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MOCK PERIOD FUNCTIONS, SESQUIHARMONIC MAASS FORMS,

AND NON-CRITICAL VALUES OF L-FUNCTIONS

KATHRIN BRINGMANN, NIKOLAOS DIAMANTIS, AND MARTIN RAUM

Abstract. We introduce a new technique of completion for 1-cohomology which parallels
the corresponding technique in the theory of mock modular forms. This technique is applied
in the context of non-critical values of L-functions of GL(2) cusp forms. We prove that a
generating series of non-critical values can be interpreted as a mock period function we
define in analogy with period polynomials. Further, we prove that non-critical values can
be encoded into a sesquiharmonic Maass form. Finally, we formulate and prove an Eichler-
Shimura-type isomorphism for the space of mock period functions.

1. Introduction

In this work, we establish a connection between two seemingly disparate topics and tech-
niques: mock modular forms (holomorphic parts of harmonic Maass forms) and non-critical
values of L-functions of cusp forms. To describe this connection, we first outline each of
these topics and some of the corresponding questions that arise.

A very fruitful technique that has recently emerged in the broader area of automorphic
forms and its arithmetic applications is based on “completing” a holomorphic but not quite
automorphic form into a harmonic Maass form by addition of a suitable non-holomorphic
function. This method originates in its modern form in Zwegers’ PhD thesis [36]. Zwegers
completed all of Ramanujan’s mock theta functions introduced by Ramanujan in his famous
last letter to Hardy [33], including

f(q) := 1 +

∞∑

n=1

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

To be more precise, Zwegers found a (purely) non-holomorphic function

Nf (z) :=

∫ i∞

−z

Θf (w)√
z + w

dw, (1.1)

where Θf is some explicit weight 3
2
cuspidal theta function, so that

f(q) +Nf (z)

transforms like an automorphic form of weight “dual” to that of f , i.e., of weight 1
2
in our

case (throughout we write q := e2πiz). Such completions proved to be useful in obtaining
information for the original function (f in our context), including exact formulas for Fourier
coefficients, made use of, e.g., in the proof in [8] of the Andrews-Dragonette Conjecture
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[1, 19]. On the other hand, one can also reverse the question and start with a modular form,
define an integral N resembling the one in (1.1) and find a holomorphic function F such
that N + F transforms like a modular form. Such “lifts” were constructed for cusp forms of
weight 1

2
in terms of combinatorial series by the first author, Folsom, and Ono [6] and by the

first author and Ono for general cusp forms [9]. Recently, also lifts for non-cusp forms were
found [18]. Obstructions to modularity occuring from functions like f may also be viewed
in terms of critical values of L-functions [7] in a way we will describe later.

We next introduce the second topic, non-critical values of L-functions. We will first
outline the background concerning general values of L-functions and critical values. Let f
be an element of Sk, the space of cusp forms of weight k ∈ 2N for SL2(Z), and let Lf (s)
denote its L-function. Special values of L-functions have been the focus of intense research in
arithmetic algebraic geometry and analytic number theory, because they provide deep insight
to f and associated arithmetic and geometric objects. Several of the outstanding conjectures
in number theory are related to special values of L-functions, e.g. the ones posed by Birch-
Swinnerton-Dyer, Beilinson and Bloch-Kato (see, for example, [28]). In particular, they are
commonly interpreted as regulators in K-theory [34].

Among the special values, more is known about the critical values which, for our purposes,
are Lf (1), Lf(2), . . . , Lf (k − 1) (see [16, 28] for an intrinsic characterization). For instance,
Manin’s Periods Theorem [30] implies that, when f is an eigenform of the Hecke operators,
its critical values are algebraic linear combinations of two constants depending only on f .
This result was established by incorporating a “generating function” of the critical values
into a cohomology which has a rational structure. The generating function is the period
polynomial

rf(X) :=

∫ i∞

0

f(w)(w −X)k−2dw,

and each of its coefficients is an explicit multiple of a critical values of Lf(s) (see Lemma 2.1
for the precise statement).

The period polynomial of f satisfies the Eichler-Shimura relations :

rf |2−k(1 + S) = rf

∣∣∣
2−k

(
1 + U + U2

)
= 0 with S := ( 0 −1

1 0 ), U := ( 1 −1
1 0 )

in terms of the action |m on G : H → C defined for each m ∈ 2Z by

G|mγ(X) := G(γX)(cX + d)−m for γ = ( ∗ ∗
c d ) ∈ SL2(R).

Because of the importance of these Eichler-Shimura relations, the space Vk−2 of all polyno-
mials of degree at most k − 2 satisfying them has been studied independently. It is called
the space of period polynomials and is denoted by Wk−2.

Non-critical values are much less understood and there are even some “negative” results
such as that of Koblitz [26], asserting that, in a strong sense, there can not be a Period
Theorem for non-critical values. In any case, it is generally expected that the algebraic
structure of such values is more complicated than that of critical values. Nevertheless, in
[15] it is shown that it is possible to define “generating series” of non-critical values, which
can further be incorporated into a cohomology similar to the Eichler cohomology. This fits
into the philosophy of Manin’s [31] and Goldfeld’s [22] cohomological interpretation of values
and derivatives of L-functions, respectively. The generating series is a function rf,2 on the
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Poincaré upper-half plane H given by

rf,2(z) :=

∫ i∞

0

Ff (w)

(wz − 1)k
dw,

where Ff is the Eichler integral associated to f

Ff (z) :=

∫ i∞

z

f(w)(w − z)k−2dw.

The function rf,2 is the direct counterpart of the period polynomial rf associated to critical
values. The non-critical values are obtained from rf,2 as “Taylor coefficients” of rf,2 (see
Lemma 2.2), just as critical values are retrieved as coefficients of the period polynomial rf .
The ambient space of functions consists of harmonic functions rather than polynomials and
the action is |k instead of |2−k.

The first link between the aforementioned two topics emerges as we use techniques from
the theory of mock modular forms to intrinsically interpret the constructions that were
associated to non-critical values in [15]. Those constructions were in some respects ad hoc
and not as intrinsic as those relating to critical values. For example, whereas the period
polynomial is expressed as a constant multiple of

Ff |2−k(S − 1),

the generating function rf,2(z) has an analogous expression only up to an explicit “correction
term”. That problem would seem to be insurmountable, because rf,2(z) is not invariant under
S.

However, in this paper we show that it is exactly thanks to the “correction term” that our
generating function rf,2 can be completed into a function which belongs to a natural analogue
of the space of period polynomials Wk−2. We show that an appropriate counterpart of

Wk−2 := {P ∈ Vk−2;P |2−k(1 + S) = P |2−k

(
1 + U + U2

)
= 0}

is
Wk,2 :=

{
P : H → C; ξk(P) ∈ Vk−2; P|k(1 + S) = P|k

(
1 + U + U2

)
= 0

}
.

Here, ξk is a key operator in the theory of mock modular forms defined, for y :=Im(z) by

ξk := 2iyk
d

dz
.

Our first main result then is

Theorem 1.1. Let k ∈ 2N and f a weight k cusp form. Then the function

r̂f,2(z) := rf,2(z)−
∫ i∞

−z

rf(w)

(w + z)k
dw

belongs to the space Wk,2.

Theorem 1.1 suggests the name mock period function for rf,2 (see Definition 3.3)
The completion of rf,2 by a purely non-holomorphic term does not cause us to lose infor-

mation about non-critical values, because it only introduces critical values (see Lemma 2.4),
which from our viewpoint can be thought of as understood.

The second link between the two main subjects of the paper amounts to a technique that
allows us to encode information about the mock period function of f ∈ Sk into a certain
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“higher order” version of harmonic Maass forms. This is the direct analogue of a recent
result proved for critical values by the first author, Guerzhoy, Kent, and Ono (Theorem 1.1
of [7]) and in a different guise earlier in [20]:

Theorem 1.2. ([20, 7]) For each f ∈ Sk, there is a harmonic Maass form Mf with holo-
morphic part M+

f , such that

rf (−z) =M+
f |2−k(1− S).

The authors further use similar techniques to establish a structure theorem for Wk−2

(Theorem 1.2 of [7]).
The first step of our approach towards establishing the counterpart of Theorem 1.2 for

non-critical values is to identify the objects taking the role played by harmonic Maass forms
in [7]. The class of these objects is formed by sesquiharmonic Maass forms (see Definition
4.1). Sesquiharmonic Maass form are natural higher order versions of harmonic Maass forms,
the first example of which has appeared in a different context [17, 18]. (See also [12, 13, 14]
for an earlier application of the underlying method). The main difference of sesquiharmonic
to harmonic Maass forms is that the latter are annihilated by the weight k Laplace-operator

∆k := −y2
(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
,

whereas sesquiharmonic Maass forms are annihilated by

∆k,2 := ∆2−k ◦ ξk = −ξk ◦ ξ2−k ◦ ξk = ξk ◦∆k.

In Section 4, we will show that we can isolate a “harmonic” piece from each sesquiharmonic
Maass, paralleling the way we can isolate a “holomorphic” piece from each harmonic Maass
form. This construction allows us to formulate and prove the analogue of Theorem 1.2:

Theorem 1.3. For each f ∈ Sk, there is a sesquiharmonic Maass form Mf,2 with harmonic
part M+−

f,2 , such that

r̂f,2(z) =M+−
f,2 (z)

∣∣∣
k
(S − 1).

The above two techniques we just described can be considered as a new version of the
“completion” method, this time applied to the level of 1-cohomology.

The third main result and technique of this paper is a mock Eichler-Shimura isomorphism
for Wk,2. The classical Eichler-Shimura isomorphism “parametrizes” Wk−2 in terms of cusp
forms. It can be summarized as:

Theorem 1.4. (e.g., [27]) Every P ∈ Wk−2 can be written as

P (X) = rf(X) + rg(−X) + a|2−k(S − 1)

for unique f, g ∈ Sk and a ∈ C.

In Section 5, we show that Wk,2 can be “parametrised” by cusp forms in a very similar
fashion:

Theorem 1.5. Every P ∈ Wk,2 can be written as

P = r̂f,2 + r̂∗g,2 + aF |k(S − 1)
4



for unique f, g ∈ Sk and an a ∈ C. Here, F is an element of an appropriate space of functions
on H and r̂∗g,2 is a period function associated rg(−X). (They will be defined precisely in
Section 5).

The construction of r̂∗g,2 is of independent interest and involves (regularized) integrals (see
Section 5). Some of the techniques are related to the theory of periods of weakly holomorphic
forms as studied by Fricke [21].

It is surprising that pairs of cusp forms suffice for this Mock Eichler-Shimura isomorphism
just as they suffice for the classical Eichler-Shimura isomorphism. A priori, the spaces Wk−2

andWk,2 appear to be very different, especially since, as shown here, they are associated with
critical and non-critical values respectively, which are expected to have completely different
behaviour.

In the final section we interpret our two first main results cohomologically (Theorem 6.1) in
order to highlight the essential similarity of the construction we associate here to non-critical
values with the corresponding setting for critical values. Since we have an entirely analogous
reformulation (see (6.1)) of the Eichler-Shimura theory and the results of [7], Theorem 6.1
justifies the claim that our constructions form the non-critical value counterpart of the
corresponding results in the case of critical values of L-functions.

A suggestive comparison of this cohomological interpretation with Hida’s evidence for a
possible description of non-critical values in terms of non-top degree cohomology (cf. [24])
might also be made. We intend to return to possible explicit connections with Hida’s con-
struction in a future work.

Acknowledgments : To be entered after the referee’s report is received.

2. Cusp forms and periods associated to their L-values

Set Γ := SL2(Z). Let f(z) =
∑∞

n=1 a(n)q
n (q = e2πiz) be a cusp form of weight k for

Γ. Further let Lf(s) be the entire function obtained by analytic continuation of the series
Lf (s) =

∑∞
n=1 a(n)/n

s originally defined in an appropriate right half plane.
In the Eichler-Shimura-Manin theory one associates to f an Eichler integral Ff : H → C

and a period polynomial rf : C → C as follows:

Ff(z) :=

∫ i∞

z

f(w)(w − z)k−2dw,

rf(z) :=

∫ i∞

0

f(w)(w − z)k−2dw.

These objects are connected to each other and intimately related to critical values of Lf (s)
(see e.g. [27], Section 1.1): Lf (1), . . . , Lf (k − 1).

Lemma 2.1. For every f ∈ Sk, we have

Ff |2−k(1− S) = rf ,

rf(z) = − (k − 2)!

(2πi)k−1

k−2∑

n=0

Lf (n+ 1)

(k − 2− n)!
(2πiz)k−2−n.
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We shall consider the analogues of Ff and rf yielding non-critical values of Lf(s). Set

Ff,2(z) :=

∫ i∞

−z

Ff (w)

(w + z)k
dw,

rf,2(z) :=

(∫ i∞

0

Ff(w)

(w + z)k
dw

)∣∣∣∣
k

S =

∫ i∞

0

Ff(w)

(wz − 1)k
dw.

The function rf,2 is not a polynomial, but the next lemma, proved in [15], shows that we can
still retrieve values of L-functions of f as its “Taylor coefficients at 0”. It also explains the
reason for letting S act on the integral in the definition of rf,2 in an apparent disanalogy to
rf :

Lemma 2.2. For every f ∈ Sk and m ∈ N, we have

lim
z→0+

dm

dzm
(rf,2(z)) = ik+m (m+ k − 1)!m!

(k − 1)(2π)m+k
Lf (k +m).

In [15], it is also proved that Ff,2 and rf,2 are linked in a way that parallels the link between
Ff and rf . For our purposes, we will need a reformulation of that result:

Proposition 2.3. For every f ∈ Sk, we have

Ff,2|k (S − 1) = rf,2 − r̃f,2 (2.1)

with

r̃f,2(z) :=

∫ i∞

−z

rf(w)

(w + z)k
dw.

Proof: ¿From the proof of Theorem 3 of [15], it follows that

Ff,2(z)|k (S − 1) = rf,2(z) +

(∫ 0

−z

rf(w)

(w + z)k
dw

)∣∣∣∣
k

S.

The last term may now easily be simplified using that rf ∈ Wk−2. �

The correction term r̃f,2 may be explicitly expressed in terms of critical values, and it does
not affect the analogy with the relation between Ff and rf .

Lemma 2.4. For all f ∈ Sk,

r̃f,2(z) = −(k − 2)!

k−2∑

n=0

k−2−n∑

ℓ=0

Lf(n + 1)

ℓ!(k − 2− n− ℓ)!(1 + n+ ℓ)
(−4πiz)ℓ(−4πy)−1−n−ℓ.

Remark 1. We note that all of the exponents of y are negative, thus r̃f,2 is a purely non-
holomorphic function.

Proof: ¿From Lemma 2.1,
∫ i∞

−z

rf(w)

(w + z)k
dw = (k − 2)!

k−2∑

n=0

i−n+1 Lf (n+ 1)

(2π)n+1(k − 2− n)!

∫ i∞

−z

wk−2−n

(w + z)k
dw.

Making the change of variable w → w− z and then using the Binomial Theorem, we obtain
that the integral equals

k−2−n∑

ℓ=0

(
k − 2− n

ℓ

)
(−z)ℓ (2iy)

−1−n−ℓ

1 + n + ℓ
.
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This implies the result. �

Because of Lemma 2.4, it is natural to complete rf,2 by substracting this “lower-order”
non-holomorphic function to obtain

r̂f,2 := rf,2 − r̃f,2.

Lemma 2.2 and Proposition 2.3 suggest, by comparison with Lemma 2.1, that r̂f,2 can be
viewed as an analogue of the period polynomial associated to non-critical values. In the next
section, we will show that this interpretation can be formalized in a way that justifies the
name mock period function for rf,2.

3. Mock period functions

One of the reasons that the theory of periods has been so successful in proving important
results about the values of L-functions is that they satisfy relations that allow us to view
them as elements of a space with a rational structure. This space is, in effect, the first
cohomology group of Eichler cohomology. However, to make the relation with L-functions
more immediate we will use the more concrete formulation and notation of [27]. In the last
section, we will give a cohomological interpretation of our results.

For n ∈ N, let Vn denote the space of polynomials of degree at most n acted upon by |−n,
and set

Wn :=
{
P ∈ Vn;P |−n(1 + S) = P |−n

(
1 + U + U2

)
= 0

}
.

The period polynomial rf associated to f ∈ Sk belongs to Wk−2 (cf. [27]). According
to the well-known Eichler-Shimura Isomorphism (cf. [27] and the references therein), the
polynomials characterize the entire space.

Theorem 3.1. (Eichler-Shimura Isomorphism) Let k be an even positive integer. Then for
each P ∈ Wk−2 there exists a unique pair (f, g) ∈ Sk × Sk and c ∈ C such that

P (z) = rf(z) + rg(−z) + c
(
zk−2 − 1

)
.

Remark 2. Usually, the second term is written as rg(z̄), that is the polynomial obtained by
replacing each coefficient of the polynomial rg with its conjugate. However, this may be
rewritten as

rg(z) =

∫ i∞

0

g(w)(w − z)k−2dw = −
∫ i∞

0

g(−w)(−w − z)k−2dw = −rgc(−z). (3.1)

Recall that gc(z) := g(−z) ∈ Sk.

We will show that there is a space similar to Wk−2 within which the completed period-like

functions r̂f,2 live. We first recall the operator ξk := 2iyk d
dz

(y :=Im(z)). This map satisfies
ξk(f |kγ) = (ξkf)|2−kγ for all γ ∈ Γ, and thus maps weight k automorphic objects to weight
2− k automorphic objects. We then set

Wk,2 :=
{
P : H → C; ξk(P) ∈ Vk−2;P|k (1 + S) = P|k

(
1 + U + U2

)
= 0

}
.

This space consists not of polynomials but of functions which become polynomials only after
application of the ξk-operator.

The next theorem explains in what sense rk,2 can be considered a mock period function.

Theorem 3.2. Let k ∈ 2N and f ∈ Sk. Then the function r̂f,2 is an element of Wk,2.

7



Proof: The first condition follows from the identity

ξk

(
r̂f,2(z)

)
= −2iyk

d

dz

∫ i∞

−z

rf(w)

(w + z)k
dw = (2i)1−krfc(z) ∈ Vk−2, (3.2)

where for the last equality we used (3.1). The relation

r̂f,2|k (1 + S) = 0

follows directly from the identity in Proposition 2.3.
To deduce the relation for U we first note that Ff,2|kT = Ff,2, which follows directly from

f(w + 1) = f(w). Thus

Ff,2|k (1− S) = Ff,2|k (1− TS) = Ff,2|k (1− U)

and the claim follows from U3 = 1. �

Remark 3. It is immediate that, if ξk(P) ∈ Vk−2, then ∆k(P) = −ξ2−k ◦ ξk(P) = 0, and thus
Theorem 3.2 implies that r̂f,2 is harmonic.

This theorem suggests the name mock period function for rf,2 as well as the more general

Definition 3.3. A holomorphic function p2 : H → C is called a mock period function if there
exists a p̃2 ∈ ⊕k−1

j=1y
−jVk−2 such that

p2 + p̃2 ∈ Wk,2.

The Eichler-Shimura relations for r̂f,2 proved in Theorem 3.2 are reflected in mock Eichler-
Shimura relations for rf,2.

Theorem 3.4. We have

rf,2(z)
∣∣∣
k
(1 + S) =

∫ i∞

0

rf(w)

(w + z)k
dw,

rf,2(z)
∣∣∣
k

(
1 + U + U2

)
=

∫ i∞

−1

rf(w)

(w + z)k
dw +

∫ 0

−1

rf |2−kŨ(w)

(w + z)k
dw

with Ũ := (−1 −1
1 0 ) = SU2S−1.

Proof: By (2.1) and Theorem 3.2 it suffices to consider the action of 1 + S and 1 + U + U2

on r̃f,2 only. Further, since rf ∈ Wk−2, we have

rf

∣∣∣
2−k

(1 + S) = rf

∣∣∣
2−k

(
1 + U + U2

)
= 0. (3.3)

For the first identity we have by (3.3)

r̃f,2(z)
∣∣∣
k
S = z−k

∫ i∞

1

z

rf(w)(
w − 1

z

)k dw

=

(∫ i∞

−z

−
∫ i∞

0

)
rf |2−kS(w)

(w + z)k
dw = −r̃f,2(z) +

∫ i∞

0

rf (w)

(w + z)k
dw.

To prove the second identity, we observe that (3.3) implies that

rf

∣∣∣
2−k

(
1 + Ũ + Ũ2

)
= 0. (3.4)
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The change of variables w → Ũw gives

r̃f,2(z)
∣∣∣
k
U =

∫ 0

−z

rf |2−kŨ(w)

(z + w)k
dw.

Likewise, the change of variables w → Ũ2w yields

r̃f,2(z)
∣∣∣
k
U2 =

∫ −1

−z

rf |2−kŨ
2(w)

(w + z)k
dw.

Thus

r̃f,2(z)
∣∣∣
k

(
1 + U + U2

)
=

∫ i∞

−z

rf |2−k

(
1 + Ũ + Ũ2

)
(w)

(w + z)k
dw

−
∫ i∞

0

rf |2−kŨ(w)

(z + w)k
dw −

∫ i∞

−1

rf |2−kŨ
2(w)

(w + z)k
dw.

Applying (3.4) we obtain the claim. �

4. Sesquiharmonic Maass forms

In this section, we introduce new automorphic objects related to non-critical values of
L-functions.

Definition 4.1. A real-analytic function F : H → C is called a sesquiharmonic Maass form
of weight k if the following conditions are satisfied:

i) We have for all γ ∈ Γ that F|kγ = F .
ii) We have that ∆k,2 (F) = 0.
iii) The function F has at most linear exponential growth at infinity.

We denote the space of such functions by Hk,2. The subspace of harmonic weak Maass forms,
i.e., these sesquiharmonic forms F that satisfy

∆k(F) = −ξ2−k ◦ ξk(F) = 0

is denoted by Hk. Our definition in particular implies that

ξk (Hk,2) ⊂ H2−k.

The holomorphic differential D := 1
2πi

d
dz

plays a role originating in Bol’s identity. It is
well-known that (see [10])

ξ2−k (H2−k) ⊂M !
k, Dk−1 (H2−k) ⊂M !

k.

Here, M !
k denotes the space of weakly holomorphic modular form, i.e., those meromorphic

modular forms whose poles may only lie at the cusps. This suggests the following distin-
guished subspaces.

Definition 4.2. For k ∈ 2N, set

i) H+
2−k := {f ∈ H2−k;D

k−1(f) ∈ Sk} and H−
2−k := {f ∈ H2−k; ξ2−k(f) ∈ Sk},

ii) H+
k,2 := {f ∈ Hk,2; ξk(f) ∈ H+

2−k}.
9



Employing the theory of Poincaré series, we will prove that the restriction of ξk on H+
k,2

surjects onto H+
2−k. In general, for functions ϕ that are translation invariant, we define the

following Poincaré series

Pk(ϕ; z) :=
∑

γ∈Γ∞\Γ

ϕ
∣∣∣
k
γ(z) (4.1)

whenever this series converges absolutely. Here, Γ∞ is the set of translations in Γ. For k > 2,
the classical Poincaré series, spanning Sk for m > 0, are in this notation

Pk(m; z) := Pk (q
m; z) .

For all m ∈ Z \ {0}, the Maass Poincaré series are defined by [23]

Pk(m, s; z) := Pk (ϕm,s; z)

with
ϕm,s(z) := Mk

s(4πmy)e(mx),

Here, e(x) := e2πix and

Mk
s(u) := |u|− k

2Msgn(u)k
2
,s− 1

2

(
|u|

)
,

where Mν,µ is the usual M-Whittaker function with the integral representation

Mµ,ν(y) = yν+
1

2 e
y

2

Γ(1 + 2ν)

Γ
(
ν + µ+ 1

2

)
Γ
(
ν − µ+ 1

2

)
∫ 1

0

tν+µ− 1

2 (1− t)ν−µ− 1

2 e−yt dt (4.2)

for Re
(
ν ± µ+ 1

2

)
> 0. Using that as y → 0

Mk
s(y) = O

(
yRe(s)− k

2

)
, (4.3)

we see that the series Pk(m, s; z) converges absolutely for Re(s) > 1 and satisfies

∆k (Pk(m, s; z)) =

(
s(1− s) +

1

4

(
k2 − 2k

))
Pk(m, s; z). (4.4)

In particular, the Poincaré series is annihilated for s = k
2
or s = 1 − k

2
(depending on the

range of absolute convergence). Moreover, for m > 0 and k ≥ 2, we have

Dk−1

(
P2−k

(
m,

k

2
; z

))
= −(k − 1)!mk−1Pk(m; z) (4.5)

(see, e.g. [5]) and

ξ2−k

(
P2−k

(
−m, k

2
; z

))
= (k − 1)(4πm)k−1Pk(m; z) (4.6)

(see, e.g. Theorem 1.1 (2) of [9]). This implies

P2−k

(
m,

k

2
; z

)
∈ H+

2−k, P2−k

(
−m, k

2
; z

)
∈ H−

2−k.

In fact, the Poincaré series span the respective spaces H+
2−k and H

−
2−k. For the space H

−
k this

follows from Remark 3.10 of [10]. For the space H+
k one may argue analogously by using the

flipping operator [5], which gives a bijection between the two spaces.
For k > 0, we then set

Pk,2(m; z) := Pk (ψm; z)
10



with

ψm(z) :=
d

ds

[
Mk

s(4πmy)
]
s= k

2

e(mx).

Differentiation in s only introduces logarithms and thus, using (4.3), we can easily see that,
for Re(s) > 1 and for every ǫ > 0, the derivative is O(yRe(s)−ǫ−k/2), and thus, as y → 0, we
find ψm(z) = O(y−ǫ). Thus for all nonzero integers m, and k > 0, Pk,2(m; z) is absolutely
convergent.

One could further explicitly compute the Fourier expansion of Pk,2 but for the purposes
of this paper, this is not required.

Theorem 4.3. For m ∈ N, the function Pk,2(−m; z) is an element of H+
k,2 and satisfies:

ξk (Pk,2(−m; z)) = (4πm)1−k
P2−k

(
m,

k

2
; z

)
, (4.7)

Dk−1 ◦ ξk (Pk,2(−m; z)) = −(k − 1)!(4π)k−1Pk(m; z). (4.8)

In particular, the map

ξk: H
+
k,2 → H+

2−k

is surjective.

Proof: Due to the absolute convergence of the series, the transformation law is satisfied by
construction.

To verify the (at most) linear exponential growth at infinity of Pk,2(m; z) we recall that
Mµ,ν has at most linear exponential growth as y → ∞ (cf. [32], (13.14.20)). We further note
that this also holds for its derivative in s and thus ψm(z) too, because differentiation in s
only introduces logarithms. Therefore, since Im(γy) → 0 as y → ∞ whenever γ 6= 1, we
have

Pk,2(m; z) ≪ |ψm(z)| + y−
k
2

∑

γ∈Γ∞\Γ−{1}

Im(γz)−ǫ+ k
2 .

This together with the well-known polynomial growth of Eisenstein series at the cusps implies
the claim.

To prove (4.7) and (4.8), and thus the annihilation under ∆k,2, we first note that ξk
commutes with the group action of Γ and therefore we only have to compute

ξk

(
d

ds

[
Mk

s(−4πmy)e(−mx)
]
s= k

2

)

= yk(4πm)q−m d

ds

[
d

dy

[
Mk

s+ k
2

(−y)e− y

2

]
y=4πmy

]

s=0

. (4.9)

Notice that we do not need to conjugate the internal function because upon differentiation
at s = 0 we obtain a real function. The integral representation (4.2) implies for y > 0

Mk
s+ k

2

(−y)e− y

2 =
ysΓ(2s+ k)

Γ(s)Γ(s+ k)

∫ 1

0

ts−1(1− t)s+k−1e−yt dt

11



which, in turn, gives that

d

dy

(
Mk

s+ k
2

(−y)e− y

2

)

=
s

y
· y− k

2M− k
2
,s+ k

2
− 1

2

(y)e−
y

2 − ysΓ(2s+ k)

Γ(s)Γ(s+ k)

∫ 1

0

ts(1− t)s+k−1e−yt dt

= sy−
k
2
−1M− k

2
,s+ k

2
− 1

2

(y)e−
y

2 − s

2s+ k
y−

k
2
− 1

2M 1

2
− k

2
,s+ k

2

(y)e−
y

2 .

Differentiating with respect to s and setting s = 0 gives ([35], (2.5.2))

y−
k
2
−1e−

y

2

1

k

(
kM− k

2
, k
2
− 1

2

(y)−√
yM 1

2
− k

2
, k
2

(y)
)
= y−

k
2
−1e−

y

2M1− k
2
, k
2
− 1

2

(y) = e−
y

2 y−kM2−k
k
2

(y).

Thus

ξk

(
d

ds

[
Mk

s(−4πmy)e(−mx)
]
s= k

2

)
= (4πm)1−kM2−k

k
2

(4πmy)e(mx),

which implies (4.7). ¿From (4.7) we may also deduce that ∆k,2

(
Pk,2(m; z)

)
= 0. Equality

(4.5) implies (4.8). Since, as mentioned above the functions P2−k(m, k/2; z) span H
+
2−k, (4.7)

implies the last assertion. �

Since we have a basis of Sk consisting of Poincaré series, Theorem 4.3 implies

Corollary 4.4. For f ∈ Sk there exists Mf,2 ∈ H+
k,2 such that

Dk−1 ◦ ξk (Mf,2) = f.

To state and prove our second main theorem we analyze the Fourier expansion of F in
H+

k,2. Since F := ξk (F) ∈ H+
2−k, it has a Fourier expansion of the form

F (z) =
∑

n≥0

ã(n)qn +
∑

n≫−∞
n 6=0

b̃(n)Γ(k − 1, 4πny)q−n

for some ã(n), b̃(n) ∈ C and Γ(s, y) the incomplete gamma function (see, for instance, [10]).
The first summand is called the holomorphic part and the second the non-holomorphic part
of F , and we denote them by F+ and F−, respectively. A direct calculation implies that for
some a(n), b(n), c(n), d(0) ∈ C

F(z) =
∑

n≫−∞

a(n)qn +
∑

n>0

b(n)Γ(1− k, 4πny)q−n +
∑

n≫−∞
n 6=0

c(n)Γk−1(4πny)q
n + d(0)y1−k,

(4.10)
where for y > 0, we define

Γs(y) :=

∫ ∞

y

Γ(s, t)t−set
dt

t
.

Similarly for y < 0, we integrate from −∞ instead of ∞. We call the first summand of the
right hand side of (4.10) the holomorphic part, the second the harmonic part, and the third
the non-harmonic part of F and we denote them by F++, F+−, and F−− respectively. We
note that for F++ 6= 0,F+− 6= 0, and F−− 6= 0, we have

ξk
(
F++

)
= 0, ξk

(
F+−

)
6= 0 ξk

(
F−−

)
6= 0, ξk

(
y1−k

)
6= 0, (4.11)

12



ξ2−k ◦ ξk
(
F+−

)
= 0, ξ2−k ◦ ξk

(
F−−

)
6= 0, ξ2−k ◦ ξk

(
y1−k

)
= 0, (4.12)

Dk−1 ◦ ξk
(
F+−

)
6= 0, Dk−1 ◦ ξk

(
F−−

)
= 0, Dk−1 ◦ ξk

(
y1−k

)
= 0. (4.13)

With this terminology and notation we have

Theorem 4.5. For f ∈ Sk, there is a Mf,2 ∈ H+
k,2 such that Dk−1 ◦ ξk (Mf,2) = − (k−2)!

(4π)k−1 f
c

and

r̂f,2(z) = M+−
f,2 (z)

∣∣∣
k
(S − 1).

Proof: By equation (2.1),

r̂f,2 = Ff,2

∣∣∣
k
(S − 1).

By Corollary 4.4, there is a Mf,2 ∈ H+
k,2 such that

Dk−1 ◦ ξk (Mf,2) = −(k − 2)!

(4π)k−1
f c. (4.14)

We claim that
Ff,2 = M+,−

f,2 .

A direct computation inserting the Fourier expansion of f gives that Ff,2(z) has a Fourier
expansion of the form ∑

n

b(n)Γ(1 − k, 4πny)q−n.

Next

ξk (Ff,2(z)) = (2i)1−kF c
f (z) = (2i)1−k

∫ i∞

−z

f(w)(z + w)k−2 dw

= −(2i)1−k

∫ i∞

z

f c(w)(z − w)k−2dw.

This implies that

Dk−1 ◦ ξk
(
Ff,2

)
= −(k − 2)!

(4π)k−1
f c.

Thus by (4.14),

Dk−1 ◦ ξk
(
Ff,2 −Mf,2

)
= 0.

By (4.11) and (4.13), non-zero expansions in incomplete gamma functions are not in the
kernel of Dk−1 ◦ ξk. This implies that Ff,2 −M+−

f,2 =0. �

5. A Mock Eichler-Shimura isomorphism

In this section, we will show an Eichler-Shimura type theorem for harmonic period func-
tions of positive weight. We first note that

ξk(Wk,2) ⊂Wk−2, (5.1)

because ξk is compatible with the group action of Γ.
Fix P ∈ Wk,2. Then (5.1) and Theorem 3.1 imply that there exist f, g ∈ Sk and a ∈ C

such that
ξk(P (z)) = rf(z) + rg(−z) + a

(
zk−2 − 1

)
. (5.2)
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This can be viewed as a differential equation for P , and we will now describe the general
solution in Wk,2. To find a preimage of the second summand we require regularized integrals
as they are defined, for instance, by Fricke in his upcoming PhD thesis [21].

Consider a function f : H → C that is continuous. Assume that there is a c ∈ R+ such
that

f(z) = O
(
ec Im(z)

)
(5.3)

uniformly in Re(z) as Im(z) → ∞. Then, for each z0 ∈ H, the integral
∫ i∞

z0

euwf(w) dw

(where the path of integration lies within a vertical strip) is convergent for u ∈ C with
Im(u) ≫ 0. If it has an analytic continuation to u = 0, we define the regularized integral

R.

∫ i∞

z0

f(w) dw :=

[∫ i∞

z0

euwf(w) dw

]

u=0

,

where the right hand side means the value at u = 0 of the analytic continuation of the
integral. Similarly, we define integrals at other cusps a. Specifically, suppose that a = σa(i∞)
for a scaling matrix σa ∈ SL2(Z). If f(σaz) satisfies (5.3), then we define

R.

∫ a

z0

f(w) dw := R.

∫ i∞

σ−1
a

z0

f
∣∣
2
γ(w) dw.

For cusps a, b we define:

R.

∫ b

a

f(w) dw := R.

∫ b

z0

f(w) dw +R.

∫ z0

a

f(w) dw (5.4)

for any z0 ∈ H. An easy calculation shows:

Lemma 5.1. The integral R.
∫ b

a
f(w) dw as defined in (5.4) is independent of z0 ∈ H.

By Theorem 1.2, there exists a harmonic Maass form Mf such that

rf(−z) =M+
f

∣∣∣
k
(1− S)(z). (5.5)

Set

F∗
f,2(z) := R.

∫ i∞

−z

M+
f (w)

(w + z)k
dw,

r∗f,2(z) := R.

∫ i∞

0

M+
f (w)

(w + z)k
dw

∣∣∣
k
S,

r̃∗f,2(z) :=

∫ i∞

−z

rf (−w)
(w + z)k

dw,

r̂∗f,2(z) := r∗f,2(z)− r̃∗f,2(z).

We note that, by definition,

M+
f (z) =

0∑

n=N

ane
2πinz +O

(
e−2πy

)
for some N < 0, as y → ∞.
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We insert the above Fourier expansion into F∗
f,2 and integrate each of the terms separately.

Terms with n ≥ 0 do not require regularization. For terms with n < 0 we obtain a linear
combination of incomplete gamma functions of the form Γ(ℓ, z) (ℓ ∈ Z, z 6= 0). These
functions can be analytically continued, from which we may deduce that the integrals can
be extended to u = 0. Therefore, the regularized integrals are well-defined. The integral r∗f,2
ist treated analogously.

We also note that r̃∗f,2 does not require regularization, since rf(−z) ∈ Vk−2. We easily
compute, using (3.1), that

ξk
(
r̂∗f,2(z)

)
= (2i)1−krfc(−z). (5.6)

We claim that a special solution in Wk,2 to (5.1) is then given by

R∗
f,2(z) := −(2i)k−1r̂fc,2(z)− (2i)k−1r̂∗gc,2(z) + a(2i)k−1

(∫ i∞

−z

dw

(w + z)k

) ∣∣∣
k
(1− S). (5.7)

It is clear by (3.2), (5.6) and the identity

ξk

(∫ i∞

−z̄

dw

(w + z)k

)
= (2i)1−k (5.8)

that R∗
f,2 satisfies (5.2).

By Theorem 3.2, the function r̂fc,2 is an element of Wk,2. The same is true for r̂∗f,2:

Lemma 5.2. We have

F∗
f,2

∣∣∣
k
(S − 1)(z) = r̂∗f,2(z).

In particular, r̂∗f,2 ∈ Wk,2.

Proof: We first note, with Lemma 5.1 and the definition of regularized integrals, that

r∗f,2|kS =

[∫ i∞

−z̄

ewuM+
f (w) dw

(w + z)k

]

u=0

−
[∫ i∞

1/z̄

ewuM+
f (−1/w) d(−1/w)

(−1/w + z)k

]

u=0

=

[∫ i∞

−z̄

ewuM+
f (w) dw

(w + z)k

]

u=0

−
[∫ 0

−z̄

e−u/wM+
f (w) dw

(w + z)k

]

u=0

. (5.9)

On the other hand, to compute F∗
f,2|k(S − 1)(z) = F∗

f,2(−1/z)z−k − F∗
f,2(z) we recall that,

by definition, this is the value of u at 0 of the analytic continuation of
∫ i∞

1/z̄

ewuM+
f (w) dw

(wz − 1)k
−
∫ i∞

−z̄

ewuM+
f (w) dw

(w + z)k
.

For Im(u) ≫ 0, with (5.5) this equals

∫ 0

−z̄

e−u/wM+
f (−1/w) d(−1/w)

(−z/w − 1)k
−

∫ i∞

−z̄

ewuM+
f (w) dw

(w + z)k

=

∫ 0

−z̄

e−u/wM+
f (w) dw

(z + w)k
−
∫ 0

−z̄

e−u/wrf(−w) dw
(z + w)k

−
∫ i∞

−z̄

ewuM+
f (w) dw

(w + z)k
. (5.10)
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Because of (3.3), the second integral of (5.10) equals

∫ i∞

−1/z̄

ewurf(−1/w)wk dw

(zw − 1)k
= −

∫ i∞

1/z̄

ewurf (w) dw

(zw − 1)k

This is analytic at u = 0 with value r̃∗f,2|kS(z). Therefore, with analytic continuation and
(5.9), (5.10) gives

F∗
f,2|k(S − 1) = −r∗f,2|kS + r̃∗f,2

∣∣
k
S = −r̂∗f,2

∣∣
k
S,

which implies the result. �

That the third term of (5.7) is an element of Wk,2 follows directly from (5.8) and the invari-
ance of the integral under T .

Therefore, the general solution of (5.2) is

−(2i)k−1

(
r̂fc,2(z) + r̂∗gc,2(z)− a

∫ i∞

−z

dw

(w + z)k

∣∣∣
k
(1− S) +G(z)

)
,

where G is a holomorphic function on H. The last summand G must be annihilated by 1+S
and 1 + U + U2 in terms of |k, because all the others satisfy the Eichler-Shimura relations.
This implies that G = H|k(S − 1) for some translation invariant holomorphic function H .
Indeed, this follows from H1(Γ,A) = 0, where A is a the module of holomorphic functions
on H (see equation (5.3) of [25] citing [29]).

Set

Uk,2 :=
(
O(H) +

{
f ∈ ⊕k−1

j=1y
−jVk−2; ξk(f) ∈ Vk−2

})
∩ {f : H → C; f |kT = f},

where O(H) is the space of holomorphic functions on H. We can then complete the proof of

Theorem 5.3. The map φ : Sk ⊕ Sk → Wk,2 defined by

φ(f, g) := r̂fc,2 + r̂∗gc,2

induces an isomorphism

φ : Sk ⊕ Sk
∼=R Wk,2/Vk,2,

where Vk,2 := Uk,2|k(S − 1).

Proof: We have already shown above that φ is surjective. To show that it is injective,
suppose that P ∈ ker(φ). Then

r̂fc,2 + r̂∗gc,2 = A|k(S − 1) (5.11)

for some A ∈ Uk,2. Applying ξk on both sides of (5.11), we deduce that rf(z) + rg(−z) is an
Eichler coboundary. The classical Eichler-Shimura isomorphism (Theorem 3.1) implies that
f, g must vanish. �

Remark 4. Since
{
f ∈ ⊕k−1

j=1y
−jVk−2; ξk(f) ∈ Vk−2

}
does not contain any holomorphic ele-

ments, it is isomorphic to Vk−2. The corresponding isomorphism is ξk.
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6. Cohomological interpretation

Theorem 4.5 has a cohomological interpretation which makes apparent the similarity of
our construction with the one associated to critical values in [7]. We shall first give a
cohomological interpretation of the period polynomials in the context of the results of [7].

We recall the definition of parabolic cohomology in our setting. For m ∈ Z and a Γ-sub-
module V of the space of functions f : H → C we define

Z1
p(Γ, V ) :=

{
g : Γ → V ; g(γδ) = g(γ)|mδ + g(δ) and

g(T ) = h|m(T − 1) for some h ∈ V
}
,

B1
p(Γ, V ) = B1(Γ, V ) :=

{
g : Γ → V ; for some h ∈ V,

g(γ) = h|m(γ − 1) for all γ ∈ Γ
}
,

and
H1

p (Γ, V ) := Z1
p(Γ, V )/B

1
p(Γ, V ).

A basic map in the theory of period polynomials is

ρ : Sk → H1
p (Γ, Vk−2).

It assigns to f ∈ Sk the class of a cocycle φf determined by φf (T ) = 0 and φf (S) = rf (−z).
We further consider the Γ-module O∗(H) of holomorphic functions F : H → C of at most
linear exponential growth at the cusps. The group Γ acts on O∗(H) via |2−k. Then the
natural injection i of Vk−2 into O∗(H) induces a map

i∗ : H1
p (Γ, Vk−2) → H1

p (Γ,O∗(H)) .

Theorem 1.1 of [7] states that rf (−z) is a constant multiple of F+
f |2−k(1 − S) for the holo-

morphic part F+
f of some harmonic Maass form Ff that grows at most linear exponentially

at the cusps. This can then be reformulated as:

i∗ ◦ ρ = 0. (6.1)

To formulate the analogue of this result in our context and the setting of non-critical
values we consider the following Γ-modules, all in terms of the action |k,

i) H∗(H) the Γ-module of harmonic functions on H of at most linear exponential
growth at the cusps.

ii) Vk,2 := {f : H → C of at most lin. exp. growth at the cusps, ξk(f) ∈ Vk−2}.
Because of the compatibility of ξk with the slash action, these spaces are Γ-invariant.

According to Theorem 3.2, for each f ∈ Sk, the map ψf such that ψf (T ) = 0 and
ψf (S) = r̂f,2 induces a cocycle with values in Vk,2. Therefore, the assignment f → ψf

induces a linear map
ρ′ : Sk → H1

p (Γ,Vk,2) .

Because of Remark 3, there is a natural injection i′ from Vk,2 to H∗(H), and this induces a
map:

i′∗ : H1
p (Γ,Vk,2) → H1

p (Γ,H∗(H)) .

Theorem 4.5 then implies that

Theorem 6.1. The composition i′∗ ◦ ρ′ is the zero map.
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