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THE MINIMAL MODEL FOR THE BATALIN-VILKOVISKY OPERAD

GABRIEL C. DRUMMOND-COLE AND BRUNO VALLETTE

ABSTRACT. The purpose of this paper is to explain and to generalize, ina homotopical way, the result of
Barannikov-Kontsevich and Manin which states that the underlying homology groups of some Batalin-Vilko-
visky algebras carry a Frobenius manifold structure. To this extent, we first make the minimal model for the
operad encoding BV-algebras explicit. Then we prove a homotopy transfer theorem for the associated notion
of homotopy BV-algebra. The final result provides an extension of the action of the homology of the Deligne-
Mumford-Knudsen moduli space of genus0 curves on the homology of some BV-algebras to an action via
higher homotopical operations organized by the cohomologyof the open moduli space of genus zero curves.
Applications in Poisson geometry and Lie algebra cohomology and to the Mirror Symmetry conjecture are
given.
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INTRODUCTION

The notion of aBatalin-Vilkovisky algebra, or BV-algebrafor short, is made up of a commutative prod-
uct, a Lie bracket and a unary operator, which satisfy some relations. This notion now appears in many
fields of mathematics like

⋄ ALGEBRA: Vertex (operator) algebras [Bor86, LZ93], Chevalley-Eilenberg cohomology of Lie
algebras [Kos85], bar construction ofA∞-algebras [TTW11],
⋄ ALGEBRAIC GEOMETRY: Gromov-Witten invariants and moduli spaces of curves (quantum co-

homology, Frobenius manifolds) [BK98, Man99, LS07], chiral algebras (geometric Langlands
program) [BD04, FBZ04],
⋄ DIFFERENTIAL GEOMETRY: the sheaf of polyvector fields of an orientable (resp. Poisson or

Calabi-Yau) manifold [Kos85, Ran97, Kon03], the differential forms of a manifold (Hodge de-
composition in the Riemannian case) [BK98, TT00, Sul10], Lie algebroids [KS95, Xu99, Rog09],
Lagrangian (resp. coisotropic) intersections [BF09, BG10],
⋄ NONCOMMUTATIVE GEOMETRY: the Hoschchild cohomology of a symmetric algebra [TT00,

Tra08, Gin06, Men09] and the cyclic Deligne conjecture [Kau08, TZ06, Cos07, KS09, BB09],
non-commutative differential operators [GS10],
⋄ TOPOLOGY: 2-fold loop spaces on topological spaces carrying an action of the circle [Get94a],

topological conformal field theories, Riemann surfaces [Get94a], string topology [CS99],
⋄ MATHEMATICAL PHYSICS: BV quantization (gauge theory) [BV81, Wit90, Sch93, Rog09], BRST

cohomology [LZ93, Sta98], string theory [Wit92, WZ92, Zwi93, PS94], topological field theory
[Get94a], Renormalization theory [CG11].
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Nearly all the examples of BV-algebras appearing in the aforementioned fields actually have some homol-
ogy groups as underlying spaces. Therefore they are some shadow of a higher structure: that of ahomotopy
BV-algebra.

Algebra and homotopy theories do not mix well together a priori. The study of the homotopy properties
of algebraic structures often introduces infinitely many new higher operations of higher arity. So one uses
the operadic calculus to encode them.

The study of the homotopy properties of algebraic structures often introduces infinitely many new higher
operations of higher arity.

This is the case for Batalin-Vilkovisky algebras, which do not have homotopy invariance properties,
like the transfer of structure under homotopy equivalences, see [LV10, Section10.3]. To solve this, we
have defined, in [GCTV09], a notion ofhomotopy Batalin-Vilkovisky algebrawith the required homotopy
properties. To do so, we have constructed a quasi-free, thuscofibrant, resolution of the operadBV encoding
Batalin-Vilkovisky algebras, using the inhomogeneous Koszul duality theory.

While quite “small”, this resolution carries a non-trivialinternal differential; so it is not minimal in
the sense of D. Sullivan [Sul77]. The purpose of the present paper is to go even further and toproduce
the minimal model of the operadBV , that is, a resolution as a quasi-free operad with a decomposable
differential and a certain grading on the space of generators.

The first main result of this paper is the following computation of the homology groups of the bar
construction for the operadBV as a deformation retract.

Theorem (2.1). The various maps defined in Section2 form the following deformation retract in the cate-
gory of differential gradedS-modules

BV ¡ := (qBV ¡, dϕ)
%% //

(H•(BBV) ∼= T
c
(δ)⊕ S−1Grav∗, 0).oo

whereδ denotes a unary operator of degree2, whereS−1 is the operadic desuspension and whereGrav is
the operad Gravity isomorphic to the homologyH•(M0,n+1) of the moduli space of genus0 curves with
marked points.

This result provides the space of generators for the minimalmodel of the operadBV . But, on the
opposite to the Koszul duality theory, this gradedS-module is not endowed with a cooperad structure but
with a homotopy cooperadstructure. This means that there are higher decomposition maps which split
elements, not only into2 but also into3, 4, etc. Finally, the differential of the minimal model is madeup
of these decomposition maps.

Let us recall that the problem of making minimal models explicit in algebraic topology is related to
the following notions. Sullivan models [Sul77] are dg commutative algebras generated by the (dual of
the) rational homotopy groupsπ•X ⊗ Q of a topological spaceX , where the differential is given by the
Whitehead products. Quillen models [Qui69] are dg Lie algebras generated by the (dual of the) rational
homology groupsH•(X,Q) of a topological spaceX , where the differential is given by the Massey prod-
ucts. The Steenrod algebra is an inhomogenous Koszul algebra, whose Koszul dual dg algebra is theΛ
algebra, see [Pri70]. The minimal model of the Steenrod algebra is generated by the underlying homology
groups of theΛ algebra and the differential is related to the Adams spectral sequence [BCK+66, Wan67].
Recall that theΛ algebra is the first page of the Adams spectral sequence, which computes the homotopy
groups of spheres.

SULLIVAN QUILLEN STEENROD BATALIN -V ILKOVISKY

free
commutative
algebraS(−)

Lie algebra
Lie(−)

associative algebra
T (−)

operadT (−)

generators π•X ⊗Q H•(X,Q) Λ H•(M0,n+1)⊕ T̄ c(δ)

differential Whitehead brackets Massey products
differentials of
Adams spectral

sequence
homotopy cooperad

The operadBV behaves exactly in the same way as the Steenrod algebra with respect to the inhomo-
geneous Koszul duality theory, see [GCTV09]. But, in contrast to the Steenrod algebra, we are able to
compute, in this paper, the underlying homology groups of its Koszul dual (co)operad together with its
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algebraic structure. We also provide a topological explanation for our result. It was shown by E. Getzler
[Get94a] that the operadBV is the homology of the framed little discs operad. Its minimal model is gen-
erated by a homotopy cooperad extension of the cooperadH•(M0,n+1) by a free resolutionT c(δ) of the
circleS1.

We call the algebras over the minimal model of the operadBV skeletal homotopy Batalin-Vilkovisky
algebras, since they involve fewer generating operations than the notion of a homotopy BV-algebra given
in [GCTV09]. We provide new formulae for the homotopy transfer theoremfor algebras over a quasi-free
operad on a homotopy cooperad. To prove them, we have to introduce a new operadic method, based on a
refined bar-cobar adjunction, since the classical methods of [LV10, 10.2] (classical bar-cobar adjunction),
and of A. Berglund [Ber09] (homological perturbation lemma) failed to apply. This gives the homotopy
transfer theorem for skeletal homotopy BV-algebras.

The d∆-condition, also called thedd̄-lemma orddc-lemma in [DGMS75], is a particular condition,
coming from Kähler geometry, between the two unary operators: the underlying differentiald and the
BV-operator∆. Under this condition, S. Barannikov and M. Kontsevich [BK98], and Y.I. Manin [Man99]
proved that the underlying homology groups of a dg BV-algebra carry a Frobenius manifold structure.
Such a structure is encoded by the homology operadH•(M0,n+1) of the Deligne-Mumford-Knudsen
moduli space of stable genus0 curves. Its is also called an hypercommutative algebra (with a a compatible
non-degenerate pairing). Tree formulae for such a structure have been given by A. Losev and S. Shadrin in
[LS07].

We show that these results are actually a consequence of the aforementioned homotopy transfer theorem.
This allows us to prove them under a weaker and optimal condition, called the non-commutative Hodge-
to-de Rham condition. We recover the Losev-Shadrin formulae and thereby explain their particular form.
Moreover our approach gives higher non-trivial operations, which are necessary to recover the homotopy
type of the original dg BV-algebra.

Theorem(7.8). Let(A, d, •,∆, 〈 , 〉) be a dg BV-algebra with non-commutative Hodge-to-de Rham degen-
eration data.

The underlying homology groupsH(A, d) carry a homotopy hypercommutative algebra structure, which
extends the hypercommutative algebras of M. Kontsevich andS. Barannikov[BK98], Y.I. Manin[Man99],
A. Losev and S. Shadrin[LS07], and J.-S. Park[Par07], and such that the rectified dg BV-algebraRec(H(A))
is homotopy equivalent toA in the category of dg BV-algebras.

In geometrical terms, this lifts the action of the operad of moduli space of genus0 stable curves (coho-
mological field theory) into a certain action of the cooperadof the open moduli space of genus0 curves
(extended cohomological field theory):

H•+1(M0,n+1) //

��

EndH(A)

H•(M0,n+1) .

[BK−M−LS−P ]

77nnnnnnnnnnnn

We conclude this paper with applications to the Poisson geometry, Lie algebra cohomology and the Mir-
ror Symmetry conjecture. To conclude, this paper develops the homotopy theory for dg BV-algebras (ho-
motopy skeletal BV-algebras,∞-quasi-isomorphisms) necessary to study the Mirror Symmetry conjecture,
in the same way as the homotopy theory of dg Lie algebras was used to prove the deformation-quantization
of Poisson manifolds by M. Kontsevich in [Kon03].

Some of the results of the present paper were announced in [DCV09]. While we were typing it, V.
Dotsenko and A. Khoroshkin computed in [DK09] the homology of the bar construction of the operadBV
without the action of the symmetric groups. They used the independent method of Gröbner basis for shuffle
operads developed in [DK10].

The paper is organized as follows. We begin by recalling the Koszul resolution of the operadBV given
in [GCTV09]. In the second section, we compute the homology of the Koszul dual dg cooperadBV ¡ and
we write it as a deformation retract ofBV ¡. In the third section, we recall the notion of homotopy cooperad
with its homotopy properties: the homotopy transfer theorem for homotopy cooperads. With these tools
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in hand, we produce the minimal model of the operadBV at the end of Section3. In a fourth section,
we describe the associated notion of algebra, called skeletal homotopy BV-algebras. Section5 deals with
a generalization of the bar-cobar adjunction between operads and homotopy cooperads. The last section
contains the homotopy transfer theorem for skeletal homotopy BV-algebras and the extension of the result
of Barannikov-Kontsevich and Manin.

The reader is supposed to be familiar with the notion of an operad and operadic homological algebra,
for which we refer to the book [LV10]. In the present paper, we use the same notations as used in this
reference.

We work over a fieldK of characteristic0 and all theS-modulesM = {M(n)}n∈N are reduced, that is,
M(0) = 0.

1. RECOLLECTION ON HOMOTOPYBV-ALGEBRAS

In this section, we recall the main results of [GCTV09] needed in the rest of the text. In loc.cit., we
made explicit a resolution of the operadBV using the Koszul duality theory. It is given by a quasi-free
operad on a dg cooperad, which is smaller than the bar construction ofBV .

1.1. BV-algebras.

Definition 1.1 (Batalin-Vilkovisky algebras). A differential graded Batalin-Vilkovisky algebra, or dg BV-
algebrafor short, is a differential graded vector space(A, dA) endowed with

⊲ a symmetric binary product• of degree0,
⊲ a symmetric bracket〈 , 〉 of degree+1,
⊲ a unary operator∆ of degree+1,

such thatdA is a derivation with respect to each of them and such that

✄ the product• is associative,
✄ the bracket satisfies the Jacobi identity

〈〈 , 〉, 〉 + 〈〈 , 〉, 〉.(123) + 〈〈 , 〉, 〉.(321) = 0,

✄ the product• and the bracket〈 , 〉 satisfy the Leibniz relation

〈 -, - • - 〉 = (〈 -, - 〉 • -) + (- • 〈 -, - 〉).(12),

✄ the unary operator∆ satisfies∆2 = 0,
✄ the bracket is the obstruction to∆ being a derivation with respect to the product•

〈 -, - 〉 = ∆(- • -) − (∆(-) • -) − (- •∆(-)),

✄ the operator∆ is a graded derivation with respect to the bracket

∆(〈 -, - 〉) + 〈∆(-), - 〉 + 〈 -,∆(-)〉 = 0.

The operad encoding BV-algebras is the operad defined by generators and relations

BV := T (V )/(R),

whereT (V ) denotes the free operad on theS-module

V := K2 • ⊕K2〈 , 〉 ⊕K∆ ,

with K2 being the trivial representation of the symmetric groupS2. The space of relationsR is the sub-S-
module ofT (V ) generated by the relations ‘✄’ given above. The basis elements•, 〈 , 〉, ∆ are of degree
0, 1, and 1. Since the relations are homogeneous, the operadBV is graded by this degree, termed the
homological degree.

We denote byCom the operad generated by the symmetric product• and the associativity relation.
We denote byLie1 the operad generated by the symmetric bracket〈 , 〉 and the Jacobi relation; it is the
operad encoding Lie algebra structures on the suspension ofa space. The operadG governing Gerstenhaber
algebras is defined similarly. Its underlyingS-module is isomorphic toCom ◦ Lie1, on which the operad
structure is given by means of distributive laws, see [LV10, Section8.6].
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1.2. Quadratic analogue. We consider the homogeneous quadratic analogueqBV of the operadBV . This
operad is defined by the same spaces of generatorsV and relations except for the inhomogeneous relation

•

∆

− •

∆

− •

∆

− 〈 , 〉 ,

which is changed into the homogenous relation:

•

∆

− •

∆

− •

∆

.

We denote this homogenous quadratic space of relations byqR. This operadqBV = T (V )/(qR) is
also given by means of distributive laws on theS-module

qBV ∼= G ◦D ∼= Com ◦ Lie1 ◦K[∆]/(∆2) ,

whereD := K[∆]/(∆2) is the algebra of dual numbers, see [GCTV09, Proposition3].

1.3. Koszul dual cooperad of the operadqBV . We denote bys the homological suspension, which shifts
the homological degree by+1. Recall that theKoszul dual cooperadof a quadratic operadT (V )/(qR)
is defined as the sub-cooperadC(sV, s2qR) ⊂ T c(sV ) cogenerated by the suspensionsV of V with
corelators in the double suspensions2qR of qR, see [LV10, Chapter 7]. Namely, it is the “smallest”
sub-cooperad of the cofree cooperad onsV which contains the corelatorss2qR.

We denote bySc := EndcKs−1 = {Hom((Ks−1)⊗n,Ks−1)}n∈N thesuspensioncooperad of endomor-
phisms of the one dimensional vector spaces−1K concentrated in degree−1. The desuspensionScC of a
cooperadC is the cooperad defined by the aritywise tensor product, called the Hadamard tensor product,
(ScC)(n) = (Sc ⊗H C)(n) := Sc(n) ⊗ C(n). The underlyingS-module of the Koszul dual cooperad of
qBV is equal to

qBV ¡ ∼= T c(δ) ◦ ScComc
1 ◦ S

cLiec ,

whereT c(δ) ∼= K[δ] ∼= D¡ is the counital cofree coalgebra on a degree2 generatorδ := s∆, where
Liec ∼= Lie∗ is the cooperad encoding Lie coalgebras and whereComc

1
∼= Com∗

−1 is the cooperad
encoding cocommutative coalgebra structures on the suspension of a space, see [GCTV09, Corollary4].
The degree of the elements in

Kδm ⊗ ScComc
1(t)⊗ S

cLiec(p1)⊗ . . .⊗ S
cLiec(pt) ⊂ qBV ¡

is n+ t+ 2m− 2, for n = p1 + · · ·+ pt.

1.4. Koszul dual dg cooperad of the operadBV . We consider the mapϕ : qR→ V defined by

•

∆

− •

∆

− •

∆

7−→ 〈 , 〉

and 0 on the other relations ofqR, so that the graph ofϕ is equal to the space of relationsR. The
induced mapqBV ¡ → sV extends to a square-zero coderivationdϕ on the cooperadqBV ¡, see [GCTV09,
Lemma5]. The dg cooperad

BV ¡ := (qBV ¡, dϕ)

is called theKoszul dual dg cooperadof the inhomogeneous quadratic operadBV .
We use the notation⊙ for the ‘symmetric’ tensor product, that is, the quotient ofthe tensor product

under the permutation of terms. In particular, we denote byδm ⊗ L1 ⊙ · · · ⊙ Lt a generic element of
T c(δ) ◦ ScComc

1 ◦ S
cLiec with Li ∈ ScLiec, for i = 1, . . . , t; the elements ofScComc

1 being implicit.
Under these notations, the coderivationdϕ is explicitly given by

dϕ(δ
m ⊗ L1 ⊙ · · · ⊙ Lt) =

t∑

i=1

(−1)εiδm−1 ⊗ L1 ⊙ · · · ⊙ L
′
i ⊙ L

′′
i ⊙ · · · ⊙ Lt,(1)

whereL′
i ⊙ L

′′
i is Sweedler-type notation for the image ofLi under the binary part

ScLiec → ScLiec(2)⊗ (ScLiec ⊗ ScLiec)։ ScLiec ⊙ ScLiec
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of the decomposition map of the cooperadScLiec. The sign, given by the Koszul rule, is equal toεi =
(|L1|+ · · ·+ |Li−1|). The image ofdϕ is equal to0 whenm = 0 or whenLi ∈ ScLiec(1) = K I for all i.

Remark.Let us denote the linear dual ofδ by ~ := δ∗. This is an element of homological degree−2.
The Koszul dual operad is defined byqBV ! := SqBV ¡∗ = S ⊗H qBV ¡∗, whereS stands for the endo-
morphism operadS := EndcKs−1 . Up to a degree shift, the Koszul dual dg operadBV ! := (qBV !, tdϕ),
when viewed as a cohomologically graded differentialK[[~]]-operad, corresponds to the Beilinson-Drinfeld
operad [BD04, CG11].

1.5. Koszul resolution of the operadBV . We denote byBV∞ the quasi-free operad given by the cobar
construction onBV ¡:

BV∞ := ΩBV ¡ ∼= (T (s−1qBV
¡
), d = d1 + d2),

whered1 is the unique derivation which extends the internal differential dϕ and whered2 is the unique
derivation which extends the infinitesimal (or partial) coproduct of the cooperadqBV ¡, see [LV10, Sec-
tion 6.5]. The total derivationd = d1 + d2 squares to zero and faithfully encodes the algebraic struc-
ture of the dg cooperad onBV ¡. The space of generators of this quasi-free operad is isomorphic to
T c(δ) ◦ ScComc

1 ◦ S
cLiec, up to coaugmentation and desuspension.

Theorem 1.2. [GCTV09, Theorem6] The operadBV∞ is a resolution of the operadBV

BV∞ = ΩBV ¡ =
(
T (s−1qBV

¡
), d = d1 + d2

)
∼
−→ BV .

It is called theKoszul resolutionof BV . Notice that it is much smaller than the bar-cobar resolution
ΩBBV

∼
−→ BV . The Koszul resolution and the bar-cobar resolution are both quadratic. But they are not

minimal resolutions: they are both quasi-free operads witha differential which is the sum of a quadratic
term (d2) and anon-trivial linear term(d1).

Algebras over the operadBV∞ are calledhomotopy BV-algebras. For an explicit description of this
algebraic notion together with its homotopy properties, werefer the reader to [GCTV09].

1.6. Homotopy transfer theorem for homotopy BV-algebras. We consider the data

(A, dA)h
%% p

// (H, dH)
i

oo

of two chain complexes, wherei andp are chain maps and whereh has degree1. It is called ahomotopy
retract when idA − ip = dAh+ hdA and when, equivalently,i or p is a quasi-isomorphism. If, moreover,
the compositepi is equal to idH , then it is called adeformation retract.

Theorem 1.3. [GCTV09, Theorem33] Any homotopy BV-algebra structure onA transfers toH through
a homotopy retract such thati extends to an∞-quasi-isomorphism.

2. THE HOMOLOGY OFBV ¡ AS A DEFORMATION RETRACT

The purpose of this section is to construct an explicit contracting homotopy for the chain complex
BV ¡ := (qBV ¡, dϕ). This is a necessary ingredient for the construction of the minimal model of the operad
BV given in the next section. As a byproduct, this computes the homology of the bar construction of the
operadBV in terms of the homology of the moduli spaceM0,n+1 of genus0 curves. The main result of
this section is the following theorem.

Theorem 2.1. The various maps defined in this section form the following deformation retract:

(qBV ¡ ∼= T c(δ)⊗ G¡, dϕ ∼= δ−1 ⊗ dψ)δ⊗H
&&

//
(T

c
(δ) ⊗ I⊕ 1⊗ G¡/Im dψ ∼= T

c
(δ)⊕ S−1Grav∗, 0).oo
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FIGURE 1. Example of a planar representation of a tree with ordered vertices

2.1. Trees. A reduced rooted treeis a rooted tree whose vertices have at least one input. We consider the
category of reduced rooted trees with leaves labeled bijectively from 1 to n, denoted byTree. The trivial
tree| is considered to be part ofTree. Since the trees are reduced, there are only trivial isomorphisms of
trees. So we identify the isomorphism classes of trees with the trees themselves; see [LV10, Appendix C]
for more details.

We consider the planar representation of reduced trees provided by shuffle trees, see E. Hoffbeck [Hof10,
2.8], V. Dotsenko and A. Khoroshkin [DK10, 3.1], and [LV10, 8.2]. We define a total order on the vertices
of a tree by reading its planar representation from leaf1 to the root by following the internal edges without
crossing them. See Figure1 for an example.

2.2. Free operad and cofree cooperad.The underlyingS-module of the free operadT (V ) on anS-
moduleV is given by the direct sum

⊕
t∈Tree t(V ), wheret(V ) is the treewise tensor module obtained

by labeling every vertex of the treet with an element ofV according to the arity and the action of the
symmetric groups. The operadic composition map is given thethe grafting of trees. Dually, the underlying
S-module of the conilpotent cofree cooperadT c(V ) is equal to the same direct sum over trees and its
decomposition map is given by cutting the trees horizontally; see [LV10, Chapter5] for more details.

The subcategory of trees withn vertices is denoted byTree(n). The number of vertices endows the free
operadT (V ) ∼=

⊕
n∈N T (V )(n) and the conilpotent cofree cooperadT c(V ) ∼=

⊕
n∈N T

c(V )(n) with
a weight grading. We represent a labeled tree byt(v1, . . . , vn), using the aforementioned total order on
vertices.

2.3. Coderivations on the cofree cooperad.Coderivations on cofree cooperads are characterized by their
projection onto the space of generators. In other words,

Lemma 2.2. Let η be a homogeneous morphismT c(M) → M of gradedS modules. Then there exists a
unique coderivationdη onT c(M) extendingη, given on an element ofT c(M) represented by a decorated
tree by applyingη to any subtree.

This is a classical generalization of the characterizationof coderivation for cofree coalgebras. Here are
two simple but useful examples, for more details see [LV10, Section6.3.14].

(1) If η factors through the projectionT c(M) ։ T c(M)(1) = M , thendη is given on a decorated
tree as a signed sum over the vertices of the tree. The summandcorresponding to a vertexv is the
same tree withη applied to the decoration ofv and all other decorations the same. The sign is the
Koszul sign.

(2) If η factors through the projectionT c(M)։ T c(M)(2), thendη is given on a decorated tree as a
signed sum over the internal edges of the tree. The summand corresponding to an edgee has the
edge contraction alonge of the original tree as its underlying tree. The decorationsaway from the
contraction vertex are the same; the decoration on the contraction vertex is given by applyingη
to the two decorated vertices involved in the contraction, viewed as a two-vertex decorated tree in
T c(M)(2). The sign is the Koszul sign.
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2.4. A contracting homotopy for a cofree cooperad.Let M be theS-module which is the linear span
of elementsµ andβ, both of arity two, in degrees1 and2 respectively, both with trivial symmetric group
action.

M := K2 s•︸︷︷︸
µ

⊕K2 s〈 , 〉︸ ︷︷ ︸
β

Let ψ denote the degree one morphism of gradedS-modulesψ : T c(M) → M which first projects
T c(M) to the cogeneratorsM and then takesµ to β andβ to zero.ψ can be extended uniquely to a degree
one coderivationdψ of T c(M) by Lemma2.2. We will construct a degree−1 chain homotopyH of graded
S-modules onT c(M) so thatdψH+Hdψ is the identity outside arity1 and the zero map on arity1 (which
is one dimensional, spanned by a representative of the coimage of the counit map).

To do this, we will need a combinatorial factor.

Definition 2.3. Let T be a binary tree. The vertexv has some number of leavesmv above one of its
incoming edges, and another numbernv above the other (we need not concern ourselves which is which).
Let the weightω(v) be their productmvnv. For an illustration, see Figure2.

ω = 6

ω = 2

ω = 1ω = 1

FIGURE 2. A binary tree with the weightω indicated at each vertex

J.-L. Loday used this weight function to describe a parameterization of the Stasheff associahedra.

Lemma 2.4. [Lod04] The sum of the weights of all the vertices of a binary tree withn vertices is
(
n+1
2

)
.

Definition 2.5. Let h :M →M be the degree−1 morphism of gradedS-modules given by takingβ to µ
andµ to 0. We will useh to define the contracting homotopyH .

Let the homotopyH be defined on a decorated tree withn vertices inT c(M) as a sum over the vertices.
For the vertexv, the contribution to the sum isω(v)

(n+1
2 )

times the decorated tree obtained by applyingh to v

(including the Koszul sign). So it has a similar flavor to extendingh as a coderivation, but also includes
combinatorial factors.

Lemma 2.6. The mapdψH +Hdψ is zero in arity one and the identity in all other arities.

Proof. First, applied to the coidentity subspace ofT c(M), the degree zero part ofT c(M)(1), this sum is
clearly zero.

Next, consider a tree inT c(M) with at least one vertex. The mapH acts on it by taking the signed and
weighted sum of replacing eachβ with aµ; the coderivationdψ acts by taking the signed sum over all the
µ and replacing it with aβ. To act first with one and then with the other means that either
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(1) The mapsH anddψ act on two distinct vertices of the tree, or
(2) they act on the same vertex, changing it first fromβ to µ or vice versa and then back, ending up

with the same tree, with a combinatorial factor.

The first type come in pairs, one fromdψH and one fromHdψ, with the same combinatorial factors. They
have the opposite sign, because the sign conventions forH anddψ are the same, and in one of the cases,
there is one more or fewerµ than the other in a position that induces a sign. This means all of these terms
cancel.

For the second type, note first of all that the induced signs fromH anddψ will be the same sign acting
on whichever vertex we have chosen, and every vertex will be acted on by precisely one ofHdψ anddψH
nontrivially, depending on whether it begins decorated byβ orµ, so the final result of acting in this way on
every vertex will be the sum over all vertices of the underlying treeT :

∑

v

ω(v)(
n+1
2

)T = T.

By Lemma2.4, the sum of the coefficients over all the vertices is exactly one, which yields the desired
result. �

2.5. Characterizing the Koszul dual of the Gerstenhaber operad.Consider the operadG governing
Gerstenhaber algebras. This operad has a presentation asT (s−1M)/(R), whereR is a set of quadratic
relations in• = s−1µ and〈 , 〉 = s−1β.

The Koszul dual cooperad (See [LV10, Section7.3]) G¡ is a graded subS-module ofT c(M) ⊂ T c(sG),
characterized by being the intersection ofT c(M) with the kernel of the degree−1 coderivationd2 on
BG := T c(sG) induced by the infinitesimal composition mapγ(1) : T c(G)(2) → G.

Applying d2 to a decorated tree inT c(M) gives a sum of trees, each of which has one special4-
valent vertex decorated by an element ofsG(2) obtained by contraction of one edge and composition of
the associated two operations. The rest of the vertices are trivalent and decorated with an element of
sG(1) = M . BecauseM is one dimensional in each degree, we can specify that each trivalent vertex is
decorated by eitherµ orβ, with an overall coefficient on the decoration of the specialvertex. Then in order
that two separate terms be in the same summand ofT c(sG) so that they might cancel, the underlying trees
must be the same and the decorations on each trivalent vertexmust be the same.

Definition 2.7. A contraction treeis a tree with one undecorated4-valent vertex and all other vertices
trivalent and decorated by eitherµ or β.

Note that we can induce a fixed order on the leaves of the special 4-valent vertex of a contraction tree
by using the order on the leaves of the whole tree; order the leaves of the special vertex by the smallest
number of a tree leaf above each one, see [LV10, Section8.2]

A sum of decorated trees
∑
cTT ∈ T c(M) is in the kernel ofd2 if and only if once we sum over all

possible edge contractions, any summands that have the sameunderlying contraction tree cancel with each
other.

Therefore it is important to know which decorated binary treesT can have the same contraction tree.
There are precisely three underlying trees that can give rise to a given contraction trees by an edge contrac-
tion, corresponding to the three distinct binary trees withtwo vertices:
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1 2 3

1

2

1 3 2

1

2

1 2 3

2

1

Definition 2.8. There are twelve distinct two-vertex binary trees with vertices decorated byµ and/orβ,
which form aK-linear basis for the twelve dimensional spaceT c(M)(2). We will refer to these basis trees
with the notationti(a, b) wherea andb are each one of the symbolsµ andβ and i is one of1, 2, and
3. The numbers correspond, respectively, to the trees pictured above, whilea andb are decorations of
the two vertices, following the vertex order convention established in subsection2.1. If S is a contraction
tree, thenS(ti(a, b)) is the decorated binary tree obtained by replacing the4-valent vertex withti(a, b) and
S[ti(a, b)] is the decorated tree obtained by decorating the4-valent vertex withd2(ti(a, b)).

Up to scale, there are precisely twelve decorated trees thatcan contract to yield the contraction treeS if
each vertex is given eitherµ or β as a decoration; these are the treesS(ti(a, b)). These twelve are clearly
in correspondence with the set{ti(a, b)}. We have shown:

Lemma 2.9. The following are equivalent:

(1) The element
∑
cTT is in G¡.

(2) For each contraction treeS,
∑

cS(ti(a,b))S[ti(a, b)] = 0 where the sum runs over the twelve

decorated treesS(ti(a, b)) that can yieldS as a contraction.

(3) For each contraction treeS,
∑

cS(ti(a,b))d2(ti(a, b)) = 0 where the sum runs over the twelve

decorated treesS(ti(a, b)) that can yieldS as a contraction.

In words, a sum of decorated trees can only be inG¡ if there is local cancellation for every possible
contraction tree. Global cancellation is sufficient but local cancellation is necessary (this means that they
are equivalent, but it will be easier to use local cancellation to check global cancellation in the sequel).

2.6. Restricting the homotopy toG¡.

Lemma 2.10. The homotopyH : T c(M)→ T c(M) restricts toG¡.

Proof. Let
∑
cTT be a sum of decorated trees inG¡. Then for every contraction treeS, the sum over the

twelve basis elements
∑
cS(ti(a,b))d2(ti(a, b)) is zero.

Let us consider applyingH to
∑
cTT . By definition, this is a sum over every vertex of the decorated tree

T . To show that the resultant sum is inG¡, we then applyd2 and demonstrate that we get zero. Applyingd2
involves applying the desuspension of the infinitesimal composition mapγ(1) on each set of two adjacent
vertices, summing over all such pairs. We will confuse such subsets with internal edges, with which they
are in bijection, as described in Section2.3.

In total, to applyH and thend2 to a decorated treeT involves summing over all choices of a vertex
and edge ofT ; each individual summand is the application of first a weighted multiple ofh to the chosen
vertex, and then infinitesimal compositionγ(1) to the chosen edge.

This sum splits into those pairs of vertex and edge which are distinct, and those pairs where the chosen
edge is incident on the chosen vertex. We will show that each of these two constituent sums is zero
individually.

If the vertex and edge are distinct, then, up to sign, the application ofh on the vertex and infinitesi-
mal composition on the edge commute. For a given contractiontree and choice of trivalent vertex on the
contraction tree, the overall sign of commuting the shiftedinfinitesimal composition on the edge of one
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of the twelve decorated trees which yields the given contraction tree andh on the corresponding vertex
will be independent of the particular choice of decorated tree within the twelve. LetSv[ti(a, b)] be ob-
tained fromS[ti(a, b)] by applying the appropriate weighted multiple ofh to the vertexv. Since the sum∑
cS(ti(a,b))S[ti(a, b)] over the twelve corresponding decorated trees without any application ofh is zero,

for each choice of vertex, the sum
∑
cS(ti(a,b))S

v[ti(a, b)] is also zero.
The other case to consider is when the edge involved in the contraction is incident on the vertex

whereh is applied. Let us fix a contraction treeS; because the original sum is inG¡, it is true that∑
cS(ti(a,b))S[ti(a, b)] is zero, or, equivalently,

∑
cS(ti(a,b))d2(ti(a, b)) is zero. We will replaced2(ti(a, b))

with the weighted sum of applyingh to the top and bottom vertex ofti(a, b), followed byd2, and show
that the result is still zero.

The two-vertex component of the Koszul dual cooperad to a quadratic operad is isomorphic to the space
of relations, up to a degree shift. In this case, we have:

Lemma 2.11. The kernel ofd2 on the linear span ofti(a, b) is six dimensional, spanned by the shifted
Gerstenhaber relations:

(1) the two dimensional space of associativity relationsti(µ, µ)− tj(µ, µ),
(2) the three dimensional space of Leibniz relations spanned by

L1 = t1(µ, β) + t2(β, µ) + t3(µ, β),

L2 = t1(β, µ) + t2(µ, β) + t3(µ, β),

and

L3 = t1(β, µ) + t2(β, µ) + t3(β, µ)

(note that the signs are different than in the usual Leibniz relation because of the shift, and that the
presentation is not symmetric in our basis), and

(3) the one-dimensional space of the Jacobi relationt1(β, β) + t2(β, β) + t3(β, β).

For the weighting ofh, it is necessary to look at the shape and decorations of the contraction treeS.
Choose a representative so that the two vertices involved inthe contraction edge are adjacent in the total
ordering of vertices. Let the number of leaves above the edgei of the contraction vertex beni.

· · ·

n1

· · ·

n2

· · ·

n3

b

a

FIGURE 3. The top part ofS(t3(a, b))

Then up to an overall sign and overall factor of1
(n+1

2 )
, the weighted sum of applyingh to both vertices

of each of the basis elements is given by:
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(1) ti(µ, µ) 7→ 0,
(2) t1(µ, β) 7→ n3(n1 + n2)t1(µ, µ),

t2(µ, β) 7→ n2(n1 + n3)t2(µ, µ),
t3(β, µ) 7→ n1(n2 + n3)t3(µ, µ),

(3) t1(β, µ) 7→ −n1n2t1(µ, µ),
t2(β, µ) 7→ −n1n3t2(µ, µ),
t3(µ, β) 7→ −n2n3t3(µ, µ),

(4) t1(β, β) 7→ n3(n1 + n2)t1(β, µ) + n1n2t1(µ, β),
t2(β, β) 7→ n2(n1 + n3)t2(β, µ) + n1n3t2(µ, β), and
t3(β, β) 7→ n1(n2 + n3)t3(µ, β) + n2n3t3(β, µ).

Applying these formulae to the kernel described above gives:

(1) ti(µ, µ)− tj(µ, µ) 7→ 0,
(2)

L1 7→ n2n3(t1(µ, µ)− t3(µ, µ)) + n1n3(t1(µ, µ)− t2(µ, µ))

L2 7→ n1n2(t2(µ, µ)− t1(µ, µ)) + n2n3(t2(µ, µ)− t3(µ, µ))

L3 7→ n1n2(t3(µ, µ)− t1(µ, µ)) + n1n3(t3(µ, µ)− t2(µ, µ)),

(3) and:

t1(β, β) + t2(β, β) + t3(β, β) 7→

n1n2(t1(µ, β) + t2(β, µ) + t3(µ, β))

+ n1n3(t1(β, µ) + t2(µ, β) + t3(µ, β))

+ n2n3(t1(β, µ) + t2(β, µ) + t3(β, µ)).

So the kernel ofd2 in this twelve dimensional space is stable under the weighted application ofh, no matter
the particular trees that define the weights. This means thatfor each contraction treeS, the sum obtained
from

∑
cS(ti(a,b))d2(ti(a, b)) by replacingd2(ti(a, b)) with the weighted sum of applyingh to the top and

bottom vertex ofti(a, b), followed byd2, is still zero, as desired. �

2.7. Proof of Theorem2.1.

Lemma 2.12. LetO = T (N)/(R) be a quadratic operad with Koszul dual cooperadO¡ ⊂ T c(sN). Let
d be a coderivation ofT c(sN). If the composition

O¡ // // T c(sN)
d // T c(sN) // // T c(sN)(2)/O¡(2)

is zero, thend restricts to be a coderivation ofO¡.

Proof. Since the Koszul dual coopereadO¡ = C(sN, s2R) is a quadratic cooperad, this proof is dual to the
proof that a derivation of the free operadT (N) passes to the quotientT (N)/(R), with R ⊂ T (N)(2), if
the composite

R // // T (N)
d // T (N) // // T (N)/(R)

is zero. �

Corollary 2.13. The coderivationdψ defined onT c(M) restricts toG¡. We will refer to the restriction with
the same notation.

Proof. In order to check this, we need check only that elements ofG¡ whichdψ takes intoT c(M)(2) land
in G¡(2). For degree reasons, such elements must belong toG¡(2), which is described by Lemma2.11. A
direct calculation verifies thatdψ takes an associativity relation to a difference of two Leibniz relations,
takes each Leibniz relation to the Jacobi relation, and takes the Jacobi relation to zero. �

Proposition 2.14. The counit map(G¡, dψ) → (I, 0) of the differential graded cooperad(G¡, dψ), the
coaugmentation(I, 0)→ (G¡, dψ), and the homotopyH form the following deformation retract:

(G¡, dψ)H
%% // (I, 0)oo
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Proof. This is a direct corollary of Lemma2.6, Lemma2.10, and Corollary2.13. �

Remark.One can easily check that the dual of the chain complex(G¡, dψ) is isomorphic to both the Koszul
complexLie¡◦κLie (see [LV10, Section7.4]) and the Chevalley-Eilenberg complex of the free Lie algebra.
This isomorphism along with the preceding proposition implies as a corollary the well-known facts that the
Lie and commutative operads are Koszul, and that, equivalently, the Chevalley-Eilenberg homology of the
free Lie algebra is trivial.

Definition 2.15. We define a map ofS-modules

θ : T c(δ)⊗ T c(M)→ T c(M ⊕Kδ)

as follows. We will describe the image ofδm ⊗ x wherex has underlying treeT . Let λ range over
assignments of a non-negative integer to each edge ofT so that the sum of all the integers ism.

Then the image ofδm ⊗ x has underlying treeT ′ which is obtained fromT by insertingλ(e) bivalent
vertices on each edgee, labeled byδ.

Lemma 2.16. The restriction ofθ to T c(δ) ⊗ G¡, still denotedθ, is the inverse to the distributive isomor-
phismρ : qBV ¡ → T c(δ)⊗ G¡.

Proof. First, letx ∈ G¡. We will verify thatθ(δn⊗x) is inqBV ¡ by checking thatd2θ is zero onT c(δ)⊗G¡

(hered2 is the differential induced by composition inqBV).
The mapθ inserts vertices decorated byδ, andd2 composes pairs of adjacent vertices. The sum involved

in applyingd2 includes compositions involving0, 1, and2 vertices decorated byδ. Each of these vanishes
for a different reason.

(1) The insertion of a vertex decorated withδ commutes up to sign with compositions that do not
involve it, so insertingm vertices decorated withδ and then contracting an edge whose vertices are
decorated byµ or β is the same as contracting the edge first and then inserting vertices decorated

with δ. But sincedG
¡

2 coincides withdqBV¡

2 on theδ0 component ofqBV ¡, and we are starting in

the kernel ofdG
¡

2 to begin with, this summand is zero.
(2) Contracting an edge whose vertices are both decorated byδ gives a bivalent vertex whose decora-

tion is s(∆ ◦∆), which is zero since∆ ◦∆ = 0 in qBV .
(3) Finally, consider contracting an edge between a vertexv decorated by aµ or β and an adjacent

vertex decorated by aδ. Letλ′ be a map from the edges ofT to the natural numbers so that the sum
of the images adds tom − 1. There are precisely three choices ofλ with a δ adjacent tov which
can be forgotten to yield an element whose underlying tree isT with vertices inserted according to
λ′. The sum of the three contractions withv associated toλ′ together make up a relation ofqBV .

Now considerρθ(δm⊗x). Becauseρ first decomposes and then projects, it is zero on any tree decorated
byβ, δ, andµ unless all of the vertices decorated byδ are below all of the other vertices. There is precisely
one summand in the sum definingθ which satisfies this condition. That is the summand corresponding to
the partitionλ with λ of the outgoing edge of the root equal tom andλ of every other edge equal to zero.
The mapρ splits this into two levels and then projects; the only way for the projection to be nonzero is
for it to split with δm as the bottom level; thenρθ(δm ⊗ x) = (δm ⊗ x). Becauseρ is an isomorphism, a
one-sided inverse is an inverse. �

Lemma 2.17. Under the above isomorphismθ, the differentialδ−1 ⊗ dψ is sent todϕ:

(qBV ¡, dϕ) ∼= (T c(δ)⊗ G¡, δ−1 ⊗ dψ)

Proof. It is enough to prove it on the level of the cofree cooperads. We show that the following diagram is
commutative

T c(δ)⊗ T c(M)
θ //

δ−1⊗dψ
��

T c(M ⊕Kδ)

d̃ϕ

��

T c(δ)⊗ T c(M)
θ // T c(M ⊕Kδ) ,
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whered̃ϕ is the unique coderivation of the cofree cooperadT c(M ⊕Kδ) which extends the mapϕ. Since
δ−1 ⊗ dψ is a coderivation, it is enough to prove it by projecting ontothe space of cogeneratorsM ⊕ Kδ.
We conclude by showing that the only non-trivial component is

µ

δ

� //
µ

δ

− µ

δ

− µ

δ

_

��

_

��

β

� //

β .

�

Proposition 2.18. Under the isomorphism of Lemma2.17, the chain complex(qBV ¡, dϕ) admits a degree
given by the powersδm of δ, for which:

H•(qBV
¡)(m) =

{
one dimensional, spanned by(δm ⊗ I) : m > 0
isomorphic to1⊗ G¡/Im dψ : m = 0.

Proof. Write the chain complex as

· · · // δm ⊗ G¡
δ−1⊗dψ

// δm−1 ⊗ G¡ // · · · // G¡ // 0

The homology is then one dimensional by Proposition2.14everywhere except at1⊗G¡, where everything
is in the kernel of the differential so the homology is just the quotient by the image ofdψ. �

Proof of Theorem2.1. We prove that the following data

(T c(δ)⊗ G¡, δ−1 ⊗ dψ)δ⊗H
&& p

// (T c(δ)⊕ Im (Hdψ), 0).oo

form a deformation retract, where the projection mapp is the sum of the projection ontoT c(δ) and the
projection ontoG¡ composed withHdψ. Assume thatx is in the coaugmentation coidealG¡. SinceH is
a contracting homotopy fordψ , (dψH + Hdψ)x = x. ThendψHdψx = −Hdψ

2x + dψx = dψx so
(x−Hdψx) is closed underdψ. SinceG¡ is contractible andx is in the coaugmentation coideal, this means
thatx −Hdψx is in the image ofdψ , therefore in the image ofdϕ. This shows thatHdψx is in the same
homology class asx. It is independent of choice of representative because it gives zero on all ofIm dψ. A
quick calculation verifies thatdϕ(δ ⊗ H) − (δ ⊗ H)dϕ gives the projection ontoδm ⊗ G¡ except on the
rightmost factor, where it givesid−Hdψ. This concludes the proof of the theorem, with the exceptionof
the rightmost identification with the dual to the Gravity operad given in the next section. �

2.8. The homology ofBV ¡ in terms of the moduli space of curves and the Gravity operad.Let us
recall from E. Getzler’s papers [Get94b, Get95] the definition of the quadratic operadGrav encoding
gravity algebras. It is generated by skew-symmetric operations[x1, . . . , xn] of degree2−n for anyn ≥ 2,
which satisfy the following relations:
∑

1≤i<j≤k

±[[xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xk, y1, . . . , yl] =

{
[[x1, . . . , xk], y1, . . . , yl] for l > 0,
0 for l = 0.

The sign is the Koszul sign coming from the permutation of theelements.
We consider the moduli spaceM0,n+1 of genus0 curves withn + 1 marked points. The gluing along

two points and the Poincaré residue map induce an operad structure on the suspensionsH•(M0,n+1) of its
homology, see [Get95, Section3.4]. Let S−1 denote both the desuspension operad and cooperad structure
onEndKs−1 .

Proposition 2.19([Get94b]). The gravity operad is related to the homology of the moduli space of genus
0 curves by the following isomorphism of operads:

S−1Grav ∼= sH•(M0,n+1) .
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Proposition 2.20. The quotientG¡/Im dψ is a cooperad isomorphic toS−1Grav∗.

Proof. This is the cooperadic dual of Theorem4.5 of [Get94a]. The aritywise linear dual of the differential
graded quadratic cooperad(G¡, dψ), with degree1 coderivation, is a differential graded quadratic operad,
with degree1 derivation. (We consider the opposite homological degree on the linear dual). By [GJ94,
Theorem3.1], the underlying operad is isomorphic to(G¡)∗ ∼= S2G := EndKs2 ⊗H G, which admits the
same quadratic presentation as the operadG except for the−2 degree shift of the generatorss−2• and
s−2〈 , 〉. By the universal property of quadratic operads, the derivation tdψ is characterized by the images
of these generators, that iss−2• 7→ s−2〈 , 〉 and s−2〈 , 〉 7→ 0. Therefore, up to the degree shift, the
derivationtdψ is equal to the derivation∆ on G defined in [Get94a]. Theorem4.5 of loc. cit. states that
S−1Grav ∼= Ker∆. Dually, it givesG¡/Im dψ ∼= S−1Grav∗. �

This concludes the proof of Theorem2.1.

Theorem 2.21. There exist isomorphisms of gradedS-modules

H•(BBV) ∼= H•(qBV
¡, dϕ) ∼= T

c
(δ)⊕ S−1Grav∗ .

Proof. The first isomorphism is a general fact about Koszul operads.In the case of an inhomogenous
Koszul operadP , it is proved as follows. The degree−1 mapqP ¡

։ sV → V ֌ P is a twisting mor-
phismκ : P ¡ = (qP ¡, dϕ)→ P ∈ Tw(P ¡,P), see [GCTV09, Appendix A] or [LV10, Section7.8]. By the
general properties of the bar-cobar adjunction [LV10, Section6.5], it induces a morphism of dg cooperads
fκ : P ¡ → BP , which is equal to the following composite:P ¡ = qP ¡

֌ T c(sV ) → T c(sP) = BP .
On the right-hand side, the operadP comes equipped with a filtration; we consider the induced filtration
on the bar construction. On the left-hand side, we consider the filtration given by the weight grading on
the cooperadqP ¡. The coderivationdϕ lowers this filtration by1 and the morphismfκ preserves the re-
spective filtrations. By the Poincaré-Birkhoff-Witt theorem [GCTV09, Theorem39], grP ∼= qP , the first
page(E0, d0) of the right hand-side spectral sequence is isomorphic toBqP . So the mapfκ induces
the mapfκ̄ : (qP ¡, 0) → BqP , on the level of the first pages of the spectral sequences, where κ̄ is the
twisting morphism associated to the homogeneous quadraticoperadqP . Since it is Koszul, the morphism
fκ̄ is a quasi-isomorphism and we conclude by the convergence theorem of spectral sequences associated
to bounded below and exhaustive filtrations [ML95, Chapter11]. The second isomorphism follows from
Theorem2.1. �

Remarks.

⋄ While we were writing this paper, V. Dotsenko and A. Khoroshkin in [DK09] proved, with another
method (Gröbner bases for shuffle operads), the second isomorphism on the level of gradedN-
modules, i.e. without the action of the symmetric groups.
⋄ The cooperadG¡ with the action ofdψ is the Koszul dual cooperad of the operadG with the action

of ∆ is the sense of Koszul duality theory of operads over Hopf algebras, see the Ph.D. Thesis of
O. Bellier [Bel11] for more details.

3. THE MINIMAL MODEL OF THE OPERADBV

In this section, we recall the notion of a homotopy cooperad,and we develop a transfer theorem for
such structures across homotopy equivalences. We apply this result to the deformation retract given in the
previous section. This allows us to make the minimal model ofthe operadBV explicit.

3.1. Homotopy cooperad. We recall from [VdL02] the notion of a homotopy cooperad, studied in more
detail in [MV09a, Section4].

Definition 3.1 (Homotopy cooperad). A homotopy cooperadstructure on a gradedS-moduleC is the datum
of a square-zero degree−1 derivationd on the free operadT (s−1C) which respects the augmentation map.
An ∞-morphismC  D of homotopy cooperads is a morphism of augmented dg operads between the
associated quasi-free operads(T (s−1C), d)→ (T (s−1D), d′). We denote this category by∞-coop∞.

We consider the isomorphism ofS-modulesT (s−1C) ∼= T (C) given by

t(s−1c1, . . . , s
−1cn) 7→ (−1)(n−1)|c1|+(n−2)|c2|+···+|cn−1|t(c1, . . . , cn) .
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Since the mapd is a derivation on a free operad, it is completely characterized by its image on generators
∆ : C → T (C), under the above isomorphism. The substitution of a treet at theith vertex by a treet′ is
denoted byt ◦i t′, see [LV10, Section5.5] for more details.

Proposition 3.2([MV09a], Proposition24). The data of a homotopy cooperad(T (s−1C), d) is equivalent
to a family of morphisms ofS-modules{∆t : C → t(C)}t∈Tree such that

⋄ ∆| = 0,
⋄ the degree of∆t is equal to the number of vertices oft minus 2,
⋄ for everyc ∈ C, the number of non-trivial∆t(c) is finite,
⋄ for everyc ∈ C,

∑
(−1)i−1+k(l−i) t ◦i t

′(c1, . . . , ci−1, c
′
1, . . . , c

′
k, ci+1, . . . , cl) = 0 ,

where the sum runs over the elementst(c1, . . . , cl) andt′(c′1, . . . , c
′
k) such that

∆(c) =
∑

t∈Tree

∆t(c) =
∑

t∈Tree

t(c1, . . . , cl) and ∆(ci) =
∑

t′∈Tree

∆t′(ci) =
∑

t′∈Tree

t′(c′1, . . . , c
′
k) .

A homotopy cooperad structure on a gradedS-moduleC with vanishing maps∆t = 0 for treest ∈
Tree

(≥3) with more than3 vertices is equivalent to a coaugmented dg cooperad structure onC := C ⊕ I.
In this case, the definition in terms of a square-zero derivation on the free operad is equivalent to the
differential of the cobar constructionΩ C.

In the same way, the datum of an∞-morphismF : (T (s−1C), d) → (T (s−1D), d′) is equivalent to a
morphism ofS-modulesf∞ : C → T (D), that is, a family of morphisms{ft : C → t(D)}t∈Tree, satisfying
some relations. An interpretation in terms of Maurer-Cartan elements is given in [MV09a, Section4.7].

The projectionC → T (C)։ C of d on the gradedS-moduleC endows it with a differential denoted by
dC , which is equal to the sumdC =

∑
∆t over the corollast. The images on corollas of any∞-morphism

define a morphism of dgS-modules(C, dC)→ (D, dD). When this latter map is a quasi-isomorphism, the
∞-morphism is called an∞-quasi-isomorphism.

3.2. Homotopy transfer theorem for homotopy cooperads.

Theorem 3.3.Let(C, {∆t}) be a homotopy cooperad. Let(H, dH) be a dgS-module, which is a homotopy
retract of the dgS-module(C, dC):

(C, dC)h
%% p

// (H, dH) .
i

oo

There is a homotopy cooperad structure on the dgS-module(H, dH), which extends the transferred com-
position mapst(p) ◦∆t ◦ i and such that the mapp extends to an∞-quasi-isomorphism.

Proof. For any corollat, the transferred structure map̃∆t onH is given by the differentialdH. For any tree
t ∈ Tree with at least2 vertices, we consider all the possible ways of writting it bysuccessive substitutions
of trees with at least2 vertices:

t = (((t1 ◦j1 t2) ◦j2 t3) · · · ) ◦jk tk+1 .

The transferred structure map̃∆t : H → t(H) is then given by

∆̃t :=
∑
± t(p) ◦

(
(∆tk+1

h) ◦jk (· · · (∆t3h) ◦j2 ((∆t2h) ◦j1 ∆t1))
)
◦ i ,

where the notation(∆t′h) ◦j ∆t means here the composite of∆t with ∆t′h at thej th vertex of the treet.
The extension of the mapp : C → H into an∞-morphismp∞ : C → T (H) is given by the same kind

of formula. On corollas, it is given by the mapp, and for any treet ∈ Tree(≥2) with at least2 vertices, it is
given by

pt :=
∑
± t(p) ◦

(
(∆tk+1

h) ◦jk (· · · (∆t3h) ◦j2 ((∆t2h) ◦j1 ∆t1))
)
◦ h .

When C is a dg cooperad, these formulae are the exact duals to the ones given by [Gra07] for dg
(pr)operads. The rest of the proof is straightforward, following the ideas of loc. cit. �
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3.3. The homotopy cooperad structure onH(BBV). Let us denote the gradedS-module

H := T
c
(δ)⊕ S−1Grav

∗ ∼= H•(BBV) ∼= H•(qBV
¡
, dϕ) .

Theorem2.1provides us with the following deformation retract in the category of dgS-modules:

(qBV ¡ ∼= T c(δ)⊗ G¡, dϕ ∼= δ−1 ⊗ dψ)h:=δ⊗H
&&

p
//
(H⊕ I, 0) .

i
oo

Corollary 3.4. The gradedS-moduleH := T
c
(δ) ⊕ S−1Grav

∗
is endowed with a homotopy cooperad

structure and with an∞-quasi-isomorphism from the dg cooperadBV ¡ = (qBV ¡, dϕ).

Proof. This is a direct application of the Homotopy Transfer Theorem 3.3for homotopy cooperads. �

3.4. The minimal model of the operadBV .

Definition 3.5. A minimal operadis a quasi-free dg operad(T (X), d)

⋄ with a decomposable differential, that isd : X → T (≥2)(X), and
⋄ such that the generating degree gradedS-module admits a decomposition intoX =

⊕
k≥1X

(k)

satisfyingd(X(k+1)) ⊂ T (
⊕k

i=1X
(i)).

A minimal modelof a dg operadP is the data of a minimal operad(T (X), d) together with a quasi-

isomorphism of dg operads(T (X), d)
∼ // // P , which is an epimorphism. (This last condition is always

satisfied when the differential ofP is trivial).

The generalization of the notion of a minimal model from dg commutative algebras [DGMS75, Sul77]
to dg operads was initiated by M. Markl in [Mar96], see also [MSS02, Section II.3.10]. Notice however
that the aforementioned definition is strictly more generalthan loc. cit. and includes the crucial case of
dg associative algebras, since we do not require thatX(1) = 0 here. (A minimal operad in the sense of
Markl is minimal in the present sense: the extra grading is given by the arity gradingX(k) := X(k + 1)).
The present definition faithfully follows Sullivan’s ideas: the increasing filtrationFk :=

⊕k
i=1X

(i) is
the Sullivan triangulationassumption. The extra gradingX(k) is called thesyzygydegree. Notice that
any non-negatively graded quasi-free operad with decomposable differential is minimal; one only has to
considerX(k) := Xk−1.

The following lemma compares the two approaches of Quillen (cofibrant) and Sullivan (minimal) of
homotopical algebra.

Lemma 3.6. A minimal operad is cofibant in the model category given by V. Hinich [Hin97].

Proof. This is a particular case of [MV09b, Corollary40]. �

Since the definition is different, one needs a more general proof for the uniqueness of minimal models.

Proposition 3.7. LetP be a dg operad. When it exists, the minimal model of the operadP is unique up to
isomorphism.

Proof. We work with the model category structure on dg operads defined by V. Hinich in [Hin97]. Let
M andM′ be two minimal models of the graded operadP . They are cofibrant operads by the preceding

proposition. Since the quasi-isomorphismM′ ∼ // // P is an epimorphism, it is a trivial fibration. By the

lifting property of a model category, there exists a quasi-isomorphismf : M = (T (X), d)
∼
−→ M′ =

(T (X ′), d′) of dg operads. It induces a quasi-isomorphism of dgS-modules between the space of genera-
tors(X, dX)

∼
−→ (X ′, dX′) by [MV09a, Proposition43]. Since the differentials are decomposable, we get

dX = 0 anddX′ = 0. So the aforementioned quasi-isomorphism is actually an isomorphism of graded
S-modulesX ∼= X ′. Therefore, the mapf is an isomorphism of dg operads. �

Theorem 3.8. The data of Corollary3.4provide us with the minimal model of the operadBV :
(
T (s−1(T

c
(δ)⊕ S−1Grav

∗
)), d

) ∼
−→ BV ,

where this quasi-isomorphism is defined bys−1δ 7→ ∆ and bys−1µ 7→ •.
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Proof. First, the quasi-free operad
(
T (s−1(T

c
(δ)⊕S−1Grav

∗
)), d

)
is minimal since it is non-negatively

graded with the decomposable differential coming from the transferred homotopy cooperad structure on
H.

Then, the∞-quasi-isomorphismp∞ : qBV
¡
 H of Corollary3.4 induces a morphism of dg operads

P : ΩBV ¡ → (T (s−1H), d). It is a quasi-isomorphism by the following argument. We consider the
filtration F• on ΩBV ¡, and respectivelyF ′

• on (T (s−1H), d), given by the number of vertices of the
underlying tree:

F−k :=
⊕

t∈Tree(≥k)

t(s−1qBV
¡
) and F ′

−k :=
⊕

t∈Tree(≥k)

t(s−1H) .

The first terms of the respective associated spectral sequences are(E0, d0) ∼= (T (s−1qBV
¡
), d1) and

(E′0, d′0) ∼= (T (s−1H), 0). The morphism of dg operadsP preserves the aforementioned filtrations.
Moreover, it satisfiesE0(P ) = T (s−1p). So it is a quasi-isomorphism by the Künneth formula. The two
filtrations are obviously exhaustive. At fixed arity, they are bounded below: for a fixed degree, the number
of vertices is limited since the generator of arity one have degree greater or equal to1. We conclude the
argument by means of the classical convergence theorem for spectral sequences [ML95, Chapter11].

Finally, we define a morphism of operadsF : T (s−1H)→ BV by

s−1δ 7→ ∆, s−1S−1Grav
∗
(2) ∼= s−1Im Hdψ(2) ∼= Ks−1µ→ K• ,

and the rest being sent to0. We now check the commutativity of the differentials on the generators. It is
straightforward ons−1δm.

The only elements ofIm Hdψ whose image underd are trees with vertices labeled only byµ andδ are
in ImHdψ(3). Indeed, lett be an element ofImHdψ(n), which is the sum of trees withk vertices labeled
by µ and withn − 1 − k vertices labeled byβ. To get trees labeled only byµ andδ, one has to apply
h = δ ⊗H a total ofn− 1− k times. This introduces then− 1− k power ofδ and applies the coproduct
of the cooperadT c(δ) ⊗ G¡ a total ofn − k times. In the end, we get trees labeled byn − 1 copies ofµ
andn− 1− k copies ofδ split n− k times. To get totally split trees, we should haven− k = 2n− 3− k,
which impliesn = 3.

The one-dimensional spaceLie¡
1(3), generated by the Jacobi relation, lives inIm dψ = Ker dψ. The

image underd of the corresponding element inHLie¡
1(3) is a sum of7 trees with3 vertices (d3), whose

image in the operadBV is the7-term relation

∆(- • - • -) + (∆(- • -) • -).(id+(123) + (321)) + (∆(-) • - • -).(id+(123) + (321)) = 0 ,

which is a consequence of the definition of the operadBV . The two-dimensional spaceCom¡(3) is gen-
erated by (the suspension of) the associators of•. The compositeHdψ acts on it as the identity. Its
image underd is equal tod2, which produces the associativity relation in the operadBV . So the map
F : (T (s−1H), d)→ BV is a morphism of dg operads.

It remains to show that the following diagram is commutative

ΩBV ¡ ∼ //

∼

P ''NNNNNNNNNNN
BV

(T (s−1H), d) ,

F

88qqqqqqqqqqq

to conclude thatF is a quasi-isomorphism. It is enough to check it on the generators, which is equivalent
to the commutativity of the following diagram

(qBV ¡, dϕ)
κ //

p∞

��

BV

(T (s−1H), d) // // (T (Ks−1δ ⊕Ks−1µ), 0) .

F

OO

It is easily checked onδ, µ, andβ. Both maps vanish on the rest ofqBV ¡ by the same arguments as above:
the only element which produces a non-trivial element inT (Ks−1δ ⊕ Ks−1µ) underp∞ is β, which
concludes the proof. �
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We denote bydn : s−1H → T (s−1H)(n) the part of the differentiald, which splits elements inton
pieces. The componentd2 coincides with the decomposition map on the cooperadS−1Hyc¡∗.

Proposition 3.9. The differential of the minimal model of the operadBV has the following shape:

d2 : s−1δm 7→
∑

m1+m2=m

s−1δm1 ⊗ s−1δm2 and dn : s−1δm 7→ 0, for n ≥ 3.

Up to the desuspensions−1, the image of an element of degreek of S−1Gravk
∗

under the mapdn is a
sum of trees withn vertices labeled by elements ofS−1Grav

∗
and ofT

c
(δ), such that the total degree of

the elements fromS−1Grav
∗

is equal tok − n + 2 and such that the total weight, i.e. the total power, of
the elements coming fromT

c
(δ) is equal ton− 2. For instance, this induces

dn(S
−1Gravk

∗
) = 0 for n > k + 2 .

Proof. By direct inspection of the various formulae. �

We denote the minimal model of the operadBV by

BV∞ :=
(
T (s−1(T

c
(δ) ⊕ S−1Grav

∗
)), d

)
.

Remarks.

⋄ The results about TCFT, two-fold loop spaces, and the cyclicDeligne conjecture, obtained in
[GCTV09] using the cofibrance property of the Koszul resolution of the operadBV hold as well
with this minimal model. The proof of the Lian-Zuckerman conjecture with this minimal model
requires further work and will be the subject of another paper.
⋄ The same method can be applied to [HL11] to make explicit the minimal model of the inhomoge-

neous quadratic operadH0(SC) , where the operadSC is Kontsevich Swiss-cheese operad.

4. SKELETAL HOMOTOPY BV-ALGEBRAS

We call algebras over the minimal model of the operadBV skeletal homotopy BV-algebras. We make
this notion explicit and we give a description in terms of Maurer-Cartan elements in a homotopy Lie
algebra.

4.1. Second definition of homotopy BV-algebras.

Definition 4.1. A skeletal homotopy Batalin-Vilkovisky algebrais an algebra over the minimal operad
BV∞.

Recall that a skeletal homotopy BV-algebra structure on a dgmodule(A, dA) is the datum of a morphism
of dg operadsBV∞ → EndA. The differential∂A of the operadEndA is equal to∂A(f) := dA ◦ f −
(−1)|f |

∑n
i=1 f ◦i dA. We denotẽµ the image of an elementµ of BV∞ intoEndA.

Proposition 4.2. A skeletal homotopy BV-algebra is a chain complex(A, dA) endowed with operations

∆m : A→ A, of degree2m− 1, for m ≥ 1,

and
µ̃ : A⊗n → A, of degree|µ|+ n− 2, for anyµ ∈ Grav

∗
(n),

such that
∂A(∆

m) =
∑

m1+m2=m

∆m1 ◦∆m2 , for m ≥ 1,

and
∂A(µ̃) =

∑
± µ̃1 ◦i µ̃2 +

∑
t(ν̃1, . . . , ν̃k,∆

m1 , . . . ,∆ml

︸ ︷︷ ︸
≥1

) ,

where the first sum runs over the decomposition product of thecooperad structure onGrav∗,∆Grav∗(µ) =∑
µ1 ◦i µ2, and where the second sum corresponds to composites of at least three operations with at least

one∆m.

Proof. This is a direct corollary of Proposition3.9. �
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A BV-algebra is a skeletal homotopy BV-algebra with vanishing operations∆m, form ≥ 2, andµ̃, for
µ ∈ Grav∗(n), n ≥ 3. The aforementioned quasi-isomorphism

P : BV∞ := ΩBV ¡ ∼
−→ BV∞ := (T (s−1H), d)

shows how a skeletal homotopy BV-algebra carries a homotopyBV-algebra. Theorem4.7.4 of [Hin97]
implies the functor

P ∗ : skeletal homotopy BV-algebras → homotopy BV-algebras

induces equivalences of the associated homotopy categories

Ho(homotopy BV-algebras) ∼= Ho(skeletal homotopy BV-algebras) ∼= Ho(BV-algebras) .

Recall that ahypercommutative algebra[KM94, Get95] is a chain complex equipped with a totally
symmetricn-ary operation(x1, . . . , xn) of degree2(n− 2) for anyn ≥ 2, which satisfy

∑

S1⊔S2={1,...,n}

((a, b, xS1), c, xS2) =
∑

S1⊔S2={1,...,n}

(−1)|c||xS1|(a, (b, xS1 , c), xS2) ,

for anyn ≥ 0. We denote the associated operad byHyperCom. It is isomorphic to the homology operad
of the Deligne-Mumford-Knudsen compactification of the moduli space of genus0 curvesH•(M0,n+1).
It is Koszul dual to the operad Gravity:HyperCom! ∼= Grav.

Proposition 4.3. A skeletal homotopy BV-algebra with vanishing operators∆m, form ≥ 1, is a homotopy
hypercommutative algebra.

Proof. This is a direct corollary of Proposition4.2 together with the fact that the operadHyperCom is
Koszul, that isΩ(S−1Grav∗)

∼
−→ HyperCom, see [Get95]. �

In operadic terms, this means that
(
s−1T

c
(δ)

)
֌ BV∞ ։ HyperCom∞

is a short exact sequence of dg operads, where
(
s−1T

c
(δ)

)
is the ideal ofBV∞ generated bys−1T

c
(δ).

Equivalently, the short sequence of homotopy cooperads

T
c
(δ)֌ H։ S−1Grav

∗ ∼= sH•(M0,n+1)

is exact, i.e.H is an extension of the (non-unital) cooperadsT
c
(δ) = H•(S1)¡ andsH•(M0,n+1) =

H•(M0,n+1)
¡.

Theorem 4.4. The operadHyperCom is a representative of the homotopy quotient of the operadBV by
∆ in the homotopy category of dg operads.

Proof. Let D∞ denoteT (s−1T
c
(δ)). This is the minimal resolution of the algebra of dual numbersD.

The pushout ofI ← D∞ ֌ BV∞ gives a representative of the homotopy quotient ofBV by ∆ since
D∞֌ BV∞ is a cofibration and since all the operads in the diagram are cofibrant, see [Hir03, Chapter15].
A map from this diagram to an operad is the same thing as a map ofthe generators ofHyperCom∞ that
respects the differentials; since the augmentation ideal of D∞ vanishes in any map from this diagram, the
differentials coincide with those ofHyperCom∞. So the image ofHyperCom in the homotopy category
of dg operads gives the homotopy quotient ofBV by∆. �

We refer the reader to [Mar09, DK09, KMS11] further studies on this topic. This result on the level of
homology allows us to conjecture that the homotopy quotientof the framed little disk by the circle is the
compactified moduli space of genus zero stable curvesM0,n+1. This will be the subject of another paper.

Remark.Since the generators ofHyperCom∞ form a cooperad, one can define the notion of∞-morphism
of homotopy hypercommutative algebrasusing [LV10, 10.2]. In the case of the operadBV∞, to define
the notion of∞-morphism of skeletal homotopy BV-algebras, one has to refine the arguments, using the
homotopy pullback of endomorphism operads for instance. With these definitions, Proposition4.3 shows
that the category of homotopy hypercommutative algebras with ∞-morphisms is a subcategory of the
category of skeletal homotopy BV-algebras with∞-morphisms, but not a full subcategory.
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4.2. Maurer-Cartan interpretation. Recall from [MV09a, Theorem28] that the module of morphisms
of S-modules

HomS(H,EndA) :=
∏

n≥1

HomSn(H(n),EndA(n))

carries anL∞-algebra structure,{ℓn}n≥1, given in terms of the homotopy cooperad structure onH by the
formula:

ℓn(f1, . . . , fn) :=
∑

t∈Tree(n)

σ∈Sn

± γEndA ◦ t(fσ(1), . . . , fσ(n)) ◦∆t ,

whereγEndA is the composition map of operations ofEndA and where the sign is the Koszul sign due to
the permutation of the graded elements{fi}.

The solutions to the (generalized) Maurer-Cartan equation
∑

n≥1

1

n!
ℓn(α, . . . , α) = 0, with |α| = −1,

in this convolutionL∞-algebra are called the (generalized)twisting morphismsand denoted byTw∞(H,EndA).

Proposition 4.5. There is a natural bijection

Homdg op(BV∞,EndA) ∼= Tw∞(H,EndA) .

Proof. This follows from Theorem54 of [MV09a]. �

This result gives an interpretation of skeletal homotopy BV-algebra structures in term of Maurer-Cartan
elements in anL∞-algebra.

We denote by(Im Hdψ)
[k] the subspace ofIm Hdψ spanned by the tree monomials withk vertices

labelled byµ.

Lemma 4.6. The isomorphism of Theorem2.21preserves the respective gradings:

S−1Grav∗(k) ∼= (Im Hdψ)
[k] .

Proof. By direct inspection. �

This result allows us to organize the operations of a skeletal homotopy BV-algebra into strata. The
first stratum is described as follows. SinceS−1Grav∗(1) ∼= HLie¡

1, in weight1, is equal to the trivial

representation ofSn, then we getHomS(Grav
∗(1),EndA) ∼= Hom(Sc(≥2)(A), A), up to suspension.

∆t lands entirely in weight one only whent has precisely two vertices.
So a twisting elementα vanishing outside the weight1 part ofGrav∗ actually satisfies the truncated

Maurer-Cartan equation∂α + 1
2ℓ2(α, α) = 0. This corresponds to the definition of a Frobenuis manifold

in terms of a hypercommutative algebra structure, see Y.I. Manin [Man99].

5. HOMOTOPY BAR-COBAR ADJUNCTION

In this section, we introduce a new bar-cobar adjunction between the category of augmented dg operads
and the category of homotopy cooperads. This bar construction relies on the notion of a cofree homotopy
cooperad, which we make explicit in terms of nested trees.

5.1. Cofree homotopy cooperad.We consider now the category of homotopy cooperads with (strict)
morphisms.

Definition 5.1. A morphismf : (C, {∆t})→ (D, {∆′
t}) of homotopy cooperads is a morphism of graded

S-modulesC → D which commutes with the structure maps.

A morphism of homotopy cooperads is an∞-morphism with vanishing componentsC → T (D)(n) for
n ≥ 2. The associated category is denoted bycoop∞. There is a forgetful functor

U : coop∞ → dg-S-Mod, (C, {∆t}) 7→ (C, dC) ,

which retains only the underlying dgS-module structure of a homotopy cooperad.
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Definition 5.2. A nested treeis a treet ∈ Tree\{|} equipped with a set of subsets of vertices{Ti}i, called
nests, such that:

⋄ each nestTi corresponds to a subtree of the treet,
⋄ each nestTi has at least two elements,
⋄ if Ti ∩ Tj 6= ∅, thenTi ⊂ Tj or Tj ⊂ Ti, and
⋄ the full subset corresponding to the treet is a nest as long ast has more than one vertex.

The associated category is denoted byNestedTree. See Figure4 for an example.

2

1 4 3 5 10

4 6

7 9 11

8 12

4

5 6 82

1 3 7

FIGURE 4. Example of a nested tree

We consider the following total order on nests. The innermost nests are the largest ones. We compare
them using their minimal element. Then we forget about thesenests and proceed in the same way until
reaching the full nest, which is the minimal nest. In the example of Figure4, it gives

T1 = {1, 2, 3, 4, 5, 6, 7, 8}< T2 = {1, 2, 3} < T3 = {2, 3} < T4 = {4, 8} < T5 = {6, 7} .

To any dgS-module(V, dV ), we associate theS-module spanned by nested trees with vertices labeled
by elements ofV . It is denoted by

NT (V ) :=
⊕

t∈NestedTree

t(V ) .

Using the order on vertices given in Section2.1and the above order on nests, we write a simple element of
NT (V ) by

t(T1, T2, . . . , TN ; v1, v2, . . . , vn) .

Its homological degree is equal to
∑n

k=1 |vk|+N − n+1. So the degree of a labeled corollat(v) is equal
to |v|.

Two nestsTj ( Ti are calledconsecutiveif Tj ⊂ Tk ⊂ Ti implies eitherTk = Ti or Tk = Tj . We
define a differentialdN by

dN (t) :=
∑

consecutive pairsTj(Ti

± t(T1, . . . , Ti, . . . , T̂j, . . . , TN ; v1, . . . , vn) ,

where the notation̂Ti means that we forget the nestTi. The sign is given as usual by the Koszul rule
as follows. To every nestTi, we associate the treeti obtained from the subtree oft defined byTi after
contracting all its proper subnests. Each vertex thereby obtained is labeled by the least element of the
contracted nest. The degree of a nestTi is equal to|Ti| := 2 − #ti, where#ti stands for the number
of vertices of the treeti. (In the example of Figure4, one has|T1| = −2.) If Tj ( Ti, theni < j. So
we first permuteTj with the nestsTj−1, . . . , Ti+1 to bring it next toTi. Then we apply the differential to
the pair(Ti, Tj), that is we forget about the nestTj. This comes with a sign equal to(−1) to the power
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#ti +#tj + k + des(tj , ti), wherek is the number of vertices ofti smaller than the smallest vertex oftj
and where des(tj , ti) is the number of descents, that is the number of pairs(a, b) of vertices oftj andti
respectively such thata > b. But the differential has to “jump over” the nestsT1, . . . , Ti−1. In the end, it
produces the sign(−1)ε, with

ε := |T1|+ · · ·+ |Ti−1|+ |Tj|(|Ti+1|+ · · ·+ |Tj−1|) + #ti +#tj + k + des(tj , ti) .

We consider the differential onNT (V ) given by the sum over all the vertices of the image of the
labeling element ofV underdV . By a slight abuse of notation, it is still denoteddV :

dV (t) :=
n∑

i=1

(−1)N−n+1+|v1|+···+|vi−1| t(T1, . . . , TN ; v1, . . . , dV (vi), . . . , vn) .

We consider maps{∆t : NT (V ) → t(NT (V ))}t∈Tree(≥2) defined as follows. Letτ be a simple
element ofNT (V ). We consider the aforementioned treet1 associated to the full nestT1, which is obtained
by contracting all the subtrees corresponding to the interior nests. Ift 6= t1, then∆t(τ) := 0. Otherwise,
if t = t1, the image ofτ under∆t is equal to the treet1 with vertices labeled by the nested trees obtained
from τ by forgetting its full nest.

Proposition 5.3. For any dgS-module(V, dV ), the data(NT (V ), dV + dN , {∆t}t∈Tree(2)) form a homo-
topy cooperad. This defines a functorNT : dg-S-Mod → coop∞ which is right adjoint to the forgetful
functorU : coop∞ → dg-S-Mod.

Proof. The three first points of the equivalent definition of a homotopy cooperad given in Proposition3.2
are trivially satisfied byNT (V ). The last point is straightforward to check.

Let C be a homotopy cooperad. We consider the morphism ofS-modules∆iter : C → NT (C) defined as
follows. For any treet, the extra data given by the nestst(T1, . . . , TN ) is equivalent to the decomposition
of t into successive substitutions

t = (((t1 ◦i1 t2) ◦i2 t3) · · · ) ◦iN−1 tN ,

where the trees{ti} are associated to the nests{Ti} as defined above. The image of the map∆iter on a
nested treet(T1, . . . , TN) is defined by

∆iter
t := ∆tN ◦iN−1 (· · · (∆t3 ◦i2 (∆t2 ◦i1 ∆t1))) .

Let V be a dgS-module. To any morphism of dgS-modulesf : U(C) → V , we associate a morphism
F : C → NT (V ) defined by the composite

F := C
∆iter

−−→ NT (C)
NT (f)
−−−−→ NT (V ) .

The mapF is a morphism of homotopy cooperads which satisfies the following universal property

V NT (V )oooo

C ,

f

ccF
F
F
F
F
F
F
F
F

∃!F

OO

which concludes the proof. �

Hence the homotopy cooperadNT (V ) is called thecofree homotopy cooperad onV .

Remarks.

⋄ The endofunctorU ◦ NT in dg-S-Mod can be endowed with a comonad structure: decompose a
nested tree into all the possible ways of seeing it as a nestedtree of nested subtrees. Proposition5.3
and its proof are equivalent to saying that the category of homotopy cooperads is the category of
coalgebras over the comonadU ◦ NT .
⋄ Recall that the notion of anA∞-algebra can be encoded geometrically by the Stasheff polytopes,

also called the associahedra. In the same way, the notion of ahomotopy cooperad can be encoded
by a family of polytopes, defined by by means ofgraph associahedralabelled by nested trees as
introduced by M.P. Carr and S.L. Devadoss in [CD06, DF08]. Notice that this notion generalizes
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the nested sets of C. De Concini and C. Procesi [DCP95]. For instance, the chain subcomplex of
nested trees with fixed underlying treet should be isomorphic to the cochain complex

(NT t, dN ) ∼= C•(graph associahedron associated tot)

This surely deserves further study, which we leave to a future work or to the interested reader.

5.2. Homotopy bar-cobar adjunction.

Definition 5.4. Let (P , γ, dP) be an augmented dg operad. The underlyingS-module of thebar construc-
tionBπP is given by the cofree homotopy cooperadNT (sP) on the suspension of the augmentation ideal
of P . We define the differentialdγ by

dγ(t(T1, . . . , TN , sµ1, . . . , sµn)) :=∑

innermostTi={i1,...,ik}

± t(T1, . . . , T̂i, . . . , TN ; sµ1, . . . , sγ(ti(µi1 , . . . , µik)), . . . , ŝµi2 , . . . , ŝµik , . . . , sµn).

We consider
BπP := (NT (sP), dP + dN + dγ , {∆t}t∈Tree(≥2)) .

Proposition 5.5. The data(NT (sP), dP + dN + dγ , {∆t}t∈Tree(≥2)) form a homotopy cooperad.

Proof. Checking this is a straightforward calculation. �

Definition 5.6. The cobar constructionΩπC of a homotopy cooperadC is the augmented dg operad
ΩπC := (T (s−1C), d).

Theorem 5.7. There are natural bijections

Homdg op(ΩπC,P) ∼= Tw∞(C,P) ∼= Homcoop∞
(C,BπP) .

In plain words, the pair of functorsΩπ andBπ are adjoint and this adjunction is represented by the twisting
morphism bifunctor.

Proof. The first natural bijection is given by [MV09a, Theorem54]. The second one is described as
follows. Proposition5.3already provides us with a natural bijection

Homcoop∞

(
C, (NT (sP), dN , {∆t}t∈Tree(≥2))

)
∼= HomS(C, sP), F 7→ f .

Under this bijection, a morphism ofS-modulesf : C → sP induces a morphism of homotopy cooperads
F : C → BπP if and only if the following diagram commutes

C
F //

dC

��

NT (sP)
dP+dγ

// NT (sP)

����

C
f

// sP .

This last condition is equivalent tofdC = dPf +
∑

t∈Tree(≥2) γ ◦ t(f) ◦∆t, which is exactly the Maurer-
Cartan equation ∑

n≥1

1

n!
ℓn(s

−1f, . . . , s−1f) = 0

satisfied bys−1f in the convolutionL∞-algebraHomS(C,P). �

Remark.The universal operadic twisting morphismπ : B(SAs)→ SAs induces a pair of adjoint functors
Bπ andΩπ between the category of dg associative algebras and the category of homotopy coalgebras by
[GJ94], see also [LV10, Chapter11]. One can prove that it coincides with the restriction of theabove bar
and cobar constructionsBπ andΩπ to S-modules concentrated in arity one, which explains the notation.

6. HOMOTOPY TRANSFER THEOREM

In this section, we prove the homotopy transfer theorem and the rectification theorem for skeletal ho-
motopy BV-algebras.
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6.1. Universal morphism of homotopy cooperads.Let (H, dH) be a homotopy retract of a chain com-
plex (A, dA):

(A, dA)h
%% p

// (H, dH) .
i

oo

Recall that the homotopy transfer theorem for homotopy algebras over a Koszul operad of [GCTV09,
Appendix B.3] and of [LV10, Section10.3] relies on the classical bar-cobar adjunction

Homdg op(ΩP
¡,EndA) ∼= Tw(P ¡,EndA) ∼= Homdg coop(P

¡,BEndA)

and on the quasi-isomorphism of dg cooperads

Ψ : BEndA
∼
−→ BEndH

introduced by P. Van der Laan in [VdL03], see also [LV10, Section10.3.3]. Such a map is characterized
by its projectionBEndA = T c(sEndA) → sEndH onto the space of generators. The Van der Laan map
Ψ is explicitly given by labeling the leaves of every tree by the mapi, the root by the mapp and the interior
edges by the homotopyh.

We consider the mapG(EndA) : BEndA → BπEndA defined, for anyt ∈ Tree, by

t(sfn, . . . , sf1) ∈ T
c(sEndA) 7→

∑
± t(T1, . . . , Tn−1; sfn, . . . , sf1) ∈ NT (sEndA) ,

where the sum runs over all the maximal nestings, that is the ones with a maximal number of nests. Since
the bar constructionBEndA is a cooperad, it carries a homotopy cooperad structure; themapG(EndA) is
a quasi-isomorphism of homotopy cooperads.

Proposition 6.1. Let (H, dH) be a homotopy retract of a chain complex(A, dA). There exists a quasi-
isomorphism of homotopy cooperads

Φ : BπEndA
∼
−→ BπEndH

such that the following diagram, made up of quasi-isomorphisms of homotopy cooperads, is commutative,

BEndA
G(EndA)

//

Ψ

��

BπEndA

Φ

��

BEndH
G(EndH)

// BπEndH .

Proof. Let us first give the proof in arity1; so hereEndA = Hom(A,A). We consider the quasi-
isomorphism of cooperadsG : Asc

∼
−→ B(SAs). The mapG(EndA) is equal to

G(EndA) = G ◦ id : Asc ◦κ′ SAs ◦SAs sEndA
∼
−→ B(SAs) ◦π SAs ◦SAs sEndA ,

whereκ′ := Sκ : Asc = SAs¡ → SAs is the Koszul morphism coming from the Koszul duality of
the operadAs. By the Comparison Lemma [LV10, Lemma6.4.13], the quasi-isomorphismG induces a
quasi-isomorphism

id ◦G ◦ id : SAs ◦κ′ Asc ◦κ′ SAs
∼
−→ SAs ◦π B(SAs) ◦π SAs

of quasi-free leftSAs-modules (or equivalently of quasi-free anti-associativealgebras in the category of
S-modules). By the left lifting property, it admits a homotopy inverse quasi-isomorphism

F : SAs ◦π B(SAs) ◦π SAs
∼
−→ SAs ◦κ′ Asc ◦κ′ SAs .

Under the bar-cobar adjunction, the quasi-isomorphism of cooperadsΨ is equivalent to the quasi-isomorphism
of operadsΨ̃ : ΩBEndA

∼
−→ EndH . Finally, we define the morphism of homotopy cooperadsΦ :

BπEndA
∼
−→ BπEndH to be the map corresponding to the quasi-isomorphism of operads

ΩπBπEndA
F◦SAssEndA−−−−−−−−→ ΩBEndA

Ψ̃
−→ EndH

under the homotopy bar-cobar adjunction.
One extends these arguments to higher arity by using the colored Koszul operad of [VdL03], which

encodes operads, instead of the Koszul (non-symmetric) operadAs which encodes associative algebras.
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By definition, the following diagram is commutative

BπEndA
F◦SAssEndA //

Φ

))

ΩB EndA
Ψ̃ // EndH

B EndA ,

G(EndA)

OO

55

55kkkkkkkkkkkkkkk

Ψ

55

which concludes the proof. �

The morphism of homotopy cooperadsΦ : BπEndA
∼
−→ BπEndH is completely characterized by its

projection onto the space of cogenerators, which we denote by φ : NT (sEndA)→ sEndH .

6.2. Homotopy transfer theorem for skeletal homotopy BV-algebras.

Theorem 6.2. Let A be a skeletal homotopy BV-algebra and let(H, dH) be a homotopy retract of the chain
complex(A, dA):

(A, dA)h
%% p

// (H, dH) .
i

oo

There is a skeletal homotopy BV-algebra on(H, dH), which extends the transferred operationspµ̃i⊗n, for
anyµ ∈ H. If we denote byα ∈ Tw∞(H,EndA) the skeletal homotopy BV-algebra structure onA, such
a transferred skeletal homotopy BV-algebra structure onH is given by

H
∆iter

−−→ NT (H)
NT (sα)
−−−−−→ NT (sEndA)

s−1φ
−−−→ EndH .

Proof. We apply the bar-cobar adjunction of Theorem5.7to

Homdg op(ΩπH,EndA) ∼= Tw∞(H,EndA) ∼= Homcoop∞
(H,BπEndA) .

So a skeletal homotopy BV-algebra structureα : H → EndA onA is equivalently given by a morphism
of homotopy cooperadsFα : H → BπEndA. The transferred skeletal homotopy BV-algebra onH is then
obtained by pushing along the morphismΦ:

Φ ◦ Fα : H → BπEndA → BπEndH ,

which is equivalent to the following twisting morphism

H
∆iter

−−→ NT (H)
NT (sα)
−−−−−→ NT (sEndA)

s−1φ
−−−→ EndH .

�

Remark.We proved the homotopy transfer theorem for homotopy BV-algebras, i.e. for the Koszul model
BV∞ of the operadBV in [GCTV09, Theorem33]. Since theS-module of generators of the minimal
modelBV∞ forms a homotopy cooperad and not a cooperad, we cannot applythe arguments of [GCTV09,
Appendix B.3] and of [LV10, Section10.3] based on the classical bar-cobar adjunction. Neither can we
use the homological perturbation lemma of [Ber09]. Notice that the existence of the homotopy transferred
structure follows from model category arguments by [Rez96, BM03]. But we need here an explicit formula
for the application to Frobenius manifolds in the next section.

Needless to say that the Homotopy Transfer Theorem6.2 holds for any algebras over a quasi-free op-
erad generated by a homotopy cooperad. In the case of a quasi-free operad generated by a dg cooperad,
Koszul models or bar-cobar resolutions for instance, we recover the formulae of [GCTV09] and of [LV10,
Chapter10] as follows.

Proposition 6.3. LetP be a Koszul operad, eventually inhomogeneous. LetA be a homotopyP-algebra
and let(H, dH) be a homotopy retract of the chain complex(A, dA).

The transferred homotopyP-algebra structure onH given by[GCTV09, Theorem47] and by[LV10,
Theorem10.3.6] is equal to the transferred homotopyP-algebra structure onH given by Theorem6.2.
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Proof. The proof relies on the following diagram being commutative:

Tw(P ¡,EndA)
∼= // Homdg coop(P

¡,BEndA)

G(EndA)∗
��

Ψ∗ // Homdg coop(P
¡,BEndH)

G(EndH)∗
��

∼= // Tw(P ¡,EndH)

Tw∞(P
¡
,EndA)

∼= // Homcoop∞
(P

¡
,BπEndA)

Φ∗ // Homcoop∞
(P

¡
,BπEndH)

∼= // Tw∞(P
¡
,EndH) .

�

The two homotopy transfer theorems for homotopy BV-algebras and skeletal homotopy BV-algebras
commute under the functorP ∗ : skeletal homotopy BV-algebras → homotopy BV-algebras as fol-
lows.

Proposition 6.4. Let (H, dH) be a homotopy retract of a chain complex(A, dA). Consider a skeletal ho-
motopy BV-algebra structure onA. The associated homotopy BV-algebra structureP ∗(A) onA transfers
to a homotopy BV-algebra toH by Theorem33 of [GCTV09]. This homotopy BV-algebra structure onH
is equal to the homotopy BV-algebra associated, underP , to the transferred skeletal BV-algebra given by
Theorem6.2.

Proof. The proof relies on the commutativity of the following diagram:

Homdg op(ΩπH,EndA)

∼=

��

P∗

&&

Homdg op(ΩπH,EndH)

P∗

xx

Homcoop∞
(H,BπEndA)

Φ∗ //

��

��

Homcoop∞
(H,BπEndH)

��

��

∼=

OO

Hom∞-coop∞(H,BπEndA)
Φ∗ //

p∗∞
��

Hom∞-coop∞(H,BπEndH)

p∗∞
��

Hom∞-coop∞(BV
¡
,BπEndA)

Φ∗ // Hom∞-coop∞(BV
¡
,BπEndH)

Homcoop∞
(BV

¡
,BπEndA)

OO

OO

Φ∗ // Homcoop∞
(BV

¡
,BπEndH)

OO

OO

Homdg coop(BV
¡,BEndA)

OO

G(EndA)∗

OO

Ψ∗ // Homdg coop(BV
¡,BEndH)

∼=

��

OO

G(EndH)∗

OO

Homdg op(ΩBV
¡,EndA)

∼=

OO

Homdg op(ΩBV
¡,EndH) .

�

6.3. Rectification theorem for skeletal homotopy BV-algebras.We proved in [GCTV09, Proposition32]
the following Rectification Theorem: for any homotopy BV-algebraA, there is an∞-quasi-isomorphism
A

∼
 ΩκBιA of homotopy BV-algebras, whereΩκBιA := BV(BV ¡(A)) is a dg BV-algebra. We refer to

loc. cit. and to [LV10, Chapter11] for more details.
To every skeletal homotopy BV-algebraH , we define itsrectifieddg BV-algebra by

Rec(H) := ΩκBιP
∗(H) .

Theorem 6.5. Let (H, dH) be a homotopy retract of a chain complex(A, dA). We consider a dg BV-
algebra structure onA together with the transferred skeletal homotopy BV-algebra onH given by Theo-
rem6.2. The dg BV-algebraRec(H) is homotopy equivalent toA in the category of dg BV-algebras.
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Proof. By Proposition6.4, the homotopy BV-algebra structureP ∗(H) is equal to the one produced by
the homotopy transfer theorem for homotopy BV-algebras [GCTV09, Theorem33]. Hence, there exists
an∞-quasi-isomorphism of homotopy BV-algebrasA

∼
 P ∗(H) by Theorem10.4.7 of [LV10]. The

Rectification Theorem for homotopy BV-algebras provides uswith an∞-quasi-isomorphismP ∗(H)
∼
 

ΩκBιP
∗(H). Finally, the two dg BV-algebras

A
∼
←− •

∼
−→ • · · · •

∼
←− •

∼
−→ ΩκBιP

∗(H) = Rec(H)

are linked by a zig-zag of quasi-isomorphism of dg BV-algebras by Theorem11.4.14 of [LV10]. �

This theorem gives homotopy control of the transferred structure. It plays a key role in the interpretation
of the main result in the next section.

7. FROM BV-ALGEBRAS TO HOMOTOPYFROBENIUS MANIFOLDS

We apply the Homotopy Transfer theorem to endow the underlying homology of a dg BV-algebra with
Massey products. When the induced action of∆ is trivial, we recover and extend up to homotopy the
Barannikov-Kontsevich-Manin Frobenius manifold structure. Applications of this general result are given
in Poisson geometry and Lie algebra cohomology and to the Mirror Symmetry conjecture.

7.1. Massey products.Working over a fieldK, one can always write the underlying homology(H•(A, dA), 0)
of a dg BV-algebraA as a deformation retract of(A, dA).

Definition 7.1. We callMassey-Batalin-Vilkovisky productsthe operations composing the transferred skele-
tal homotopy BV-algebra structure on the homologyH(A) of a dg BV-algebra given by the Homotopy
Transfer Theorem6.2.

Recall that the homology of any dg commutative (associative) algebra carriespartial Massey products,
see [Mas58]. For instance, the partial Massey triple-product〈x, y, z〉 is defined for three homology classes
x, y, z ∈ H(A) such thatxy = 0 = yz as follows. Letx̄, ȳ, z̄ ∈ A be cycles which representx, y, andz
respectively and leta, b ∈ A such that̄xȳ = da, ȳz̄ = db. Then the chainaz̄ − (−1)|x̄|x̄b is a cycle. So it
defines an element〈x, y, z〉 in H(A)/(xH(A) +H(A)z). When the partial Massey products are defined,
they are given by the same formulae as the (uniform) Massey products, see [LV10, Sections9.4 and10.3].
For dg Lie algebras, partial Massey products were defined by V.S. Retakh in [Ret93]. The present Massey-
Batalin-Vilkovisky products generalize both the partial commutative and Lie Massey products.

Theorem6.5shows that the data of the Massey products allow one to reconstruct the homotopy type of
the initial dg BV-algebra.

7.2. Trivialization of the action of ∆.

Proposition 7.2. Let A be a dg BV-algebra. If there exists a homotopy retract to the homology, which
satisfiesp(∆h)m−1∆i = 0, for m ≥ 1, then the transferred skeletal homotopy BV-algebra on homology
forms a homotopy hypercommutative algebra

Proof. The transferred operations∆m under Theorem6.2are given by∆m := p(∆h)m−1∆i. Then, one
concludes with Proposition4.3. �

A mixed chain complexis a graded vector spaceA equipped with two anti-commuting square-zero
operatorsd and∆ of respective degree−1 and1.

Definition 7.3. Let (A, d,∆) be a mixed chain complex.Non-commutative Hodge-to-de Rham degenera-
tion dataconsists of a deformation retract

(A, d)h
%% p

// (H(A), 0) ,
i

oo

such that
p(∆h)m−1∆i = 0 ,

for m ≥ 1.
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Definition 7.4. The compatibility relation

Ker d ∩Ker∆ ∩ (Im d+ Im ∆) = Im d∆ = Im ∆d

between the operatorsd and∆ of a mixed chain complex is called thed∆-condition.

Lemma 7.5. [DGMS75, Proposition5.17] A mixed chain complex(A•, d,∆) satisfies thed∆-condition if
and only if there exist two sub-graded modulesH• andS• ofA• such that

An ∼= Hn ⊕ Sn ⊕ dSn+1 ⊕∆Sn−1 ⊕ d∆Sn ,

wheredHn = 0, ∆Hn = 0, and where the maps of the following commutative diagram areisomorphisms

Sn
∆

∼= //

∼=d

��

∆Sn

∼=d

��

dSn
∼=

−∆
// d∆Sn .

A dg BV-algebra, which satisfies this condition, is called aHodge dg BV-algebraby A. Losev and S.
Shadrin in [LS07]. (In this case, the obvious homotopyh, which contractsA to its homologyH , is such
that[h,∆] = h∆+∆h = 0.)

Definition 7.6. [Par07] A mixed chain complex is calledsemi-classicalif every homology class has a
representative in the kernel of∆.

Proposition 7.7. Let (A, dA,∆) be a mixed chain. The following implications hold

(d∆-condition) =⇒ (semi-classical) =⇒ (NC Hodge-to-de Rham degeneration data) .

Proof. The first assertion is given by Lemma7.5. To prove the second one, it is enough to write the
homologyH(A) as a deformation retract ofA, with representatives inKer∆. In this case,∆i = 0, which
concludes the proof. �

The existence of NC Hodge-to-de Rham degeneration data is therefore the most general condition that
naturally supports this notion of the trivialization of theaction of∆ on the homology of a dg BV-algebra

Examples.

⋄ LetM be a compact Kähler manifold, with complex structure denoted byJ . The space of differen-
tial forms(Ω•(M), dDR,∆ := JdDRJ) forms a dg BV-algebra which satisfies thed∆-condition,
see P. Deligne, P. Griffiths, J. Morgan and D. Sullivan [DGMS75]. (Notice that here the operator
∆ has order less than1).
⋄ LetM be a Calabi-Yau manifold. The Dolbeault complex of anti-holomorphic differential forms

with coefficients into holomorphic polyvector fields(Γ(M,∧•T̄ ∗
M ⊗ ∧

•TM), d := ∂̄,∧,∆ :=
div, 〈 , 〉S) is a dg BV-algebra satisfying thed∆-condition, see S. Barannikov and M. Kontsevich
[BK98]. This is an extension, from vector fields to polyvector fields, of the Kodaira-Spencer dg
Lie algebra [KS58, KS60], which encodes the complex structures of a manifold.
⋄ Let (M, w) be a Poisson manifold. The space of differential forms(Ω•(M), dDR,∧,∆ :=
[iw, dDR]) form a dg BV-algebra, see [Kos85, Bry88]. When (M, ω) is a compact symplectic
manifold of dimensionn, O. Mathieu proved in [Mat95] thatM satisfies the hard Lefschetz con-
dition, i.e. the cup product[ωk] : Hn−k(M) → Hn+k(M) is an isomorphism, fork ≤ n/2, if
and only if this dg BV-algebra is semi-classical. S. Merkulov further proved that this is equivalent
to thed∆-condition in [Mer98]. This is the case whenM is a Kähler manifold, see [Bry88].
⋄ Let V be finite dimensional vector space with basis{vi}1≤i≤n. We consider the free commutative

algebraA := S(V ⊕ s−1V ∗) of functions on the cotangent bundle ofV ∗, equipped with the order
2 and degree1 operator∆ :=

∑n
i=1

∂
∂vi

∂
∂v∗i

. These data define the prototypical example of BV-

algebras, see [BV81]. Any elementw of degree−2 such that∆(w) = 〈w,w〉 = 0 gives rise to a
dg BV-algebra(A, dw := 〈w,−〉, •,∆, 〈 , 〉). One can find dg BV-algebras of this type equipped
with NC Hodge to de Rham degeneration data but which does not satisfy thed∆-condition, see
[Par07, Example9] and [Ter08, Section3.2].
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7.3. Homotopy Frobenius manifold.

Theorem 7.8. Let (A, d, •,∆, 〈 , 〉) be a dg BV-algebra with non-commutative Hodge-to-de Rham degen-
eration data.

The underlying homology groupsH(A, d) carry a homotopy hypercommutative algebra structure, which
extends the hypercommutative algebras of M. Kontsevich andS. Barannikov[BK98], Y.I. Manin[Man99],
A. Losev and S. Shadrin[LS07], and J.-S. Park[Par07], and such that the rectified dg BV-algebraRec(H(A))
is homotopy equivalent toA in the category of dg BV-algebras.

Proof. The transferred skeletal homotopy BV-algebra structure onhomology given by Theorem6.2forms
a homotopy hypercommutative algebra by Proposition7.2.

We make explicit the various constructions of [BK98] as follows. When a dg BV-algebra satisfies the
d∆-condition, there is a zig-zag of quasi-isomorphisms of dg Lie algebras (smooth formality)

(A, d, 〈 , 〉) (Ker∆, d, 〈 , 〉)
∼oo ∼ // (H•(A,∆) ∼= (H•(A, d)), 0, 0) .

By [LV10, Theorem10.4.7], there exists an∞-quasi-isomorphism of dg Lie algebrasH
∼
 Ker∆, ex-

plicitly given by sums of binary trees with vertices labelled by • and with edges and root labelled byh∆.
Normalizing each sum of trees of arityn by a factor 1

n! , this provides a solutionγ to the Maurer-Cartan
equation in the dg Lie algebraHom(S̄c(H),Ker∆), whereS̄c stands for the non-counital cofree cocom-
mutative coalgebra. The twisted data(Hom(S̄c(H), A), dγ := d+〈γ,−〉, •,∆, 〈 , 〉) form a dg BV-algebra
over the ring of formal power serieŝS(H∗) without constant term. Its homology with respect todγ is equal
to Hom(S̄c(H), H) ∼= Ŝ(H∗)⊗H . The transferred commutative product on homologyŜ(H∗)⊗H pro-
vides us with the desired hypercommutative algebra structure onH , see [Man99, Chapters0 and3] for
the various equivalent definitions of a formal Frobenius manifold. Tracing through the aforementioned
constructions, one can see that the associated potential isgiven by the same kind of sums of labelled trees
but with a normalizing coefficient given by the number of automorphisms of the trees. We recover the
explicit formula of [LS07]. Manin [Man99] and Park [Par07] use obstruction theory, for which choices can
be made to produce the above structure.

The first stratum of operations composing the transferred homotopy hypercommutative algebra is equal
to the tree formulae of Losev-Shadrin as follows. Lemma4.6 shows that the weight1 part ofGrav∗ is
isomorphic toHLie¡

1. For anyn ≥ 2, the spaceLie¡
1(n) is one dimension and generated by the element,

which inT c(β) is the sum of all binary tree with vertices labeled byβ. The image of such trees under the
formula of Theorem6.2is made up of binary trees with each vertex labelled by•, one leaf labelled by∆,
and with edges labelled byh. (One can see that the image of a maximal nesting under the mapΦ is given by
labeling all interior edges byh.) Under thed∆-condition, the relationsp∆ = ∆i = h∆+∆h = ∆2 = 0
make many trees cancel and this produces the aforementionedLosev-Shadrin formulae.

The last assertion is a direct corollary of Theorem6.5. �

Remarks.

⋄ First, this theorem conceptually explains the result of Barannikov-Kontsevich, Manin, Losev-
Shadrin, and Park in terms of the homotopy transfer theorem,thereby answering a question asked
by the referee of [Par07, Section5].
⋄ Since there is no differential on homology, the first stratumof operations of this homotopy hy-

percommutative algebra satisfies the relations of an hypercommutative algebra. So Theorem7.8
proves the existence of such a structure under a weaker condition (NC Hodge-to-de Rham degen-
eration data) than in [BK98, Man99, Par07] (d∆-condition, semiclassical).
⋄ Unlike the framework of Frobenius manifolds, we do not work here with cyclic unital BV-algebras.

First, a cyclic BV-algebra is equipped with a non-degenerate bilinear form which forces its dimen-
sion to be finite. The present method works in the infinite dimensional case. Then, the operad
which encodes BV-algebras with unit is not augmented, so it does not admit a minimal model.
To make a cofibrant replacement explicit, one would need to use the more general Koszul duality
theory developed by J. Hirsh and J. Millès in [HM10].
⋄ Finally, Theorem7.8 provides higher structure on homology, which is shown to benecessaryto

recover the homotopy type of the original dg BV-algebra and not to lose any homotopy data when
passing to homology, see also Example7.4below.
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In geometrical terms, we have lifted the action of the Deligne-Mumford-Knudsenmoduli space of genus
0 curves to an action of the open moduli space of genus0 curves as follows.

H•+1(M0,n+1)
α //

κ

��

EndH(A)

H•(M0,n+1) .

f

77nnnnnnnnnnnn

The mapf is the morphism of operads given by [BK98, Man99, LS07, Par07]. The mapκ is the twisting
Koszul morphism from the cooperadH•+1(M0,n+1) given in [Get95]. It sends the cohomological class
corresponding toH0(M0,n+1) to the fundamental class ofM0,n+1. The construction given in Theorem7.8
corresponds to the mapα, which is a twisting morphism from the cooperadH•+1(M0,n+1). The mapκ
vanishes outside the top dimensional classes and therestriction of the mapα to these top dimensional
classes is equal to the compositef ◦ κ. Such a morphism of operadsf defines the genus zero part of what
Kontsevich-Manin call a Cohomological Field Theory in [KM94].

Definition 7.9. An genus0 extended cohomological field theoryis a graded vector spaceH equipped with
an operadic twisting morphismH•+1(M0,n+1)→ EndH .

7.4. An example. Let us consider the following non-unital dg commutative algebraA generated by the5
generators

x3, y3, z7, u7, andv8 ,

where the subscript indicates the homological degree, satisfying the relations

A := S̄(x, y, z, u, v)/(xu, yu, zu, xv, yv, zv, uv, v2) .

(The product byu and byv is equal to zero.) The differential map is defined on the generators by

dz := xy, dv := u ,

and by0 otherwise.
The algebraA is finite dimensional and spanned by the9 elements:x, y, xy, z, u, v, xz, yz, xyz.

Its underlying homologyH•(A, d) is five dimensional and spanned by the classes of:x, y, xz, yz, xyz.
We define the degree+1 operator∆ on the aforementioned elements by

∆(xy) := u, ∆(z) := −v ,

and by0 otherwise.

Proposition 7.10. The dg commutative algebra(A, d,∆) is a dg BV-algebra, which satisfies thed∆-
condition.

Proof. It is straightforward to see that∆ commutes withd, that it has order less than2 (but not less than
1) and that it squares to0.

A decomposition such as the one of Lemma7.5is given by

H• := Kx⊕Ky ⊕Kxz ⊕Kyz ⊕Kxyz andS• = Kz .

Therefore, this dg BV-algebra satisfies thed∆-condition. �

The first Massey product in the second stratum of the transferred homotopy hypercommutative algebra
structure is the first homotopy in the associatedC∞-algebra structure, sinceS−1Grav∗(2)(3) ∼= Com¡(3).
In the present example, this product is not trivial since it is equal to−yz on the elementsx, y, y. So this
provides an example of a dg BV-algebra, which satisfies thed∆-condition, the strongest condition, and for
which the Barannikov-Kontsevich-Manin structure of a Frobenius manifold on homology is not enough to
recover the original homotopy type of the dg BV-algebra.
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7.5. Application to Poisson geometry and Lie algebra cohomology. LetM be ann-dimensional man-
ifold. We consider the Gerstenhaber algebra of polyvector fieldsA := Γ(M,Λ•TM) onM, equipped
with the Schouten-Nijenhuis bracket〈 , 〉SN . Recall from J.-L. Koszul [Kos85, Proposition(2.3)] that any
torsion-free connection∇ on TM which induces a flat connection onΛnTM gives rise to a square-zero
order2 operatorD∇ making(A,∧, D∇, 〈 , 〉SN ) into a BV-algebra. For instance, this is the case whenM
is orientable with volume formΩ or whenM is a Riemannian manifold with the Levi-Civita connection.

Moreover, ifM carries a Poisson structure, i.e.w ∈ Γ(M,Λ2TM) satisfying〈w,w〉SN = 0, such
that the infinitesimal automorphismD∇(w) = 0 vanishes, then the twisted differentialdw := 〈w,−〉SN
induces a dg BV-algebra

(Γ(M,Λ•TM), dw,∧, D∇, 〈 , 〉SN ) .

For instance, this is the case whenM is orientable with unimodular Poisson stucture, i.e.DΩ(w) = 0.
The homology groups associated to the differentialdw form thePoisson cohomologyof the manifoldM,
see [Lic77]. (For similar constructions in non-commutative geometry, we refer the reader to [GS10]).

Proposition 7.11. [Kos85] WhenM is a symplectic manifold, the contraction with the symplectic formω
induces an isomorphism of dg BV-algebras

(Ω•(M), dDR,∧,∆, 〈 , 〉) ∼= (Γ(M,Λ•TM), dw,∧, D, 〈 , 〉SN ) ,

whereD := [iω, dw].

Recall that the homology groups associated to the differential ∆ on the left-hand side form thePoisson
homologyof the manifoldM. The Poisson homology and cohomology are proved to be isomorphic under
the weaker condition that the Poisson manifold is orientable and unimodular, see P. Xu in [Xu99].

Theorem 7.12. The de Rham cohomology of a Poisson manifoldM carries a skeletal homotopy BV-
algebra, whose rectified dg BV-algebra is homotopy equivalent to the dg BV-algebra(Ω•(M), dDR,∧,∆).
The Poisson cohomology of an orientable Poisson manifoldM carries a skeletal homotopy BV-algebra,
whose rectified dg BV-algebra is homotopy equivalent to the dg BV-algebra(Γ(M,Λ•TM), dw,∧,∆, 〈 , 〉SN ).

The de Rham cohomology and the Poisson cohomology of a symplectic manifold are isomorphic skeletal
homotopy BV-algebras. When the manifoldM is compact and satisfies the hard Lefsechtz condition, this
isomorphism reduces to an isomorphism of homotopy hypercommutative algebras.

Proof. This is a direct corollary of Theorem7.8and Proposition7.11. �

Let us now describe the linear case. Under the same notationsas in the last example of Section7.2,
whenV = g

∗ is the linear dual of a finite dimensional Lie algebra, the transpose of the bracket produces a
degree−2 elementw in g ⊗ Λ2

g
∗ satisfying〈w,w〉 = 0, by the Jacobi relation. In this case, the twisted

differentialdw is equal to the Chevalley-Eilenberg differential onA ∼= S(g)⊗Λ(g∗) ⊂ C∞(g∗)⊗Λ(g∗),
which computes the cohomology ofg with coefficients inS(g) and the adjoint action. If the Lie algebrag
is unimodular, that is Tr(〈x,−〉) = 0, for anyx ∈ g, then∆(w) = 0 and the Chevalley-Eilenberg complex
(S(g)⊗ Λ(g∗), dw, •,∆, 〈 , 〉) is a dg BV-algebra.

Theorem 7.13. The Chevalley-Eilenberg cohomologyH•
CE(g, S(g)) of a finite dimensional unimodular

Lie algebrag, with coefficients inS(g) with adjoint action, carries a skeletal homotopy BV-algebra, whose
rectified dg BV-algebra is homotopy equivalent to the dg BV-algebra(S(g)⊗ Λ(g∗), dw, •,∆, 〈 , 〉).

Remark. It would be now interesting to study the relationship with the Duflo isomorphism, the analogue
of the space of differential forms, and the symplectic and the hard Lefschetz condition, in this linear case.

7.6. Application to Mirror Symmetry.

Theorem 7.14. The Dolbeault cohomology of a Calabi-Yau manifold carries ahomotopy hypercommu-
tative algebra structure, which extends the hypercommutative algebra structure of[BK98] and whose recti-
fied dg BV-algebra is homotopy equivalent to the Dolbeault complex(Γ(M,∧•T̄ ∗

M⊗∧
•TM), ∂̄,∧, div, 〈 , 〉S).

The moduli spaceM of Maurer-Cartan elements associated to the Dolbeault complex is an extension of
the moduli spaceM classicalassociated to the Kodaira-Spencer dg Lie subalgebra, whichencodes deforma-
tions of complex structures. The notion ofgeneralized complex geometrywas introduced by N. Hitchin in
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[Hit03] and then developed by his students M. Gualtieri [Gua04] and G.R. Cavalcanti [Cav05] as a frame-
work which encompasses both complex and symplectic geometries. In this sense, the moduli spaceM

was shown by Gualtieri to correspond to deformations of generalized complex structures. Several versions
of the d∆-condition were shown to hold in this setting, see [AG07, Cav07]. Finally the dg BV algebra
structure of [Li05] allows us to apply the same argument which produces a version of Theorem7.14in the
context of generalized complex geometry.

S. Barannikov generalized in [Bar02] the notions of periods and variations of Hodge structure from
M classical to M . He showed, for instance, that the image of these generalized periods onH•(M,C)
coincide with the Gromov-Witten invariants. This is based on the fact that the Dolbeault cohomology
admits not one but a family of Frobenius manifold structures. This remark coincides with the present
approach: there are many choices in the Homotopy Transfer theorem. Moreover, the various transferred
structures are related by the group of∞-isomorphisms, see [LV10, Theorem10.3.15]. In the case of
homotopy BV-algebras, this group should be related to the Givental group [Giv01a, Giv01b].

The Mirror Symmetry conjecture [Kon95] claims that the FukayaA∞-category of Lagrangian sub-
manifolds of a Calabi-Yau manifoldM (A-side) should be equivalent to the bounded derived category of
coherent sheaves on a dual Calabi-Yau manifoldM̃ (B-side). The tangent space of the moduli space ofA∞-
deformations of the Fukaya category is conjectured to be given by the de Rham cohomologyH•

DR(M,C)
of X . By the Kontsevich formality [Kon03], theA∞-deformations of the latter category are encoded by
the Dolbeault complex. So the de Rham cohomology equipped with the Gromov-Witten invariants should
be isomorphic to the Dolbeault cohomologyH•(M̃,Λ•T

M̃
) as Frobenius manifolds. The following con-

jecture of Cao-Zhou [CZ01], similar to Proposition7.11, gives a way to study this question: there is a
quasi-isomorphism of dg BV-algebras

(Ωn−•(M), dDR,∧,∆, 〈 , 〉)
∼
−→ (Γ(M,∧•T̄ ∗

M̃
⊗ ∧•T

M̃
), ∂̄,∧, div, 〈 , 〉S) .

The results of the present paper show that it is actually enough to prove the existence of an∞-quasi-
isomorphism of dg BV-algebras to get the aforementioned isomorphism on the cohomology level and to
relate the two associated deformation functors.
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