over the vertices of the tree. The sumecoaredponding to a vertexis the
same tree withy applied to the decoration efand all other decorations the same. The sign is the
Koszul sign.

(2) If n factors through the projecticfic(M) — T<(M)(?), thend,, is given on a decorated tree as a
signed sum over the internal edges of the tree. The summaresponding to an edgehas the
edge contraction alongof the original tree as its underlying tree. The decoratmmay from the
contraction vertex are the same; the decoration on the atiun vertex is given by applying
to the two decorated vertices involved in the contractiaewed as a two-vertex decorated tree in
T<(M)?). The sign is the Koszul sign.
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2.4. A contracting homotopy for a cofree cooperad.Let M be theS-module which is the linear span
of elementg, and g, both of arity two, in degrees and2 respectively, both with trivial symmetric group
action.

M =Ky se @K28< R >

i B
Let ¢» denote the degree one morphism of grafedodulesy : 7°(M) — M which first projects
T<(M) to the cogenerato®/ and then takeg to 5 andg to zero.y) can be extended uniquely to a degree
one coderivatior,, of 7°(M) by Lemma2.2. We will construct a degree1 chain homotopyd of graded
S-modules orv ©(M) so thatd, H + Hd,; is the identity outside arity and the zero map on ariy(which
is one dimensional, spanned by a representative of the geimiathe counit map).
To do this, we will need a combinatorial factor.

Definition 2.3. Let T' be a binary tree. The vertaxhas some number of leaves, above one of its
incoming edges, and another numhbgrabove the other (we need not concern ourselves which is yhich
Let the weightu(v) be their productn,n,. For an illustration, see Figutz

FIGURE 2. A binary tree with the weight indicated at each vertex

J.-L. Loday used this weight function to describe a pararirtgon of the Stasheff associahedra.
Lemma 2.4. [Lod04 The sum of the weights of all the vertices of a binary tree witlertices |s("“)

Definition 2.5. Leth : M — M be the degree- 1 morphism of grade8-modules given by taking to
andy to 0. We will useh to define the contracting homotopy.
Let the homotopyH be defined on a decorated tree witlertices in7 (M) as a sum over the vertices.

For the vertex, the contribution to the sum #({ff—l) times the decorated tree obtained by applyirtg v

(including the Koszul sign). So it has a similar flavor to extgh as a coderivation, but also includes
combinatorial factors.

Lemma 2.6. The mapi, H + Hd, is zero in arity one and the identity in all other arities.

Proof. First, applied to the coidentity subspacefof(M ), the degree zero part f¢(M)(1), this sum is
clearly zero.

Next, consider a tree ifi“(M) with at least one vertex. The madp acts on it by taking the signed and
weighted sum of replacing eag¢hwith a y; the coderivationl,, acts by taking the signed sum over all the
1 and replacing it with &. To act first with one and then with the other means that either
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(1) The mapdd andd,; act on two distinct vertices of the tree, or
(2) they act on the same vertex, changing it first frérto p or vice versa and then back, ending up
with the same tree, with a combinatorial factor.

The first type come in pairs, one fraafp H and one from¥ d,, with the same combinatorial factors. They
have the opposite sign, because the sign conventions fandd,, are the same, and in one of the cases,
there is one more or fewerthan the other in a position that induces a sign. This meduas tlese terms
cancel.

For the second type, note first of all that the induced sigos #f/ andd,, will be the same sign acting
on whichever vertex we have chosen, and every vertex wilkcbeozon by precisely one df d,, andd, H
nontrivially, depending on whether it begins decoratedtoy 1, so the final result of acting in this way on
every vertex will be the sum over all vertices of the undewdyireeT

By Lemma2.4, the sum of the coefficients over all the vertices is exactlg,avhich yields the desired
result. |

2.5. Characterizing the Koszul dual of the Gerstenhaber operad.Consider the operad governing
Gerstenhaber algebras. This operad has a presentatibtsasM)/(R), whereR is a set of quadratic
relations ine = s~y and(, ) = s~ 14.

The Koszul dual cooperad (Se&/[L0, Section7.3]) Gi is a graded suS-module of 7¢(M) C T¢(sG),
characterized by being the intersectionTf()) with the kernel of the degreel coderivationd; on
BG := T*(sG) induced by the infinitesimal composition mag, : 7°(G)® — G.

Applying d» to a decorated tree iff(M) gives a sum of trees, each of which has one spekial
valent vertex decorated by an elements@f?) obtained by contraction of one edge and composition of
the associated two operations. The rest of the verticesriaedent and decorated with an element of
sG() = M. Becausel is one dimensional in each degree, we can specify that emeletrt vertex is
decorated by either or 3, with an overall coefficient on the decoration of the speagatex. Then in order
that two separate terms be in the same summard 64G) so that they might cancel, the underlying trees
must be the same and the decorations on each trivalent varteixbe the same.

Definition 2.7. A contraction treeis a tree with one undecoratddvalent vertex and all other vertices
trivalent and decorated by eithgror 3.

Note that we can induce a fixed order on the leaves of the dpkwalent vertex of a contraction tree
by using the order on the leaves of the whole tree; order ek of the special vertex by the smallest
number of a tree leaf above each one, $&6 D, Sections.2]

A sum of decorated tre€s, ey T € T¢(M) is in the kernel ofd, if and only if once we sum over all
possible edge contractions, any summands that have theusatedying contraction tree cancel with each
other.

Therefore it is important to know which decorated binarg&® can have the same contraction tree.
There are precisely three underlying trees that can giedeis given contraction trees by an edge contrac-
tion, corresponding to the three distinct binary trees with vertices:



10 GABRIEL C. DRUMMOND-COLE AND BRUNO VALLETTE

Definition 2.8. There are twelve distinct two-vertex binary trees with ioexd decorated by and/or g3,
which form aK-linear basis for the twelve dimensional spgcd M )(?). We will refer to these basis trees
with the notatiort;(a,b) wherea andb are each one of the symbqglsand 8 and: is one of1, 2, and
3. The numbers correspond, respectively, to the trees pidtabove, whilez andb are decorations of
the two vertices, following the vertex order conventiorabsished in subsectioh.1. If S is a contraction
tree, thenS(¢;(a, b)) is the decorated binary tree obtained by replacinglttiialent vertex with;(a, ) and
Slti(a,b)] is the decorated tree obtained by decoratingitivalent vertex withds (¢;(a, b)).

Up to scale, there are precisely twelve decorated trees@matontract to yield the contraction tr&ef
each vertex is given eitheror § as a decoration; these are the tré¢s (a, b)). These twelve are clearly
in correspondence with the st (a, b) }. We have shown:

Lemma 2.9. The following are equivalent:
(1) The elemen}_ cr T isin Gi.
(2) For each contraction trees, ch(ti(%b))S[ti(a, b)] = 0 where the sum runs over the twelve
decorated tree$ (¢;(a, b)) that can yieldS as a contraction.
(3) For each contraction trees, ch(ti(mb))dQ(ti(a, b)) = 0 where the sum runs over the twelve
decorated tree$ (¢;(a, b)) that can yieldS as a contraction.

In words, a sum of decorated trees can only bgiinf there is local cancellation for every possible
contraction tree. Global cancellation is sufficient butalocancellation is necessary (this means that they
are equivalent, but it will be easier to use local cancaltatd check global cancellation in the sequel).

2.6. Restricting the homotopy togG'.
Lemma 2.10. The homotopy : 7°(M) — T°(M) restricts togGi.

Proof. Let Y ¢rT be a sum of decorated treesGh Then for every contraction treg, the sum over the
twelve basis elements; cs, (a,))d2(ti(a, b)) is zero.

Let us consider applyingf to > ¢ T. By definition, this is a sum over every vertex of the decat&tee
T'. To show that the resultant sum isgh, we then applyl, and demonstrate that we get zero. Applyilag
involves applying the desuspension of the infinitesimal gosition mapy;) on each set of two adjacent
vertices, summing over all such pairs. We will confuse sudbssts with internal edges, with which they
are in bijection, as described in Secti®13

In total, to applyH and thend, to a decorated tre& involves summing over all choices of a vertex
and edge of’; each individual summand is the application of first a wesghmnultiple ofh to the chosen
vertex, and then infinitesimal compositiop) to the chosen edge.

This sum splits into those pairs of vertex and edge which &téendt, and those pairs where the chosen
edge is incident on the chosen vertex. We will show that eddese two constituent sums is zero
individually.

If the vertex and edge are distinct, then, up to sign, theiegipdn of 4 on the vertex and infinitesi-
mal composition on the edge commute. For a given contratt@nand choice of trivalent vertex on the
contraction tree, the overall sign of commuting the shiftgthitesimal composition on the edge of one
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of the twelve decorated trees which yields the given cotibadree andh on the corresponding vertex
will be independent of the particular choice of decoratee twithin the twelve. LefS"[t;(a,b)] be ob-
tained fromS|t;(a, b)] by applying the appropriate weighted multiple/ofo the vertexv. Since the sum
> Cs(t(ab)) Slti(a, b)] over the twelve corresponding decorated trees without pplication off. is zero,
for each choice of vertex, the Sup cg, (a,6))S"[ti(a, b)] is also zero.

The other case to consider is when the edge involved in théramdion is incident on the vertex
whereh is applied. Let us fix a contraction tré& because the original sum is @i, it is true that
> Cs(ti(ab))Slti(a, b)]is zero, or, equivalently, © cs (¢, (a,5))d2(ti(a, b)) is zero. We will replacds (;(a, b))
with the weighted sum of applying to the top and bottom vertex of(a, b), followed by ds, and show
that the result is still zero.

The two-vertex component of the Koszul dual cooperad to aiii@ operad is isomorphic to the space
of relations, up to a degree shift. In this case, we have:

Lemma 2.11. The kernel ofi; on the linear span of;(a, b) is six dimensional, spanned by the shifted
Gerstenhaber relations:

(1) the two dimensional space of associativity relatiofig, i) — t; (@, 1),
(2) the three dimensional space of Leibniz relations spanned by

Ll - tl(ﬂaﬂ) + tQ(ﬂa:u) + t3(:uvﬂ)a

L2 - tl(ﬂvﬂ) +t2(:uvﬂ) +t3(:uvﬂ)7
and

L3 - tl(ﬂa:u) +t2(ﬂ7:u) +t3(ﬂvﬂ)

(note that the signs are different than in the usual Leibelation because of the shift, and that the
presentation is not symmetric in our basis), and
(3) the one-dimensional space of the Jacobi relatigf®, 5) + t2(8, 8) + t3(8, 5).

For the weighting ofh, it is necessary to look at the shape and decorations of thigaion treeS.
Choose a representative so that the two vertices involvélteitontraction edge are adjacent in the total
ordering of vertices. Let the number of leaves above the éd§ehe contraction vertex be;.

. - . . n2 . . - .

FIGURE 3. The top part of5(t3(a, b))

Then up to an overall sign and overall factor s the weighted sum of applyingto both vertices
of each of the basis elements is given by:
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(2) t1(p, B) = na(na + na)ta(p, 1),
ta(p, B) = na(ny + n3)ta(p, ),
t3(B, ) = na(na + n3)ts(p, 1),
() t1(B, ) = —ninats(p, p),
t2(B, p) = —ninsta(p, p),
t3(p, B) = —nansts(p, 1),
(4) t1(B,B) = n3(n1 +n2)t1 (B, p) + ninati(p, B),

t2 (ﬂa ﬂ) — n2(n1 + n3)t2(ﬂv /’L) + n1n3t2(ﬂa ﬂ)’ and
t3(8, B) = ni(n2 +n3)ts(p, B) + nansts (B, p).
Applying these formulae to the kernel described above gives

() tip, 1) — t(ps ) = 0,

)
Ly = nang(ty(p, p) — t3(p, 1) + nans(ta(p, p) — ta(p, 1))
Lo = nana(ta(p, 1) — t1(p, 1)) + nons(tz(p, 1) — ts(u, 1))
L = nana(ts(p, ) — ta(p, 1) + nans(ts(p, 1) —t2(p, p),
(3) and:

tl(ﬂaﬂ)+t2(ﬂvﬂ)+t3(ﬂaﬂ) =
ning(t1(p, B) + t2(8, 1) + ta(p, B))

+ n1n3(f1(57ﬂ)"‘Q(/bﬁ)"‘%(%ﬁ))

+ 712”3@1(57#)+t2(5aﬂ)+t3(ﬂaﬂ))
So the kernel ofl, in this twelve dimensional space is stable under the weitjpplication of, no matter
the particular trees that define the weights. This meandahaach contraction treg, the sum obtained
from ) cs(, (a,p))d2(ti(a, b)) by replacingls (t;(a, b)) with the weighted sum of applyingto the top and
bottom vertex ot;(a, b), followed byds,, is still zero, as desired. O
2.7. Proof of Theorem 2.1

Lemma 2.12. Let©O = T(N)/(R) be a quadratic operad with Koszul dual coope@idC T°(sN). Let
d be a coderivation of °(sV). If the composition

Oi——T°(sN) 5 T¢(sN) —» T¢(sN)® /0i(?)
is zero, thend restricts to be a coderivation @.

Proof. Since the Koszul dual coopere@tl = C(sN, s>R) is a quadratic cooperad, this proof is dual to the
proof that a derivation of the free operdd V') passes to the quotiefit(N)/(R), with R C T(N)®), if
the composite
R—— T(N) —= T(N) T(N)/(R)
is zero. O

Corollary 2.13. The coderivationl,, defined orV °(M) restricts tog'. We will refer to the restriction with
the same notation.

Proof. In order to check this, we need check only that elemeng efhich d,, takes into7(M)?) land

in Gi®. For degree reasons, such elements must belog'gqh which is described by Lemnial1l A
direct calculation verifies that, takes an associativity relation to a difference of two Lé&hmelations,
takes each Leibniz relation to the Jacobi relation, andstétke Jacobi relation to zero. O

Proposition 2.14. The counit magGi,d,) — (I,0) of the differential graded coopera@', d,), the
coaugmentatiofi, 0) — (G', dy), and the homotop¥ form the following deformation retract:

HC g' dw (I O)
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Proof. This is a direct corollary of Lemm2.6, Lemma2.1Q and Corollary?2.13 O

Remark.One can easily check that the dual of the chain com{@éxd,; ) is isomorphic to both the Koszul
complexLieio,, Lie (see [V10, Section7.4]) and the Chevalley-Eilenberg complex of the free Lie algeb
This isomorphism along with the preceding proposition iegphs a corollary the well-known facts that the
Lie and commutative operads are Koszul, and that, equitigl¢ime Chevalley-Eilenberg homology of the
free Lie algebrais trivial.

Definition 2.15. We define a map d¥-modules
0:T(0)@T(M) = T(M ®KYS)

as follows. We will describe the image 6f* @ = wherex has underlying tred". Let A range over
assignments of a non-negative integer to each ed@esofthat the sum of all the integersis

Then the image o™ ® 2 has underlying tre&” which is obtained fronT" by insertingA(e) bivalent
vertices on each edgglabeled by.

Lemma 2.16. The restriction of) to 7°(§) ® G, still denoted, is the inverse to the distributive isomor-
phismp : ¢BVI — T¢(§) @ Gi.

Proof. First, letz € Gi. We will verify thatd (6™ ® x) is in ¢BV by checking thatl»0 is zero o7 () ® G'
(hereds is the differential induced by compositiond8)).

The mapy inserts vertices decorated byandd, composes pairs of adjacent vertices. The sum involved
in applyingd; includes compositions involving, 1, and2 vertices decorated hy. Each of these vanishes
for a different reason.

(1) The insertion of a vertex decorated withcommutes up to sign with compositions that do not
involve it, so insertingn vertices decorated withand then contracting an edge whose vertices are
decorated by: or 3 is the same as contracting the edge first and then insertitigasdecorated

with 6. But sincedgi coincides withngvl on thed® component of;BVi, and we are starting in

the kernel off' to begin with, this summand is zero.

(2) Contracting an edge whose vertices are both decoratédjivgs a bivalent vertex whose decora-
tion is s(A o A), which is zero sincé o A = 0 in gBV.

(3) Finally, consider contracting an edge between a vertdgcorated by a or 5 and an adjacent
vertex decorated by@ Let \’ be a map from the edgesbfto the natural numbers so that the sum
of the images adds ta — 1. There are precisely three choicesofvith a ¢ adjacent ta which
can be forgotten to yield an element whose underlying tréevisth vertices inserted according to
M. The sum of the three contractions witlassociated to’ together make up a relation gBV.

Now considepf(6™ ® z). Because first decomposes and then projects, it is zero on any tregalecb
by 5, §, andy unless all of the vertices decoratedbgre below all of the other vertices. There is precisely
one summand in the sum definifigvhich satisfies this condition. That is the summand corredjmy to
the partition\ with \ of the outgoing edge of the root equalitoand\ of every other edge equal to zero.
The mapp splits this into two levels and then projects; the only waytfe projection to be nonzero is
for it to split with ™ as the bottom level; thepd (6™ & =) = (6™ ® z). Because is an isomorphism, a
one-sided inverse is an inverse. O

Lemma 2.17. Under the above isomorphisnthe differentiab—! ® d;, is sent tad,:
(aBV', dp) = (T(0) ® G',071 @ dy)

Proof. It is enough to prove it on the level of the cofree cooperads stibw that the following diagram is
commutative

Te(8) ® T(M) —2— T¢(M & Ké)

l51®dw luiq,

Te(6) @ TS(M) —2— T(M & Ké) ,
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Wheredw is the unique coderivation of the cofree coopef&dM @ K¢) which extends the map. Since
5~ ® dy, is a coderivation, it is enough to prove it by projecting otite space of cogenerataté & KJ.
We conclude by showing that the only non-trivial component i
0 1)
N /s N\ N/ N /
A
I I I
)

AN

— — ov—=

ya N/
ﬂ .
| 0

Proposition 2.18. Under the isomorphism of Lemm2al7, the chain complekg5V', d,,) admits a degree
given by the power&™ of §, for which:

Ho(aBV) (imy = {

Proof. Write the chain complex as

one dimensional, spanned By" ® I) : m >0
isomorphic tol ® Gi/Im d, : m=0.

—1

: 67 ®@dy :
...—>§m®g1—>5mfl®g] gl 0

The homology is then one dimensional by Proposifidiveverywhere except at® Gi, where everything
is in the kernel of the differential so the homology is just tiuotient by the image @f. O

Proof of Theoren2.1. We prove that the following data

sor (C(T°(85) © G1,07" @ dy) 2= (T°(5) ® Im (Hdy), 0).

form a deformation retract, where the projection mais the sum of the projection ont6¢(é) and the
projection ontog composed withH/ d,,. Assume that: is in the coaugmentation coide@i. SinceH is

a contracting homotopy fody, (dyH + Hdy)z = x. ThendyHdyr = —Hdy’z + dyz = dyz SO
(x— Hdyx) is closed unded,;,. SinceG' is contractible and is in the coaugmentation coideal, this means
thatz — Hdyx is in the image ofl,, therefore in the image af,. This shows thatid,x is in the same
homology class as. It is independent of choice of representative becauseésgiero on all ofm d,. A
quick calculation verifies that, (6 @ H) — (6 ® H)d, gives the projection onté™ @ Gi except on the
rightmost factor, where it giveisl — Hd,,. This concludes the proof of the theorem, with the exception
the rightmost identification with the dual to the Gravity ogebgiven in the next section. O

2.8. The homology of BVi in terms of the moduli space of curves and the Gravity operad.Let us
recall from E. Getzler's papersset94h Get93 the definition of the quadratic operagrav encoding
gravity algebrasl|tis generated by skew-symmetric operatifns . . ., z,,] of degree —n for anyn > 2,

which satisfy the following relations:

~ ~ Tl ey Tl Ylyeees for >0,
Z :I:[[,Ti,l'j],,fl,...,.”L'i,...,.’L‘j,...,xk,yl,...,yl] :{ ([)[ ! k] L& yl] for =0
1<i<j<k .

The sign is the Koszul sign coming from the permutation ofdlegnents.

We consider the moduli spacely .1 of genusd curves withn + 1 marked points. The gluing along
two points and the Poincaré residue map induce an operadigte on the suspensioil, (Mg 1) of its
homology, seeGet95 Section3.4]. Let S~ denote both the desuspension operad and cooperad structure
onEndg,-1.

Proposition 2.19([Get94K). The gravity operad is related to the homology of the modwdcspof genus
0 curves by the following isomorphism of operads:

S 'Grav = sHy (Mo pny1) -
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Proposition 2.20. The quotienti’ /Im d,, is a cooperad isomorphic t§~ ! Grav*.

Proof. This is the cooperadic dual of Theorem of [Get944. The aritywise linear dual of the differential
graded quadratic cooper&di, d,,), with degreel coderivation, is a differential graded quadratic operad,
with degreel derivation. (We consider the opposite homological degre¢he linear dual). By®J94
Theorem3.1], the underlying operad is isomorphic (6')* = S?G := Endg,> ®y G, which admits the
same quadratic presentation as the op&fakcept for the—2 degree shift of the generatoss2e and
s72(,). By the universal property of quadratic operads, the déamdd,, is characterized by the images
of these generators, that is?e — s72(,) ands~2(,) ~ 0. Therefore, up to the degree shift, the
derivation’d,, is equal to the derivatioth on G defined in [5et944 Theoremd.5 of loc. cit. states that
S~ 1Grav = Ker A. Dually, it givesGi /Tm dy = S~ 1Grav*. O

This concludes the proof of Theoretrl
Theorem 2.21. There exist isomorphisms of grad&enodules
Ho(BBY) = Hy(qBV',d,) =T (§) ® S~ Grav* .

Proof. The first isomorphism is a general fact about Koszul operadghe case of an inhomogenous
Koszul operadP, it is proved as follows. The degreel mapqP! — sV — V »— P is a twisting mor-
phismk : P = (qPi,d,) — P € Tw(Pi, P), see GCTVO9, Appendix A] or [LV10, Section?.8]. By the
general properties of the bar-cobar adjunctiowl0, Section6.5], it induces a morphism of dg cooperads
f : Pi — BP, which is equal to the following composit®i = qPi — T¢(sV) — T¢(sP) = BP.
On the right-hand side, the oper&dcomes equipped with a filtration; we consider the inducexhfitin
on the bar construction. On the left-hand side, we conslaefiltration given by the weight grading on
the cooperadP'. The coderivationl, lowers this filtration byl and the morphisnf,. preserves the re-
spective filtrations. By the Poincaré-Birkhoff-Witt threon [GCTV09 TheorenB9], grP = P, the first
page(E°, d") of the right hand-side spectral sequence is isomorphié ¢®. So the mapf, induces
the mapf; : (¢Pi,0) — BqP, on the level of the first pages of the spectral sequencesewhis the
twisting morphism associated to the homogeneous quadnagiadyP. Since it is Koszul, the morphism
fr is a quasi-isomorphism and we conclude by the convergeeoedm of spectral sequences associated
to bounded below and exhaustive filtratiom4L[95, Chapterl1]. The second isomorphism follows from
Theoren?2.1 O

Remarks.

<o While we were writing this paper, V. Dotsenko and A. Khorastik [DK09] proved, with another
method (Grobner bases for shuffle operads), the secondiptiism on the level of graded-
modules, i.e. without the action of the symmetric groups.

o The cooperagd with the action otd,, is the Koszul dual cooperad of the opegdiith the action
of A is the sense of Koszul duality theory of operads over Hopélalgs, see the Ph.D. Thesis of
O. Bellier [Bell1]] for more details.

3. THE MINIMAL MODEL OF THE OPERAD BV

In this section, we recall the notion of a homotopy coopeeat] we develop a transfer theorem for
such structures across homotopy equivalences. We applyethilt to the deformation retract given in the
previous section. This allows us to make the minimal mod#hefoperad3V explicit.

3.1. Homotopy cooperad. We recall from VdL02] the notion of a homotopy cooperad, studied in more
detail in [MV09a, Sectiord].

Definition 3.1 (Homotopy cooperad)A homotopy cooperastructure on a gradettmoduleC is the datum

of a square-zero degreel derivationd on the free operad (s ~'C) which respects the augmentation map.
An oo-morphismC ~» D of homotopy cooperads is a morphism of augmented dg opeetdeéen the
associated quasi-free operdd¥s—1C),d) — (T (s~ 'D),d’). We denote this category by-coop,. .

We consider the isomorphism 8fmodules7 (s~1C) = 7(C) given by

t(s7 ey, ..., s ten) o (1) Dleltm=2lealtten—lyey e
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Since the mag is a derivation on a free operad, it is completely charao¢erby its image on generators
A : C — T(C), under the above isomorphism. The substitution of atratethei" vertex by a tree’ is
denoted by o; t’, see [V10, Sections.5] for more details.

Proposition 3.2([MV094], Propositior24). The data of a homotopy cooperéfi(s—1C), d) is equivalent
to a family of morphisms @&-modules{A; : C — t(C) }+cTree SUCh that

< A| = O,

o the degree of\, is equal to the number of verticestofinus 2,

o for everyc € C, the number of non-trivial,(c) is finite,

¢ foreveryc € C,

i—14+k(l—1 / / /
g (-1)" +h( “toit(cl,...,cl-,l,cl,...,ck,clqu,...,cl):O,

where the sum runs over the elemettts, ..., ¢;) andt’(c}, . .., ¢, ) such that
Ale)= D Ale)= D tler,...,c) and Ale)) = Y Aplc)= > t(ch.....c}).
tETree tETree t'€Tree t'€Tree

A homotopy cooperad structure on a gradechoduleC with vanishing maps\; = 0 for treest ¢
Tree=) with more tharB vertices is equivalent to a coaugmented dg cooperad steuohl := C @ I.

In this case, the definition in terms of a square-zero deomabn the free operad is equivalent to the
differential of the cobar constructigaC.

In the same way, the datum of aa-morphismF : (7 (s~1C),d) — (T (s~'D),d’) is equivalent to a
morphism ofS-modulesf, : C — T (D), that is, a family of morphismé§f; : C — t(D) }+eTree, Satisfying
some relations. An interpretation in terms of Maurer-GQagkements is given in|V09a, Sectior.7].

The projectiorC — T (C) — C of d on the grade@-moduleC endows it with a differential denoted by
dc, which is equal to the sum: = >~ A, over the corollag. The images on corollas of amg-morphism
define a morphism of d§-modules(C, d¢) — (D, dp). When this latter map is a quasi-isomorphism, the
oo-morphism is called ano-quasi-isomorphism

3.2. Homotopy transfer theorem for homotopy cooperads.

Theorem 3.3.Let(C, {A;}) be a homotopy cooperad. L&, d3) be a dgS-module, which is a homotopy
retract of the dgS-module(C, d¢):

v (C (€)== ().

There is a homotopy cooperad structure on theSetlgodule(#, d,), which extends the transferred com-
position maps(p) o A; o i and such that the mapextends to amo-quasi-isomorphism.

Proof. For any coroll&, the transferred structure mzip on# is given by the differentiad;,. For any tree
t € Tree with at leas® vertices, we consider all the possible ways of writting idogcessive substitutions
of trees with at leas? vertices:

t = (((t1 0j, t2) 04, t3) -+ ) o), tht1 -

The transferred structure ma?g : 'H — t(H) is then given by
Kt = Z + t(p) © ((Atk+1 h) Cjk ( o (At%h) Oja ((Atz h) Oj1 Atl))) o1,

where the notatiofA. k) o; A, means here the compositeAf with A, h at the;™ vertex of the tree.
The extension of the map: C — H into anoo-morphismp., : C — T (H) is given by the same kind
of formula. On corollas, it is given by the mapand for any tree € Tree=? with at least vertices, it is
given by
bt = Z :tt(p) © ((Atk+1h) Ojik ( o (At%h) Ojia ((At2h) Oj1 Atl))) oh.
When( is a dg cooperad, these formulae are the exact duals to tregiven by [Gra07 for dg
(pr)operads. The rest of the proof is straightforward dieihg the ideas of loc. cit. O
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3.3. The homotopy cooperad structure onH (B BY). Let us denote the grad€dmodule
H:=T(6) & S 'Grav" = H,(BBV) = Hy(qBV', d,) .
Theoren?.1 provides us with the following deformation retract in theegpory of dgS-modules:
h:=8@H C (aBV 2 T(6) ® Gl,dy, 2571 @dy) é (He1,0).

K3

Corollary 3.4. The gradedS-module# := T"(§) & S~*Grav" is endowed with a homotopy cooperad
structure and with amc-quasi-isomorphism from the dg coopedtt’ = (¢B8V',d,,).

Proof. This is a direct application of the Homotopy Transfer TheoB83for homotopy cooperads. [
3.4. The minimal model of the operad V.

Definition 3.5. A minimal operads a quasi-free dg operdd@ (X), d)
o with a decomposable differential, thatds X — 7(=?(X), and
o such that the generating degree grafledodule admits a decomposition inf6 = @, -, X (k)
satisfyingd(X *+1) ¢ T(@F_, X ). R
A minimal modebf a dg operadP is the data of a minimal opergd (X ), d) together with a quasi-
isomorphism of dg operad§7 (X), d) = P , which is an epimorphism. (This last condition is always
satisfied when the differential @? is trivial).

The generalization of the notion of a minimal model from dgnooutative algebrasyGMS75 Sul77
to dg operads was initiated by M. Markl iMar9g, see alsolfISS02 Section 113.10]. Notice however
that the aforementioned definition is strictly more genénah loc. cit. and includes the crucial case of
dg associative algebras, since we do not requirexh@t) = 0 here. (A minimal operad in the sense of
Markl is minimal in the present sense: the extra gradingusrmgby the arity gradingd *) := X (k + 1)).
The present definition faithfully follows Sullivan’s ideathe increasing filtratiorF, := EBf:l X js
the Sullivan triangulationassumption. The extra grading®) is called thesyzygydegree. Notice that
any non-negatively graded quasi-free operad with decoaipgedlifferential is minimal; one only has to
considerX %) .= X,._;.

The following lemma compares the two approaches of Quiltagfitfrant) and Sullivan (minimal) of
homotopical algebra.

Lemma 3.6. A minimal operad is cofibant in the model category given byikidH [Hin97].
Proof. This is a particular case oi[\V09b, Corollary40]. O
Since the definition is different, one needs a more geneoaiffior the uniqueness of minimal models.

Proposition 3.7. LetP be a dg operad. When it exists, the minimal model of the opBresdunique up to
isomorphism.

Proof. We work with the model category structure on dg operads defiyeV. Hinich in [Hin97]. Let

M and M’ be two minimal models of the graded opef@dThey are cofibrant operads by the preceding
proposition. Since the quasi-isomorphiswy’ ——» P is an epimorphism, it is a trivial fibration. By the
lifting property of a model category, there exists a quasimorphismf : M = (7(X),d) — M’ =
(T(X’),d") of dg operads. It induces a quasi-isomorphism ofedgodules between the space of genera-
tors (X, dx) — (X', dx+) by [MV09a, Propositiord3]. Since the differentials are decomposable, we get

dx = 0 anddx. = 0. So the aforementioned quasi-isomorphism is actually am@phism of graded
S-modulesX = X', Therefore, the map is an isomorphism of dg operads. O

Theorem 3.8. The data of CorollanB.4 provide us with the minimal model of the opeday:
(T(sM(T°(0) ® S 'Grav’)),d) = BV,

where this quasi-isomorphism is definedsbyé — A and bys— !y — e.
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Proof. First, the quasi-free operdd (s~ (T (3) ® S~'Grav")), d) is minimal since it is non-negatively
graded with the decomposable differential coming from thesferred homotopy cooperad structure on
H.

Then, theoo-quasi-isomorphism,, : qBV' ~» H of Corollary3.4induces a morphism of dg operads
P : QBV — (T(s7'H),d). Itis a quasi-isomorphism by the following argument. We sidar the
filtration F, on Q BVi, and respectively. on (T (s~*H),d), given by the number of vertices of the
underlying tree:

F_j = @ t(s"'qBY') and F = @ t(s7'H) .

tETree(2k) teTree(Zk)

The first terms of the respective associated spectral segaeare(E°, d°) = (T (s~ 'qBV'),d;) and
(E°,d°) = (T(s7'H),0). The morphism of dg operadB preserves the aforementioned filtrations.
Moreover, it satisfied?? (P) = T (s~ 1p). So it is a quasi-isomorphism by the Ktinneth formula. The tw
filtrations are obviously exhaustive. At fixed arity, they #ounded below: for a fixed degree, the number
of vertices is limited since the generator of arity one haegrde greater or equal 1o We conclude the
argument by means of the classical convergence theoremdotral sequence®|L95, Chapterl1].

Finally, we define a morphism of operafls 7 (s~'H) — BV by

s A, sTISTIGrav’ (2) = s7im Hdy(2) 2 Ks 'y — Ke,

and the rest being sent €0 We now check the commutativity of the differentials on tlemegrators. It is
straightforward ors—15™.

The only elements dfim Hd,, whose image undef are trees with vertices labeled only pyandé are
inIm Hdy(3). Indeed, let be an element diim Hd,(n), which is the sum of trees with vertices labeled
by 1 and withn — 1 — k vertices labeled bys. To get trees labeled only by andd, one has to apply
h =96 ® H atotal ofn — 1 — k times. This introduces the — 1 — k& power ofj and applies the coproduct
of the cooperad™(§) ® G' a total ofn — k times. In the end, we get trees labeledrby 1 copies ofu
andn — 1 — k copies of§ splitn — k times. To get totally split trees, we should have & = 2n — 3 — &,
which impliesn = 3.

The one-dimensional spadge} (3), generated by the Jacobi relation, livedin d, = Kerd,. The
image undetr! of the corresponding element i Lie! (3) is a sum of7 trees with3 vertices ¢3), whose
image in the operaB8V is the7-term relation

A(-e-0-)+ (A(-0-) e-).(id +(123) + (321)) + (A(-) e - @ -).(id +(123) + (321)) = 0,

which is a consequence of the definition of the opdsad The two-dimensional spacgomi(3) is gen-
erated by (the suspension of) the associatore. ofThe compositefd,, acts on it as the identity. Its
image undekl is equal tods, which produces the associativity relation in the opefad So the map
F: (T(s7'H),d) — BV is a morphism of dg operads.

It remains to show that the following diagram is commutative

~

BY
x /
(7

sT1H),d),

to conclude that" is a quasi-isomorphism. It is enough to check it on the geoesawhich is equivalent
to the commutativity of the following diagram

(aBVi,d,) & BY

- T

(T(s7'H),d) —= (T(Ks ' ® Ks™'p),0) .

It is easily checked on, i, andg. Both maps vanish on the rest@B)Vi by the same arguments as above:
the only element which produces a non-trivial elemenfifKs—16 & Ks~!u) underp,, is 5, which
concludes the proof. O

QBYI
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We denote byl, : s~'H — T (s '#)™) the part of the differentiall, which splits elements inta
pieces. The componeds coincides with the decomposition map on the coope&ratiiyc .

Proposition 3.9. The differential of the minimal model of the opea® has the following shape:
do : s7H™ Z sTI™ @s 6™ and d,:s 0™ — 0, forn > 3.
mi1+mao=m

Up to the desuspensioir!, the image of an element of degre®f S—'Grav,, under the magpi,, is a
sum of trees with vertices labeled by elements®f'Grav™ and of (), such that the total degree of
the elements fron§—'Grav” is equal tok — n + 2 and such that the total weight, i.e. the total power, of
the elements coming frofii (9) is equal ton — 2. For instance, this induces

do(S™'Grav, ) =0 for n>k+2.
Proof. By direct inspection of the various formulae. O
We denote the minimal model of the opeidit by
BV := (T(s"HT°(0) ® S'Grav")),d) .
Remarks.

o The results about TCFT, two-fold loop spaces, and the cy@éligne conjecture, obtained in
[GCTV09 using the cofibrance property of the Koszul resolution & tiperad3) hold as well
with this minimal model. The proof of the Lian-Zuckerman gariure with this minimal model
requires further work and will be the subject of another pape

o The same method can be applieditt [L1] to make explicit the minimal model of the inhomoge-
neous quadratic operdé, (SC) , where the operadC is Kontsevich Swiss-cheese operad.

4, XELETAL HOMOTOPY BV-ALGEBRAS

We call algebras over the minimal model of the opefddskeletal homotopy BV-algebras. We make
this notion explicit and we give a description in terms of MauCartan elements in a homotopy Lie
algebra.

4.1. Second definition of homotopy BV-algebras.

Definition 4.1. A skeletal homotopy Batalin-Vilkovisky algehisaan algebra over the minimal operad
BV.

Recall that a skeletal homotopy BV-algebra structure onmddule( A, d 4 ) is the datum of a morphism
of dg operad€BV,, — End4. The differentialo, of the operadind, is equal tod4(f) := da o f —
(=D)/IS" | fo; da. We denotéi the image of an elemeptof BV, into End4.

Proposition 4.2. A skeletal homotopy BV-algebra is a chain comléxd 4 ) endowed with operations

A™: A — A, ofdegre€&m — 1, form > 1,

and
[i: A" — A, of degredu| +n — 2, foranyu € Grav' (n),
such that
da(A™) = Y A™oA™ form > 1,
mi+mz=m
and

814(/7) = Ziﬁl O4 /jQ +Zt(;1a . 7DkaAm17' "7Aml) )
——————
>1
where the first sum runs over the decomposition product afdbperad structure o&rav*, Agrav (1) =

>~ p1 o; u2, and where the second sum corresponds to composites ofsatheee operations with at least
oneA™,

Proof. This is a direct corollary of Propositich9. O
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A BV-algebra is a skeletal homotopy BV-algebra with vanighoperationg\™, for m > 2, andy, for
u € Grav*(n), n > 3. The aforementioned quasi-isomorphism

P: BV := QBV = BV, := (T(s 'H),d)

shows how a skeletal homotopy BV-algebra carries a homoBpglgebra. Theoremd.7.4 of [Hin97)
implies the functor

P* : skeletal homotopy BV-algebras — homotopy BV-algebras
induces equivalences of the associated homotopy categorie
Ho(homotopy BV-algebras) = Ho(skeletal homotopy BV-algebras) =2 Ho(BV-algebras) .

Recall that ahypercommutative algebidgKM94, Get9] is a chain complex equipped with a totally

symmetricn-ary operatior(«1, . . ., 2, ) of degree(n — 2) for anyn > 2, which satisfy
Z ((a,b,xs,), ¢, ws,) = Z (_1)‘6“151‘(@ (b,2s,,0),2s,)
SﬂJSQ:{l,... n} SlLISQ:{l,,,,,n}

for anyn > 0. We denote the associated operadbyperCom. It is isomorphic to the homology operad
of the Deligne-Mumford-Knudsen compactification of the mibdpace of genu8 curvesH, (Mo p+1)-
It is Koszul dual to the operad Gravityf yperCom' = Grav.

Proposition 4.3. A skeletal homotopy BV-algebra with vanishing operaidts, for m > 1, is a homotopy
hypercommutative algebra.

Proof. This is a direct corollary of Propositiof 2 together with the fact that the operatlyperCom is
Koszul, that is(S~'Grav*) = HyperCom, see {5et94. O

In operadic terms, this means that
(s_ch((S)) — BV, —» HyperCom

is a short exact sequence of dg operads, WI(IEYéTC(5)) is the ideal of BV, generated by 17°(¢).
Equivalently, the short sequence of homotopy cooperads

T°(6) — H — S Grav” = sH*(Mony1)

is exact, i.e.H is an extension of the (non-unital) cooperddgs) = H*(S')i andsH®*(Mg 1) =
Hc (MO,nJrl)i-

Theorem 4.4. The operadd yperCom is a representative of the homotopy quotient of the opét&dby
A in the homotopy category of dg operads.

Proof. Let D, denoteT'(s~T"(§)). This is the minimal resolution of the algebra of dual nunstier
The pushout off + D,, — BV, gives a representative of the homotopy quotienBdf by A since
D, — BV, isacofibration and since all the operads in the diagram diferaat, seelfir03, Chapteri 5].

A map from this diagram to an operad is the same thing as a méye @fenerators aff yperCom., that
respects the differentials; since the augmentation idie&l.@ vanishes in any map from this diagram, the
differentials coincide with those df yperCom,. So the image off yperCom in the homotopy category
of dg operads gives the homotopy quotienizdf by A. ]

We refer the reader tdMar09 DKO09, KMS11] further studies on this topic. This result on the level of
homology allows us to conjecture that the homotopy quotiétine framed little disk by the circle is the
compactified moduli space of genus zero stable cungs, ;. This will be the subject of another paper.

Remark.Since the generators éfyperCom., form a cooperad, one can define the notionemorphism

of homotopy hypercommutative algebrasing V10, 10.2]. In the case of the operaftV,,, to define
the notion ofoo-morphism of skeletal homotopy BV-algehrase has to refine the arguments, using the
homotopy pullback of endomorphism operads for instanceah ¥iese definitions, Propositigh3 shows
that the category of homotopy hypercommutative algebralk wi-morphisms is a subcategory of the
category of skeletal homotopy BV-algebras withhmorphisms, but not a full subcategory.
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4.2. Maurer-Cartan interpretation. Recall from MV09a, Theoren2g] that the module of morphisms
of S-modules
Homg(H,Endy) : H Homsg, (H(n), Enda(n))

n>1

carries anl..-algebra structure,(,, },,>1, given in terms of the homotopy cooperad structuréoby the
formula:

gn(flv"'vf’n = Z :IZ’YEndAOt(fo’(l)a"‘afo’(n))oAtv

teTree(n)
oESp

whereyg,a, is the composition map of operationsiofid 4 and where the sign is the Koszul sign due to
the permutation of the graded elemefifs}.
The solutions to the (generalized) Maurer-Cartan equation

1 .
Z —'ﬂn(a, ) =0, with |of=-1,
n.
n>1
in this convolutionL .-algebra are called the (generalizesisting morphismand denoted b¥w (#, End 4).
Proposition 4.5. There is a natural bijection
Homgg op(BVao, Enda) = Twoo (H,Endy) .
Proof. This follows from Theoren34 of [MV094]. O

This result gives an interpretation of skeletal homotopyddebra structures in term of Maurer-Cartan
elements in arl.,-algebra.

We denote byIm Hd,)*! the subspace dim Hd, spanned by the tree monomials withvertices
labelled byy.

Lemma 4.6. The isomorphism of Theoreln21preserves the respective gradings:
S~ 'Grav™ =~ (Im Hdy)* .

Proof. By direct inspection. O

This result allows us to organize the operations of a skeheimotopy BV-algebra into strata. The
first stratum is described as follows. Sine!Grav*") = HLie!, in weight1, is equal to the trivial
representation d,,, then we geHomS(Grav*(l), End,) = Hom(5¢(Z?)(A), A), up to suspension.

Ay lands entirely in weight one only wherhas precisely two vertices.

So a twisting element: vanishing outside the weightpart of Grav™ actually satisfies the truncated

Maurer-Cartan equatiofr + 3¢2(c, ) = 0. This corresponds to the definition of a Frobenuis manifold
in terms of a hypercommutative algebra structure, see Yahiki[Man99.

5. HOMOTOPY BAR-COBAR ADJUNCTION

In this section, we introduce a new bar-cobar adjunctiowbeh the category of augmented dg operads
and the category of homotopy cooperads. This bar construntiies on the notion of a cofree homotopy
cooperad, which we make explicit in terms of nested trees.

5.1. Cofree homotopy cooperad.We consider now the category of homotopy cooperads witlc(str
morphisms.

Definition 5.1. A morphismf : (C, {A.}) — (D, {A}}) of homotopy cooperads is a morphism of graded
S-modulesC — D which commutes with the structure maps.

A morphism of homotopy cooperads is armorphism with vanishing componeris— 7 (D)™ for
n > 2. The associated category is denoteatbygp__. There is a forgetful functor

U : coop,, — dg-S-Mod, (C,{A.}) — (C,dc),

which retains only the underlying d&smodule structure of a homotopy cooperad.
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Definition 5.2. A nested treds atreet € Tree\{|} equipped with a set of subsets of verti¢gs},, called
nests such that:

¢ each nest; corresponds to a subtree of the ttee

¢ each nest; has at least two elements,

o if T, NT; # 0, thenT; C T; orT; C T;, and

o the full subset corresponding to the tiicie a nest as long @shas more than one vertex.
The associated category is denoted\egted Tree. See Figurel for an example.

FIGURE 4. Example of a nested tree

We consider the following total order on nests. The innetmests are the largest ones. We compare
them using their minimal element. Then we forget about tmess#s and proceed in the same way until
reaching the full nest, which is the minimal nest. In the egbof Figure4, it gives

Ty ={1,2,3,4,5,6,7,8} < Tp = {1,2,3} < T3 = {2,3} < T, = {4,8} < Ty = {6, 7} .

To any dgS-module(V, dy ), we associate th&-module spanned by nested trees with vertices labeled
by elements of/. It is denoted by

NTWV)= @ uv).
tENested Tree
Using the order on vertices given in Sectidd and the above order on nests, we write a simple element of
NT(V) by
t(Tl,TQ, ce ,TN;’Ul,’UQ, N ,’Un) .

Its homological degree is equal ¥3,_, |vx| + N — n+ 1. So the degree of a labeled cordl(a) is equal
to |v].

|T\|/vo nestsT; C T; are calledconsecutivef T; C T), C T; implies eitherT}, = T; or Ty, = T;. We

=

define a differentiadl by
dN(t): Z :l:t(Tl,...,Ti,...,fj,...,TN;Ul,...,Un),

consecutive paird’; CT;

where the notatiorf; means that we forget the ne€Bf. The sign is given as usual by the Koszul rule
as follows. To every nest;, we associate the treg obtained from the subtree ofdefined byT; after
contracting all its proper subnests. Each vertex thereligindd is labeled by the least element of the
contracted nest. The degree of a nBsts equal to|T;| := 2 — #t¢;, where#t; stands for the number
of vertices of the tree;. (In the example of Figurd, one hagTi| = —2.) If T, C T;, theni < j. So

we first permutel’; with the nestd;_1, ..., T4+ to bring it next toZ;. Then we apply the differential to
the pair(T;, T;), that is we forget about the neB}. This comes with a sign equal fe-1) to the power
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#t; + #t; + k + degt;, t;), wherek is the number of vertices @f smaller than the smallest vertexf
and where dd$;,t;) is the number of descents, that is the number of pairs) of vertices oft; andt¢;
respectively such that > b. But the differential has to “jump over” the nedts, ..., T;_;. In the end, it
produces the sigf+1)°, with

= Tu|+ -+ |Tica| + ||| Do | + - - - + |Tj=1]) + #ti + #t; + k +dest;, t;) .

We consider the differential o/7 (V') given by the sum over all the vertices of the image of the

labeling element of” underdy . By a slight abuse of notation, it is still denotéd:
dv(t) = Z(—l)N_TH_l—HUl|+”'+‘Ui7]‘ t(Tl, ey TN; Vlyeony dv(’l}i), ce 7Un) .
i=1

We consider map$A; : NT(V) — t(NT(V))}iereez» defined as follows. Let be a simple
element of\V'7 (V). We consider the aforementioned ttg@ssociated to the full negy, which is obtained
by contracting all the subtrees corresponding to the ioterests. Ift # ¢1, thenA,(7) := 0. Otherwise,
if ¢ = t1, the image ofr underA, is equal to the treé, with vertices labeled by the nested trees obtained
from 7 by forgetting its full nest.

Proposition 5.3. For any dgS-module(V, dv ), the datalN'T (V'), dv + dar, {A¢} e ree ) fOrm a homo-
topy cooperad. This defines a funcf®f7 : dg-S-Mod — coop,, which is right adjoint to the forgetful
functor!{ : coop,, — dg-S-Mod.

Proof. The three first points of the equivalent definition of a honpgtoooperad given in Propositicéh2
are trivially satisfied byNV"7 (V). The last point is straightforward to check.

LetC be a homotopy cooperad. We consider the morphisfhmbdulesA™ : ¢ — AT (C) defined as
follows. For any tree, the extra data given by the nestd, ..., Ty ) is equivalent to the decomposition
of ¢ into successive substitutions

t = (((t1 04y t2) 0y t3) -+ ) 0in_, tN

where the tree$t;} are associated to the negt5;} as defined above. The image of the maf§" on a
nested tree(71, ..., Ty) is defined by

Aitter = AtN Oin_1 ( o (Ate Oiy (At2 Oiy Atl))) :

Let V' be a dgS-module. To any morphism of d§modulesf : U(C) — V, we associate a morphism
F:C — NT(V) defined by the composite

Fi=c 25 n7e) X N7 ()
The mapF is a morphism of homotopy cooperads which satisfies theviitig universal property
V4—NT(V)

\ BT

!

C,

which concludes the proof. O

Hence the homotopy cooperAd7 (V) is called thecofree homotopy cooperad én

Remarks.

o The endofunctot/ o N'T in dg-S-Mod can be endowed with a comonad structure: decompose a
nested tree into all the possible ways of seeing it as a ngstedf nested subtrees. Propositioa
and its proof are equivalent to saying that the category aidtopy cooperads is the category of
coalgebras over the comon&h NV 7T.

¢ Recall that the notion of ad,-algebra can be encoded geometrically by the Stasheffquudgt
also called the associahedra. In the same way, the notioh@h@topy cooperad can be encoded
by a family of polytopes, defined by by meansgréph associahedréabelled by nested trees as
introduced by M.P. Carr and S.L. Devadoss@D06 DF0§. Notice that this notion generalizes
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the nested sets of C. De Concini and C. Prode§ifP93. For instance, the chain subcomplex of
nested trees with fixed underlying treshould be isomorphic to the cochain complex
(N'T4,dn) = C*(graph associahedron associated)to
This surely deserves further study, which we leave to a éuvark or to the interested reader.
5.2. Homotopy bar-cobar adjunction.

Definition 5.4. Let (P, v, dp) be an augmented dg operad. The underlfingodule of thebar construc-
tion B, P is given by the cofree homotopy coopersd (sP) on the suspension of the augmentation ideal
of P. We define the differential., by

dy(t(Thy oo TN, Sy -« oy Spin)) 1=

Z :l:t(Tla'"1111'7"'aTN;S,ula'"787(ti(,ui17"'7Mik))""a%a"w%a"wsﬂn)'
innermostT’; ={41,...,3x }
We consider

Bﬂp = (NT(Sﬁ)v d73 + d./\/ + d'yv {At}teTree(Z2)) .
Proposition 5.5. The data(N'T (sP), dp + dn + dv, {A¢},cTree=» ) fOrm a homotopy cooperad.
Proof. Checking this is a straightforward calculation. O

Definition 5.6. The cobar construction2,C of a homotopy cooperad is the augmented dg operad
0.C = (T(s71C),d).
Theorem 5.7. There are natural bijections

Homdg op (erca P) = Tweo (C, ,P) = Homcoopx (Ca BFP) .

In plain words, the pair of functor®,, andB,; are adjoint and this adjunction is represented by the twisti
morphism bifunctor.

Proof. The first natural bijection is given byMVV09a, Theorem54]. The second one is described as
follows. Propositiorb.3already provides us with a natural bijection

Homcoop_, (C, (NT (sP), dy, {At}teTree(Z2))) =~ Homg(C,sP), Frs f.

Under this bijection, a morphism &tmodulesf : C — sP induces a morphism of homotopy cooperads
F : C — B,P ifand only if the following diagram commutes

d’erd.y

C———— NT(sP) ———= NT(sP)
| |
C ! P .

This last condition is equivalent tbde = dp f + D, cree>2 7 © t(f) 0 A¢, Which is exactly the Maurer-
Cartan equation

1

S Lt s ) =0
n:
n>1
satisfied bys—! f in the convolution’..-algebraHoms (C, P). O

Remark.The universal operadic twisting morphism B(SAs) — S As induces a pair of adjoint functors
B, and2, between the category of dg associative algebras and thgocgtef homotopy coalgebras by
[GJ94, see alsol[V10, Chapterl1]. One can prove that it coincides with the restriction of ét@ve bar
and cobar constructiori, and(),. to S-modules concentrated in arity one, which explains thetiwta

6. HOMOTOPY TRANSFER THEOREM

In this section, we prove the homotopy transfer theorem badéctification theorem for skeletal ho-
motopy BV-algebras.
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6.1. Universal morphism of homotopy cooperads.Let (H, dy) be a homotopy retract of a chain com-
plex(A,dy):

hC(AvdA)(ﬁ(HadH) .

3

Recall that the homotopy transfer theorem for homotopylakeover a Koszul operad oBCTV09
Appendix B3] and of [LV10, Section10.3] relies on the classical bar-cobar adjunction

Homggop(2 P, Endy) = Tw (P, End4) = Homgg coop(P', BEnda)
and on the quasi-isomorphism of dg cooperads
U :BEnds — BEndy

introduced by P. Van der Laan iWfiL03], see alsol[V10, Section10.3.3]. Such a map is characterized
by its projectiorBBEnd 4 = 7¢(sEnd4) — sEndy onto the space of generators. The Van der Laan map
U is explicitly given by labeling the leaves of every tree bg thapi, the root by the map and the interior
edges by the homotopy:

We consider the ma@(End4) : BEnds — B;End,4 defined, for any € Tree, by

t(sfns. - 8f1) € TO(sEnda) = Y +t(T1,..., T 158fn, ..., 5f1) € NT(sEnda)

where the sum runs over all the maximal nestings, that is ties with a maximal number of nests. Since
the bar constructioB End 4 is a cooperad, it carries a homotopy cooperad structurentp (End 4 ) is
a quasi-isomorphism of homotopy cooperads.

Proposition 6.1. Let (H, dy ) be a homotopy retract of a chain complet, d4). There exists a quasi-
isomorphism of homotopy cooperads

® : B,Ends — B,Endgy
such that the following diagram, made up of quasi-isomampis of homotopy cooperads, is commutative,

G(Enda)
B EDdA — > BrrEndA

I |
G(Endgy)

BEndg —— B;Endy .

Proof. Let us first give the proof in arity; so hereEndy4 = Hom(A, A). We consider the quasi-
isomorphism of cooperads : As¢ — B(SAs). The mapG(End ) is equal to

G(Endy) = Goid : Aso. SAsosas sEndy — B(SAs) or SAsosas sEnd g,

wherex’ := Sk : As® = SAsi — SAs is the Koszul morphism coming from the Koszul duality of
the operadds. By the Comparison Lemmay10, Lemma6.4.13], the quasi-isomorphisr& induces a
guasi-isomorphism

idoGoid : SAso, As o SAs = SAs o, B(SAs) o SAs

of quasi-free lefiS As-modules (or equivalently of quasi-free anti-associatilgebras in the category of
S-modules). By the left lifting property, it admits a homoydpverse quasi-isomorphism

F : SAso, B(SAs) o, SAs = SAso,s As o, SAs.

Under the bar-cobar adjunction, the quasi-isomorphismoperad# is equivalentto the quasi-isomorphism
of operads¥ : QBEndy = Endy. Finally, we define the morphism of homotopy cooperdds
B,Endsy = B,Endy to be the map corresponding to the quasi-isomorphism ofaniser

Q. B, End, L2s4:5E0da appnd, % Endy

under the homotopy bar-cobar adjunction.
One extends these arguments to higher arity by using theembkoszul operad of\fdL03], which
encodes operads, instead of the Koszul (non-symmetricadpts which encodes associative algebras.
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By definition, the following diagram is commutative

P
B,End — 4 P4, 0B prd, —Y 3 Endy
G(EndA)T
B End, , v
which concludes the proof. O

The morphism of homotopy cooperadls: B,Ends — B,Endy is completely characterized by its
projection onto the space of cogenerators, which we denote:b\V'7 (sEnd4) — sEndg.

6.2. Homotopy transfer theorem for skeletal homotopy BV-algebas.

Theorem 6.2. Let A be a skeletal homotopy BV-algebra and it d ;) be a homotopy retract of the chain
complex(A,da):

p
n(C (A da) == (H.dn) .
There is a skeletal homotopy BV-algebra(@h, dy ), which extends the transferred operatigia®™, for
anyu € H. If we denote byr € Two. (H, End ) the skeletal homotopy BV-algebra structure #nsuch
a transferred skeletal homotopy BV-algebra structuretbis given by

T NT(H) M>./\/'T(5End,4) 2% Endy .

Proof. We apply the bar-cobar adjunction of TheorBriito
Homgg op(Q27H, Enda) = Twoo (H, End4) = Homeoop  (H, BrEnda) .

So a skeletal homotopy BV-algebra structure H — End4 on A is equivalently given by a morphism
of homotopy cooperads, : H — B:End4. The transferred skeletal homotopy BV-algebralbiis then
obtained by pushing along the morphi§m

doF,:H—BEndy —» B,Endy ,
which is equivalent to the following twisting morphism

2 Alter NT(H) MNT(SEndA) ﬂ) EHdH .

O

Remark.We proved the homotopy transfer theorem for homotopy B\¢latgs, i.e. for the Koszul model
BV of the operad5V in [GCTV0Y9, Theorem33]. Since theS-module of generators of the minimal
model BV, forms a homotopy cooperad and not a cooperad, we cannot tygpdyguments ofCTV09,
Appendix B3] and of [LV10, Section10.3] based on the classical bar-cobar adjunction. Neither can w
use the homological perturbation lemma BE[09. Notice that the existence of the homotopy transferred
structure follows from model category argumentsBg$96 BM03]. But we need here an explicit formula
for the application to Frobenius manifolds in the next setti

Needless to say that the Homotopy Transfer Theosehiolds for any algebras over a quasi-free op-
erad generated by a homotopy cooperad. In the case of afyeasiperad generated by a dg cooperad,
Koszul models or bar-cobar resolutions for instance, wewercthe formulae of GCTV09 and of [LV10,
Chapter10] as follows.

Proposition 6.3. Let P be a Koszul operad, eventually inhomogeneous.A ke a homotopyP-algebra
and let(H, dy ) be a homotopy retract of the chain complek d 4 ).

The transferred homotopy-algebra structure orff given by[GCTV09 Theoremd7] and by[LV10,
Theoreml0.3.6] is equal to the transferred homotofyralgebra structure orf{ given by Theorerfi.2.
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Proof. The proof relies on the following diagram being commutative

w(Pi,Enda) = Homgg coop(P', BEnd4) —> Homyg coop (P!, BEndy) e Tw (PUEndy)

H lamndm lgmndH)* H

TWoo(P', Ends) — Holligoop_ (P, BrEnd ) — Holeoop_ (P, BrEndg) — Twoo (P, Endp) .

IR

O

The two homotopy transfer theorems for homotopy BV-algslaad skeletal homotopy BV-algebras
commute under the functd?* : skeletal homotopy BV-algebras — homotopy BV-algebras as fol-
lows.

Proposition 6.4. Let (H, d) be a homotopy retract of a chain complek, d4). Consider a skeletal ho-
motopy BV-algebra structure aA. The associated homotopy BV-algebra structbifé A) on A transfers
to a homotopy BV-algebra ti by Theoren83 of [GCTV0Y. This homotopy BV-algebra structure é¢h

is equal to the homotopy BV-algebra associated, urfdeto the transferred skeletal BV-algebra given by
Theorenb.2

Proof. The proof relies on the commutativity of the following diag:

Homgg op (2 H, End 4) Homggop (22 H, Endg)

1R
1R

Homeoop__ (H, BrEnd ) —2— Homeoop__ (H, BrEndyr)

Homo coop. (H, BrEnda) —= HoMag-conp._ (H, BxEndy)

* *

Poo P
pr Hom s coop._ (BV', BrEnda) =5 Hom s-coop._ (BV', B, Endy) pr
Homeoop_ (BV', B,End ) —— Homeoop_(BV', B,Endyr)

G(Enda)« G(Endg)«

Homyg coop (BV!, B End4) —s Homgg coop(BVi, B Endp)

1R
1R

Homgg op (2 BV, End ) Homyggop (2 BV, Endg)
(I

6.3. Rectification theorem for skeletal homotopy BV-algebras.We proved in GCTVO09, Propositior82]
the following Rectification Theorem: for any homotopy B\gabraA, there is aro-quasi-isomorphism
A % Q,.B, A of homotopy BV-algebras, whefe, B, A := BV(BVi(A)) is a dg BV-algebra. We refer to
loc. cit. and to [\V10, Chapterl1] for more details.

To every skeletal homotopy BV-algebrs, we define itgectifieddg BV-algebra by

Rec(H) := Q,.B,P*(H) .

Theorem 6.5. Let (H,dy) be a homotopy retract of a chain complef,d4). We consider a dg BV-
algebra structure o together with the transferred skeletal homotopy BV-algedor H given by Theo-
rem6.2 The dg BV-algebr&ec(H ) is homotopy equivalent td in the category of dg BV-algebras.
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Proof. By Proposition6.4, the homotopy BV-algebra structufe*(H) is equal to the one produced by
the homotopy transfer theorem for homotopy BV-algeb@€TV09 Theorem33]. Hence, there exists
an oo-quasi-isomorphism of homotopy BV-algebrds~> P*(H) by Theorem10.4.7 of [LV10]. The
Rectification Theorem for homotopy BV-algebras providesvith an co-quasi-isomorphisnP* (H) %
Q,.B,P*(H). Finally, the two dg BV-algebras

A 0o " e 0" 0 5 O.B,P*(H) = Rec(H)
are linked by a zig-zag of quasi-isomorphism of dg BV-algstisy Theorem1.4.14 of [LV10]. O

This theorem gives homotopy control of the transferredcstine. It plays a key role in the interpretation
of the main result in the next section.

7. FROM BV-ALGEBRAS TO HOMOTOPYFROBENIUS MANIFOLDS

We apply the Homotopy Transfer theorem to endow the undeglfipmology of a dg BV-algebra with
Massey products. When the induced action®ofs trivial, we recover and extend up to homotopy the
Barannikov-Kontsevich-Manin Frobenius manifold struetuApplications of this general result are given
in Poisson geometry and Lie algebra cohomology and to theoM8ymmetry conjecture.

7.1. Massey products. Working over a fieldk, one can always write the underlying homoldds (A, d 4 ), 0)
of a dg BV-algebr&d as a deformation retract Of, d4).

Definition 7.1. We callMassey-Batalin-Vilkovisky produdtse operations composing the transferred skele-
tal homotopy BV-algebra structure on the homolddyA) of a dg BV-algebra given by the Homotopy
Transfer Theorerg.2

Recall that the homology of any dg commutative (associptlgebra carriepartial Massey products
see Mas58. For instance, the partial Massey triple-prod{icty, z) is defined for three homology classes
x,y,z € H(A) such thatty = 0 = yz as follows. Letz, §,z € A be cycles which represent y, andz
respectively and let, b € A such thattyj = da, 7z = db. Then the chaimz — (—1)IIzb is a cycle. So it
defines an element, y, z) in H(A)/(zH(A) + H(A)z). When the partial Massey products are defined,
they are given by the same formulae as the (uniform) Masseyygts, seel[V10, Section9.4 and10.3].

For dg Lie algebras, partial Massey products were defined ByRéetakh inlRet93. The present Massey-
Batalin-Vilkovisky products generalize both the partiahtmutative and Lie Massey products.

Theoremb6.5shows that the data of the Massey products allow one to recehthe homotopy type of

the initial dg BV-algebra.

7.2. Trivialization of the action of A.

Proposition 7.2. Let A be a dg BV-algebra. If there exists a homotopy retract to theadlogy, which
satisfiegp(Ah)™ 1 Ai = 0, for m > 1, then the transferred skeletal homotopy BV-algebra on Hogyo
forms a homotopy hypercommutative algebra

Proof. The transferred operatiods™ under Theorens.2 are given byA™ := p(Ah)™~1Ai. Then, one
concludes with Propositiofi.3. O

A mixed chain compleis a graded vector spacé equipped with two anti-commuting square-zero
operators! andA of respective degreel andl.

Definition 7.3. Let (A, d, A) be a mixed chain compleNon-commutative Hodge-to-de Rham degenera-
tion dataconsists of a deformation retract

n(C (Ad) == (H(A),0),

such that
p(AR)™ 1A =0,
form > 1.
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Definition 7.4. The compatibility relation
KerdNKerAN(Imd+ImA) =ImdA =Im Ad
between the operatodsand A of a mixed chain complex is called thié\-condition

Lemma 7.5. [DGMS75 Propositiors.17] A mixed chain complefd,, d, A) satisfies theA-condition if
and only if there exist two sub-graded modulésand S, of A, such that

Ap 2 H, ® Sy, ®dSpt1 @ ASp—1 D dAS, ,
wheredy, =0, Ay, = 0, and where the maps of the following commutative diagranisammorphisms

1R

Sp —— AS,

dlz dl:

dS, ——> dAS, .

>

A dg BV-algebra, which satisfies this condition, is calleli@dge dg BV-algebréy A. Losev and S.
Shadrin in [S07. (In this case, the obvious homotopywhich contracts4 to its homologyH, is such
that[h, A] = hA+ Ah =0.)

Definition 7.6. [Par0O] A mixed chain complex is calledemi-classicalf every homology class has a
representative in the kernel 4.

Proposition 7.7. Let (A, d4, A) be a mixed chain. The following implications hold
(dA-condition = (semi-classicgl—> (NC Hodge-to-de Rham degeneration data

Proof. The first assertion is given by Lemn¥ab. To prove the second one, it is enough to write the
homologyH (A) as a deformation retract of, with representatives iKer A. In this caseA: = 0, which
concludes the proof. O

The existence of NC Hodge-to-de Rham degeneration datalisfire the most general condition that
naturally supports this notion of the trivialization of thetion ofA on the homology of a dg BV-algebra

Examples.

¢ Let M be acompact Kahler manifold, with complex structure deddly.J. The space of differen-
tial forms(2*(M),dpr, A := JdprJ) forms a dg BV-algebra which satisfies ta-condition,
see P. Deligne, P. Griffiths, J. Morgan and D. SullivexMS75. (Notice that here the operator
A has order less thal).

¢ Let M be a Calabi-Yau manifold. The Dolbeault complex of antiemaebdrphic differential forms
with coefficients into holomorphic polyvector fields (M, A*Tx ® A*Tam),d = 0, N\, A =
div, (,)s) is a dg BV-algebra satisfying th&A-condition, see S. Barannikov and M. Kontsevich
[BK98]. This is an extension, from vector fields to polyvector figldf the Kodaira-Spencer dg
Lie algebra KS58 KS6(, which encodes the complex structures of a manifold.

o Let (M,w) be a Poisson manifold. The space of differential forffS(M),dpr, A\, A =
[iw,dpr]) form a dg BV-algebra, seeKps85 Bry88. When (M, w) is a compact symplectic
manifold of dimensiom, O. Mathieu proved inflat99 that M satisfies the hard Lefschetz con-
dition, i.e. the cup produdt*] : H*=*(M) — H"*t*(M) is an isomorphism, fok < n/2, if
and only if this dg BV-algebra is semi-classical. S. Merkuiarther proved that this is equivalent
to thedA-condition in Mer98. This is the case whem is a Kahler manifold, see3y88].

o LetV be finite dimensional vector space with baGis}:<;<,,. We consider the free commutative
algebrad := S(V @ s~1V*) of functions on the cotangent bundleléf, equipped with the order
2 and degred operatorA := Y | a%%- These data define the prototypical example of BV-

algebras, seeBV81]. Any elementw of degree—2 such thatA (w) = (w,w) = 0 gives rise to a
dg BV-algebra A, d,, := {(w,—),e, A, {,)). One can find dg BV-algebras of this type equipped
with NC Hodge to de Rham degeneration data but which doesatisfysthedA-condition, see
[Par07 Example9] and [Ter0§ Section3.2].



30 GABRIEL C. DRUMMOND-COLE AND BRUNO VALLETTE

7.3. Homotopy Frobenius manifold.

Theorem 7.8. Let (4, d,e, A, (,)) be a dg BV-algebra with non-commutative Hodge-to-de Rhayarde
eration data.

The underlying homology groupf( A, d) carry a homotopy hypercommutative algebra structure, tvhic
extends the hypercommutative algebras of M. KontsevictSaB@rannikoyBK9g], Y.l. Manin[Man99,
A.Losevand S. ShadifihS07), and J.-S. ParkPar07, and such that the rectified dg BV-algefitac( H (A))
is homotopy equivalent td in the category of dg BV-algebras.

Proof. The transferred skeletal homotopy BV-algebra structurbamnology given by Theorei.2forms
a homotopy hypercommutative algebra by Proposifidgh

We make explicit the various constructions 8K98] as follows. When a dg BV-algebra satisfies the
dA-condition, there is a zig-zag of quasi-isomorphisms of dgdlgebras (smooth formality)

(A,d,(,)) +—— (Ker A,d, (,)) —— (H*(A,A) = (H4(A,d)),0,0) .

By [LV10, Theoreml10.4.7], there exists amo-quasi-isomorphism of dg Lie algebr#s <> Ker A, ex-
plicitly given by sums of binary trees with vertices labélley ¢ and with edges and root labelled by.
Normalizing each sum of trees of arityby a factor%, this provides a solution to the Maurer-Cartan
equation in the dg Lie algebidom(S¢(H), Ker A), whereS¢ stands for the non-counital cofree cocom-
mutative coalgebra. The twisted détdom(S°(H), A), d, := d+ (v, —), e, A, {,)) form adg BV-algebra
over the ring of formal power seriéAé(H*) without constant term. Its homology with respectitais equal

to Hom(S°(H), H) = S(H*) ® H. The transferred commutative product on homol&@y7*) @ H pro-
vides us with the desired hypercommutative algebra straain H, see Man99 Chapters) and 3] for
the various equivalent definitions of a formal Frobenius ifitdch Tracing through the aforementioned
constructions, one can see that the associated potergiakis by the same kind of sums of labelled trees
but with a normalizing coefficient given by the number of antwphisms of the trees. We recover the
explicit formula of LS07. Manin [Man99 and Park Par07 use obstruction theory, for which choices can
be made to produce the above structure.

The first stratum of operations composing the transferreaddtopy hypercommutative algebra is equal
to the tree formulae of Losev-Shadrin as follows. Lemfr@shows that the weight part of Grav* is
isomorphic toH Lie|. For anyn > 2, the spacd.ie| (n) is one dimension and generated by the element,
which in 7¢(3) is the sum of all binary tree with vertices labeledfyThe image of such trees under the
formula of Theoren®.2is made up of binary trees with each vertex labelle®bgne leaf labelled by,
and with edges labelled By (One can see that the image of a maximal nesting under thérisgiven by
labeling all interior edges bi.) Under thedA-condition, the relationsA = Ai = hA + Ah = A2 =0
make many trees cancel and this produces the aforementimses-Shadrin formulae.

The last assertion is a direct corollary of Theorérs O

Remarks.

o First, this theorem conceptually explains the result ofaBarkov-Kontsevich, Manin, Losev-
Shadrin, and Park in terms of the homotopy transfer theotteeneby answering a question asked
by the referee offar07 Section5].

¢ Since there is no differential on homology, the first stratihoperations of this homotopy hy-
percommutative algebra satisfies the relations of an hppemutative algebra. So Theoren8
proves the existence of such a structure under a weakertmn(NC Hodge-to-de Rham degen-
eration data) than irgK98, Man99 Par07 (dA-condition, semiclassical).

o Unlike the framework of Frobenius manifolds, we do not woekéwith cyclic unital BV-algebras.
First, a cyclic BV-algebra is equipped with a non-degereebdinear form which forces its dimen-
sion to be finite. The present method works in the infinite disignal case. Then, the operad
which encodes BV-algebras with unit is not augmented, s@éischot admit a minimal model.
To make a cofibrant replacement explicit, one would need éahis more general Koszul duality
theory developed by J. Hirsh and J. Milles KNI10].

o Finally, Theorem7.8 provides higher structure on homology, which is shown taméeessaryo
recover the homotopy type of the original dg BV-algebra aotto lose any homotopy data when
passing to homology, see also Examplébelow.
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In geometrical terms, we have lifted the action of the Dedigiumford-Knudsen moduli space of genus
0 curves to an action of the open moduli space of géntigrves as follows.

H.+1(M0,n+1) L 5 EndH(A)

He(Mo pi1) -

The mapf is the morphism of operads given by{ 98, Man99 LS07, Par0]. The mapx is the twisting
Koszul morphism from the cooperdd®*! (M, 1) given in [Get9]. It sends the cohomological class
corresponding tdf, (M, 1) to the fundamental class 8f, ,, + 1. The construction given in Theoren8
corresponds to the map which is a twisting morphism from the cooper&®**(Mo_,+1). The mapx
vanishes outside the top dimensional classes andestaction of the mapa to these top dimensional
classes is equal to the composfte . Such a morphism of operagsdefines the genus zero part of what
Kontsevich-Manin call a Cohomological Field Theory KN194].

Definition 7.9. An genus) extended cohomological field thedsya graded vector spadé equipped with
an operadic twisting morphis#**' (M ,,11) — Endpg.

7.4. An example. Let us consider the following non-unital dg commutativesdlta A generated by the
generators

x3, Y3, 27, Ur, and’l}g,

where the subscript indicates the homological degreesfgati the relations
A= S(xz,y, 2,u,v)/(xu, yu, 2u, 20, Yv, 20, v, v2) .
(The product by and byw is equal to zero.) The differential map is defined on the gaioes by
dz :=zy, dv:=u,

and by0 otherwise.
The algebra is finite dimensional and spanned by thelementsz, vy, zy, z, u, v, 2, yz, Tyz.
Its underlying homology, (A, d) is five dimensional and spanned by the classes of), xz, yz, zyz.
We define the degreel operatorA on the aforementioned elements by

Alzy) :==u, A(z):=—v,
and by0 otherwise.

Proposition 7.10. The dg commutative algebr@, d, A) is a dg BV-algebra, which satisfies tlié\-
condition.

Proof. It is straightforward to see that commutes withd, that it has order less than(but not less than
1) and that it squares t@
A decomposition such as the one of Lemm&is given by

H, := Koz ® Ky ® Koz @ Kyz @ Keyz andS, = Kz .

Therefore, this dg BV-algebra satisfies th&-condition. O

The first Massey product in the second stratum of the trarexfdromotopy hypercommutative algebra
structure is the first homotopy in the associafed-algebra structure, sincg ' Grav*?(3) = Comi (3).
In the present example, this product is not trivial since ikqual to—yz on the elements, y,y. So this
provides an example of a dg BV-algebra, which satisfiesitheondition, the strongest condition, and for
which the Barannikov-Kontsevich-Manin structure of a Fepius manifold on homology is not enough to
recover the original homotopy type of the dg BV-algebra.
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7.5. Application to Poisson geometry and Lie algebra cohomologylet M be ann-dimensional man-
ifold. We consider the Gerstenhaber algebra of polyvecebd$iA := I'(M, A*Tr() on M, equipped
with the Schouten-Nijenhuis bracket) s ;. Recall from J.-L. Koszul{os85 Proposition(2.3)] that any
torsion-free connectioW on T’y which induces a flat connection df*T'y gives rise to a square-zero
order2 operatorDy making(A4, A, Dy, (, )sn) into a BV-algebra. For instance, this is the case wién
is orientable with volume forr or whenM is a Riemannian manifold with the Levi-Civita connection.

Moreover, if M carries a Poisson structure, i.e. € T'(M, A>T satisfying(w,w)sy = 0, such
that the infinitesimal automorphisfiy (w) = 0 vanishes, then the twisted differentit} := (w, —)sn
induces a dg BV-algebra

(F(M, A.TM), dw, N\, Dv, < R >SN) .

For instance, this is the case what is orientable with unimodular Poisson stucture, i, (w) = 0.

The homology groups associated to the differentjaform thePoisson cohomologyf the manifold M,
see Lic77]. (For similar constructions in non-commutative geomeirg refer the reader taS1Q).

Proposition 7.11. [Kos89 WhenM is a symplectic manifold, the contraction with the symjdefctrm w
induces an isomorphism of dg BV-algebras

(Q.(M)vdDRa /\7 Aa <7>) = (F(MvA.TM)vdwv/\va < ) >SN) ’
whereD := [iy, dy].

Recall that the homology groups associated to the diffeakeAton the left-hand side form tHeoisson
homologyof the manifoldM. The Poisson homology and cohomology are proved to be igummunder
the weaker condition that the Poisson manifold is oriemtalnld unimodular, see P. Xu iX(i99].

Theorem 7.12. The de Rham cohomology of a Poisson manifdfdcarries a skeletal homotopy BV-

algebra, whose rectified dg BV-algebra is homotopy equitatethe dg BV-algebré® (M), dpr, A, A).

The Poisson cohomology of an orientable Poisson manifdi¢arries a skeletal homotopy BV-algebra,

whose rectified dg BV-algebra is homotopy equivalent to g#\dalgebraT'( M, A*Tay), duw, A, A, (Y sN)-
The de Rham cohomology and the Poisson cohomology of a stirmpt@nifold are isomorphic skeletal

homotopy BV-algebras. When the manifdllis compact and satisfies the hard Lefsechtz condition, this

isomorphism reduces to an isomorphism of homotopy hypentdative algebras.

Proof. This is a direct corollary of Theoreih8and Proposition7.11 O

Let us now describe the linear case. Under the same nota®irsthe last example of Sectigh?,
whenV = g* is the linear dual of a finite dimensional Lie algebra, the$mose of the bracket produces a
degree-2 elementw in g ® A%g* satisfying(w, w) = 0, by the Jacobi relation. In this case, the twisted
differentiald,, is equal to the Chevalley-Eilenberg differential arez S(g) ® A(g*) € C>~(g*) @ A(g*),
which computes the cohomology gfvith coefficients inS(g) and the adjoint action. If the Lie algebga
is unimodular, thatis Tz, —)) = 0, for anyz € g, thenA(w) = 0 and the Chevalley-Eilenberg complex
(S(g) @ A(g*),dw,e, A, (,)) is adg BV-algebra.

Theorem 7.13. The Chevalley-Eilenberg cohomologf. (g, S(g)) of a finite dimensional unimodular
Lie algebrag, with coefficients irb(g) with adjoint action, carries a skeletal homotopy BV-algelwhose
rectified dg BV-algebra is homotopy equivalent to the dg Bjétara (S(g) @ A(g*), dw, e, A, (,)).

Remark. It would be now interesting to study the relationship witke buflo isomorphism, the analogue
of the space of differential forms, and the symplectic aredithrd Lefschetz condition, in this linear case.

7.6. Application to Mirror Symmetry.

Theorem 7.14. The Dolbeault cohomology of a Calabi-Yau manifold carrielscanotopy hypercommu-
tative algebra structure, which extends the hypercomnuetalgebra structure diBK98] and whose recti-
fied dg BV-algebra is homotopy equivalent to the Dolbeauttglex(I' (M, A*Tx QA Tr), 0, A, div, (,)s).

The moduli space# of Maurer-Cartan elements associated to the Dolbeault Eapan extension of
the moduli spacez ®2ss@associated to the Kodaira-Spencer dg Lie subalgebra, vénicbdes deforma-
tions of complex structures. The notiong#neralized complex geometsas introduced by N. Hitchin in
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[Hit03] and then developed by his students M. Gualti&up04 and G.R. Cavalcantifav0j as a frame-
work which encompasses both complex and symplectic ge@aetin this sense, the moduli spacgé
was shown by Gualtieri to correspond to deformations of geized complex structures. Several versions
of the dA-condition were shown to hold in this setting, s@&7, Cav07. Finally the dg BV algebra
structure of [i05] allows us to apply the same argument which produces a veddidheoreni.14in the
context of generalized complex geometry.

S. Barannikov generalized ilBfr04 the notions of periods and variations of Hodge structucenfr
MOS0 7. He showed, for instance, that the image of these genedatizeods onH®(M, C)
coincide with the Gromov-Witten invariants. This is basedtbe fact that the Dolbeault cohomology
admits not one but a family of Frobenius manifold structur@his remark coincides with the present
approach: there are many choices in the Homotopy Transéeréim. Moreover, the various transferred
structures are related by the groupaefisomorphisms, see {10, Theorem10.3.15]. In the case of
homotopy BV-algebras, this group should be related to thei@al group GivOlg GivolH.

The Mirror Symmetry conjecturekpn9g claims that the Fukayal ., -category of Lagrangian sub-
manifolds of a Calabi-Yau manifold1 (A-side) should be equivalent to the bounded derived cayegf
coherent sheaves on a dual Calabi-Yau maniﬂc@B-side). The tangent space of the moduli spacé of
deformations of the Fukaya category is conjectured to bergby the de Rham cohomologdif, , (M, C)
of X. By the Kontsevich formalityfon03, the A.,-deformations of the latter category are encoded by
the Dolbeault complex. So the de Rham cohomology equipp#dtihe Gromov-Witten invariants should
be isomorphic to the Dolbeault cohomoloﬁy(/\?, A*T7) as Frobenius manifolds. The following con-
jecture of Cao-Zhou@z01], similar to Proposition7.11, gives a way to study this question: there is a
guasi-isomorphism of dg BV-algebras

Q"7 (M), dpr, A, A, () = (DM AT © A*Try), 0, A div, () s) -

The results of the present paper show that it is actually gnda prove the existence of ar-quasi-
isomorphism of dg BV-algebras to get the aforementionesh@aphism on the cohomology level and to
relate the two associated deformation functors.
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