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Welschinger invariants

of real Del Pezzo surfaces of degree ≥ 3

Ilia Itenberg Viatcheslav Kharlamov Eugenii Shustin

Abstract

We give a recursive formula for purely real Welschinger invariants of real

Del Pezzo surfaces of degree K2 ≥ 3, where in the case of surfaces of degree 3

with two real components we introduce a certain modification of Welschinger

invariants and enumerate exclusively the curves traced on the non-orientable

component. As an application, we prove the positivity of the invariants un-

der consideration and their logarithmic asymptotic equivalence, as well as

congruence modulo 4, to genus zero Gromov-Witten invariants.
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From a dictionary for mathematicians:

Recursion – see recursion.

”Mathematicians are also joking”

(compiled by S. N. Fedin)

1 Introduction

In this paper we continue the study of purely real Welschinger invariants of Del Pezzo

surfaces. A particular interest of this class of surfaces is related to the fact that the
Welschinger invariants of an unnodal real Del Pezzo surface are enumerative; in

particular, purely real Welschinger invariants of such a surface count with certain
signs the real rational curves that belong to a given linear system and interpolate a

suitable amount of real points.

As we proved in [8, 9, 11, 13], if Σ is a real Del Pezzo surface of degree ≥ 4 with

nonempty real part (except the case of surfaces containing four disjoint (−1)-curves
which form two complex conjugate pairs) and D is a nef and big real divisor class,

then the purely real Welschinger invariant W (Σ, D) is positive (which implies the
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existence of interpolating real rational curves). Furthermore, for these surfaces the

purely real Welschinger invariants and the corresponding genus zero Gromov-Witten
invariants are asymptotically equivalent in the logarithmic scale, i.e.,

lim
n→+∞

logW (Σ, nD)

n logn
= lim

n→+∞

logGW (Σ, nD)

n logn
= −DKΣ (1)

(which implies a supexponential growth of the number of interpolating real rational

curves provided that Σ is unnodal).

The main result of the present paper is a new recursive formula of Caporaso-
Harris type that applies to all purely real Welschinger invariants of real Del Pezzo

surfaces of degree ≥ 3 with nonempty real part (Corollary 14, section 3.5). Using this
formula, we extend the previous positivity and asymptotic results to the plane blown

up at a real points and b pairs of complex conjugate points, where a+2b ≤ 6, b ≤ 2,
as well as to minimal two-component real conic bundles over P1 and two-component

real cubic surfaces (see Theorems 2, 3, and Remark 20, section 4.1). Additionally,

for the surface Σ which is the plane blown up at a ≤ 6 real points, we prove the
monotone dependence of W (Σ, D) on the divisor class D and the Mikhalkin-type

congruence
W (Σ, D) = GW (Σ, D) mod 4

(both claims were known before for a ≤ 5, cf. [2, 13]).

The present paper contains the first treatment of the positivity and asymptotic
relations of Welschinger invariants for surfaces having at least two connected com-

ponents of the real point set. The original purely real Welschinger invariants are no
more unconditionally positive in such a case (see Remark 20). We introduce some

variations in the definition of Welschinger signs that give us modified invariants (see
details in section 2), which are positive and do satisfy logarithmic equivalence with

genus zero Gromov-Witten invariants (Theorem 3, section 4.1.2).

Unlike our previous works [12, 13], here we do not use tropical geometry to derive
the recursive formula. Instead, we convert to a real form a complex Caporaso-Harris

type formula obtained in [16] for the plane blown up at 6 points. The latter formula
is in the spirit of [3, 18]; it differs from the similar formula obtained in [18] by the

fact that the 6 blown up points are in general position.

A tropical calculation of purely real Welschinger invariants of the plane blown up

at 6 real points was recently proposed by E. Brugallé [1].
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2 Welschinger invariants

Recall the original definition of Welschinger invariants in a form adapted to the case
of Del Pezzo surfaces. Let Σ be a real unnodal (i.e., not containing any rational

(−n)-curve, n ≥ 2) Del Pezzo surface, and let D ⊂ Σ be a real effective divisor
class. Consider a connected component F of the real point set RΣ of Σ and a

generic set p ⊂ F of c1(Σ) ·D− 1 points. The set R(Σ, D,p) of real rational curves
C ∈ |D| passing through the points of p is finite, and all these curves are nodal and

irreducible. Due to the Welschinger theorem [19] (and the genericity of the complex
structure on Σ), the number

W (Σ, D,p) =
∑

C∈R(Σ,D,p)

(−1)s(C) , (2)

where s(C) is the number of solitary nodes of C (i.e., real points, where a local
equation of the curve can be written over R in the form x2 + y2 = 0), does not

depend on the choice of a generic set p ⊂ F . We denote this (original) Welschinger
invariant by W (Σ, D, F ).

If RΣ has more than one connected component (for example, if Σ is a cubic
surface and RΣ has two connected components), we modify the above construction

of invariants in the following way. Let, as above, F be one of these components.
For a real nodal curve C ⊂ Σ, we introduce its Welschinger weight reduced to F by

putting wF (C) = (−1)s(C,F ), where s(C, F ) is the number of real solitary nodes of
C belonging to F . Then, given a real effective divisor class D on Σ, and a generic

set z of c1(Σ)D− 1 points in F , we define the Welschinger number of D reduced to
F by the formula

WF (Σ, D, z) =
∑

C∈R(Σ,D,p)

wF (C) . (3)

Such a twisting of the Welschinger construction can be reformulated and slightly

generalized. In addition to choosing one of the real components, F , let us pick a

homology class φ ∈ H2(Σ \ F ;Z/2Z) invariant under the action of complex conju-
gation, conj∗φ = φ. Given a real effective divisor class D on Σ, and a generic set z

of c1(Σ)D − 1 points in F , we define the twisted Welschinger number of D by the
formula

Wφ(Σ, D, z) =
∑

C∈R(Σ,D,z)

wφ(C), wφ(C) = (−1)s(C)+C±◦φ , (4)
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where C± denotes any of the two halves of C (any of the two discs cut from C

by RC) and C± ◦ φ ∈ Z/2Z. Clearly, when φF is the homology class realized in
H2(Σ \ F ;Z/2Z) by the union of the components of RΣ \ F , we get

WφF
(Σ, D, z) =WF (Σ, D, z) .

Proposition 1 The number Wφ(Σ, D, z) does not depend on the choice of a generic
set z of c1(Σ)D − 1 points in F .

Proof. The statement is an immediate consequence of the invariance of
W (Σ, D, F ) due to the following observation.

In a one-parametric family of curves C(t) of class D interpolating c1(Σ) ◦D − 2

fixed generic points of F and one additional point of F moving generically, the
homology classes of the discs C±(t) are jumping only at those moments t = t0
when the curve C(t0) splits into two irreducible components C ′(t0) and C ′′(t0).
When such a jump happens, the number (−1)s(C(t))+C+(t)◦ φ does not change, since

C+(t < t0) ◦ φ = C ′
+(t0) ◦ φ + C ′′

+(t0) ◦ φ = C ′
+(t0) ◦ φ + conj∗C

′′
+(t0) ◦ conj∗φ =

C ′
+(t0) ◦ φ+ C ′′

−(t0) ◦ φ = C+(t > t0) ◦ φ. ✷

The above proposition implies existence of modified Welschinger invariants

Wφ(Σ, D) = Wφ(Σ, D, z). As a particular example, we may take φ = φF , the
fundamental class of the union of real components of Σ different from F . This is the

invariant which we use below in the case of two-component real cubic surfaces (and
conic bundles); we denote it, in accordance with our previous notation, WF (Σ, D).

One may also choose as φ any combination of the fundamental classes of real

components different from F , and more generally, combine them with vanishing
classes between a pair of real components different from F . In fact, one may prove,

that for multi-component real structures there do exist twists such that some of the
curves C in R(Σ, D,p) (with certain D depending on the twist) change and some

do not change the sign with respect to the original Welschinger definition. Note also
that the number of independent possible twists is preserved under real blow-ups

(that is, a blow-up at a real point or at a pair of complex conjugate points), so that

interesting twists exist only for surfaces with a disconnected real part.

3 Recursive formula for Welschinger invariants

3.1 Preliminaries

In this chapter, we consider unnodal Del Pezzo surfaces of degree 3. From the
complex point of view, such a surface, denoted by P2

6, is the complex projective plane

blown up at 6 points in general position. Denote by L ⊂ P2
6 the strict transform of

a generic line, and by E1, ..., E6 the exceptional divisors of the blow up.
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We equip Σ = P2
6 with a real structure, i.e., an anti-holomorphic involution

conj : Σ → Σ. Then, as is well known, the surface becomes isomorphic either to
P2
a,b, a + 2b = 6, that is, the plane P2 (equipped with its standard real structure)

blown up at a real and b pairs of complex conjugate points, all in general position,
or to B1, a real cubic surface with the two-component real part. By F we denote

the non-orientable connected component of RΣ (which is the only one if Σ = P2
a,b),

and we choose a class φ ∈ H2(Σ \ F ;Z/2Z) invariant under the action of complex
conjugation, conj∗φ = φ.

We pick a real smooth (−1)-curve E on Σ with RE ⊂ F : if Σ = P2
a,b, then choose

E ∈ |L−E1−E2|, where E1 and E2 are assumed to be either both real, or complex

conjugate; if Σ = B1, then choose for E any of the three lines whose real parts are
contained in F (see, for example, [15]).

By Pic(Σ, E) we denote the subsemigroup of Pic(Σ) generated by (complex)
irreducible curves, crossing E non-negatively. The involution of complex conjuga-

tion conj acts on Pic(Σ, E). By PicR(Σ, E) we denote the disjoint union of the
sets

{D ∈ Pic(Σ, E) : conjD = D}
and {

{D1, D2} ∈ Sym2(Pic(Σ, E)) : conjD1 = D2

}
.

For an element D ∈ PicR(Σ, E), define [D] ∈ Pic(Σ, E) by

[D] =

{
D, if D = D, a divisor class,

D1 +D2, if D = {D1, D2}, a pair of divisor classes.

Let Z∞
+ be the direct sum of countably many additive semigroups

Z+ = {m ∈ Z | m ≥ 0} with the standard basis

θi = (α1, α2, ...), αi = 1, αj = 0, j 6= i .

For α, α′ ∈ Z∞
+ , the relation α ≥ α′ means that α− α′ ∈ Z∞

+ . For α = (α1, α2, ...) ∈
Z∞
+ put

‖α‖ =
∞∑

k=1

αk, Iα =
∞∑

k=1

kαk, Iα =
∞∏

k=1

kαk , α! =
∞∏

k=1

αk! ,

and for α(0), ..., α(m), α ∈ Z∞
+ such that α(0) + ...+ α(m) ≤ α, put

(
α

α(0), ..., α(m)

)
=

α!

α(0)!...α(m)!(α− α(0) − ...− α(m))!
.

Introduce also the semigroup

Z
∞,odd
+ = {α ∈ Z∞

+ : α2i = 0, i ≥ 1} .

For an element D ∈ PicR(Σ, E) and a vector β ∈ Z∞
+ , put

RΣ(D, β) = −[D](KΣ+E)+‖β‖−
{
1, if D = D, a divisor class,

2, if D = {D1, D2}, a pair of divisor classes.
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3.2 Families of real curves on Σ

Let D ∈ PicR(Σ, E), and vectors α, βre, β im ∈ Z∞
+ satisfy I(α+ βre + 2β im) = [D]E.

Let p♭ = {pi,j : i ≥ 1, 1 ≤ j ≤ αi} be a sequence of ‖α‖ distinct real generic points

on E. Such tuples (D, α, βre, β im,p♭) are called admissible.

By V R
Σ (D, α, βre, β im,p♭) we denote the closure of the family of real reduced curves

C belonging to the linear system defined by [D] and such that

(i) if D = D is a divisor class, then C ∈ |D| is an irreducible (over C) rational

curve,

(ii) if D = {D1, D2} is a pair of divisors classes, then C = C1∪C2, where C1 ∈ |D1|,
C2 ∈ |D2| are distinct, irreducible, rational, conjugate imaginary curves;

(iii) C ∩ E consists of the points p
♭ and ‖βre + 2β im‖ other points; ‖βre‖ of the

latter points are real, and the remaining points form ‖β im‖ pairs of complex

conjugate points;

(iv) C has one local branch at each of the points of C ∩ E, and the intersection

multiplicities of C with E are as follows:

• (C · E)pi,j = i for all i ≥ 1, 1 ≤ j ≤ αi,

• for each i ≥ 1, there are precisely βre
i real points q ∈ (C ∩ E) \ p

♭ such

that (C · E)q = i;

• for each i ≥ 1, there are precisely β im
i pairs q, q′ of complex conjugate

points of C ∩ E such that (C · E)q = (C · E)q′ = i.

Lemma 2 Let (D, α, βre, β im,p♭) be an admissible tuple. If V R
Σ (D, α, βre, β im,p♭) is

nonempty, then RΣ(D, βre + 2β im) ≥ 0, and each component of V R
Σ (D, βre, β im,p♭)

has dimension ≤ RΣ(D, βre+2β im). Moreover, a generic element of any component
of V R

Σ (D, α, βre, β im,p♭) of dimension RΣ(D, βre+2β im) is a nodal curve, nonsingular

along E.

Proof. Follows from [16, Propositions 2.1 and 2.2]. We notice only that the

(−1)-curve E ∈ |2L − E1 − ... − E5|, chosen in [16], can be replaced by any other
(−1)-curve. ✷

Let (D, α, βre, β im,p♭) be an admissible tuple such that RΣ(D, βre + 2β im) ≥
0. Pick a set p

♯ of RΣ(D, βre + 2β im) generic points of F \ E and denote by

V R
Σ (D, α, βre, β im,p♭,p♯) the set of curves belonging to V R

Σ (D, α, βre, β im,p♭) and
passing through the points of p♯.

Lemma 3 Let (D, α, βre, β im,p♭) be an admissible tuple.

(1) if D = D is a divisor class, then V R
Σ (D,α, βre, β im,p♭,p♯) is a finite set of

real nodal irreducible rational curves, nonsingular along E;
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(2) if D = {D1, D2} is a pair of divisor classes, then V R
Σ (D, α, βre, β im,p♭,p♯) is

nonempty only if α = βre = 0, RΣ(D, 2β im) = 0, and p
♭ = p

♯ = ∅; furthermore, in
this case the set V R

Σ (D, α, βre, β im,p♭,p♯) is finite.

Proof. By Lemma 2 we have to show only that RΣ(D, 2β im) = 0 is necessary
for the nonemptyness of V R

Σ (D, 0, 0, β im, ∅,p♯) with D = {D1, D2}. A curve C ∈
V R
Σ (D, 0, 0, β im, ∅,p♯) splits in the following way:

C = C1 ∪ C2, C1 ∈ |D1|, C2 ∈ |D2|, conjC1 = C2 ,

and, by [16, Proposition 2.1], the component C1 varies in a family of complex di-

mension

−D1(KΣ + E) + ‖β im‖ − 1 =
1

2
RΣ(D, 2β im) .

Hence, a curve C can match at most 1
2
RΣ(D, 2β im) generic points in F \E, and the

claim follows. ✷

Lemma 4 (see, for example, [15]) (1) The linear system | − (KΣ + E)| is of
dimension 1 and contains precisely two nonsingular curves Q′, Q′′ tangent to E,

and five reducible curves; each of the latter curves consists of two distinct smooth
(−1)-curves intersecting at one point.

(2) If Σ = B1, then

(i) one of the five reducible curves in the linear system |− (KΣ+E)| is formed by

two real lines; each of the other four reducible curves is formed by two complex
conjugate lines which intersect in one real point.

(ii) Σ has exactly three real lines, and these lines generate the semigroup of real

effective divisor classes on Σ.

The three real lines of Σ = B1 are denoted by L1, L2, and L3 (if the contrary is
not explicitly stated, we always assume that E = L1). The lines forming the four

pairs of complex conjugate lines are denoted by Lj , j = 4, . . ., 11, in a way that, for
any i = 2, 3, 4, 5, the lines L2i and L2i+1 are complex conjugate.

The next two lemmas follow from [16, Proposition 2.3] and Lemma 4.

Lemma 5 Let Σ = P2
a,b, a+ 2b = 6, and E ∈ |L−E1 −E2|. Then, among the sets

V R
Σ (D, α, βre, β im,p♭), where (D, α, βre, β im,p♭) is an admissible tuple such that

[D]E > 0, RΣ(D, βre + 2β im) = 0,

the only nonempty sets are as follows:

(1) in the case of a divisor class D = D,
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(1i) V R
Σ (Ei, 0, θ1, 0, ∅), where i = 1, 2, consists of one element, provided that

E1 and E2 are real;

(1ii) V R
Σ (L−Ei−Ej , 0, θ1, 0, ∅), where 3 ≤ i < j ≤ 6, consists of one element,

provided that Ei and Ej are either both real or are complex conjugate;

(1iii) V R
Σ (−(KΣ + E) − Ei, 0, θ1, 0, ∅), where i = 1, 2, consists of one element,

provided that E1 and E2 are real;

(1iv) V R
Σ (−(KΣ + E), 0, θ2, 0, ∅) consists of two elements Q′, Q′′, provided that

Q′ and Q′′ are both real;

(1v) V R
Σ (−(KΣ + E), θ1, θ1, 0,p

♭) consists of one element;

(1vi) V R
Σ (−s(KΣ+E)+L−s1E1−s2E2−Ei, α, 0, 0,p

♭) consists of one element,
if s ≥ 0, 0 ≤ s1, s2 ≤ 1, s1 + s2 ≤ 2s, 3 ≤ i ≤ 6, the divisor Ei is real,

and the divisors E1, E2 are real whenever s1 6= s2;

(1vii) V R
Σ (−s(KΣ + E)− s1E1 − s2E2 + Ei, α, 0, 0,p

♭) consists of one element,
if s ≥ 1, 0 ≤ s1, s2 ≤ 1, s1 + s2 < 2s, 3 ≤ i ≤ 6, the divisor Ei is real,

and the divisors E1, E2 are real whenever s1 6= s2;

(2) in the case of a pair D = {D1, D2} of divisor classes,

(2i) V R
Σ ({E1, E2}, 0, 0, θ1, ∅) consists of one element, provided that E1 and E2

are complex conjugate;

(2ii) V R
Σ ({L − Ei − Ej , L − Ei − Ek}, 0, 0, θ1, ∅), where {i, j, k} ⊂ {3, 4, 5, 6},

consists of one element, if Ei is real, and Ej, Ek are complex conjugate;

(2iii) V R
Σ ({−(KΣ+E)−E1,−(KΣ+E)−E2}, 0, 0, θ1, ∅) consists of one element,

provided that E1 and E2 are complex conjugate;

(2iv) V R
Σ ({L−Ei −Ej , L−Ek −El}, 0, 0, θ1, ∅), where {i, j, k, l} = {3, 4, 5, 6},

consists of one element, if Ei, Ej and Ek, El are two pairs of complex

conjugate exceptional divisors;

(2v) V R
Σ ({−(KΣ+E),−(KΣ+E)}, 0, 0, θ2, ∅) consists of one element {Q′, Q′′},

provided that Q′ and Q′′ are complex conjugate.

Lemma 6 Let Σ = B1 and E = L1. Then, among the sets V R
Σ (D, α, βre, β im,p♭),

where (D, α, βre, β im,p♭) is an admissible tuple such that

[D]E > 0, RΣ(D, βre + 2β im) = 0,

the only nonempty sets are as follows:

(1) in the case of a divisor class D = D,

(1i) V R
Σ (Li, 0, θ1, 0, ∅), where i = 2, 3, consists of one element Li;

(1ii) V R
Σ (−(KΣ + E), 0, θ2, 0, ∅) consists of two elements Q′ and Q′′;

(1iii) V R
Σ (−(KΣ + E), θ1, θ1, 0,p

♭), consists of one element;
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(2) in the case of a pair D = {D1, D2} of divisor classes,

V R
Σ ({L2i, L2i+1}, 0, 0, θ1, ∅), where i = 2, 3, 4, 5, consists of one element

{L2i, L2i+1}. ✷

3.3 Deformation diagrams

Let (D,α, βre, β im,p♭) be an admissible tuple, where D ∈ PicR(Σ, E) is a divisor
class and RΣ(D, β

re + 2β im) > 0. Pick a set p̃
♯ of RΣ(D, β

re + 2β im) − 1 generic

real points of F \ E, a generic real point p ∈ E \ p
♭, and a smooth real algebraic

curve germ Λ crossing E transversally at p. Denote by Λ+ = {p(t) : t ∈ (0, ε)} a

parameterized connected component of Λ \ {p} with limt→0 p(t) = p. There exists
ε0 > 0 such that, for all t ∈ (0, ε0], the sets VΣ(D,α, β

re, β im,p♭, p̃♯ ∪ {p(t)}) are

finite, their elements remain nodal, nonsingular along E as t runs over the interval

(0, ε0], and the closure in VΣ(D,α, β
re, β im,p♭) of the family

V =
⋃

t∈(0,ε0]

VΣ(D,α, β
re, β im,p♭, p̃♯ ∪ {p(t)}) (5)

is a union of real algebraic arcs which are disjoint for t > 0. This closure
is called a deformation diagram of (D,α, βre, β im,p♭, p̃♯, p). The elements of

VΣ(D,α, β
re, β im,p♭, p̃♯ ∪ {p(ε0)} are called leaves of the deformation diagram, and

the elements of V \ V are called roots of the deformation diagram.

Lemma 7 Each connected component of a deformation diagram V defined by (5)
contains exactly one root. The roots are curves C ∈ |D| of the following two types.

(I) The curve C is a generic member of an (RΣ(D, β
re + 2β im)− 1)-dimensional

component of one of the families

V R
Σ (D,α+ θj , β

re − θj , β
im,p♭ ∪ {p}, p̃♯}) ,

where j is a natural number such that βre
j > 0.

(R) The curve C decomposes into E and curves of the following four types (for

each type, the collection of curves can be empty):

(R1) distinct reduced irreducible over R curves C(i), 1 ≤ i ≤ m, which are generic
members in some RΣ(D(i), (βre)(i)+2(β im)(i))-dimensional components of fam-

ilies
V R
Σ (D(i), α(i), (βre)(i), (β im)(i), (p♭)(i), (p♯)(i)) ,

respectively, where D(i) is a divisor class if C(i) is irreducible over C, and is a
pair of divisor classes if C(i) is the union of two complex conjugate components,

and, in addition, D(i) is neither −(KΣ + E), nor {−(KΣ + E),−(KΣ + E)},
1 ≤ i ≤ m,

9



(R2) distinct curves jQ(pj,s), where pj,s runs over some subset (p♭)(0) of p♭, and

Q(pj,s) ∈ | − (KΣ + E)| is the (real) curve passing through pj,s,

(R3) distinct curves j(z)Q(z), where z runs over some subset (p♯)(0) of p̃♯, j(z) ≥ 1,

and Q(z) ∈ | − (KΣ + E)| is the (real) curve passing through z,

(R4) curves l′Q′ and l′′Q′′, where Q′, Q′′ ∈ |− (KΣ +E)| are the two curves tangent
to E (cf. Lemma 4(1)), and l′ = l′′ ≥ 0 if Q′, Q′′ are complex conjugate, and

l′, l′′ ≥ 0 if Q′, Q′′ are real.

Furthermore, the parameters of the above decomposition are subject to the following
restrictions:

• ∑m
i=1 α

(i) ≤ α − α(0), where α(0) encodes the sequence of multiplicities j over

all pj,k ∈ (p♭)(0),

• ∑
i∈S(β

im)(i) = β im, where S = {i ∈ [1, m] : D(i) is a divisor class},

• β(0) ≤ βre, where β(0) encodes the sequence of multiplicities j(z) over all z ∈
(p♯)(0),

• there is a sequence of vectors γ(i) ∈ Z∞
+ , i ∈ S, such that ‖γ(i)‖ = 1, γ(i) ≤

(βre)(i), i ∈ S, and
∑

i∈S((β
re)(i) − γ(i)) = βre − β(0),

• ∑m
i=1[D(i)] = D − E + (Iα(0) + Iβ(0) + l′ + l′′)(KΣ + E).

Proof. All claims follow from [16, Proposition 3.1]. We only make two comments.

In the case (I), an imaginary moving intersection point with E cannot merge to p,
since otherwise the conjugate moving intersection point must merge to p too. In

the case (R), in view of [16, Lemma 4.2(2)] and due to the rationality of curves in
V R
Σ (D,α, βre, β im,p♭, p̃♯ ∪ {p(ε0)}, cf. [16, Corollary 5.2], in the deformation of C

induced by V , for each irreducible over C component C ′ 6= E of C, precisely one
of the intersection points of C ′ with E \ p♭ is smoothed out, whereas the remaining

intersection points of C ′ with E turn into smooth points of the deformed curve,
where it crosses E with the same multiplicity as C ′ (these intersection points stay

fixed if they were in p
♭ or move along E otherwise). To get restrictions on the

parameters of the decomposition, we notice also that, by Lemmas 3(2), 5(2), and

6(2), if C(i) has a pair of complex conjugate components, then each component

crosses E at a unique point, and this point is imaginary. ✷

Lemma 8 Let C be the root of a connected component δ of the deformation diagram

V . Assume that C ∈ V R
Σ (D,α + θj , β

re − θj , β
im,p♭ ∪ {p}, p̃♯) is of type (I). If j is

odd, then δ has a unique leaf; if j is even, then δ has two leaves. In both cases, each

leaf has the same real topology as the root C.

10



Proof. Straightforward from [16, Formulas (18) and (19)]. ✷

Let C be the root of a connected component δ of the deformation diagram V .

Assume that C is of type (R). To describe the leaves of δ, we introduce deformation
labels, certain nodal curves specified below. Each deformation label is given by a

polynomial equation ψ(x, y) = 0 in the toric surface Tor(ψ) defined by the Newton
polygon of ψ. The following list contains the deformation labels and, in the case of

real deformation labels, specifies the number of their solitary nodes.

(DL1) Deformation label defined by the equation

ψ(x, y) = y2 + 1 + y · chebj(x) = 0 ,

where j is a positive odd number, and chebj(x) = cos(j arccosx); this curve
has j − 1 solitary nodes.

(DL2) Two deformation labels defined by the equations

ψ1(x, y) = y2 + 1 + y · chebj(x) = 0 and ψ2(x, y) = ψ1(
√
−1 x, y) = 0 ,

where j is a positive even number; the former curve has j − 1 solitary nodes,

the latter curve has no solitary nodes.

(DL3) Deformation label defined by the equation

ψ(x, y) = (x− 1)(yj − x) = 0 ;

this curve has no solitary nodes.

(DL4) Deformation label defined by the equation

ψ(x, y) = (x− 1)(1 + x((y + 21/j)j − 1)) = 0 ,

where j is a positive odd number; this curve has no solitary nodes.

(DL5) Two deformation labels defined by the equations

ψ(x, y) = (x− 1)(1 + x((y ± 21/j)j − 1)) = 0 ,

where j is a positive even number; these curves have no solitary nodes.

(DL6) Deformation label defined by the equation

ψ(x, y) = 1 +
y + x2

2y

(
chebl′+1

( ±y
2(l′−1)/(l′+1)

+ y′
)
− 1

)
= 0 ,

where l′ is a positive even number, and y′ is the only positive simple root of
chebl′+1(y)− 1; this curve has either l′ solitary nodes, or no solitary nodes at

all.
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(DL7) Two deformation labels given by the equations

ψ1(x, y) = 1 +
y + x2

2y

(
chebl′+1

( y

2(l′−1)/(l′+1)
+ y′

)
− 1

)
= 0 ,

ψ2(x, y) = 1 +
y + x2

2y

(
chebl′+1

( y

2(l′−1)/(l′+1)
− y′

)
− 1

)
= 0,

where l′ is a positive odd number, and y′ is the only positive simple root of
chebl′+1(y)− 1; the former curve has l′ solitary nodes, the latter curve has no

solitary nodes.

(DL8) l′ + 1 deformation labels defined by the equations

ψ(x, y) = 1+
y +

√
−1 x2

2y

(
chebl′+1

( yε

2(l′−1)/(l′+1)
+ y′

)
− 1

)
= 0, εl

′+1 = 1 ,

where l′ is a positive integer.

(DL9) l′′ + 1 deformation labels defined by the equations

ψ(x, y) = 1+
y −

√
−1 x2

2y

(
chebl′′+1

( yε

2(l′′−1)/(l′′+1)
+ y′

)
− 1

)
= 0, εl

′′+1 = 1 ,

where l′′ is a positive integer.

Consider now the following data:

(C1) choose a sequence of vectors γ(i) ∈ Z∞
+ , i = 1, . . ., m, such that

• ‖γ(i)‖ = 1 for i ∈ S = {i : 1 ≤ i ≤ m, D(i) is a divisor class},
• γ(i) = 0 for 1 ≤ i ≤ m and i 6∈ S,

• γ(i) ≤ (βre)(i), i = 1, . . ., m,

• ∑m
i=1((β

re)(i) − γ(i)) = βre − β(0);

(C2) for each i ∈ S, choose a real point qi ∈ (C(i)∩E)\p♭ such that (C(i) ·E)qi = j,

where γ(i) = θj ;

(C3) for each z ∈ (p♯)(0), choose a point q(z) which is of one of the two real points
of Q(z) ∩ E.

Denote by C(C) the set of all possible choices of data (C1)-(C3). For any element

of C(C), a suitable deformation label collection is a sequence of deformation labels
as follows:

• one deformation label for each point qi chosen in (C2); this deformation label
is of type (DL1) or (DL2) depending on the parity of j = (C(i) · E)qi;

• one deformation label of type (DL3) for each component jQ(pj,s) of C,
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• one deformation label for each component j(z)Q(z) of C and each point q(z)

chosen in (C3); this deformation label is of type (DL4) or (DL5) depending
on the parity of j = j(z);

• if Q′ and Q′′ are real, one deformation label for l′Q′ and one deformation

label for l′′Q′′, the former (respectively, the latter) deformation label is of type
(DL6) or (DL7) depending on the parity of l′ (respectively, l′′);

• if Q′ and Q′′ are complex conjugate (in this case l′ = l′′), one deformation
label of type (DL8) for l′Q′ and the complex conjugate deformation label of

type (DL9) for l′′Q′′.

Denote by Def(C, σ) the set of all suitable deformation label collections of a given
element σ ∈ C.

Lemma 9 Let C be the root of a connected component δ of the deformation diagram
V . Assume that C is of type (R).

(1) Suppose that β(0) ∈ Z
∞,odd
+ ,

∑m
i=1(β

re)(i) − βre ∈ Z
∞,odd
+ , and either Q′, Q′′

are complex conjugate, or Q′, Q′′ are real and l′, l′′ are both even. Then, there is a

one-to-one correspondence between the set of leaves of δ and the disjoint union of

the sets Def(C, σ) over all σ ∈ C(C).
Suppose that either β(0) 6∈ Z

∞,odd
+ , or

∑m
i=1(β

re)(i) − βre 6∈ Z
∞,odd
+ , or both Q′, Q′′

are real and at least one of l′, l′′ is odd. Then, the set of leaves of δ is in one-to-one
correspondence with the disjoint union of sets Def(C, σ), where σ runs over some

nonempty subset of C(C).
(2) The set of solitary nodes of each leaf of δ bijectively corresponds to the disjoint

union of the sets of solitary nodes of the corresponding deformation labels and the
sets of solitary nodes of the components C(i), i = 1, . . ., m, of C. Moreover,

the solitary nodes coming from the deformation labels all belong to the connected
component F ⊂ RΣ which contains the line RE.

Proof. Statement (1) follows from [16, Lemma 4.13] (one-to-one correspondence)
and [16, Lemma 4.2] (geometry of deformation), which describe all complex defor-

mations of C via so-called deformation patterns. Our deformation labels can be
viewed as normalized versions of these deformation patterns. The restricted corre-

spondence in the second case of assertion (1) comes from the fact that, for some
elements of C(C), all complex deformations of C are non-real. Statement (2) follows

from [16, Lemmas 4.4, 4.6, 4.8, and 4.9], where one can find a complete description
of complex deformation patterns and formulas for them. ✷

3.4 Welschinger numbers

For any admissible tuple (D, α, βre, β im,p♭) such that RΣ(D, βre + 2β im) ≥ 0, and

for any set p
♯ of RΣ(D, βre + 2β im) generic points of F \ E, consider the set
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V R
Σ (D, α, βre, β im,p♭,p♯), see section 3.2. According to Lemma 3, this set is finite

and consists of real nodal irreducible rational curves. Put

WΣ,φ(D, α, βre, β im,p♭,p♯) =
∑

C∈V R

Σ (D,α,βre,βim,p♭,p♯)

(−1)s(C)+C±◦φ . (6)

In view of Proposition 1, for any divisor class D ∈ PicR(Σ, E) and a set p
♯ of

c1(Σ)D − 1 distinct generic points of F \ E, one has

Wφ(Σ, D) =
∑

k+2l=DE

WΣ,φ(D, 0, kθ1, lθ1, ∅,p♯) . (7)

Pick a divisor class D0 ∈ PicR(Σ, E), and put N = dim |D0|. Note that the set

Prec(D0) = {D ∈ PicR(Σ, E) : D0 ≥ D}

is finite, and we have dim |D| ≤ N for each D ∈ Prec(D0). Furthermore, for each

nonempty variety V R
Σ (D,α, βre, β im,p♭) with D ∈ Prec(D0), we have

‖α‖+RΣ(D, β
re + 2β im) ≤ N .

Lemma 10 Let D0 ∈ PicR(Σ, E) be a divisor class with N = dim |D0| > 0. Then,

there exists a sequence Λ(D0) = (Λi)i=1,...,N of N disjoint smooth real algebraic arcs
in Σ, which are parameterized by t ∈ [0, 1] 7→ pi(t) ∈ Λi, such that pi(0) ∈ E, i = 1,

. . ., N , the arcs Λi are transverse to E at pi(0), i = 1, . . . , N , and the following
condition holds:

for an arbitrary admissible tuple (D,α, βre, β im,p♭), disjoint subsets J ♭, J ♯ ⊂
{1, ..., N}, and a positive integer k ≤ N such that

(i) D ≤ D0,

(ii) RΣ(D, β
re + 2β im) > 0,

(iii) i < k < j for all i ∈ J ♭, j ∈ J ♯,

(iv) the number of elements in J ♯ is equal to RΣ(D, β
re + 2β im)− 1,

(v) p
♭ = {pi(0) : i ∈ J ♭},

the closure of the family

⋃

t∈(0,1]

VΣ(D,α, β
re, β im,p♭, p̃♯ ∪ {pk(t)}) ,

where p̃
♯ = {pj(1)}j∈J♯, is a deformation diagram of (D,α, βre, β im,p♭, p̃♯, pk(0)).
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Proof. Take a sequence Λ̂i, i = 1, ..., N , of disjoint smooth real algebraic arcs

in Σ, which are parameterized by t ∈ [0, 1] 7→ pi(t) ∈ Λ̂i, such that (pi(0))i=1,...,N

is a generic sequence of points in E, and the arcs Λ̂i are transverse to E at pi(0),

i = 1, ..., N . We will inductively shorten and reparameterize these arcs in order to
satisfy the diagrammatic condition.

Suppose that we have constructed the arcs Λ1, ...,Λk−1, 1 ≤ k ≤ N . There are

finitely many admissible tuples (D,α, βre, β im,p♭) and subsets J ♭, J ♯ ⊂ {1, ..., N}
satisfying restrictions (i)-(v) in Lemma. Given such data D,α, βre, β im,p♭, J ♭, J ♯, we

take a closed neighborhood Λk(D,α, β
re, β im,p♭, J ♭, J ♯) of pk(0) in Λ̂k, parameterized

by [0, εk], such that the closure of the family

⋃

p′∈Λk(D,α,βre,βim,p♭,J♭,J♯),p′ 6=pk(0)

VΣ(D,α, β
re, β im,p♭, p̃♯ ∪ {p′}) ,

where p̃
♯ = {pi(εi)}1≤i<k, is a deformation diagram of (D,α, βre, β im,p♭, p̃♯, pk(0)).

Then we define

Λk =
⋂

(D,α,βre,βim,p♭,J♭,J♯)

Λk(D,α, β
re, β im,p♭, J ♭, J ♯)

and reparameterize this arc by [0, 1]. ✷

Take a divisor class D0 ∈ PicR(Σ, E) such that N = dim |D0| > 0 and a sequence
of arcs (Λi)i=1,...,N as in Lemma 10. Given two subsets J ♭, J ♯ ⊂ {1, ..., N} such that

i < j for all i ∈ J ♭, j ∈ J ♯, we say that the pair of point configurations

p
♭ = {pi(0) : i ∈ J ♭}, p

♯ = {pj(1) : j ∈ J ♯}

is in D0-CH position.

Proposition 11 Fix a tuple (D,α, βre, β im), where D ∈ PicR(Σ, E) is a divisor
class, α, βre ∈ Z

∞,odd
+ , and β im ∈ Z∞

+ such that RΣ(D, β
re + 2β im) > 0. Choose two

point sequences p♭ and p
♯ satisfying the following restrictions:

• the tuple (D,α, βre, β im,p♭) is admissible,

• the number of points in p
♯ is equal to RΣ(D, β

re + 2β im),

• the pair (p♭,p♯) is in D0-CH position for some divisor class D0 ∈ PicR(Σ, E),

D0 ≥ D.

Then, the number WΣ,φ(D,α, β
re, β im,p♭,p♯) does not depend on the choice of se-

quences p♭ and p
♯.

The proof is presented in section 3.6.

We skip p
♭ and p

♯ in the notation of the above numbers and simply write

WΣ,φ(D,α, β
re, β im) calling them Welschinger numbers.
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Proposition 12 Let Σ = P2
a,b, a + 2b = 6, and E ∈ |L − E1 − E2|. If φ = 0 ∈

H2(Σ \ F ;Z/2Z), then among the Welschinger numbers WΣ,φ(D, α, βre, β im,p♭, ∅),
where (D, α, βre, β im,p♭) is in admissible tuple such that

α, βre ∈ Z
∞,odd
+ , [D]E > 0, and RΣ(D, βre + 2β im) = 0,

the only non-zero numbers are as follows:

(1) in the case of a divisor class D = D,

(1i) WΣ,φ(Ei, 0, θ1, 0, ∅, ∅) = 1, where i = 1, 2, and E1, E2 are real;

(1ii) WΣ,φ(L− Ei − Ej , 0, θ1, 0, ∅, ∅) = 1, where 3 ≤ i < j ≤ 6, and Ei, Ej are
both real or are complex conjugate;

(1iii) WΣ,φ(−(KΣ + E) − Ei, 0, θ1, 0, ∅, ∅) = 1, where i = 1, 2, and E1, E2 are

real;

(1iv) WΣ,φ(−(KΣ + E), θ1, θ1, 0,p
♭, ∅) = 1;

(1v) WΣ,φ(−s(KΣ+E)+L− s1E1− s2E2−Ei, α, 0, 0,p
♭, ∅) = 1, where s ≥ 0,

0 ≤ s1, s2 ≤ 1, s1 + s2 ≤ 2s, 3 ≤ i ≤ 6, the sequence α ∈ Z∞,odd verifies
Iα = 2s+ 1− s1 − s2, the divisor Ei is real, and the divisors E1 and E2

are both real if s1 6= s2;

(1vi) WΣ,φ(−s(KΣ + E) − s1E1 − s2E2 + Ei, α, 0, 0,p
♭, ∅) = 1, where s ≥ 1,

0 ≤ s1, s2 ≤ 1, s1 + s2 < 2s, 3 ≤ i ≤ 6, the sequence α ∈ Z∞,odd verifies

Iα = 2s− s1 − s2, the divisor Ei is real, and the divisors E1 and E2 are
both real if s1 6= s2;

(2) in the case of a pair D = (D1, D2) of divisor classes,

(2i) WΣ,φ({E1, E2}, 0, 0, θ1, ∅, ∅) = 1, where E1 and E2 are complex conjugate;

(2ii) WΣ,φ({L − Ei − Ej , L − Ei − Ek}, 0, 0, θ1, ∅, ∅) = 1, where {i, j, k} ⊂
{3, 4, 5, 6}, the divisor Ei is real, and the divisors Ej, Ek are complex
conjugate;

(2iii) WΣ,φ({−(KΣ + E) − E1,−(KΣ + E) − E2}, 0, 0, θ1, ∅, ∅) = 1, where E1

and E2 are complex conjugate;

(2iv) WΣ,φ({L − Ei − Ej , L− Ek − El}, 0, 0, θ1, ∅, ∅) = −1, where {i, j, k, l} =

{3, 4, 5, 6}, Ei, Ek and Ej , El are two pairs of complex conjugate divisors.

(2v) WΣ,φ({−(KΣ + E),−(KΣ + E)}, 0, 0, θ2, ∅, ∅) = 1, if Q′, Q′′ are complex
conjugate.

Proposition 13 Let Σ = B1. (Recall that F is the non-orientable component of RΣ,

and E = L1.) If φ is either 0, or φF (cf. section 2), then among the Welschinger

numbers WΣ,φ(D, α, βre, β im,p♭, ∅), where (D, α, βre, β im,p♭) is an admissible tuple
such that

α, βre ∈ Z
∞,odd
+ , [D]E > 0, and RΣ(D, βre + 2β im) = 0,

the only non-zero numbers are as follows:
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(1) in the case of a divisor class D = D,

(1i) WΣ,φ(Li, 0, θ1, 0, ∅, ∅) = 1, where i = 2, 3;

(1ii) WΣ,φ(−(KΣ + E), θ1, θ1, 0,p
♭, ∅) = 1;

(2) in the case of a pair D = (D1, D2) of divisor classes,

WΣ,φ({L2i, L2i+1}, 0, 0, θ1, ∅, ∅) =
{

1, if φ = φF and L2i ∩ L2i+1 ∩ F = ∅,

−1, otherwise,

where i = 2, 3, 4, 5.

Proof of Propositions 12 and 13. Both propositions can be easily derived

from Lemmas 5 and 6. We only make a comment concerning the statement of
Proposition 13(2). By Lemma 4(2), there are four pairs (L2i, L2i+1), i = 2, 3, 4, 5,

of complex conjugate lines crossing E, and the lines of each pair intersect at a real

point, which is a solitary node of the corresponding curve L2iL2i+1. If φ = 0, then
the contribution of such a curve to the Welschinger number is −1, whereas if φ = φF ,

then by formula (6) the contribution is −1 when the solitary node occurs on the
component F and it is 1 otherwise. ✷

The numbers WΣ,φ(D,α, β
re, β im,p♭, ∅) in Propositions 12 and 13 do not depend

on the choice of p♭. We skip p
♭ and ∅ in the notation of these numbers and simply

write WΣ,φ(D,α, β
re, β im).

3.5 Recursive formula

Theorem 1 Let Σ = P2
a,b, a + 2b = 6, or B1, let E be a real smooth (−1)-curve

with RE ⊂ F , and let φ ∈ H2(Σ \ F ;Z/2Z) be a class invariant under the action of

complex conjugation, conj∗φ = φ.

Let D ∈ PicR(Σ, E) be a divisor class, and let α, βre ∈ Z
∞,odd
+ , β im ∈ Z∞

+ satisfy
the following conditions:

I(α+ βre + 2β im) = DE, RΣ(D, β
re + 2β im) > 0 .

Then,

WΣ,φ(D,α, β
re, β im) =

∑

k≥1, βre
k >0

WΣ,φ(D,α+ θk, β
re − θk, β

im)

+
∑ 2‖β

(0)‖

β(0)!
(l + 1)

(
α

α(0)α(1)...α(m)

)
(n− 1)!

n1!...nm!

×
m∏

i=1

((
(βre)(i)

γ(i)

)
WΣ,φ(D(i), α(i), (βre)(i), (β im)(i))

)
, (8)

where

n = RΣ(D, β
re + 2β im), ni = RΣ(D(i), (βre)(i) + 2(β im)(i)), i = 1, ..., m ,

and the second sum in (8) is taken
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• over all integers l ≥ 0 and vectors α(0) ≤ α, β(0) ≤ βre;

• over all sequences

(D(i), α(i), (βre)(i), (β im)(i)), 1 ≤ i ≤ m , (9)

such that, for all i = 1, ..., m,

(1a) D(i) ∈ PicR(Σ, E), and D(i) is neither the divisor class −(KΣ + E), nor
the pair {−(KΣ + E),−(KΣ + E)},

(1b) I(α(i) + (βre)(i) + 2(β im)(i)) = [D(i)]E, (βre)(i) + (β(im)(i) 6= 0, and

RΣ(D(i), (βre)(i) + 2(β im)(i)) ≥ 0,

and

(1c) D − E =
∑m

i=1[D(i)]− (2l + Iα(0) + Iβ(0))(KΣ + E),

(1d)
∑m

i=1 α
(i) ≤ α− α(0),

(1e)
∑m

i=1(β
re)(i) ≥ βre and

∑
i∈S(β

im)(i) = β im, where

S = {i : 1 ≤ i ≤ m, D(i) is a divisor class} ,

(1f) each tuple (D(i), 0, (βre)(i), (β im)(i)) with ni = 0 appears in (9) at most

once,

• over all sequences

γ(i) ∈ Z
∞,odd
+ , ‖γ(i)‖ =

{
1, i ∈ S,

0, i 6∈ S,
i = 1, ..., m , (10)

satisfying

(2a) (βre)(i) ≥ γ(i), i = 1, . . ., m, and
∑m

i=1

(
(βre)(i) − γ(i)

)
= βre − β(0),

and the second sum in (8) is factorized by simultaneous permutations in the se-

quences (9) and (10).

The proof is presented in section 3.6.

Corollary 14 Let Σ = P2
a,b, a + 2b = 6, or B1, let E be a real smooth (−1)-curve

with RE ⊂ F , and let φ ∈ H2(Σ \ F ;Z/2Z) be a class invariant under the action of
complex conjugation, conj∗φ = φ.

(1) For any divisor class D ∈ PicR(Σ, E) and vectors α, βre ∈ Z
∞,odd
+ , β im ∈ Z∞

+

such that I(α+ βre + 2β im) = DE, RΣ(D, β
re + 2β im) ≥ 0, and β im 6= 0, one has

WΣ,φ(D,α, β
re, β im) = 0 . (11)
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(2) For any divisor class D ∈ PicR(Σ, E) and vectors α, β ∈ Z
∞,odd
+ such that

I(α+ β) = DE and RΣ(D, β) > 0, one has

WΣ,φ(D,α, β, 0) =
∑

k≥1, βk>0

WΣ,φ(D,α+ θk, β − θk, 0)

+
∑ 2‖β

(0)‖

β(0)!
(l + 1)

(
α

α(0)α(1)...α(m)

)
(n− 1)!

n1!...nm!

×
m∏

i=1

((
(βre)(i)

γ(i)

)
WΣ,φ(D(i), α(i), (βre)(i), (β im)(i))

)
, (12)

where

n = RΣ(D, β), ni = RΣ(D(i), (βre)(i) + 2(β im)(i)), i = 1, ..., m ,

and the second sum in (12) is taken

• over all integers l ≥ 0 and vectors α(0) ≤ α, β(0) ≤ β;

• over all sequences

(D(i), α(i), (βre)(i), (β im)(i)), 1 ≤ i ≤ m , (13)

such that, for all i = 1, ..., m,

(1a) D(i) ∈ PicR(Σ, E), and D(i) is neither the divisor class −(KΣ + E), nor

the pair (−(KΣ + E),−(KΣ + E)),

(1b) I(α(i)+(βre)(i)+2(β im)(i)) = [D(i)]E, and RΣ(D(i), (βre)(i)+2(β im)(i)) ≥ 0,

(1c) (β im)(i) 6= 0 if and only if D(i) is a pair of divisor classes, and, in such a
case, ni = 0, α(i) = (βre)(i) = 0,

and

(1d) D − E =
∑m

i=1[D(i)]− (2l + Iα(0) + Iβ(0))(KΣ + E),

(1e)
∑m

i=0 α
(i) ≤ α,

∑m
i=1(β

re)(i) ≥ β − β(0),

(1f) each tuple (D(i), 0, (βre)(i), (β im)(i)) with ni = 0 appears in (13) at most
once,

• over all sequences

γ(i) ∈ Z
∞,odd
+ , ‖γ(i)‖ =

{
1, D(i) is a divisor class,

0, D(i) is a pair of divisor classes,
i = 1, ..., m ,

(14)
satisfying

(2a) (βre)(i) ≥ γ(i), i = 1, ..., m, and
∑m

i=1

(
(βre)(i) − γ(i)

)
= βre − β(0),
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and the second sum in (12) is factorized by simultaneous permutations in the se-

quences (13) and (14).

(3) Assume that φ = 0 or φ = φF . Then, all Welschinger numbers

WΣ,φ(D,α, β, 0), where D ∈ PicR(Σ, E) is a divisor class and α, β ∈ Z∞,odd are

vectors such that I(α + β) = DE and RΣ(D, β) > 0, are recursively determined by
the formula (12) and the initial conditions in Propositions 12, 13.

(4) For any divisor class D ∈ PicR(Σ, E), one has

Wφ(Σ, D) =WΣ,φ(D, 0, (DE)θ1, 0) . (15)

Proof. The condition (1e) in Theorem 1 and the vanishing of the Welschinger
numbers WΣ,φ(D,α, β

re, β im) such that D is a divisor class, RΣ(D, β
re + 2β im) = 0,

and β im 6= 0 (see Propositions 12, 13) directly imply the statements (1) and (2).
The claim (3) is straightforward. Formula (15) comes from (7) and (11). ✷

Remark 15 (1) Formula (12) holds for any surface Σ′ obtained from Σ by suc-
cessive blowing down of real (−1)-curves or pairs of disjoint imaginary conjugate

(−1)-curves: one simply has to reduce PicR(Σ, E) to the divisor classes/pairs of
divisor classes which do not cross the blown down curves.

(2) If one blows down L3 on B1, the resulting surface B is a conic bundle and has
two real spherical components; these components give rise to the same collections of

Welschinger invariants.

Corollary 16 Let E be one of the three real lines of B1.

(1) For any divisor class D ∈ PicR(B1, E) and vectors α, β ∈ Z
∞,odd
+ such that

I(α+ β) = DE and RB1(D, β) > 0, one has

WB1,φF
(D,α, β, 0) =

∑

k≥1, βk>0

WB1,φF
(D,α + θk, β − θk, 0)

+
∑ 2‖β

(0)‖

β(0)!

(
α

α(0)α(1)...α(m)

)
(n− 1)!

n1!...nm!

×
m∏

i=1

((
(βre)(i)

γ(i)

)
WB1,φF

(D(i), α(i), β(i), 0)

)
, (16)

where
n = RB1(D, β), ni = RB1(D

(i), β(i)), i = 1, ..., m ,

and the second sum in (16) is taken

• over all vectors α(0) ≤ α, β(0) ≤ β;

• over all sequences

(D(i), α(i), β(i), 0), 1 ≤ i ≤ m , (17)

such that, for all i = 1, ..., m,
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(i) D(i) ∈ PicR(B1, E) is a divisor class different from −(KB1 + E),

(ii) I(α(i) + β(i)) = D(i)E, and RB1(D
(i), β(i)) ≥ 0,

and

(iii) D − E =
∑m

i=1D
(i) − (Iα(0) + Iβ(0))(KB1 + E),

(iv)
∑m

i=0 α
(i) ≤ α,

∑m
i=1 β

(i) ≥ β − β(0),

(v) each tuple (D(i), 0, β(i), 0) with ni = 0 appears in (17) at most once, and
coincides with (Lj, 0, θ1, 0), where Lj 6= E is a real line on B1,

• over all sequences

γ(i) ∈ Z
∞,odd
+ , ‖γ(i)‖ = 1, i = 1, ..., m , (18)

satisfying

β(i) ≥ γ(i), i = 1, . . . , m, and
m∑

i=1

(
β(i) − γ(i)

)
= β − β(0),

and the second sum in (17) is factorized by simultaneous permutations in the se-
quences (17) and (18).

(2) All Welschinger numbers WB1,φF
(D,α, β, 0), where D ∈ PicR(B1, E) is a divi-

sor class and α, β ∈ Z∞,odd are vectors such that I(α+β) = DE and RB1(D, β) > 0,
are recursively determined by the formula (16) and the initial conditions in Propo-

sition 13(1).

Proof. Let L1, L2, and L3 be the three real lines of B1, and let Lj , j = 4, . . .,

11, be the eight non-real lines of B1 which intersect L1 and are numbered in such a

way that L2i and L2i+1 are complex conjugate for any i = 2, 3, 4, 5 (cf. Lemma 4).
Assume that E = L1.

For precisely two pairs (L2i, L2i+1), 2 ≤ i ≤ 5, say, for i = 2, 3, the intersection

point belongs to F , and for the other two pairs (L2i, L2i+1), i = 4, 5, the intersection
point belongs to RB1 \ F , and hence (cf. Proposition 13(2))

WB1,φF
({L2i, L2i+1}, 0, 0, θ1) =

{
−1, i = 2, 3,

1, i = 4, 5.
(19)

Combining the terms of the second sum in the righthand side of the formula (12)

applied to WB1,φF
(D,α, β, 0), we obtain the expression

4∑

k=0

∑

l≥0

xk(l + 1)λk,l,
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where k is the number of non-divisorial factors in a summand, and xk is the sum of

products of k distinct non-divisorial terms. Any two coefficients λk,l and λk′,l′ such
that k + 2l = k′ + 2l′ coincide, so we put λk+2l = λk,l. One has

x0 = x4 = 1, x1 = x3 = 0, x2 = −2.

Thus, the second sum in the righthand side of the formula is equal to

∑

l≥0

(l + 1)(λ2l − 2λ2+2l + λ4+2l) = λ0.

✷

Example 17 We present here some values of Welschinger invariants computed by
means of formulas (12) and (16). In the case of P2

a,b these are the usual Welschinger

invariants; for the conic bundle B (see Remark 15) we take for F one of the com-
ponents of RB; for B1, as always, F is the non-orientable component of RB1.

D � Σ, φ P2
6,0 P2

4,1 P2
2,2 P2

0,3 B, 0 B, φF B1, 0 B1, φF

-K 8 6 4 2 0 4 0 4
-2K 1000 522 236 78 0 512 0 160

3.6 Proof of Proposition 11 and Theorem 1

We simultaneously prove Proposition 11 and Theorem 1 by induction on

RΣ(D, β
re + 2β im).

The claim of Proposition 11 for RΣ(D, β
re + 2β im) = 0 (the base of induction)

follows from Propositions 12 and 13.

For induction step, we fix a tuple (D,α, βre, β im) satisfying the hypotheses of
Theorem 1 and choose a divisor class D0 ∈ PicR(Σ, E), D0 ≥ D, and a sequence

of arcs (Λs)s=1,...,N as in Lemma 10. Pick two point sequences p
♭ = (ps(0))s∈J♭ and

p
♯ = (ps(1))s∈J♯, J ♭, J ♯ ⊂ {1, ..., N}, such that

• s1 < s2 for all s1 ∈ J ♭, s2 ∈ J ♯,

• the tuple (D,α, βre, β im,p♭) is admissible,

• the number of points in p
♯ is equal to RΣ(D, β

re + 2β im),

and prove that WΣ,φ(D,α, β
re, β im,p♭,p♯) equals the right-hand side of formula (8).

Consider the deformation diagram ∆ of (D,α, βre, β im,p♭, p̃♯, pk(0)) provided

by Λk, where k = min J ♯ and p̃
♯ = p

♯ \ {pk(1)}. We intend to compute
WΣ,φ(D,α, β

re, β im,p♭,p♯) by summing up the contributions of all connected com-

ponents of ∆.
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The connected components of ∆ are enumerated by their roots described in

Lemma 7.

Since βre ∈ Z
∞,odd
+ , Lemma 8 implies that each connected component δ ⊂ ∆ with

a root of type (I) has a unique leaf, and this leaf has the same Welschinger sign as

the root. The contribution of these components of ∆ gives the first summand in the
right-hand side of formula (8).

Let δ be a connected component of ∆ with a root C of type (R). Using the

description of leaves of δ given in Lemma 9, we immediately conclude that the
contribution of the leaves of δ into WΣ,φ(D,α, β

re, β im,p♭,p♯) is as follows:

• 0, if either there is (βre)(i) 6∈ Z
∞,odd
+ , or Q′, Q′′ are real and at least one of l′, l′′

is odd;

• (l + 1)
∏m

i=1wφ(C
(i)), if (βre)(i) ∈ Z

∞,odd
+ for all i = 1, . . ., m, and Q′, Q′′ are

complex conjugate, l′ = l′′ = l;

• ∏m
i=1wφ(C

(i)), if (βre)(i) ∈ Z
∞,odd
+ for all i = 1, . . ., m, and Q′, Q′′ are real, l′, l′′

are even.

Finally, taking into account the induction assumption of the independence of the

Welschinger numbers

WΣ,φ(D(i), α(i), (βre)(i), (β im)(i), (p♭)(i), (p♯)(i)), i = 1, . . . , m ,

on the choice of pairs of point sequences (p♭)(i), (p♯)(i) in D0-CH position, i =

1, . . ., m, and summing up over connected components of ∆, we immediately
obtain formula (8) and, in virtue of this formula, also the independence of

WΣ,φ(D,α, β
re, β im,p♭,p♯) on the choice of p♭,p♯. ✷

4 Applications

4.1 Positivity and asymptotics

A divisor class D on a surface Σ is called nef if D non-negatively intersects any
algebraic curve on Σ. A nef divisor class D is big if D2 > 0.

4.1.1 The case of Σ = P2
a,b with a + 2b ≤ 6, b ≤ 2

In this case, the real part RΣ is nonempty and connected, and hence we can speak
only of the usual Welschinger invariants, which we simply denote by W (Σ, D) omit-

ting φ in the notation.

Theorem 2 Let Σ = P2
a,b, where a + 2b ≤ 6 and b ≤ 2. Then, for any nef and big

real divisor class D on Σ,
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• the invariant W (Σ, D) is positive; in particular, through any generic collection

of c1(Σ)D − 1 real points in Σ one can trace a real rational curve C ∈ |D|,

• the following asymptotic relation holds:

logW (Σ, nD) = c1(Σ)D · n logn +O(n), n→ +∞ , (20)

and in particular,

lim
n→+∞

logW (Σ, nD)

logGW (Σ, nD)
= 1 . (21)

Remark 18 (1) Theorem 2 covers all the cases studied in [9, 11, 13, 17]. The

statement holds true for the surface P2
0,3 as well, but the proof requires another

approach and will be presented in a forthcoming paper.

(2) If D is not nef or not big, then W (Σ, D) = 1 or 0 depending on whether or
not the linear system |D| contains an irreducible curve (for the existence of rational

irreducible representatives see, for instance, [7]).

(3) The positivity statement and the existence of real rational curves do not
extend in the same form to all real unnodal Del Pezzo surfaces, for example,

W (P2
0,4,−KP2

0,4
) = 0, and there are generic configurations of four pairs of imaginary

conjugate blown up points such that the linear system |−KP2
0,4
| does not contain any

real rational curve (cf. [9, Section 3.1(1)]).

Lemma 19 Let Σ be an unnodal Del Pezzo surface, and D ∈ Pic(Σ).

(i) The divisor class D is nef and nonzero if and only if its intersection with any

(−1)-curve on Σ is non-negative and KΣD < 0.

(ii) Assume that Σ = P2
a,b, where a+2b ≤ 6. If D is nef and nonzero, then D2 ≥ 0,

and D can be represented by a union of rational curves, which are real if D is
real. More precisely, if D2 > 0, then D can be represented by an irreducible

rational curve; if D2 = 0, then D = kD′, where D′ is primitive (not divisible
by a natural number > 1), D′ can be represented by an irreducible nonsingular

rational curve, and D can be represented by a union of k disjoint irreducible
nonsingular rational curves.

Proof. The statements follow, for instance, from [7, Theorems 5.1, 5.2, and

Remark 5.3]. In particular, if D is real, the construction in [7, Section 5.2] gives real
representatives. ✷

Proof of Theorem 2. First, decreasing the parameter −KΣD, we prove that

W (Σ, D) = WΣ(D, 0, (DE)θ1, 0) > 0 (22)

for all nef and big real divisor classes D on Σ.
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If DE ′ = 0 for a real (−1)-curve E ′, we blown down E ′. If DE ′ = 0 for an

imaginary (−1)-curve E ′, then DE ′ = 0 and E ′E ′ = 0 (otherwise, one would have
dim |E ′ + E ′| = 1 yielding D2 ≤ 0), and thus, we can blown down E ′ and E ′. In

the both cases, we obtain another unnodal Del Pezzo surface and keep the same
values of D2 and KΣD. Continuing in this way, we either come to a surface treated

in [8, 17] (P2, P2
1, P

2
2, or P1 × P1) or end up with a nef and big real divisor class

D ⊂ Σ 6= P2,P2
1,P

2
2,P

1 × P1 crossing each (−1)-curve of Σ.

In the latter case, in a suitable conjugation invariant basis L,E1, ..., Ek (k ≥ 3)
of Pic(Σ) we can choose E = L − E1 − E2 so that {Ei}3≤i≤k contain at most one

pair of imaginary (−1)-curves. Then, by Proposition 12, all the initial Welschinger
numbers are non-negative, and hence, due to the positivity of the coefficients in

formula (12), we get that

WΣ(D
′, α, β, 0) ≥ 0 for any D′ ∈ PicR(Σ, E), α, β ∈ Z

∞,odd
+ , I(α+ β) = D′E .

Putting WΣ(D, (DE + 1)θ1,−θ1, 0) = 0 and applying (DE + 1) times the formula

(12), we get

WΣ(D, kθ1, (DE−k)θ1, 0) = WΣ(D, (k+1)θ1, (DE−k−1)θ1, 0)+τk, k = 0, . . . , DE ,

where τk stands for the second sum in the right-hand side of (12). One has

WΣ(D, 0, (DE)θ1, 0) = τ0 + . . .+ τDE , (23)

and to prove the positivity ofWΣ(D, 0, (DE)θ1, 0), it is sufficient to find at least one

positive term in τ0 + . . .+ τDE .

Since E crosses any other (−1)-curve in at most one point, the divisor class D−E
non-negatively intersects with each (−1)-curve, and thus, is nef and nonzero (see

Lemma 19(i)).

In addition, −KΣ(D −E) < −KΣD and

τ0 ≥ (DE + 1)WΣ(D − E, 0, (DE + 1)θ1, 0).

Hence, if D − E is big then, we can replace D with D −E in our procedure.

Otherwise, according to Lemma 19, one has D − E = kD′ with a nef primitive

D′ such that (D′)2 = 0 and D′E > 0. Since RΣ(D
′, (D′E)θ1) = dim |D′| = 1, we

have RΣ(D
′, (D′E − 1)θ1) = 0, and then from Proposition 12, we can derive that

WΣ(D
′, θ1, (D

′E − 1)θ1, 0) = 1. Formula (12) gives then

WΣ(D
′, 0, (D′E)θ1, 0) ≥WΣ(D

′, θ1, (D
′E − 1)θ1, 0) > 0 .

This implies that the term τk−1 in (23) is positive, since this term contains the

summand (WΣ(D
′, 0, (D′E)θ1, 0))

k > 0; hence (22).

Due to the upper bound W (Σ, D) ≤ GW (Σ, D) and the asymptotics

logGW (Σ, nD) = c1(Σ)D · n logn+O(n) (see [10]), to prove the asymptotic rela-
tions (20) and (21), it is enough to establish for any nef and big real divisor class D

the inequality

logWΣ(nD, 0, n(DE)θ1, 0) ≥ c1(Σ)D · n log n+O(n), n→ +∞ . (24)
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As above, if DE ′ = 0 for a real (−1)-curve E ′ (respectively, for an imaginary (−1)-

curve E ′), we blown down E ′ (respectively, E ′ and E ′). Continuing in this way, we
either come to a surface treated in [9, 11] (P2, P2

1, P
2
2, or P

1 × P1) or end up with a

nef and big real divisor class D ⊂ Σ 6= P2,P2
1,P

2
2,P

1 × P1 crossing each (−1)-curve
of Σ.

In the latter case, there exist positive numbers ξ, η, ζ (depending on D) such that

W (Σ, nD) =WΣ(nD, 0, n(DE)θ1, 0) ≥ ξηnζ(−nKΣD − 1)! , (25)

for any n ≥ 1, which clearly implies (24). Indeed, if D − E is big, then, applying
formula (23) toWΣ((n+1)D, 0, (n+1)(DE)θ1, 0), we obtain that the term τ2 contains

the sum

(−(n + 1)KΣD − 2)!

(−KΣ(D − E)− 1)!
(DE + 1) ·WΣ(D − E, 0, (DE + 1)θ1, 0)

×
n−1∑

i=1

i(n− i)(DE)2 ·W (iD, 0, i(DE)θ1, 0) ·WΣ((n− i)D, 0, (n− i)(DE)θ1, 0)

(−iKΣD − 1)!(−(n− i)KΣD − 1)!
,

which means that the sequence

un =
nWΣ(nD, 0, n(DE)θ1, 0)

(−nKΣD − 1)!

satisfies the condition

un ≥
n−1∑

i=1

cuiun−i

for a certain positive constant c. As is well known (cf. [6]), this implies the inequal-
ity (25).

If D −E is not big, then, according to Lemma 19, one has D −E = kD′, where

D′ is a nef divisor class with D′E > 0, (D′)2 = 0, and WΣ(D
′, 0, (D′E)θ1, 0) = 1.

Again applying formula (12) to WΣ((n + 1)D, 0, (n + 1)(DE)θ1, 0), we obtain that

the term τk+1 contains the sum

(−(n + 1)KΣD − 2)!(D′E)k

×
n−1∑

i=1

i(n− i)(DE)2 ·W (iD, 0, i(DE)θ1, 0) ·WΣ((n− i)D, 0, (n− i)(DE)θ1, 0)

(−iKΣD − 1)!(−(n− i)KΣD − 1)!
,

which, as above, implies the inequality (25). ✷

4.1.2 The case of Σ = B1

Recall that F denotes the non-orientable component of RB1.
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Theorem 3 For any nef and big real divisor class D on B1, the Welschinger in-

variant WF (B1, D) is positive. In particular, through any collection of c1(B1)D − 1
generic points of F one can trace a real rational curve C ∈ |D| passing through the

given points. Furthermore, one has

logWF (B1, nD) = c1(B1)D · n log n+O(n), n→ ∞ .

In particular,

lim
n→∞

logWF (B1, nD)

logGW (P2
6, nD)

= 1 .

Remark 20 (1) The positivity of the usual Welschinger invariants W (B1, D) does

not hold: W (B1,−KB1) = 0, whereas WF (B1,−KB1) = 4 (cf. Example 17). Indeed,
for any 2 = K2

B1
− 1 generic points of F , there are exactly two planes passing

through these points and tangent to the spherical component of RB1; each of these
two planes intersects B1 along a cubic with a solitary node belonging to the spherical

component. The planes passing through the chosen two points and tangent to F
give rise to rational cubics whose total contribution to W (B1,−KB1) (as well as to

WF (B1,−KB1)) is equal to the negative Euler characteristics of F blown up at 3
points.

(2) For any real Del Pezzo surface Σ with disconnected real part and for any con-

nected component F of RΣ, one has W (Σ,−KΣ, F ) ≤ 0. Indeed, W (Σ,−KΣ, F ) =
−χ(RΣ) +K2

Σ, where χ(RΣ) is the Euler characteristics of RΣ, and the inequality

−χ(RΣ) + K2
Σ ≤ 0 follows, for example, from Comessatti’s classification of real

rational surfaces [4] (see also [5]).

(3) Theorem 3 implies a similar statement for the invariants WF (B, D), where F

is any of the two connected components of RB: the nef and big real divisor classes

on B can be viewed as the divisor classes D = d1L1 + d2L2 + d3L3 on B1, where L1,
L2, and L3 are the three real lines on RB1 and d1 = d2 + d3, d2, d3 > 0.

Proof of Theorem 3. Recall that a real divisor class D on B1 is nef and big if
and only if D = d1L1 + d2L2 + d3L3, where

d1, d2, d3 > 0 and di + dj ≥ dk, {i, j, k} = {1, 2, 3} .

Let D = d1L1 + d2L2 + d3L3, and di = max{d1, d2, d3} > 1. Applying formula
(16) with E = Li, we obtain

WF (B1, D) = WB1,φF
(D, 0, (d1 + d2 + d3 − 2di)θ1, 0)

≥ (d1 + d2 + d3 − 2di + 1)WB1,φF
(D − E, 0, (d1 + d2 + d3 − 2di + 1)θ1, 0)

≥WF (B1, D − E)

with a nef and big real divisor class D − E. After d1 + d2 + d3 − 3 steps we get

WF (B1, D) ≥WF (B1, L1 + L2 + L3) .
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Since WF (B1, L1+L2+L3) = 4 (see Remark 20(1)), one has WF (B1, D) > 0 for any

nef and big real divisor D on B1.

Assume now that d1 ≥ d2 ≥ d3 > 0, and pick a number n ∈ N. Putting E = L1

and applying n(d1 − d2) times the formula (16), we get

WF (B1, nD) ≥ (nd3)!

(n(d2 + d3 − d1))!
WF (B1, nD

′),

where D′ = d2(L1 + L2) + d3L3. Then, putting alternatively E = L1 and E = L2,
we apply 2n(d2 − d3) times the formula (16) and get

WF (B1, nD
′) ≥ (nd3(nd3 + 1))n(d2−d3)WF (B1, nD

′′),

where D′′ = d3(L1 + L2 + L3). Finally, putting cyclically E = L1, E = L2, and
E = L3, we apply 3nd3 − 3 times the formula (16) and get

WF (B1, nD
′′) ≥ (nd3 + 1)!(nd3)!(nd3 − 1)!

2
WF (B1, L1 + L2 + L3).

The above inequalities give

logWF (B1, nD) ≥ (d1 + d2 + d3)n log n+O(n) = c1(B1)D · n logn+O(n)

which implies the desired asymptotics. ✷

4.2 Monotonicity

Lemma 21 (1) Let Σ be an unnodal Del Pezzo surface, and D, D′ be nef and big
divisor classes on Σ. If D−D′ is effective, then D−D′ can be decomposed into a sum

E(1)+...+E(k) of smooth rational (−1)-curves such that each of D(i) = D′+
∑

j≤iE
(j)

is nef and big, and satisfies D(i)E(i+1) > 0, i = 0, . . . , k − 1.

(2) Let D and D′ be nef and big real divisor classes on B1. If D−D′ is effective,
then D−D′ = E(1)+. . .+E(k), where E(1), . . . , E(k) ∈ {L1, L2, L3}, and the following

properties hold for any i = 0, . . ., k − 1: the divisor class D(i) = D′ +
∑

j≤iE
(j) is

nef and big, and D(i)E(i+1) > 0.

Proof. The proof of the first claim literally coincides with the proof of [13,

Lemma 30]. To prove the second statement, write D = d1L1 + d2L2 + d3L3 and
D′ = d′1L1 + d′2L2 + d′3L3, where dj, j = 1, 2, 3, and d′j , j = 1, 2, 3, are positive

integers such that

d1 + d2 ≥ d3, d1 + d3 ≥ d2, d2 + d3 ≥ d1,

d′1 + d′2 ≥ d′3, d′1 + d′3 ≥ d′2, d′2 + d′3 ≥ d′1.

Put k = (d1+ d2+ d3)− (d′1 + d′2 + d′3) and D
(k) = D. Define inductively E(i+1) and

D(i), i = k−1, . . ., 0, in such a way that each E(i+1) is a real line of B1, each divisor
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class D(i) is nef and big, D(0) = D′, and D(i)E(i+1) > 0, for any i = k − 1, . . ., 0.

This can be done as follows. Write D(i+1) in the form d
(i+1)
1 L1 + d

(i+1)
2 L2 + d

(i+1)
3 L3,

where d
(i+1)
1 , d

(i+1)
2 , and d

(i+1)
3 are positive integers, and choose among the coefficients

d
(i+1)
j such that d

(i+1)
j > d′j a maximal one, d

(i+1)

j(i+1). Put E(i+1) = Lj(i+1) and D(i) =

D(i+1) − E(i+1). ✷

Theorem 4 (1) Let D and D′ be nef and big divisor classes on P2
6,0 such that

D − D′ is effective. Then W (P2
6,0, D) ≥ W (P2

6,0, D
′). Moreover, in the notation of

Lemma 21(1), one has

W (P2
6,0, D) ≥

k∏

i=1

(D(i−1)E(i)) ·W (P2
6,0, D

′) .

(2) Let D and D2 be nef and big real divisor classes on B1 such that D−D′ is ef-

fective. ThenWF (B1, D) ≥WF (B1, D
′). Moreover, in the notation of Lemma 21(2),

one has

WF (B1, D) ≥
k∏

i=1

(D(i−1)E(i)) ·WF (B1, D
′) .

Proof. The statements immediately follow from formulas (12) and (16). ✷

4.3 Mikhalkin’s congruence

Theorem 5 Let Σ = P2
6,0. Then, for any nef and big divisor class D on Σ, one has

W (Σ, D) = GW (Σ, D) mod 4 . (26)

Proof. Let E be a (−1)-curve on Σ. For any big and nef divisor class D on Σ
and any sequences α, β ∈ Z∞

+ such that I(α+β) = DE, consider a generic collection

z
♭ = {zi,j : i ≥ 1, 1 ≤ j ≤ αi} of ‖α‖ points on E, and the variety V C

Σ (D,α, β, z♭)
which is the union of RΣ(D, β)-dimensional components of the family of complex

reduced irreducible rational curves C ∈ |D| which intersect E in the following way:

• C has one local branch at each of the points of C ∩ E,

• (C · E)zi,j = i for all i ≥ 1, 1 ≤ j ≤ αi,

• for each i ≥ 1, there are precisely βi points q ∈ (C∩E)\z♭ such that (C ·E)q = i

(cf. Section 3.2 and [16, Definition 2.4]). Denote by NΣ(D,α, β) the degree of

V C
Σ (D,α, β, z♭). In particular, NΣ(D, 0, (DE)θ1) = GW (Σ, D) for any nef and big

divisor class D.

29



We prove the following statement:

WΣ(D,α, β, 0) = IβNΣ(D,α, β) mod 4 , (27)

for any divisor class D ∈ PicR(Σ, E) and any sequences α, β ∈ Z
∞,odd
+ such that

I(α+ β) = DE. This statement immediately implies the statement of the theorem.

Using induction on RΣ(D, β) and the recursive formula (65) from [16], we easily

derive that the numbers NΣ(D,α, β) are even if β 6∈ Z
∞,odd
+ , and hence

Iβ ·NΣ(D,α, β) = 0 mod 4 if β 6∈ Z
∞,odd
+ . (28)

Then, using Proposition 12, we check the congruence (27) in the case RΣ(D, β) = 0.

Finally, we proceed by induction on RΣ(D, β), comparing term by term [16, Formula
(65)] and the formula (12) and using the following observations:

• PicR(Σ, E) contains only divisor classes, and hence the parameters (β im)(i) in

(12) always vanish,

• for any integer j, one has

j2 =

{
0 mod 4, if j = 0 mod 2,

1 mod 4, if j = 1 mod 2,

• for any non-negative integer k, one has

(
k + 3

3

)
=

{
0 mod 4, if k = 1 mod 2,

l + 1 mod 4, if k = 2l,

• for any sequence β(0) ∈ Z
∞,odd
+ , one has

2‖β
(0)‖Iβ

(0)

= 2‖β
(0)‖ mod 4,

✷

The congruence (26) was established by G. Mikhalkin ([14], cf. [2]) for Σ = P2,

P1×P1, and P2
a,0, a = 1, 2, 3, and then extended to the cases of P2

4,0 and P2
5,0 in [13].
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