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SPLITTING OF OPERATIONS, MANIN PRODUCTS AND ROTA-BAXTER
OPERATORS

CHENGMING BAI, OLIVIA BELLIER, LI GUO, AND XIANG NI

Abstract. This paper provides a general operadic definition for the notion of splitting the opera-
tions of algebraic structures. This construction is provedto be equivalent to some Manin products
of operads and it is shown to be closely related to Rota-Baxter operators. Hence, it gives a new
effective way to compute Manin black products. The present construction is shown to have sym-
metry properties. Finally, this allows us to describe the algebraic structure of square matrices with
coefficients in algebras of certain types. Many examples illustrate this text, including the case of
Jordan algebras.
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1. Introduction

Since the late 1990s, several algebraic structures with multiple binary operations have emerged:
first the dendriform dialgebra of Loday [30] and then the dendriform trialgebra of Loday and
Ronco [33], discovered from studying algebraic K-theory, operads and algebraic topology. These
were followed by quite a few other related structures, such as the quadri-algebra [3], the ennea-
algebra, the NS-algebra, the dendriform-Nijenhuis and octo-algebra [25, 26, 27]. All these al-
gebraic structures have a common property of “splitting theassociativity”, i.e., expressing the
multiplication of an associative algebra as the sum of a string of binary operations. For example,
a dendriform dialgebra has a string of two operations and satisfies three axioms, and it can be
seen as an associative algebra whose multiplication can be decomposed into two operations “in
a coherent way”. The constructions found later have increasing complexity in their definitions.
For example the quadri-algebra [3] has a string of four operations satisfying nine axioms and the
octo-algebra [26] has a string of eight operations satisfying 27 axioms. As shown in [14], these
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constructions can be put into the framework of operad (blacksquare) products for nonsymmet-
ric operads [14, 31, 42]. By doing so, they proved that these newer algebraic structures can be
obtained from the known ones by the black square product.

It has been observed that a crucial role in the splitting of associativity is also played by the
Rota-Baxter operator which originated from the probability study of G. Baxter [8], promoted by
the combinatorial study of G.-C. Rota [37] and found many applications in the last decade in
mathematics and physics [1, 4, 5, 15, 18, 19, 39], especiallyin the Connes-Kreimer approach
of renormalization in quantum field theory [10, 16, 20, 35]. The first instance of such role is
the fact that a Rota-Baxter operator of weight zero on an associative algebra gives a dendriform
algebra [1, 2]. Further instances were discovered later [3,13, 25, 26, 27]. It was then shown that,
in general, a Rota-Baxter operator on a class of binary quadratic nonsymmetric operads gives the
black square product of dendriform algebra with these operads [14].

More recently, analogues of the dendriform dialgebra, quadri-algebra and octo-algebra for the
Lie algebra, Jordan algebra, alternative algebra and Poisson algebra have been obtained [2, 6,
22, 28, 36]. They can be regarded as “splitting” of the operations in these latter algebras. On
the other hand, it has been observed [42] that taking the Manin black product with the operad
PreLieof preLie algebras also plays a role of splitting the operations of an operad. For example,
the Manin black product ofPreLie with the operad of associative algebras (resp. commutative
algebras) gives the operad of dendriform dialgebras (resp.Zinbiel algebras).

Our goal in this paper is to set up a general framework to make precise the notion of “splitting”
any binary algebraic operad, and to generalize the aforementioned relationship of “splitting” an
operad with the Manin product and the Rota-Baxter operator.We achieve this through defining
and studying thesuccessors, namely thebisuccessorand trisuccessor, of a binary algebraic
operad defined by generating operations and relations. Thuswe can go far beyond the scope of
binary quadratic nonsymmetric operads and can apply the construction for example to the operads
of Lie algebras, Poisson algebras and Jordan algebras. Thisgives a quite general way to relate
known operads and to produce new operads from the known ones.

We then explain the relationship between the three constructions applied to a binary operad
P: taking its bisuccessor (resp. trisuccessor) is equivalent to taking its Manin black product•
with the operadPreLie (resp.PostLie), when the operad is quadratic. Both constructions can be
obtained from a Rota-Baxter operator of weight zero (resp. non-zero). This is summed up in the
following morphisms of operads.

PreLie• P � BSu(P)→ RB0(P) and PostLie• P � TSu(P)→ RB1(P) .

Notice that the left-hand side isomorphisms provide an effective way of computing the Manin
products using the successors.

The space of squared matrices with coefficients in a commutative algebra carries a canonical
associative algebra structure. We generalize such a resultusing the notion of successors: we
describe canonical algebraic structures carried by squared matrices with coefficients in algebras
over an operad. Finally, the present notion of successors isdefined in such a way that it shares
nice symmetry properties.

The following is a layout of this paper. In Section 2, the concepts ofbisuccessorandtrisucces-
sor are introduced, together with examples and basic properties. The relationship of the succes-
sors with the Manin black product is studied in Section 3, establishing the connection indicated
by the left link in the above diagram. We apply these results to the study of algebraic properties of
square matrices in Section 4. The relationship of the successors with the Rota-Baxter operator is
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studied in Section 5, establishing the connection indicated by the right link in the above diagram.
In Section 6, we prove symmetric properties of iterated bisuccessors and trisuccessors. Further
examples are provided in the Appendix.

2. The successors of a binary operad

In this section, we first introduce the concepts of the successors, namely bisuccessor and trisuc-
cessor, of a labeled planar binary tree. These concepts are then applied to define similar concepts
for a nonsymmetric operad and a (symmetric) operad. A list ofexamples are provided, followed
by a study of the relationship among an operad, its bisuccessor and its trisuccessor.

2.1. The successors of a tree.

2.1.1. Labeled trees.

Definition 2.1. (a) LetT denote the set of planar binary reduced rooted trees together with

the trivial tree . If t ∈ T hasn leaves, we callt ann-tree. For each vertexv of t, we let

In(v) denote the set of inputs ofv.
(b) LetX be a set and lett be ann-tree. By adecorated treewe mean a treet of t(X) together

with a decoration on the vertices oft by elements ofX anda decoration on the leaves oft
by distinct positive integers. Lett(X) denote the set of decorated trees fort and let

T(X) =
∐

t∈T

t(X).

If τ ∈ t(X) for ann-treet, we callτ a labeledn-tree.
(c) Forτ ∈ T(X), we let Vin(τ) (resp. Lin(τ)) denote the set of labels of the vertices (resp.

leaves) ofτ.
(d) Let τℓ, τr ∈ T(X) with disjoint sets of leaf labels. Letω ∈ X. Thegrafting of τℓ and τr

along ω is denoted byτℓ ∨ω τr . It gives rise to an element inT(X).
(e) Forτ ∈ T(X) with |Lin(τ)| > 1, we letτ = τℓ ∨ω τr denote the unique decomposition ofτ

as a grafting ofτℓ andτr in T(X) alongω ∈ X.

Let V be a vector space, regarded as an arity graded vector space concentrated in arity 2:
V = V2. Recall that the free nonsymmetric operadTns(V) onV is given by the vector space

Tns(V) :=
⊕

t∈T

t[V] ,

wheret[V] is the treewise tensor module associated tot. This module is explicitly given by

t[V] :=
⊗

v∈Vin(t)

V|In(v)| .

See Section 5.8.5 of [34]. A basisV of V induces a basist(V) of t[V] and a basisT(V) of Tns(V).
In particular, any element oft[V] can be represented as a sum of elements int(V).

2.1.2. Bisuccessors.

Definition 2.2. Let V be a vector space with a basisV.
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(a) Define a vector space

(1) Ṽ = V ⊗ (k ≺ ⊕ k ≻) ,

where we denote (ω⊗ ≺) (resp. (ω⊗ ≻)) by

ω

≺


(
resp.


ω

≻


)
, for ω ∈ V. ThenV× {≺,≻}

is a basis of̃V.
(b) For a labeledn-treeτ in T(V), defineτ̃ in Tns( Ṽ ), whereṼ is seen as an arity graded

module concentrated in arity 2, as follows:

•˜=
• whenn ≥ 2, τ̃ is obtained by replacing each decorationω ∈ Vin(τ) by


ω

∗

 :=

ω

≺

 +


ω

≻

 .

We extend this definition toTns(V) by linearity.

Definition 2.3. Let V be a vector space with a basisV. Let τ be a labeledn-tree inT(V). The
bisuccessorBSux(τ) of τ with respect to a leafx ∈ Lin(τ) is an element ofTns(Ṽ) defined by
induction onn := |Lin(τ)| as follows:

• BSux( ) = ;

• assume that BSux(τ) have been defined forτ with |Lin(τ)| ≤ k for a k ≥ 1. Then, for a
labeled (k+ 1)-treeτ ∈ T(V) with its decompositionτℓ ∨ω τr , we define

BSux(τ) = BSux(τℓ ∨ω τr) =



BSux(τℓ) ∨
ω

≺



τ̃r , x ∈ Lin(τℓ),

τ̃ℓ ∨
ω

≻



BSux(τr), x ∈ Lin(τr).

Form≥ 1, them-th iteration of BSu is denoted by BSum.

We have the following description of the bisuccessor.

Proposition 2.4. Let V be a vector space with a basisV, τ be inT(V) and x be inLin(τ). The
bisuccessorBSux(τ) of τ is obtained by relabeling each vertex ofτ according to the following
rules:

(a) we replace the labelω of each vertex on the path from the root to the leave x ofτ by

(i)

ω

≺

 if the path turns left at this vertex,

(ii)

ω

≻

 if the path turns right at this vertex,

(b) we replace the labelω of each vertex not on the path from the root to the leave x ofτ by
ω

⋆

 :=

ω

≺

 +


ω

≻

.

Proof. By induction on|Lin(τ)| ≥ 1. �
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Example 2.5.Su2
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Lemma 2.6. Let V be a vector space with a basisV, τ be a labeled n-tree inT(V) and x be in
Lin(τ). Then the following relation holds

BSuσ−1(x)(τ
σ) = BSux(τ)

σ ,∀σ ∈ Sn .

Proof. By inspection of the action of the symmetric group on a tree. �

2.1.3. Trisuccessors.

Definition 2.7. Let V be a vector space with a basisV.

(a) Define a vector space

(2) V̂ = V ⊗ ( k ≺ ⊕ k ≻ ⊕ k · ) ,

where we denote (ω⊗ ≺) (resp. (ω⊗ ≻), resp. (ω ⊗ ·)) by

ω

≺



(
resp.


ω

≻

, resp.

ω

·



)
, for

ω ∈ V. ThenV × {≺,≻, ·} is a basis of̂V.
(b) For a labeledn-treeτ in T(V), definêτ in Tns

(
V̂
)
, whereV̂ is regarded as an arity graded

module concentrated in arity 2, as follows:

•̂=
• whenn ≥ 2, τ̂ is obtained by replacing the labelω ∈ Vin(τ) of each vertex ofτ by


ω

⋆

 :=

ω

≺

 +


ω

≻

 +


ω

·

 .

We extend this definition toTns( V̂ ) by linearity.

Definition 2.8. Let V be a vector space with a basisV. Let τ be a labeledn-tree inT(V) and let
J be a nonempty subset of Lin(τ). ThetrisuccessorTSuJ(τ) of τ with respect toJ is an element
of Tns(V̂) defined by induction onn := |Lin(τ)| as follows:

• TSuJ( ) = ;
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• assume that TSuJ(τ) have been defined forτ with |Lin(τ)| ≤ k for a k ≥ 1. Then, for a
labeled (k+ 1)-treeτ ∈ T(V) with its decompositionτℓ ∨ω τr , we define

TSuJ(τ) = TSuJ(τℓ ∨ω τr) =



TSuJ(τℓ) ∨
ω

≺



τ̂r , J ⊆ Lin(τℓ),

τ̂ℓ ∨
ω

≻



TSuJ(τr), J ⊆ Lin(τr),

TSuJ∩Lin(τℓ)(τℓ) ∨
ω

·



TSuJ∩Lin(τr )(τr), otherwise.

Form≥ 1, them-th iteration of TSu is denoted by TSum.

We have the following description of the trisuccessor.

Proposition 2.9. Let V be a vector space with a basisV, τ be inT(V) and J be a nonempty
subset ofLin(τ). The trisuccessorTSuJ(τ) is obtained by relabeling each vertex ofτ according
to the following rules:

(a) we replace the labelω of each vertex on at least one of the paths from the root to the
leafs x in J by

(i)

ω

≺

 if all such paths turn left at this vertex;

(ii)

ω

≻

 if all such paths turn right at this vertex;

(iii)

ω

·

 if some of such paths turn left and some of such paths turn right at this vertex;

(b) we replace the labelω of each other vertex by

ω

⋆

 :=

ω

≺

 +


ω

≻

 +


ω

·

 .

Proof. The proof follows from the same argument as the proof of Proposition 2.4. �

Example 2.10.TSu{1,3}
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We have the following compatibility of the trisuccessor with permutations.

Lemma 2.11. Let V be a vector space with a basisV, τ be a labeled n-tree inT(V) and J be a
nonempty subset ofLin(τ). Then the following relation holds

TSuσ−1(J)(τ
σ) = TSuJ(τ)

σ ,∀σ ∈ Sn .
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2.2. The successor of a binary nonsymmetric operad.Note that the definition of the bisucces-
sor extends linearly fromT(V) toTns(V) and toTns(V̂), whenV is a linear basis ofV.

Definition 2.12. Let V be a vector space andV be a basis ofV.

(a) An element

r :=
r∑

i=1

ciτi , ci ∈ k, τi ∈ T(V),

in Tns(V) is calledhomogeneousof arity n if |Lin(τi)| = n for 1 ≤ i ≤ r.
(b) A collection of elements

rs :=
∑

i

cs,iτs,i , cs,i ∈ k, τs,i ∈ T(V), 1 ≤ s≤ k, k ≥ 1,

in Tns(V) is calledlocally homogenousif each elementrs, 1 ≤ s ≤ k, in the system is
homogeneous of a certain arityns.

Definition 2.13. LetP = Tns(V)/(R) be a binary nonsymmetric operad with a basisV of V = V2.
In this case, the space of relationsR is the vector space spanned by locally homogeneous elements
of the form

rs =
∑

i

cs,iτs,i ∈ Tns(V) , cs,i ∈ k, τs,i ∈ T(V), 1 ≤ s≤ k, k ≥ 1.

(a) Thebisuccessorof P is defined to be the binary nonsymmetric operad

BSu(P) := Tns(Ṽ)/(BSu(R)) ,

where the space of relations is the vector space spanned by

BSu(R) :=

BSux(rs) =
∑

i

cs,iBSux(τs,i)
∣∣∣∣ x ∈ Lin(τs,i), 1 ≤ s≤ k

 .

Note that, by our assumption, for a fixeds, Lin(τs,i) are the same for alli. The N-th
bisuccessor(N ≥ 2) ofP, which is denoted by BSuN(P), is defined as the bisuccessor of
the (N−1)-th bisuccessorof the operad, where thefirst bisuccessorof the operad is just
the bisuccessor of the operad.

(b) Thetrisuccessorof P is defined to be the binary nonsymmetric operad

TSu(P) := Tns(V̂)/(TSu(R)),

where the space of relations is the vector space spanned by

TSu(R) :=

TSuJ(rs) =
∑

i

cs,iTSuJ(τs,i)
∣∣∣∣ ∅ , J ⊆ Lin(τs,i), 1 ≤ s≤ k

 .

The N-th trisuccessor (N ≥ 2) of P, which is denoted by TSuN(P), is defined as the
trisuccessor of the (N − 1)-th trisuccessorof the operad, where thefirst trisuccessorof
the operad is just the trisuccessor of the operad.

Proposition 2.14. The definition of the bisuccessor (resp. the trisuccessor) of a binary non-
symmetric operad does not depend on the choice of a basis of the vector space of generating
operations.
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Proof. Let P := Tns(V̂)/(R) be a binary non-symmetric operad. This proposition is straightfor-
ward from the linearity of the successors and from the treewise tensor module structure onTns(V)
and onTns(V̂). �

We give some examples of successors.

Example 2.15.The dendriform algebra of Loday [30] is defined by two bilinear operations
{≺,≻} and relations:

(x ≺ y) ≺ z= x ≺ (y⋆ z), (x ≻ y) ≺ z= x ≻ (y ≺ z), (x⋆ y) ≻ z= x ≻ (y ≻ z),

where⋆ :=≺ + ≻. It is easy to check that the corresponding operadDend is the bisuccessor of
Ass. Similarly, the operadQuadof quadri-algebras of Aguiar and Loday [3] is the bisuccessor of
Dend. Furthermore, the operadOctoof octo-algebras of Leroux [26] is the bisuccessor ofQuad.
For N ≥ 2, theN-th power ofDenddefined in [14] is theN-th bisuccessor ofDend.

Example 2.16.Similarly, the trisuccessor ofAssis the operadTriDendof tridendriform algebras
defined by Loday and Ronco [33]. The operadEnneaof Ennea-algebras of Leroux [27] is the
trisuccessor ofTriDend. For N ≥ 2, the N-th power ofTriDend defined in [14] is theN-th
trisuccessor ofTriDend.

2.3. The successors of a binary operad.WhenV = V(2) is anS-module concentrated in arity 2,
the free operadT (V) is generated by the binary trees “in space” with vertices labeled by elements
in V. So we have to refine our arguments.

More precisely, the free operadT (V) on anS-moduleV = V(2) is given by theS-module

T (V) :=
⊕

t∈T

t[V] ,

whereT denotes the set of isomorphism classes of reduced binary trees, see Appendix C of [34],
and wheret[V] is the treewise tensorS-module associated tot. ThisS-module is explicitly given
by

t[V] :=
⊗

v∈Vin(t)

V(In(v)) ,

see Section 5.5.1 of [34]. Notice that In(v) is a set. For any finite setX of cardinaln, the definition
of V(X) is given by the following coinvariant space

V(X) :=


⊕

f :n→X

V(n)


Sn

,

where the sum is over all the bijections fromn := {1, . . . , n} toX and where the symmetric group
acts diagonally.

To represent a treet in T by a planar tree inT consists of choosing a total order on the set of
inputs of each vertex oft. We define an equivalence relation∼ onT as follows: two planar binary
trees inT are equivalent if they represent the same tree inT. It induces a bijectionT � T/ ∼.
Moreover, by Section 2.8 of [21], we havet[V] � t[V], for any planar binary treet in T which
represents the binary treet in T. Therefore, we have

T (V) �
⊕

t∈R

t[V] ,

whereR is a set of representatives ofT/ ∼.
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Example 2.17.For instance, one set of representatives ofT/ ∼ is the set of tree monomials
defined in Section 2.8 of [21]. See also Section 3.1 of [12]. Another example is a generalization
of the trees I, II and III given in Section 7.6.3 of [34].

Lemma 2.18. LetR be a set of representatives ofT/ ∼ and V= V(2) be anS-module concen-
trated in arity2, with a linear basisV. ThenR(V) := {τ ∈ t(V) | t ∈ R} is a linear basis of the
free operadT (V).

Proof. According to Section 2.1, whent is a planar binary tree,t(V) is a basis oft[V]. �

Definition 2.19. LetP = T (V)/(R) be a binary operad on theS-moduleV = V(2), concentrated
in arity 2 with ak[S2]-basisV, such thatR is spanned, as anS-module, by locally homogeneous
elements of the form

(3) R :=

rs :=
∑

i

cs,iτs,i

∣∣∣∣ cs,i ∈ k, τs,i ∈ {t(V), t ∈ R}, 1 ≤ s≤ k, k ≥ 1

 ,

whereR is a set of representatives ofT/ ∼.

(a) Thebisuccessorof P is defined to be the binary operad BSu(P) = T (Ṽ)/(BSu(R)) where
theS2-action onṼ is given by


ω

≺



(12)

:=

ω (12)

≻

 ,


ω

≻



(12)

:=

ω (12)

≺

 , ω ∈ V,

and the space of relations is generated, as anS-module, by

(4) BSu(R) :=

BSux(rs) :=
∑

i

cs,iBSux(ts,i)
∣∣∣∣ x ∈ Lin(ts,i), 1 ≤ s≤ k

 .

Note that, by our assumption, for a fixeds, Lin(ts,i) are the same for alli. The N-th
bisuccessor(N ≥ 2) ofP, which is denoted by BSuN(P), is defined as the bisuccessor of
the (N−1)-th bisuccessorof the operad, where thefirst bisuccessorof the operad is just
the bisuccessor of the operad.

(b) Thetrisuccessorof P is defined to be the binary operad TSu(P) = T (V̂)/(TSu(R)) where
theS2-action on̂V is given by


ω

≺



(12)

:=

ω (12)

≻

 ,


ω

≻



(12)

:=

ω (12)

≺

 ,


ω

·



(12)

:=

ω (12)

·

 , ω ∈ V,

and the space of relations is generated, as anS-module, by

TSu(R) :=

TSuJ(rs) :=
∑

i

cs,iTSuJ(ts,i)
∣∣∣∣ ∅ , J ⊆ Lin(ts,i), 1 ≤ s≤ k

 .

TheN-th trisuccessor(N ≥ 2) ofP is defined similarly to theN-th bisuccessor ofP.

Proposition 2.20.The bisuccessor (resp. trisuccessor) of a binary operadP = T (V)/(R) depends
neither on thek[S2]-basisV of V nor on set of representativesR of T/ ∼ .

Proof. Notice that ifV is ak[S2]-basis ofV then the setV ⊗ S2 is a linear basis ofV.
The independence with respect to the choice of ak[S2]-basis ofV is a consequence of the

linearity of the bisuccessor (resp. trisuccessor) and of the treewise tensor module structure.
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Next letV be ak[S2]-basis ofV. Let R andR′ be two sets of representatives ofT/ ∼. Let
τ in t(V ⊗ S2) and τ′ in t′(V ⊗ S2), wheret ∈ R and t′ ∈ R′, be two labeled planar binary
trees which arise from the same element inT (V), through the bijections given previously in this
section. Then, for alli ∈ Lin(τ) = Lin(τ′) (resp. for any nonempty subsetJ ⊆ Lin(τ) = Lin(τ′)),
we have BSui(τ) = BSui(τ′) (resp. TSuJ(τ) = TSuJ(τ′)). Finally, we conclude the proof using
Lemma 2.18 and the linearity of the bisuccessor (resp. trisuccessor). �

2.4. Relations with the non-symmetric framework. We denote byOp (resp. byNs Op) the
category of operads (resp. of non-symmetric operads). There is a forgetful functor

Op → Ns Op

P 7→ P ,

wherePn := P(n). In other words, we forget theSn-module structure.
This functor admits a left adjoint

Ns Op → Op

P 7→ Reg(P) ,

whereReg(P)(n) := Pn⊗k[Sn]. Such operads are calledregular operads, see [34, Section 5.8.12]
for more details. Notice that a presentation of the regular operad associated to a binary non-
symmetric operadP = Tns(V)/(R), whereTns(V) is the free non-symmetric operad onV = V(2)
andR= {Rn}n∈N, is given by

Reg(P) = T (V ⊗ k[S2])/(Rn ⊗ k[Sn], n ∈ N) .

Proposition 2.21.LetP = Tns(V)/(R) be a binary non-symmetric operad. We have

BSu(Reg(P)) � Reg(BSu(P)) .

Proof. As anS2-module, the space of generating operations ofReg(P) is spanned byV, so the
space of generating operations of BSu(Reg(P)) is spanned bỹV. As anS-module, the space
of relations ofReg(P) is spanned byR, so the space of relations of BSu(Reg(P)) is spanned by
BSu(R). �

2.5. Examples of successors.We give some examples of successors of binary operads.
Let V = V(2) be anS2-module of generating operations. Then we have

T (V)(3) = (V ⊗S2 (V ⊗ k ⊕ k ⊗ V)) ⊗S2 k[S3].

T (V)(3) can be identify with 3 copies ofV ⊗ V. We denote them byV ◦I V,V ◦II V andV ◦III V,
following the convention in [42]. Then, as a vector space,T (V)(3) is generated by elements of
the form

(5) ω ◦I ν (↔ (xω y) ν z), ω ◦II ν (↔ (yν z)ω x), ω ◦III ν (↔ (zν x)ω y),∀ω , ν ∈ V.

For an operad where the space of generatorsV is equal tok[S2] = µ.k ⊕ µ′.k with µ.(12)= µ′,
we will adopt the convention in [42, p. 129] and denote the 12 elements ofT (V)(3) byvi , 1 ≤ i ≤
12, in the following table.
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v1 µ ◦I µ↔ (xy)z v5 µ ◦III µ↔ (zx)y v9 µ ◦II µ↔ (yz)x

v2 µ′ ◦II µ↔ x(yz) v6 µ′ ◦I µ↔ z(xy) v10 µ′ ◦III µ↔ y(zx)

v3 µ′ ◦II µ
′ ↔ x(zy) v7 µ′ ◦I µ

′ ↔ z(yx) v11 µ′ ◦III µ
′ ↔ y(xz)

v4 µ ◦III µ
′ ↔ (xz)y v8 µ ◦II µ

′ ↔ (zy)x v12 µ ◦I µ
′ ↔ (yx)z

2.5.1. Examples of bisuccessors.Recall that a(left) Zinbiel algebra [30] is defined by a bilinear
operation· and a relation

(x · y+ y · x) · z= x · (y · z).

Proposition 2.22.The operad Zinb is the bisuccessor of the opeard Com.

Proof. Let ω be the generating operation of the operadCom. Set≺:=

ω

≺

 and≻:=

ω

≻

. Since


ω

≺



(12)

=


ω (12)

≻

 =


ω

≻

, we have≺(12)=≻. The space of relations ofCom is generated as anS3-

module by

v1 − v9 = ω ◦I ω − ω ◦II ω .

Then we have

BSux(v1 − v9) = z≻ (y ≻ x) − (y ≻ z+ z≻ y) ≻ x;

BSuy(v1 − v9) = z≻ (x ≻ y) − x ≻ (z≻ y);

BSuz(v1 − v9) = (x ≻ y+ y ≻ x) ≻ z− x ≻ (y ≻ z).

Replacing the operation≻ by ·, we get BSu(Com) = Zinb. �

Also recall that aright pre-Lie algebra is defined by one bilinear operation· and one relation:

(x · y) · z− x · (y · z) = (x · z) · y− x · (z · y) .

The associated operad is denoted byPreLie.

Proposition 2.23.The operad PreLie is the bisuccessor of the operad Lie.

Proof. Let µ be the generating operation of the operadLie. Set≺:=

µ

≺

 and≻:=

µ

≻

. Since


µ

≺



(12)

=


µ(12)

≻

 = −


µ

≻

, we have≺(12)= − ≻. The space of relations ofLie is generated as an

S3-module by

v1 + v5 + v9 = µ ◦I µ + µ ◦II µ + µ ◦III µ .

Then we have

BSux(v1 + v5 + v9) = (x ≺ y) ≺ z− (x ≺ z) ≺ y− x ≺ (y ≺ z− z≺ y);

BSuy(v1 + v5 + v9) = −(y ≺ x) ≺ z− y ≺ (−x ≺ z+ z≺ x) + (y ≺ z) ≺ x;

BSuz(v1 + v5 + v9) = −z≺ (−y ≺ x+ x ≺ y) + (z≺ x) ≺ y− (z≺ y) ≺ x.

Replacing the operation≺ by ·, we get BSu(Lie) = PreLie. �
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A Poisson algebrais defined to be ak-vector space with two bilinear operations{, } and◦
such that{, } is a Lie bracket and◦ is a product of commutative associative algebra, and they are
compatible in the sense that

{x, y ◦ z} = {x, y} ◦ z+ y ◦ {x, z}.

A (left) pre-Poisson algebraof Aguiar [2] is defined as two bilinear operations∗ and· such
that∗ is a product of (left) Zinbiel algebra and· is a product of (left) pre-Lie algebra and they are
compatible in the sense that

(x · y− y · x) ∗ z = x · (y ∗ z) − y ∗ (x · z),

(x ∗ y+ y ∗ x) · z = x ∗ (y · z) + y ∗ (x · z).

By a similar argument as in Proposition 2.22, we obtain

Proposition 2.24.The bisuccessor of the operad Poisson is the operad PrePoisson.

2.5.2. Examples of trisuccessors.We similarly have the following examples of trisuccessors of
operads.

Example 2.25.A commutative tridendriform algebra [32, 33] is a vector spaceA equipped
with a product≺ and a commutative associative product· satisfying the following equations:

(x ≺ y) ≺ z= x ≺ (y ≺ z+ z≺ y+ y · z),

(x · y) ≺ z= x · (y ≺ z).

Proposition 2.26.The operad ComTriDend is the trisuccessor of the operad Comm.

A PostLie algebra[41] is a vector spaceA with a product◦ and a skew-symmetric operation
[, ] satisfying the relations:

[[ x, y], z] + [[z, x], y] + [[y, z], x] = 0,

(x ◦ y) ◦ z− x ◦ (y ◦ z) − (x ◦ z) ◦ y+ x ◦ (z◦ y) − x ◦ [y, z] = 0,

[x, y] ◦ z− [x ◦ z, y] − [x, y ◦ z] = 0.

It is easy to see that if the operation [, ] happens to be trivial, then (A, ◦) becomes a pre-Lie
algebra.

Proposition 2.27.The operad PostLie is the trisuccessor of the operad Lie.

Proof. Let µ be the generating operation of the operadLie. Set≺:=

µ

≺

, ≻:=

µ

≻

 and· :=

µ

·

. Since


µ

≺



(12)

=


µ(12)

≻

 = −


µ

≻

 and

µ

·



(12)

=


µ(12)

·

 = −


µ

·

, we have≺(12)= − ≻ and·(12) = − ·. The space of

relations ofLie is generated as anS3-module by

v1 + v5 + v9 = µ ◦I µ + µ ◦II µ + µ ◦III µ .
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Then we have

TSu{x}(v1 + v5 + v9) = (x ≺ y) ≺ z− (x ≺ z) ≺ y− x ≺ (y ≺ z− z≺ y+ y · z);

TSu{y}(v1 + v5 + v9) = −(y ≺ x) ≺ z− y ≺ (−x ≺ z+ z≺ x+ z · x) + (y ≺ z) ≺ x;

TSu{z}(v1 + v5 + v9) = −z≺ (−y ≺ x+ x ≺ y+ x · y) + (z≺ x) ≺ y− (z≺ y) ≺ x;

TSu{x,y}(v1 + v5 + v9) = (x · y) ≺ z− (x ≺ z) · y− x · (y ≺ z);

TSu{y,z}(v1 + v5 + v9) = −(y ≺ x) · z− y · (z≺ x) − (y · z) ≺ x;

TSu{x,z}(v1 + v5 + v9) = −z · (x ≺ y) + (z · x) ≺ y− (z≺ y) · x;

TSu{x,y,z}(v1 + v5 + v9) = (x · y) · z+ (z · x) · y+ (y · z) · x.

Replacing the operations≺ by ◦ and· by [, ], we get TSu(Lie) = PostLie. �

2.6. Properties. We study the relationship among a binary operad, its bisuccessor and its trisuc-
cessor.

2.6.1. Operads and their successors.

Lemma 2.28.Let V be anS-module concentrated in arity2 with a linear basisV. For a labeled
planar binary n-treeτ ∈ T(V), the following equations hold inT (V):

(6)
∑

x∈Lin(τ)

BSux(τ) = τ̃,

(7)
∑

J⊆Lin(τ)

TSuJ(τ) = τ̂.

Proof. We prove Eq. (6) by induction on|Lin(τ)|. When|Lin(τ)| = 1, we have
∑

x∈Lin(τ)

BSux(τ) = τ = τ̃.

Now assume that Eq. (6) holds for allτ ∈ T(V) with Lin(τ) ≤ k for a k ≥ 1 and consider a
(k + 1)-treeτ in T(V). Sinceτ = τℓ ∨ω τr for someℓ, r ≤ k and ω ∈ V, by the definition of the
bisuccessor of a planar binary tree and the induction hypothesis, we have

∑

x∈Lin(τ)

BSux(τ) =
∑

x∈Lin(τℓ)

BSux(τℓ) ∨
ω

≺



τ̃r + τ̃ℓ ∨
ω

≻



∑

x∈Lin(τr )

BSux(τr)

= τ̃ℓ ∨
ω

≺



τ̃r + τ̃ℓ ∨
ω

≻



τ̃r

= τ̃ℓ ∨
ω

∗



τ̃r

= τ̃.

This completes the induction. The proof of Eq. (7) is similar. �

Proposition 2.29.LetP = T (V)/(R) be a binary operad.
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(a) There is a morphism of operads fromP to BSu(P) which extends the linear map from V
to Ṽ defined by

(8) ω 7→


ω

⋆

 , ω ∈ V .

(b) There is a morphism of operads fromP to TSu(P) which extends the linear map from V
to V̂ defined by

(9) ω 7→


ω

⋆

 , ω ∈ V .

(c) There is a morphism of operads fromP to TSu(P) which extends the linear map from V
to V̂ defined by

(10) ω 7→


ω

·

, ω ∈ V.

Proof. We assume thatR is given by Eq. (3).
(a) It is easy to see that the linear map defined in Eq. (8) isS2-equivariant so it induces a morphism
of operads fromT (V) to BSu(P). Moreover, by Lemma 2.28, Eq. (6) holds. Hence we have

∑

i

cs,i τ̃s,i =
∑

i

∑

x∈Lin(τs,i )

cs,iBSux(τs,i), 1 ≤ s≤ k.

SinceLs := Lin(τs,i) does not depend oni, we have

∑

i

cs,i τ̃s,i =
∑

x∈Ls

BSux


∑

i

cs,iτs,i

 = 0, 1 ≤ s≤ k.

This completes the proof.
(b) The proof is similar to the proof of Item (a).
(c) It is easy to see that the linear map defined in Eq. (10) isS2-equivariant so it induces a mor-
phism of operads fromT (V) to TSu(P). Moreover, by the definition of a trisuccessor the follo-
wing equations hold: ∑

i

cs,iTSuLin(τs,i )(τs,i) = 0, 1 ≤ s≤ k.

Note that the labeled tree TSuLin(τs,i )(τs,i) is obtained by replacing the label of each vertex ofτs,i,

sayω , by

ω

·

. Hence the conclusion holds. �

If we takeP to be the operad of associative algebras then we obtain the following results of
Loday [30] and Loday and Ronco [33]:

Corollary 2.30. (a) Let (A,≺,≻) be a dendriform dialgebra. Then the operation∗ :=≺ + ≻
makes A into an associative algebra.

(b) Let (A,≺,≻, ·) be a dendriform trialgebra. Then the operation⋆ := ≺ + ≻ + · makes A
into an associative algebra.

(c) Let (A,≺,≻, ·) be a dendriform trialgebra. Then(A, ·) carries an associative algebra
structure.
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2.6.2. Relationship between the bisuccessor and trisuccessor of abinary operad.

Lemma 2.31.Letτ be a labeled n-tree inT(V). If the operations

{
ω

·



∣∣∣∣ω ∈ V

}
are trivial, then

for any x∈ Lin(τ), we have

TSu{x}(τ) = BSux(τ) in T (V̂) .

Proof. There is only one path from the root to the the leafs in{x} of τ. So, by Proposition 2.4

and by Proposition 2.9, if the operations

{
ω

·



∣∣∣∣ω ∈ V

}
are trivial then the bisuccessor and the

trisuccessor with respect tox coincide. �

The following results relate the bisuccessor and the trisuccessor of a binary algebraic operad.

Proposition 2.32.LetP = T (V)/(R) be a binary algebraic operad.

(a) If the operations

{
ω

·



∣∣∣∣ω ∈ V

}
are trivial, then there is a morphism of operads from

BSu(P) to TSu(P) that extends the inclusion of̃V in V̂.
(b) There is a morphism of operads fromTSu(P) to BSu(P) that extends the linear map

defined by

(11)

ω

≺

 7→


ω

≺

,


ω

≻

 7→


ω

≻

,


ω

·

 7→ 0, ω ∈ V .

Proof. We assume thatR is given by Eq. (3).
(a) The inclusioñV ֒→ V̂ is S2-equivariant. So it induces a morphism of operads fromT (V) to
TSu(P) whose kernel is the ideal generated by BSu(R) following Lemma 2.31.

(b) The linear map defined by Eq. (11) isS2-equivariant. Hence it induces a morphism of operads

ϕ : TSu(P)→ BSu(P), andϕ

(
ω

⋆



)
=


ω

∗

 . Then, we have

ϕ(TSu{x}(τs,i)) = BSux(τs,i) , ∀x ∈ Lin(τs,i)

and
ϕ(TSu{J}(τs,i)) = 0 , ∀J ⊆ Lin(τs,i), |J| > 1 .

�

If we takeP to be the operad of associative algebras, then we obtain the following results of
Loday and Ronco [33]:

Corollary 2.33. (a) Let (A,≺,≻, ·) be a dendriform trialgebra. If the operation· is trivial,
then(A,≺,≻) becomes a dendriform dialgebra.

(b) Let (A,≺,≻) be a dendriform dialgebra. Then(A,≺,≻, 0) carries a dendriform trialgebra
structure, where 0 denotes the trivial product.

3. Bisuccessors, trisuccessors and Manin black product

We now identify the bisuccessor (resp. trisuccessor) of a binary quadratic operadP with the
Manin black product ofPreLie(resp.PostLie) with P.
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Definition 3.1. ([17, 42]) LetP = T (V)/(R) andQ = T (W)/(S) be two binary quadratic operads
with finite-dimensional generating spaces. Define theirManin black product by the formula

P • Q := T (V ⊗W⊗ k ·sgn
S2

)/(Ψ(R⊗ S)) ,

whereΨ is defined in Section 4.3 of [42].

According to Proposition 25 of [42], notice that the Manin black product is symmetric and
associative. Moreover, it is a bifunctor.

3.1. Bisuccessors as the Manin black product byPreLie.

Theorem 3.2.LetP be a binary quadratic operad. We have the isomorphism of operads

BSu(P) � PreLie• P.

Proof. Denote the generating operation ofPreLie by µ and continue with the notationsvi , 1 ≤
i ≤ 12, of the table given in Section 2.5 withω = ν = µ. The space of relations ofPreLie is
generated as a vector space byvi − vi+1 + vi+2 − vi+3, i = 1, 5, 9.

We define an isomorphism ofS2-modules by

(12)
η : PreLie(2)⊗ P(2)⊗ k.sgn

S2
→ BSu(P)(2)

µ ⊗ ω ⊗ 1 7→


ω

≺

 ,

which induces an isomorphism ofS3-modules:

η̄ : 3(PreLie(2)⊗ P(2)⊗ k.sgn
S2

)⊗2→ 3BSu(P)⊗2.

Then we just need to prove that, for every relationγ of R, we have

(13) η̄(Ψ((v1 − v2 + v3 − v4) ⊗ γ)) = BSux(γ),

η̄(Ψ((v5 − v6 + v7 − v8) ⊗ γ)) = BSuz(γ),

η̄(Ψ((v9 − v10 + v11 − v12) ⊗ γ)) = BSuy(γ).

If Eq. (13) holds, by lemma 2.6, we have

η̄(Ψ((v5 − v6 + v7 − v8) ⊗ γ)) = η̄(Ψ((v1 − v2 + v3 − v4) ⊗ γ
σ−1

1 )σ1) = BSuz(γ)

and
η̄(Ψ((v9 − v10 + v11 − v12) ⊗ γ)) = η̄(Ψ((v1 − v2 + v3 − v4) ⊗ γ

σ−1
2 )σ2) = BSuy(γ),

for every relationγ of R, whereσ1 = (132), σ2 = (123). Thus we only need to prove Eq. (13) for
everyγ ∈ T (V)(3).

By the remark at the beginning of Section 2.5, we only need to prove Eq. (13) for everyγ ∈
T (V)(3) in Eq. (5). To do this, we notice that, for allω and ν in V, we have

BSux(ω ◦I ν ) =

ω

≺

 ◦I


ν

≺

,

BSux(ω ◦II ν ) =

ω

≻

 ◦II


ν

⋆

,

BSux(ω ◦III ν ) =

ω

≺

 ◦III


ν

≻

.
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Then we obtain

η̄(Ψ((v1 − v2 + v3 − v4) ⊗ (ω ◦I ν ))) = η̄(Ψ((µ ◦I µ) ⊗ (ω ◦I ν )))

= η̄((µ ⊗ ω ⊗ 1) ◦I (µ ⊗ ν ⊗ 1))

=


ω

≺

 ◦I


ν

≺



= BSux(ω ◦I ν ).

In the same way, we prove that Eq. (13) holds for the monomialsω ◦II ν and ω ◦III ν . So, we
conclude with

η̄(Ψ((v1 − v2 + v3 − v4) ⊗ γ))

= η̄(Ψ((v1 − v2 + v3 − v4) ⊗ µ ◦I µ − µ
′ ◦II µ + µ

′ ◦II µ
′ − µ ◦III µ

′))

= BSux(γ) .

�

Repeated application of the theorem gives BSu2(P) � PreLie•PreLie•P and, more generally,
BSun(P) � PreLie•n•P. Thus we have an action ofS2 on BSu2(P) by exchanging the twoPreLie
factors and, more generally, an action ofSn on BSun(P) by exchanging then PreLiefactors. See
Section 6 for symmetries on more general operads.

In the nonsymmetric framework, the analogue of Theorem 3.2 is the following result.

Theorem 3.3. LetP be a binary quadratic nonsymmetric operad. There is an isomorphism of
nonsymmetric operads

BSu(P) � Dend� P ,

where� denotes the black square product in[14, 42].

Proof. The proof is similar to the proof of Theorem 3.2. �

Remark 3.4. Note that Theorem 3.2 gives a convenient way to compute the black Manin product
of a binary operad with the operadPreLie, as we can see from the following corollary. Further
examples are given in the Appendix.

Corollary 3.5. (a) ([42]) We have PreLie•Com= Zinb and PreLie• Ass= Dend.
(b) ([40]) We have PreLie• Poisson= PrePoisson.

Proof. Item (a) follows from Proposition 2.22 and Theorem 3.2 whileItem (b) follows from
Proposition 2.24 and Theorem 3.2. �

Remark 3.6. Note that the Manin black product does not commute with the functor of regular-
ization, defined in Section 2.4, whereas the bisuccessor does, according to Proposition 2.21.

3.2. Trisuccessors and Manin black product byPostLie.

Theorem 3.7.LetP be a binary quadratic operad. We have the isomorphism of operads

TSu(P) � PostLie• P.

Remark 3.8. As in the case of bisuccessors, Theorem 3.7 makes it easy to compute the black
Manin product ofPostLiewith any binary operadP. Others examples are given in the Appendix.
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Proof. The sketch of this proof is similar to the one of the proof of Theorem 3.2.
Denote the generating operations [, ] and◦ of PostLieby β andǫ respectively. Thenβ′ = −β. The
space of relations ofPostLieis generated as a vector space by

β ◦I β + β ◦II β + β ◦III β ,

ǫ ◦I ǫ − ǫ
′ ◦II ǫ + ǫ

′ ◦II ǫ
′ − ǫ′ ◦II β − ǫ ◦III ǫ

′ ,

ǫ ◦I β − β ◦III ǫ
′ + β ◦II ǫ ,

(14) ǫ ◦I ǫ
′ − ǫ′ ◦III ǫ

′ − ǫ ◦II ǫ + ǫ
′ ◦III ǫ + ǫ

′ ◦III β , notag

ǫ ◦II ǫ
′ − ǫ′ ◦I ǫ

′ − ǫ ◦III ǫ + ǫ
′ ◦I ǫ − ǫ

′ ◦I β ,

− ǫ ◦II β − β ◦III ǫ + β ◦I ǫ
′ ,

and
− ǫ ◦III β − β ◦I ǫ + β ◦II ǫ

′ .

We define an isomorphism ofS2-modules by

(15)

η : PostLie(2)⊗ P(2)⊗ k.sgn
S2
→ TSu(P)(2)

β ⊗ ω ⊗ 1 7→


ω

·



ǫ ⊗ ω ⊗ 1 7→


ω

≺



which induces an isomorphism ofS3-modules:

η̄ : 3(PostLie(2)⊗ P(2)⊗ k.sgn
S2

)⊗2→ 3TSu(P)⊗2.

Then we just need to prove that, for every relationγ of P, we have

(16) η̄(Ψ((β ◦I β + β ◦II β + β ◦III β) ⊗ γ)) = TSu{x,y,z}(γ),

(17) η̄(Ψ((ǫ ◦I ǫ − ǫ
′ ◦II ǫ + ǫ

′ ◦II ǫ
′ − ǫ′ ◦II β − ǫ ◦III ǫ

′) ⊗ γ)) = TSu{x}(γ),

η̄(Ψ((ǫ ◦I ǫ
′ − ǫ′ ◦III ǫ

′ − ǫ ◦II ǫ + ǫ
′ ◦III ǫ + ǫ

′ ◦III β) ⊗ γ)) = TSu{y}(γ),

η̄(Ψ((ǫ ◦II ǫ
′ − ǫ′ ◦I ǫ

′ − ǫ ◦III ǫ + ǫ
′ ◦I ǫ − ǫ

′ ◦I β) ⊗ γ)) = TSu{z}(γ),

(18) η̄(Ψ((ǫ ◦I β − β ◦III ǫ
′ + β ◦II ǫ) ⊗ γ)) = TSu{x,y}(γ).

η̄(Ψ((−ǫ ◦II β − β ◦III ǫ + β ◦I ǫ
′) ⊗ γ)) = TSu{y,z}(γ).

η̄(Ψ((−ǫ ◦III β − β ◦I ǫ + β ◦II ǫ
′) ⊗ γ)) = TSu{x,z}(γ).

By Lemma 2.11, the same argument as in the preLie case impliesthat we just need to prove
Eq. (16), Eq. (17) and Eq. (18).

By Section 2.5, we only need to prove Eq. (13) for everyγ ∈ T (V)(3) in Eq. (5). To do this,
we notice that, for allω and ν in V, we have

TSu{x}(ω ◦I ν ) =

ω

≺

 ◦I


ν

≺

, TSu{x,y}(ω ◦I ν ) =

ω

≺

 ◦I


ν

·

, TSu{x,y,z}(ω ◦I ν ) =

ω

·

 ◦I


ν

·

,

TSu{x}(ω ◦II ν ) =

ω

≻

 ◦II


ν

⋆

, TSu{x,y}(ω ◦II ν ) =

ω

·

 ◦II


ν

≺

, TSu{x,y,z}(ω ◦II ν ) =

ω

·

 ◦II


ν

·

,
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TSu{x}(ω ◦III ν ) =

ω

≺

 ◦III


ν

≻

, TSu{x,y}(ω ◦III ν ) =

ω

·

 ◦III


ν

≻

, TSu{x,y,z}(ω ◦III ν ) =

ω

·

 ◦III


ν

·

.

Then, we have

• η̄(Ψ((β ◦I β + β ◦II β + β ◦III β) ⊗ (ω ◦I ν ))) = TSu{x,y,z}(ω ◦I ν ) ,
• η̄(Ψ((ǫ ◦I ǫ − ǫ

′ ◦II ǫ + ǫ
′ ◦II ǫ

′ − ǫ′ ◦II β − ǫ ◦III ǫ
′) ⊗ (ω ◦I ν ))) = TSu{x}(ω ◦I ν ) ,

• η̄(Ψ((ǫ ◦I β − β ◦III ǫ
′ + β ◦II ǫ) ⊗ (ω ◦I ν ))) = TSu{x,y}(ω ◦I ν ) .

In the same way, we prove that the equations (16), (17) and (18) hold for the monomialsω ◦II ν

andω ◦III ν . This completes the proof. �

Remark 3.9. Theorem 3.2 can be proved in a different way, from Theorem 3.7, using the follow-
ing commutative diagram:

TSu(P) � //

��

PostLie• P

��
BSu(P) // PreLie• P .

The two vertical morphisms are surjective. And, one can see that the top isomorphism preserves
their kernels. Then, the bottom map turns out to be an isomorphism.

Corollary 3.10. We have PostLie• Ass= TriDend.

Proposition 3.11. The trisuccessor of the operad PreLie is the operad encodingthe following
algebraic structure:

(x ≺ y) ≺ z− x ≺ (y⋆ z) = (x ≺ z) ≺ y− x ≺ (z⋆ y),

(x ≻ y) ≺ z− x ≻ (y ≺ z) = (x⋆ z) ≻ y− x ≻ (z≻ y),

(x · y) ≺ z− x · (y ≺ z) = (x ≺ z) · y− x · (z≻ y),

(x ≻ y) · z− x ≻ (y · z) = (x ≻ z) · y− x ≻ (z · y),

(x · y) · z− x · (y · z) = (x · z) · y− x · (z · y),

where x⋆ y = x ≺ y+ x ≻ y+ x · y. It is also the bisuccessor of the operad PostLie.

The analogue of Theorem 3.7 in the nonsymmetric framework isthe following result that can
be proved by a similar argument.

Theorem 3.12.LetP be a binary quadratic nonsymmetric operad. There is an isomorphism of
nonsymmetric operads

TSu(P) � TriDend� P .

4. Algebraic structures on square matrices

We know that the vector space of squaren-matrices, forn ≥ 1, with coefficients in a commu-
tative algebra carries a structure of an associative algebra. Naturally, one wonders what happens
when the space of coefficients is endowed with another algebraic structure. We address this ques-
tion in this section.
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Proposition 4.1. LetP be an operad and let A be aP-algebra. Then, the vector spaceMn(A),
for n ≥ 1, of (n×n)-matrices with coefficients in A, carries a canonicalP-algebra structure given
by the family of mapsαm : Pm→ Hom(Mn(A)⊗m,Mn(A)) defined by

αm(µ)(M1 ⊗ . . . ⊗ Mm)i, j :=
m∑

k1,...,km−1

αA(µ)(M1
i,k1
, . . . ,Mm

km−1, j) ,∀1 ≤ i, j ≤ n,∀m≥ 0 ,

whereαA : P → EndA is the structure ofP-algebra on A.

Proof. We denoteαm(µ) by µ. Let µ ⊗ ν1 ⊗ . . . ⊗ νd be in P(d) ⊗ P(c1) ⊗ . . . ⊗ P(cd), with
c1 + . . . + cd = m, and letM1, . . . ,Mm be inMn(A). We have

µ(ν1(M
1, . . . ,Mc1), . . . , νd(M

., . . . ,Mm))i, j

=

n∑

k1,...,kd−1=1

n∑

l11,...,l
1
c1−1=1

. . .

n∑

ld1,...,l
d
cd−1=1

αA(µ)(αA(ν1)(M
1
i,l11
, . . . ,Mc1

l1c1−1,k1
), . . . , αA(νd)(M

.

kd−1,ld1
, . . . ,Mm

ldcd−1
))

=

n∑

k1,...,kd−1=1

n∑

l11,...,l
1
c1−1=1

. . .

n∑

ld1,...,l
d
cd−1=1

γP(µ; ν1, . . . , νd)(M
1
i,l11
, . . . ,Mc1

l1c1−1,k1
, . . . ,M.

kd−1,ld1
, . . . ,Mm

ldcd−1
)

= γP(µ; ν1, . . . , νd)(M
1, . . . ,Md)i, j ,∀1 ≤ i, j ≤ n,

whereγP = γP denotes the composition maps. So, these maps endowMn(A) with aP-algebra
structure. �

Now, we have to describe the operadP. For instance, sinceCom= As, we recover the classical
associative structure of the space of matrices with coefficients in a commutative algebra. More-
over, in [38] and in [7], and in [11], the authors prove respectively that the non-symmetric operads
Lie andPreLieare free. Thus, on the space of matrices with coefficients in a Lie algebra (resp.
preLie algebra), there is, in general, no relations among the operations defined in Proposition 4.1.

It is a non-trivial problem to describe the non-symmetric operadP associated to a symmetric
operadP. However, whenP turns out to be the bisuccessor of a convenient operad, we have the
following result.

Theorem 4.2. Let P be a non-symmetric binary operad andO be a symmetric binary operad.
And let A be an algebra overBSuk(O), for k ≥ 0. Any morphism from Reg(P) to O induces a
morphism of non-symmetric operads

BSuk(P)→ BSuk(O) ,

which endowsMn(A), for n≥ 1, with aBSuk(P)-algebra structure.

Proof. Let A be an algebra over BSuk(O). By Proposition 4.1,Mn(A) carries a structure of an

algebra overBSuk(O). By functoriality of the bisuccessor, a morphism fromReg(P) to O gives
rise to a morphism from BSuk(Reg(P)) to BSuk(O). Then, the following composite induces a
BSuk(P)-algebra structure onMn(A):

BSuk(P)→ Reg(BSuk(P)) � BSuk(Reg(P))→ BSuk(O) ,

where the left hand-side map is given by the unit of the adjunction between the forgetful and the
regularization functors and where the isomorphism is a consequence of Proposition 2.21. �
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Corollary 4.3. Let A be an algebra overBSuk(Com), k ≥ 0. ThenMn(A), n ≥ 1, carries a
functorial structure of algebra over Dend�k.

More precisely, this structure is given by the following generating operations

∗(i1,...,ik) :Mn(A) ⊗Mn(A) →Mn(A) ,

with (i1, . . . , ik) ∈ {0, 1}k, defined by

(M ∗(i1,...,ik) N)i, j :=
n∑

l=1

Mi,l ⋆(i1,...,ik) Nl, j ,

where{⋆(i1,...,ik)}(i1,...,ik)∈{0,1}k denotes the set of generating operations ofBSuk(Com).
In particular, these operations satisfy

t(M ∗(i1,...,ik) N) = tN ∗(1−i1,...,1−ik)
tM , ∀(i1, . . . , ik) ∈ {0, 1}

k,∀M,N ∈ Mn(A) .

Proof. Applying Theorem 4.2, sinceCom = As, Mn(A) carries a structure of algebra over
BSuk(As), which is isomorphic toDend�k

� As= Dend�k, by Theorem 3.3.
We denote by⋆ and∗ the generating operation of the operadComandAs respectively. Then,

the space of generating operations of BSuk(Com) and of BSuk(As) are respectively spanned by

⋆(i1,...,ik) := ⋆ ⊗ µ1 ⊗ . . . ⊗ µk

and by
∗(i1,...,ik) := ∗ ⊗ µ1 ⊗ . . . ⊗ µk ,

with i l = 0 if µ j =≺ andi l = 1 if µ j =≻. When we make explicit the composite of the maps given
in Proposition 4.1 and in the proof of Theorem 4.2 on the spaceof generating operations, we have

BSuk(As)2 → Hom(Mn(A)⊗2,Mn(A))

∗(i1,...,ik) 7→ ∗(i1,...,ik) : M ⊗ N 7→


n∑

l=1

Mi,l ⋆(i1,...,ik) Nl, j


1≤i, j≤n

.

The last result is a consequence of theS2-action on the space of generating operations of the
operad BSuk(Com), that is

⋆
(12)
(i1,...,ik) = ⋆(1−i1,...,1−ik) .

�

Notice that fork = 1, according to Proposition 2.22, the space of matrices withcoefficients in
an Zinbiel algebra (A, �) carries a natural structure of dendriform algebra given bythe following
operations

M ⊳ N =


n∑

l=1

Mi,l � Nl, j


1≤i, j≤n

and

M ⊲ N =


n∑

l=1

Nl, j � Mi,l


1≤i, j≤n

.

Further, these operations satisfy
t(M ⊳ N) = tN ⊲ tM .

It would be interesting to add the transpose to the generating operations ofDend�k and to study
this operad.
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5. Bisuccessors, trisuccessors and Rota-Baxter operators on operads

In this section we establish the relationship between the bisuccessor (resp. the trisuccessor)
of an operad and the action of the Rota-Baxter operator of weight zero (resp. non-zero weight)
on this operad. We work with (symmetric) operads, but all theresults hold for nonsymmetric
operads as well.

5.1. Bisuccessors and Rota-Baxter operators of weight zero.

Definition 5.1. Let V = V(2) be anS-module concentrated in arity 2.

(a) LetVP be theS-module concentrated in arity 1 and arity 2, defined byVP(1) = spank(P)
andVP(2) = V, whereP is a symbol. ThenT (VP) is the free operad generated by binary
operationsV and a unary operationP , id.

(b) DefineṼ by Eq. (1), regarded as anS-module concentrated in arity 2. Define a morphism
of S-modules from̃V toT (VP) by the following correspondence:

ξ :

ω

≺

 7→ ω ◦ (id ⊗ P),

ω

≻

 7→ ω ◦ (P⊗ id),

where◦ is the operadic composition. By universality of the free operad, ξ induces a
homomorphism of operads that we still denote byξ:

ξ : T (Ṽ)→ T (VP).

(c) LetP = T (V)/(RP) be a binary operad defined by generating operationsV and relations
RP. Then we define theoperad of Rota-BaxterP-algebra of weight zeroby

RB0(P) := T (VP)/ (RP,RBP) ,

where

RBP := {ω ◦ (P⊗ P) − P ◦ ω ◦ (P⊗ id) − P ◦ ω ◦ (id ⊗ P) | ω ∈ V}.

We denote byp1 : T (VP)→ RB0(P) the operadic projection.

Interpreting Theorem 4.2 of [40] at the level of operads, forany binary quadratic operad

P = T (V)/(R) ,

there is a morphism of operads

PreLie• P → RB0(P) ,

defined by the following map

PreLie(2)⊗ P(2) → RB0(P)

µ ⊗ ω 7→ ω ◦ (id ⊗ P)

µ′ ⊗ ω 7→ ω ◦ (P⊗ id) ,
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whereµ denotes the generating operation of the operadPreLie. By Theorem 3.2, this induces the
following morphism of operads

BSu(P) → RB0(P)

ω

≺

 7→ ω ◦ (id ⊗ P)

ω

≻

 7→ ω ◦ (P⊗ id) .

If we takeP to be the operad of associative algebras or the operad of Poisson algebras then we
obtain the following results of Aguiar [2]:

Corollary 5.2. (a) Let (A, ◦) be an associative algebra and let P: A→ A be a Rota-Baxter
operator of weight zero. Define two bilinear products on A by

x ≺ y := x ◦ P(y), x ≻ y := P(x) ◦ y, x, y ∈ A.

Then(A,≺,≻) becomes a dendriform dialgebra.
(b) Let (A, ◦, { , }) be a Poisson algebra and let P: A → A be a Rota-Baxter operator of

weight zero. Define two bilinear products on A by

x · y := P(x) ◦ y, x ∗ y := x ◦ P(y), x, y ∈ A.

Then(A, ·, ∗) becomes a pre-Poisson algebra.

5.2. Trisuccessors and Rota-Baxter operators of non-zero weight. In this section, we esta-
blish a relationship between the trisuccessor of an operad and Rota-Baxter operators of a non-zero
weight on this operad. For simplicity, we assume that the weight of the Rota-Baxter operator is
one.

Definition 5.3. Let V = V(2) be anS-module concentrated in arity 2.

(a) DefineV̂ by Eq. (2), seen as anS-module concentrated in arity 2. Define a morphism of
S-modules from̂V toT (VP) by the following correspondence:

η :

ω

≺

 7→ ω ◦ (id ⊗ P),

ω

≻

 7→ ω ◦ (P⊗ id),

ω

·

 7→ ω ,

where◦ is the operadic composition. By universality of the free operad, η induces a
homomorphism of operads:

η : T (V̂)→ T (VP).

(b) LetP = T (V)/(RP) be a binary operad defined by generating operationsV and relations
RP. Then we define theoperad of Rota-BaxterP-algebra of weight oneby

RB1(P) := T (VP)/ (RP,RBP) ,

where

RBP := {ω ◦ (P⊗ P) − P ◦ ω ◦ (P⊗ id) − P ◦ ω ◦ (id ⊗ P) − P ◦ ω | ω ∈ V}.

We denote byp1 : T (VP)→ RB1(P) the operadic projection.

Theorem 5.4.LetP be a binary quadratic operad.
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(a) There is a morphism of operads

PostLie• P � TSu(P)→ RB1(P) ,

which extends the mapη given in Definition 5.3.
(b) Let A be aP-algebra. Let P: A→ A be a Rota-Baxter operator of weight one. Then the

following operations make A into a(PostLie• P)-algebra:

x ≺ j y := x ◦ j P(y), x ≻ j y := P(x) ◦ j y, x · j y := x ◦ j y, ∀◦ j ∈ P(2), x, y ∈ A.

Proof. (a) First, we prove by induction on|Lin(τ)| ≥ 1 the following technical results hold
for anyτ ∈ T(V) with Lin(τ) = n:
(i) We have

(19) P ◦ η(̃τ) ≡ τ ◦ P⊗n mod (RP,RBP) .

(ii) For ∅ , J ⊆ Lin(τ) with |Lin(τ)| = n, let P⊗n,J denote then-th tensor power ofP but
with the component fromJ replaced by the identity map. So, for example, denoting
the two inputs ofP⊗2 by x1 andx2, thenP⊗2,{x1} = P⊗ id andP⊗2,{x1,x2} = id⊗ id. Then
we have

(20) η(TSuJ(τ)) ≡ τ ◦ (P⊗n,J) mod (RP,RBP) .

Let RTSu(P) be the relation space of TSu(P). By definition, the relations of TSu(P) are
generated by TSuJ(r) for locally homogeneousr =

∑
i ciτi ∈ RP, where∅ , J ⊆ Lin(τi),

the latter independent of the choice ofi. By the aforementioned results in Eqs. (19) and
(20), we have

η


∑

i

ciTSuJ(τi)

 =
∑

i

ciη(TSuJ(τi)) =
∑

i

ciτi ◦P⊗n,J =


∑

i

ciτi

◦P⊗n,J = 0 mod (RP,RBP) .

Henceη(RTSu(P)) ⊆ (RP,RBP) andη induces a morphism of operads

η̄ : TSu(P)→ RB1(P) .

(b) It is the interpretation at the level of algebras of the morphism

PostLie• P → RB1(P) .

�

If we takeP to be the operadAss, resp. the operadDend, then we derive the results [13, 14]
that a Rota-Baxter operator on an associative algebra (resp. on a dendriform algebra) gives a
tridendriform algebra by Corollary 3.10 (resp. an algebra over the operadPostLie•Dend).

6. A symmetric property of successors

There are symmetries in the iterations of successors. The first instances of such phenom-
ena were discovered in quadri-algebras [3] and then in enneaalgebras [27]. These instances
were shown to also follow from symmetries of black square powers of binary quadratic non-
symmetric operads [14]. Similar symmetries were recently found in operads, such as those from
L-dendriform algebras [6] and L-quadri-algebras [28]. This time the symmetries can also be de-
rived from symmetries of Manin products of binary quadraticoperads, as we can see in Section 3.
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We now show that a symmetry hold for the iterated successors of any binary operad without the
quadratic condition.

6.1. A symmetric property of bisuccessors.

Definition 6.1. Let V be a vector space andn ≥ 1.
(a) We define the vector spaceV∼n by

V∼n := V ⊗ (k ≺ ⊕ k ≻)⊗n .

The vector spaceV∼n is generated by elements of the formω ⊗ µ1 ⊗ . . .⊗ µn with ω ∈ V
andµi ∈ {≺ , ≻}. It is obtained by iteration of̃ defined by Eq. (1).

(b) Letσ be inSn. We define the mapφσ : T (V∼n) → T (V∼n) to be the unique morphism of
operads which extends the following morphism ofS-modules

V∼n → T (V∼n)

ω ⊗ µ1 ⊗ . . . ⊗ µn 7→ ω ⊗ µσ(1) ⊗ . . . ⊗ µσ(n) .

Theorem 6.2. LetP = T (V)/(R) be a binary operad. For anyσ in Sn, there exists an automor-
phismΦσ of the operadBSun(P). This induces a morphism of groups

Sn → Aut(BSun(P)) .

Proof. Using the interpretation of the bisuccessor given in Proposition 2.4, when we compute the
bisuccessor of a labeled treeτ in T (V) we do not change the underlying tree but only the labels
of the vertices. So, by symmetry and by associativity of the tensor product, we have

BSuiσ(1) . . .BSuiσ(n)(τ) = φσ(BSui1 . . .BSuin(τ)) ,

whereσ ∈ Sn and wherei1, . . . , in ∈ Lin(τ) are not necessarily distinct.
Assume thatR is given by Eq. (3). Then we obtain

φσ(BSun(R)) =


∑

j

cs,iφσ(BSui1 . . .BSuin(τs, j))
∣∣∣∣ i1, ..., in ∈ Lin(τs, j), 1 ≤ s≤ k,

 = BSun(R).

Thus the compositeV∼n φσ
→ T (V∼n) ։ BSun(P) induces a morphismΦσ : BSun(P) → BSun(P).

Also, by definition, we have
φσφσ′ = φσσ′ ,∀σ, σ

′ ∈ Sn .

We deduce from this the rest of the theorem. �

WhenP is taken to beAss, the involutionΦ(12) : BSu(P) → BSu(P) of Theorem 6.2 gives the
following result of Aguiar and Loday [3]:

Corollary 6.3. Let(A,տ,ւ,ր,ց), be a quadri-algebra. Then its transpose(A,տt,ւt,րt,ցt)
is also a quadri-algebra, where

տt:=տ, ւt:=ր, րt:=ւ, ցt:=ց .

Proof. This is clear since, in terms of bisuccessors, we haveQuadri = BSu2(Ass) by Exam-
ple 2.15 and

տ=



ω

≺

≺


, ւ=



ω

≺

≻


, ր=



ω

≻

≺


, ց=



ω

≻

≻


,
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whereω denotes the binary operation of associative algebras. �

Next, we provide an example of symmetric property when the double bisuccessor functor is
applied to a non-quadratic operad, namely, the operad of Jordan algebra.

Definition 6.4. Assume that the characteristic ofk is neither two nor three.
(a) A Jordan algebra [23] is defined by one bilinear operation◦ and relation:

((x◦ y)◦u)◦ z+ ((y◦ z)◦u)◦ x+ ((z◦ x)◦u)◦ y = (x◦ y)◦ (u◦ z)+ (y◦ z)◦ (u◦ x)+ (z◦ x)◦ (u◦ y).

(b) A pre-Jordan algebra [22] is defined by one bilinear operation· and relations

(x⊙ y) · (z · u) + (y⊙ z) · (x · u) + (z⊙ x) · (y · u)

= z · ((x⊙ y) · u) + x · ((y⊙ z) · u) + y · ((z⊙ x) · u),

x · (y · (z · u)) + z · (y · (x · u)) + ((x⊙ z) ⊙ y) · u

= z · ((x⊙ y) · u) + x · ((y⊙ z) · u) + y · ((z⊙ x) · u),

wherex⊙ y := x · y+ y · x.

It is easy to obtain the following conclusion:

Proposition 6.5. The bisuccessor of the operad Jordan is the operad PreJordan.

Moreover, we have the following result.

Proposition 6.6. The operadBSu2(Jordan) = BSu(PreJordan) is generated by two bilinear op-
erations≺ and≻ that satisfy following relations:

(x ≺ y+ y ≻ x) ≺ (z · u) + (y ◦ z) ≻ (x ≺ u) + (z≻ x+ x ≺ z) ≺ (y · u)

= z≻ ((x ≺ y+ y ≻ x) ≺ u) + x ≺ ((y ◦ z) · u) + y ≻ ((z≻ x+ x ≺ z) ≺ u);

(x ◦ y) ≻ (z≻ u) + (y ◦ z) ≻ (x ≻ u) + (z◦ x) ≻ (y ≻ u)

= z≻ ((x ◦ y) ≻ u) + x ≻ ((y ◦ z) ≻ u) + y ≻ ((z◦ x) ≻ u);

x ≺ (y · (z · u)) + z≻ (y ≻ (x ≺ u)) + ((x ≺ z+ z≻ x) ≺ y+ y ≻ (x ≺ z+ z≻ x)) ≺ u

= z≻ ((x ≺ y+ y ≻ x) ≺ u) + x ≺ ((y ◦ z) · u) + y ≻ ((z≻ x+ x ≺ z) ≺ u);

x ≻ (y ≺ (z · u)) + z≻ (y ≺ (x · u)) + ((x ◦ z) ≻ y+ y ≺ (x ◦ z)) ≺ u

= z≻ ((x ≻ y+ y ≺ x) ≺ u) + x ≻ ((y ≺ z+ z≻ y) ≺ u) + y ≺ ((z◦ x) · u);

x ≻ (y ≻ (z≺ u)) + z≺ (y · (x · u)) + ((x ≻ z+ z≺ x) ≺ y+ y ≻ (x ≻ z+ z≺ x)) ≺ u

= z≺ ((x ◦ y) · u) + x ≻ ((y ≻ z+ z≺ y) ≺ u) + y ≻ ((z≺ x+ x ≻ z) ≺ u);

x ≻ (y ≻ (z≻ u)) + z≻ (y ≻ (x ≻ u)) + ((x ◦ z) ◦ y) ≻ u

= z≻ ((x ◦ y) ≻ u) + x ≻ ((y ◦ z) ≻ u) + y ≻ ((z◦ x) ≻ u),

where x· y := x ≺ y+ x ≻ y, x◦ y := x · y+ y · x. The operation· satisfies the relations defining a
preJordan algebra and the operation◦ satisfies the relations defining a Jordan algebra.

Proposition 6.7. The mapφ that sends≺ to ≺(12), ≺(12) to ≺ and leaves the other operations of
BSu2(Jordan) invariant induces an involution of the operadBSu2(Jordan).

Proof. It is a corollary of Theorem 6.2 with the following identifications:

≻(12)=



ω

≺

≺


, ≺(12)=



ω

≺

≻


, ≺=



ω

≻

≺


, ≻=



ω

≻

≻


,
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whereω denotes the generating operation ofJordan. �

6.2. A symmetric property of trisuccessors.

Definition 6.8. Let V be a vector space andn ≥ 1.
(a) We define the vector spaceV∧n by

V∧n := V ⊗ (k ≺ ⊕ k ≻ ⊕ k · )⊗n .

The vector spaceV∧n is generated by elements of the formω ⊗µ1⊗ . . .⊗µn, with ω ∈ V
andµi ∈ {≺ , ≻, · }. It is obtained by iteration of̂ defined in Eq. (2).

(b) Letσ be inSn. We define the mapψσ : T (V∧n) → T (V∧n) to be the unique morphism of
operads which extends which extends the following morphismof S-modules

V∧n → T (V∧n)

ω ⊗ µ1 ⊗ . . . ⊗ µn 7→ ω ⊗ µσ(1) ⊗ . . . ⊗ µσ(n) .

Theorem 6.9. LetP = T (V)/(R) be a binary operad. For anyσ in Sn, there exists an automor-
phismΨσ of the operadTSun(P). This induces a morphism of groups

Sn→ Aut(TSun(P)) .

Proof. This proof follows the same arguments as the proof of Theorem6.2. �

WhenP is taken to beAss, the involutionΨ(12) : TSu(P) → TSu(P) of Theorem 6.9 gives the
following result of Leroux [27]:

Corollary 6.10. Let(A,տ,ւ,≺,ր,ց,≻, ↑, ↓, ◦) be an ennea-algebra. Then its transpose(A,տt

,ւt,≺t,րt,ցt,≻t, ↑t, ↓t, ◦t) is also an ennea-algebra, where

տt:=տ, ւt:=ր, ≺t:=↑, րt:=ւ, ցt:=ց, ≻t:=↓, ↑t:=≺, ↓t:=≻, ◦t := ◦.

Proof. In fact, in this caseEnnea= TSu2(Ass) and in our terminology, the products ofA are
reformulated as follows:

տ=



ω

≺

≺


, ւ=



ω

≺

≻


, ≺=



ω

≺

·


, ր=



ω

≻

≺


, ց=



ω

≻

≻


, ≻=



ω

≻

·


, ↑=



ω

·

≺


, ↓=



ω

·

≻


, ◦ =



ω

·

·


,

whereω denotes the generating operation ofAss. �

Appendix: further examples of successors

This appendix is not needed in the rest of the paper. Its purpose is to provide more examples
of bisuccessors and trisuccessors.

A.1. L-quadri and L-dendriform operads. An L-dendriform algebra [6] is defined to be a
k-vector spaceA with two bilinear operations≺,≻: A⊗ A→ A that satisfy relations

(x ≺ y) ≺ z+ y ≻ (x ≺ z) = x ≺ (y · z) + (y ≻ x) ≺ z,

(x · y) ≻ z+ y ≻ (x ≻ z) = x ≻ (y ≻ z) + (y · x) ≻ z,
where· =≺ + ≻.

Proposition 6.11.The operad LDend is the bisuccessor of PreLie, equivalently

PreLie• PreLie= LDend .
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Proof. Letµ be the generating operation ofPreLie. Set≺:=

µ

≺

 and≻:=

µ

≻

. The space of relations

of PreLie is generated as anS3-module by

v1 − v2 − v12 + v11.

Note here we use the left Pre-Lie algebra. The space of relations ofLDend is generated, as an
S3-module, by

r1 : = (x ≺ y) ≺ z+ y ≻ (x ≺ z) − x ≺ (y · z) − (y ≻ x) ≺ z,

r2 : = (x · y) ≻ z+ y ≻ (x ≻ z) − x ≻ (y ≻ z) − (y · x) ≻ z.

Then we have

BSux(v1 − v2 − v12+ v11) = (x ≺ y) ≺ z− x ≺ (y ≺ z+ y ≻ z) − (y ≻ x) ≺ z+ y ≻ (x ≺ z) = r1;

BSuy(v1 − v2 − v12+ v11) = (x ≻ y) ≺ z− x ≻ (y ≺ z) − (y ≺ x) ≺ z+ y ≺ (x ≻ z+ x ≺ z) = −(12) · r1;

BSuz(v1 − v2 − v12+ v11) = (x ≻ y+ x ≺ y) ≻ z− x ≻ (y ≻ z) − (y ≺ x+ y ≻ x) ≻ z+ y ≻ (x ≻ z) = r2.

Rewriting the relations with the operations≺(12), ≻(12) and then, replacing these operations by<

and> respectively, we get BSu(PreLie) = LDend. �

An L-quadri-algebra [28] is a vector space endowed with four binary operationsւ, տ, ր
andց that satisfy the following relations

xց (yտ z) − (xց y)տ z− yտ (xր z+ xտ z+ xւ z+ xց z) + (yտ x)տ z= 0 ;

xց (yր z) − (xց y+ xւ y)ր z− yր (xց z+ xր z) + (yր x+ yտ x)ր z= 0 ;

xց (yւ z) − (xց y+ xր y)ւ z− yւ (xց z+ xւ z) + (yւ x+ yտ x)ւ z= 0 ;

xր (yւ z+ yտ z) − (xր y)տ z− yւ (xր z+ xտ z) + (yւ x)տ z= 0 ;

xց (yց z) − (xր y+ xտ y+ xւ y+ xց y)ց z

−yց (xց z) + (yր x+ yտ x+ yւ x+ yց x)ց z= 0 .

Let LQuaddenote the operad of L-quadri-algebras.

Proposition 6.12.The bisuccessor of LDend is LQuad, equivalently

PreLie•3 � LQuad.

Proof. By Theorem 3.2, the operadPreLie•n, for n ≥ 2, is given by the (n − 1)-th bisuccessor
of PreLie. By Proposition 6.11, we obtainPreLie•2 � LDend. So we just need to prove that
BSu(LDend) � LQuad.

To prove this previous statement, we continue to use the notations in Section 2.5. Let us denote
the two generating operations≺ and≻ of LDend by µ and ν respectively. Then the space of
relations ofLDendis generated as anS3-module by

r1 := µ ◦I µ + ν
′ ◦III µ

′ − µ′ ◦II µ − µ
′ ◦II ν − µ ◦I ν

′

and by

r2 := ν ◦I ν + ν ◦I µ + ν
′ ◦III ν

′ − ν′ ◦II ν − ν ◦I µ
′ − ν ◦I ν

′ .



OPERADS 29

Under the notationsտ:=

µ

≺

,ր:=

µ

≻

,ւ:=

ν

≺

 andց:=

ν

≻

, we have

BSui(r j) r1 r2

BSu1 տ ◦I(տ − ց(12))+ց(12) ◦III տ
(12) − տ(12) ◦II∗ ւ ◦I(< − >(12))+ց(12) ◦III ւ

(12) − ւ(12) ◦II∨

BSu2 տ ◦I(ր − ւ(12))+ւ(12) ◦III ∧
(12) − ր(12) ◦II < BSu1(r2)(12)

BSu3 ր ◦I(∧ − ∨(12))+ց(12) ◦III ր
(12) − ր(12) ◦II > ց ◦I(∗ − ∗(12))+ց(12) ◦III ց

(12) − ց(12) ◦II ց

where<:=ւ + տ, >:=ց + ր, ∨ :=ց + ւ, ∧ :=ր + տ and∗ :=ւ + տ + ր + ց. Finally
we get

BSu(LDend) � LQuad.

�

A.2. Alternative and prealternative operads. We next assume that the characteristic ofk is not
two. An alternative algebra [24] is defined to be ak-vector space with one bilinear operation◦
that satisfies the following relations

(x ◦ y) ◦ z+ (y ◦ x) ◦ z = x ◦ (y ◦ z) + y ◦ (x ◦ z),

(x ◦ y) ◦ z+ (x ◦ z) ◦ y = x ◦ (y ◦ z) + x ◦ (z◦ y).

A prealternative algebra [36] is defined to be ak-vector space with two bilinear operations≺
and≻ and that satisfy the following relations

(x ◦ y+ y ◦ x) ≻ z = x ≻ (y ≻ z) + y ≻ (x ≻ z),

(x ≻ z) ≺ y+ (z≺ x) ≺ y = x ≻ (z≺ y) + z≺ (x ◦ y),

(y ◦ x) ≻ z+ (y ≻ z) ≺ x = y ≻ (x ≻ z) + y ≻ (z≺ x),

(z≺ x) ≺ y+ (z≺ y) ≺ x = z≺ (x ◦ y+ y ◦ x),

where◦ =≺ + ≻.

Proposition 6.13.The bisuccessor of the operad Alter is the operad PreAlter, equivalently

PreLie• Alter = PreAlter .

And the trisuccessor of the operad Alter is the operad encoding the following algebraic structure:

(x⋆ y+ y⋆ x) ≻ z = x ≻ (y ≻ z) + y ≻ (x ≻ z),

(x ≻ z) ≺ y+ (z≺ x) ≺ y = x ≻ (z≺ y) + z≺ (x⋆ y),

(y⋆ x) ≻ z+ (y ≻ z) ≺ x = y ≻ (x ≻ z) + y ≻ (z≺ x),

(z≺ x) ≺ y+ (z≺ y) ≺ x = z≺ (x⋆ y+ y⋆ x),

(x · y) ≺ z+ (y · x) ≺ z = x · (y ≺ z) + y · (x ≺ z),

(x ≺ y) · z+ (y ≻ x) · z = x · (y ≻ z) + y ≻ (x · z),

(x · y) ≺ z+ (x ≺ z) · y = x · (y ≺ z) + x · (z≻ y),

(x ≻ y) · z+ (x ≻ z) · y = x ≻ (y · z) + x ≻ (z · y),

(x · y) · z+ (y · x) · z = x · (y · z) + y · (x · z),

(x · y) · z+ (x · z) · y = x · (y · z) + x · (z · y),
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where x⋆ y = x ≺ y+ x ≻ y+ x · y.

A.3. Leibniz and pre-Leibniz operads. A Leibniz algebra [29] is defined to be ak-vector
space with one bilinear product [, ] satisfying the Leibniz identity

[[ x, y], z] = [[ x, z], y] + [x, [y, z]] .

Proposition 6.14. The bisuccessor of the operad Leibniz is the operad encodingthe following
algebraic structure:

(x ≺ y) ≺ z = (x ≺ z) ≺ y+ x ≺ (y ≻ z+ y ≺ z),

(x ≻ y) ≺ z = (x ≻ z+ x ≺ z) ≻ y+ x ≻ (y ≺ z),

(x ≻ y+ x ≺ y) ≻ z = (x ≻ z) ≺ y+ x ≻ (y ≻ z).

And the trisuccessor of the operad Leibniz is the operad encoding the following algebraic struc-
ture:

(x ≺ y) ≺ z = (x ≺ z) ≺ y+ x ≺ (y⋆ z),

(x ≻ y) ≺ z = (x⋆ z) ≻ y+ x ≻ (y ≺ z),

(x⋆ y) ≻ z = (x ≻ z) ≺ y+ x ≻ (y ≻ z),

(x · y) ≺ z = (x ≺ z) · y+ x · (y ≺ z),

(x ≺ y) · z = (x · z) ≺ y+ x · (y ≻ z),

(x ≻ y) · z = (x ≻ z) · y+ x ≻ (y · z),

(x · y) · z = (x · z) · y+ x · (y · z),

where x⋆ y = x ≺ y+ x ≻ y+ x · y.

A.4. The operad Poisson. A (left) post-Poisson algebrais a k-vector spaceA equipped with
four bilinear operations ([, ], ⋄, ·,≻) such that (A, [, ], ⋄) is a (left) post-Lie algebra, (A, ·,≻) is a
commutative tridendriform algebra, and they are compatible in the sense that (for anyx, y, z ∈ A)

[x, y · z] = [x, y] · z+ y · [x, z],

[x, z≻ y] = z≻ [x, y] − y · (z⋄ x),

x ⋄ (y · z) = (x ⋄ y) · z+ y · (x ⋄ z),

(y ≻ z+ z≻ y+ y · z) ⋄ x = z≻ (y ⋄ x) + y ≻ (z⋄ x),

x ⋄ (z≻ y) = z≻ (x ⋄ y) + (x ⋄ z− z⋄ x+ [x, z]) ≻ y.

Let PostPoissondenote the operad encoding the post-Poisson algebras.

Remark 6.15. Let (A, [, ], ⋄, ·,≻) be a post-Poisson algebra. If the operations [, ] and · are trivial,
then it is a pre-Poisson algebra.

Proposition 6.16.The trisuccessor of the operad Poisson is the operad PostPoisson, equivalently

PostLie• Poisson= PostPoisson.
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A.5. The operadJordan. Assume that the characteristic ofk is neither two nor three.

Proposition 6.17. The trisuccessor of the operad Jordan is the operad encodingthe following
algebraic structure:

((x ≺ y) ≺ u) ≺ z+ x ≺ ((y⋆ z) ⋆ u) + ((x ≺ z) ≺ u) ≺ y

= (x ≺ y) ≺ (u⋆ z) + (x ≺ u) ≺ (y⋆ z) + (x ≺ z) ≺ (u⋆ y),

(u ≺ (x⋆ y)) ≺ z+ (u ≺ (y⋆ z)) ≺ x+ (u ≺ (z⋆ x)) ≺ y

= (u ≺ z) ≺ (x⋆ y) + (u ≺ z) ≺ (y⋆ z) + (u ≺ y) ≺ (z⋆ x),

((x · y) ≺ u) ≺ z+ ((y ≺ z) ≺ u) · x+ ((x ≺ z) ≺ u) · y

= (x · y) ≺ (u⋆ z) + (y ≺ z) · (x ≺ u) + (x ≺ z) · (y ≺ u),

((x ≺ y) · u) ≺ z+ (u ≺ (y⋆ z)) · x+ ((x ≺ z) · u) ≺ y

= (x ≺ y) · (u ≺ z) + (u · x) ≺ (y⋆ z) + (x ≺ z) · (u ≺ y),

((x · y) ≺ u) · z+ ((y · z) ≺ u) · x+ ((z · x) ≺ u) · y

= (x · y) · (z≺ u) + (y · z) · (x ≺ u) + (z · x) · (y ≺ u),

((x · y) · u) ≺ z+ ((y ≺ z) · u) · x+ ((x ≺ z) · u) · y

= (x · y) · (u ≺ z) + (y ≺ z) · (u · x) + (x ≺ z) · (u · y),

((x · y) · u) · z+ ((y · z) · u) · x+ ((z · x) · u) · y

= (x · y) · (u · z) + (y · z) · (u · x) + (z · x) · (u · y),

where x⋆ y = x ≺ y+ y ≺ x+ x · y.
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