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ALGEBRAIC DEFORMATIONS OF TORIC VARIETIES I.
GENERAL CONSTRUCTIONS

LUCIO CIRIO, GIOVANNI LANDI, AND RICHARD J. SZABO

ABSTRACT. We construct and study noncommutative deformations of toric varieties by
combining techniques from toric geometry, isospectral deformations, and noncommuta-
tive geometry in braided monoidal categories. Our approach utilizes the same fan struc-
ture of the variety but deforms the underlying embedded algebraic torus. We develop
a sheaf theory using techniques from noncommutative algebraic geometry. The cases
of projective varieties are studied in detail, and several explicit examples are worked
out, including new noncommutative deformations of Grassmann and flag varieties. Our
constructions set up the basic ingredients for thorough study of instantons on noncom-
mutative toric varieties, which will be the subject of the sequel to this paper.

CONTENTS
Introduction
Acknowledgments
1. Algebraic preliminaries
1.1. Twist deformations of symmetries
1.2.  Braided monoidal categories of Hopf-module algebras
1.3.  Ore localization
2. Algebraic torus deformations
2.1.  The noncommutative algebraic torus
2.2. Twisted toric actions
2.3.  The noncommutative variety GLg(n)
2.4. Quantum determinants
3. Noncommutative toric varieties
3.1.  Noncommutative deformations of toric varieties
3.2.  Algebraic Moyal plane and D-modules
3.3.  Noncommutative projective plane
3.4. Noncommutative orbifold
3.5.  Noncommutative conifold
4. Sheaves on noncommutative toric varieties
4.1.  Quasi-coherent sheaves
4.2. Equivariant sheaves
4.3. Invariant subschemes and ideal sheaves
4.4. Kahler differential forms
5. Noncommutative projective varieties
5.1.  Noncommutative projective spaces CIPy
5.2.  Homogeneous coordinate algebras
5.3. Noncommutative grassmannians Gry(d;n)
5.4. Noncommutative flag varieties Fly(ds, ..., d,;n)

1

= O 00 00 O = = =N

Date: January 2010 ; Modified February 2011 and June 2013 HWM-09-14, EMPG-09-22.


http://arxiv.org/abs/1001.1242v3

2 LUCIO CIRIO, GIOVANNI LANDI, AND RICHARD J. SZABO

6. Geometry of noncommutative projective varieties 40

6.1. Cohomology of CPy 41

6.2. Sheaves on CIPy 42

6.3. Tautological bundles on Gry(d;n) 45

6.4. Differential forms on Gry(d;n) 46

References 52
INTRODUCTION

This paper is the first part of a series of articles in which we define and study a class
of noncommutative toric varieties, and construct instantons thereon. Our approach is in-
spired by the theory of isospectral deformations [13] and a construction due to Ingalls [25].
We expand and elaborate on some of the constructions introduced in the latter paper us-
ing techniques from noncommutative geometry in braided monoidal categories. We start
with a noncommutative deformation of an algebraic torus and use this to deform every
toric variety on which the torus acts. This is done in a fashion that does not alter the
combinatorial fan data describing the toric variety.

Part of the motivation for our construction comes from enumerative geometry and at-
tempts to provide physical interpretations of enumerative invariants of toric varieties.
In [26, 10], it is argued that the computation of Donaldson-Thomas invariants of a toric
threefold X can be reduced to the problem of locally enumerating noncommutative in-
stantons on each open patch of X, and then assembling the local contributions into a
global quantity using the gluing rules of toric geometry. This heuristic construction works
because noncommutative deformations of C3 are simple enough to explicitly construct in-
stantons thereon, but the construction utilizes commutative toric geometry techniques to
glue together quantities which are locally constructed using methods of noncommutative
geometry. In the the present paper we define a precise notion of “noncommutative toric
variety” which leads to a more global picture of their noncommutative geometry and of
the construction of instantons thereon. Although our main interest lies in the construction
of noncommutative instantons, the requisite building blocks turn out to be rather tech-
nically involved and lengthy. Thus the present paper is a (partly expository) systematic
development of the general machinery required. The treatment of instanton counting on
these varieties is defered to a sequel [12].

Another motivation for our constructions comes from string geometry. Chiral fermion
fields on a quantum curve can be embedded in string theory as an intersecting D-brane
configuration together with a B-field [18]. Mathematically, this system is described by a
holonomic D-module. In some instances, the category of D-modules is in correspondence
with the category of modules on a noncommutative variety, of which some of our con-
structions furnish explicit examples and give precise realizations of the noncommutative
geometry alluded to in [18]. The simplest example of such a correspondence is between
right ideals of the algebra of differential operators on the affine line and line bundles over
a certain noncommutative deformation of the projective plane CP? [6]. The classifica-
tion of bundles on noncommutative CP? is related to the construction of instantons on a
noncommutative R* [27].

From a mathematical perspective, our general construction produces new examples of
noncommutative varieties. In particular, by considering noncommutative deformations of
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projective toric varieties, we give new examples of noncommutative grassmannians, and
more generally flag varieties. We use techniques of noncommutative algebraic geometry
to develop a sheaf theory for our varieties. Our treatment of flag varieties includes a
noncommutative twistor theory, while our development of sheaf theory also produces
sheaves of differential forms, all of which are instrumental in the analysis of instantons [12].
An alternative approach to noncommutative toric varieties can be found in [8].

The organisation of this paper is as follows. In §1 we review the various algebraic
constructions that we need, in particular the Hopf cocycle twisting procedure which will
allow us to construct our deformations within a braided categorical framework. This
framework will be utilized throughout the paper as a systematic means of deforming not
only the varieties involved, but also geometric objects defined thereon.

In §2 we apply this twisting procedure to define a noncommutative deformation of
the complex algebraic torus (C*)", which extends the standard (real) noncommutative
torus and is the basic building block for all constructions in this paper. We use this to
construct a twist deformation of the algebraic group GL(n), which requires a suitable
notion of quantum determinant. We give a new description of these noncommutative
determinants. We also work out the related braided exterior algebras of noncommutative
minors. These ingredients are used in the description of the noncommutative geometry
of Grassmann and flag varieties.

In §3 we use the noncommutative algebraic torus to give a general definition of non-
commutative toric varieties, using their combinatorial description in terms of fan data.
Only the algebras of characters are deformed, not their group structure, and hence our
noncommutative toric varieties are described by the same fan data. We illustrate the
construction through several explicit examples.

In §4 we construct categories of quasi-coherent sheaves on generic noncommutative toric
varieties, and establish basic properties of them paralleling the commutative case. We
provide an explicit categorical description of sheaves which are equivariant with respect
to the toric action, and a relationship between ideal sheaves and invariant subschemes of
the noncommutative variety. These aspects are crucial ingredients for the enumeration of
instantons that will be constructed in [12]. We also build sheaves of differential forms.

In §5 we turn to the special case of deformations of projective toric varieties, for which
various constructions can be made very explicit. We demonstrate that our local defini-
tion of noncommutative deformations of complex projective spaces CP" is equivalent to a
“global” description which is a special instance of the noncommutative weighted projec-
tive spaces considered in [5]. We use these spaces to define noncommutative Grassmann
and flag varieties as noncommutative quadrics in projective space, through suitable defor-
mations of Pliicker embeddings. We study the embedding relations in detail and derive
conditions for the embeddings into noncommutative projective space to exist.

Finally, in §6 we describe in detail the properties of the categories of quasi-coherent
sheaves on our noncommutative projective varieties, some of which are consequences of
the general theory developed in [5]. We also study in detail the tautological bundles and
sheaves of differential forms on our noncommutative grassmannians. The general frame-
work presented in this section will lie at the heart of our construction of noncommutative
instantons and their twistor description in [12].
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1. ALGEBRAIC PRELIMINARIES

This section summarizes the algebraic constructions which will be used throughout this
paper and its sequel [12]. We present a general framework for working with the symmetries
of the noncommutative varieties that we shall encounter later on. We also recall some
notions from the localization theory for noncommutative algebras.

1.1. Twist deformations of symmetries. Let { be a Hopf algebra over C with co-
product A : H — H Q@ H, counit € : H — C, and antipode S : H — H. We will make use
of the conventional Sweedler notation A(h) = h(1y ® hey (with implicit summation) and

(1d® A)A(h) = (A®id) A(h) = ha) ® he) @ h) .

Definition 1.1. Let H® A — A, h®a +— h>a be a left action of the Hopf algebra H on
a unital algebra A with product p: A® A — A. The action is said to be covariant if the
compatibility conditions

(1.2) hepla®b) = ,LL(A(h) >(a® b)) = ,u((h(l) >a)® (h > b)) : h>1=¢(h)1
hold for all h € H and a,b € A. In this case A is called a left H-module algebra.

Similarly, a left action > of the Hopf algebra H on a coalgebra (C, 4, ¢€) is said to be
covariant, making the latter a left H-module coalgebra, if the compatibility conditions

5(h > C) = A(h) > 5(6) = (h(l) > C(l)) X (h(g) > C(g)) , G(h > C) = €(h) E(C)
hold for all h € 3 and ¢ € C, with the notation d(c) = cq) ® c(2).

The Hopf algebra H is itself an H-module algebra with respect to the left adjoint action
h* g = adp(g) := hay g S(h)) for h,g € H. We recall next how to produce new Hopf
algebra structures on H by deforming the original one using two-cocycles of J.

Definition 1.3. An element F € H ® H s called a Drinfel’d twist element for J if it
has the following properties:

(1) F is invertible;
(2) F is counital: (id®¢e)(F) = (e ®id)(F) =1; and
(3) F obeys the cocycle condition: (1® F)(1d® A)(F)=(F®1)(A®id)(F).

In the category of left H-modules, a Drinfel’d twist in the Hopf algebra J{ generates a
deformation of the product ;1 : A® A — A on every algebra object A. Similarly, the twist
can be used to deform the coproduct ¢ : C' — C' ® C' on every coalgebra object C. The
results are H-module algebras or coalgebras respectively. In the present paper we shall
concentrate on the algebra cases.

Theorem 1.4. (1) A Drinfel’d twist element F = FY @ F@ ¢ H @ H defines a
twisted Hopf algebra structure Hp with the same multiplication and counit as H,
but with new coproduct and antipode given for h € H by

(1.5) Ap(h) =FA(h) F~ | Sp(h) =Up S(h)U,!
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where Up = FV S(F(2)).
(2) If A is a left H-module algebra, the deformed product
(1.6) axpbi=pu(F'>(a®b))

fora,b € A makes Ap = (A, *p) into a left Hp-module algebra with respect to the
same action of H.

There are analogous results for right actions. If A is an H-module algebra, then the
collection of left H-invariant elements A forms an ideal of A in which the product
associated to a Drinfel’d twist for H by Theorem 1.4 coincides with the undeformed
product [11].

In general, the deformation of the H-module algebra structure of H itself provided
by Theorem 1.4 need not be compatible with the Hopf algebra structure of H, because
generically one has A(hxpg) # A(h)xrA(g). In order to obtain a deformation of both the
underlying variety of H and the quantum group associated to H, we use a dual framework
dealing with coactions.

Definition 1.7. Let ® : A - A® H, ®(a) = a@) ® a@) be a right coaction of the Hopf
algebra H on a unital algebra A with product i : A® A — A. The coaction is said to be
covariant if the linear map ® is a unital algebra morphism,

(1.8) (I)(u(a & b)) = ,LL(CL(O) & b(o)) ® a1y bay P(H)=1®1,
for all a,b € A. In this case A is called a right H-comodule algebra.

The initial coproduct A of H defines a right coaction of the Hopf algebra H on itself,
and it makes H into an H-comodule algebra. For dually paired Hopf algebras H and
F, with nondegenerate pairing (—, —) : H x F — C, to a right coaction of F on (an
algebra, a coalgebra, etc.) A there corresponds a left action of H on A. Thus, e.g., a right
F-comodule algebra is a left H-module algebra. The left regular action of H on F:

(1.9) hoa = Q1) <h, a(2)>
for h € H and a € &, is a covariant action which makes & into a left H-module algebra.

Definition 1.10. A linear map FY : HQ@ H — C is called a dual Drinfel’d twist element
for 3 if it has the following properties for all f,qg,h € H:

(1) FVY is convolution-invertible: There exists a linear map FV¥ =1 : H @ H — C such
that

FY(fay® gm) F¥ Hfo ®@ 90) = F' 7 (fo) @ 90)) FY (fo) @ 9) = e(f) elg) ;
(2) FY is unital: FY(f®1)=FY(1® f)=c¢e(f); and
(3) FY obeys the cycle condition:

F'(foy @ 9y) F¥ (fio) 9 © 1) = F¥(g90) @ hay) FY(f @ 9@ hz)) -

Theorem 1.11. (1) A dual Drinfel’d twist element FV for H defines a twisted Hopf
algebra structure HF" with the same coproduct and counit as H, but with new
algebra structure and antipode given for g,h € H by

gxpvh = FY(g0)® ha)) (92 - b)) FY 793 @ hes))
(1.12) ST = U™ (90)) S(92) U™ 9es)
where U™ () = F¥(g90) ® S(92)))-
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(2) If A is a right H-comodule algebra, the deformed product
(1.13) axt b= ,u(a(o) & b(o) ) FV-1 (a(l) (29 b(l))

for a,b € A makes A™ = (A, «F") into a right H*" -comodule algebra.

The proof of Theorem 1.11 can be found in [36]. Again, there is an analogous result
for left coactions. If the two Hopf algebras H and F are dually paired, then to any twist
element ' = F) @ F® ¢ 3 ® H there is a canonically associated dual twist element
FV:F®3F — C defined by

(1.14) Fla®p)=(F,a®B):=(FY, a)(F? B)

for o, 5 € F. Every time an H-module algebra is also an F-comodule algebra (i.e. the
action determines a coaction of the dual Hopf algebra) any deformation obtained using
the twist F' of H can be equivalently described using the dual twist FY of F defined
by (1.14). However, the dual twist element depends only on the pairing, without any
reference to an action of F.

In our main examples, we will use this Hopf algebraic approach as a means of deforming
the algebra of functions on a variety acted upon by a group. For the purpose of the
present paper, we consider algebraic varieties and their polynomial coordinate algebras.
However, with additional structure, the same constructions apply to algebras of functions
on topological spaces, differentiable manifolds, and the like. Given a Lie group G, the
enveloping algebra 4(g) of the Lie algebra g of G is a Hopf algebra over C. This Hopf
algebra has coproduct given on primitive elements x € g by A(z) = 1® x + 2z ® 1, counit
by e(z) = 0, and antipode by S(z) = —z. The adjoint action of H on itself extends the
usual adjoint action of Lie algebra elements x € g. When the group G acts on a variety
X the algebra of functions on X is a 4(g)-module algebra.

Let F = Fun(G) be the algebra generated by commuting matrix elements g;; in finite-
dimensional representations of G, with ¢,j = 1,...,dim(G) . Let g;;(P) € C denote their
evaluations on group elements P € G. The commutative algebra J is a Hopf algebra with
coproduct given by Ay(g;;) = D, gik ® gij, i.e. the transpose of the map given by matrix
multiplication, antipode Sy (g;;)(P) = g;;(P~!) for P € G, and counit £,(g;;) = d;;. The
Hopf algebra F is dual to the enveloping Hopf algebra H, with dual pairing (h, g) = h(g)(1)
the evaluation at the identity of the bi-invariant differential operator on G associated to
h € H acting on the function g € F. When the group G acts on a space X, the algebra
of functions on X is a Fun(G)-comodule algebra.

As we will consider deformations depending on some (matrix of) complex parameters 6,
we will rather need to work in the quantum enveloping algebra H = (g)[[0]], the algebra
of formal power series in 6 over $(g).

1.2. Braided monoidal categories of Hopf-module algebras. A useful unifying
framework in which to analyse our noncommutative deformations is provided by braided
monoidal categories, wherein the noncommutativity is completely encoded in a braiding
of a category whose objects are commutative varieties.

Definition 1.15. A braided monoidal (or quasitensor) category (¢, ®, V) is a monoidal
category (€, ®) with a natural equivalence between the two functors @, P : € X € — €
given by functorial isomorphisms
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for all objects V,W of €, obeying hexagon relations which express compatibility of W with
the associativity structure of the tensor product @ (see e.g. 36, Fig. 9.4] ). The operators
(1.16) are called braiding morphisms. If in addition V? = id, the category (¢, ®, V) is
said to be a symmetric (or tensor) category.

Our interest in braided monoidal categories stems from the category of Hopf-modules
introduced in §1.1. We shall denote by 5. the (sub)category of Hopf-module algebras.
An algebra map A % B is a morphism of the category 5.7 if and only if it fits into the
commutative diagram

idoo

H®A — H®B

| |

A B

where the vertical arrows are the H-actions, i.e. ¢ is an H-equivariant map.

On the tensor product of two Hopf-module algebras A ® B we will consider the action
of the Hopf algebra H defined by
(1.17) A(h) > (a & b) = (h(l) > a) ® (h(g) > b)
for all a € A, b € B, and h € H. Both the algebra structure of A ® B and the braiding
in the category are determined by a quasitriangular structure of H, i.e. an invertible
R-matrix R = R @ R® in H @ H obeying

ToA(h) =RA(R)R?
and
(A®id)R=RD 2RO @ (RP)* | (deA)R = (RV)* @ R @ RO

where 7 : H® H — H ® H is the flip map which interchanges the two factors of H.
See [36] for proofs of the following results.

Proposition 1.18. If (H,R) is a quasitriangular Hopf algebra, then the category of left
H-module algebras s¢.# is a braided monoidal category with braiding morphism

(1.19) Uypla®b) = (RP>b) @ (RY>a)
foralla e A andb € B.

When the Hopf algebra is triangular, ie. R™! = R® @ R or 7 0o R~ = R, the
category . is symmetric, i.e. the braiding in (1.19) squares to the identity: ¥? = id.
If in addition H is cocommutative, like the classical enveloping algebras $i(g), then the
R-matrix can be taken to be R = 1 ® 1 and the braiding morphism is given by the flip
morphism 7, where 74 5 : A® B — B ® A interchanges the factors as 74 p(a®b) = b®a.
In this case, the ordinary tensor algebra structure of A ® B is compatible with the action
of H, ie. (a1 ®@b1)-(aa®by) := (aj az) ® (by by). In the general case, the algebra structure
on A® B which is acted upon covariantly by H depends on the quasitriangular structure.

Proposition 1.20. If (H,R) is a quasitriangular Hopf algebra and A, B are H-module
algebras, then the braided tensor product A® B is the vector space A ® B endowed with
the product

(121) (a1 ®bl) . (CLQ ®bg) = (a1®1) \I’B7A(b1 ®CL2) (1@62) = aq (:R(z)DCLQ) & (:R(I)Dbl) bg .
With this product A® B is an H-module algebra.
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In a braided monoidal category of algebras it is natural to relate the notion of commu-
tativity to the braiding morphism. The usual definition of commutativity of an algebra
A may be expressed as the invariance of the multiplication p : A ® A — A under the
flip morphism 744 : A® A - A® A, ie. poTsa = p. In a braided monoidal category
(¢, ®, V) it is natural to replace 7, which is not necessarily a morphism in the category,
by the braiding morphism W. This motivates the following definition.

Definition 1.22. An algebra object A in the category sc.# is braided commutative if its
multiplication map p : A ® A — A is invariant with respect to the braiding morphism
\I’A,AZA®A—>A®A as

(1.23) poVas=pn or ab=(RPed) (RVpsa),
for every a,b € A.

If A is an object in the category 4.7, and A is the twisted Hopf-module algebra
defined by a Drinfel’d twist element F = F) ® F?) ¢ 5 ® H as in Theorem 1.4, then
the braiding morphism ¥ and tensor product @ on the category 3¢/ are defined as in
Propositions 1.18 and 1.20 with respect to the twist deformed quasitriangular structure

Rp = (FP @ FO)RF.

There is a natural equivalence between braided monoidal categories of left Hopf-module
algebras defined by the functor

gF:(%%vééaqj) — (HF'%)@Fa\DF)

which acts as the identity on objects and morphisms of 5.7 [28, Thm. XV.3.5], the
nontriviality being contained in what happens to the braided monoidal structure. This
functorial isomorphism implies that any H-covariant construction in the category g.Z of
H-module algebras has a twisted analog in the category s,.# of Hp-module algebras.

1.3. Ore localization. Given a commutative unital algebra A over C which is a domain,
one usually localizes with respect to a subset S C A which is closed under multiplication.
For noncommutative algebras, the existence of the localization is guaranteed, for example,
by an additional Ore condition on the subset S. Full details on the construction may be
found in standard textbooks (see e.g. [30, §10]). We just recall that one defines the
localization algebra A[S™!] = S7!- A as a set of equivalence classes in S x A, regarded as
“fractions” (s,a) = s~'a, endowed with a suitable algebra structure. Geometrically, the
localization A < A[S™!] corresponds to deleting the locus specified by the vanishing of
elements of S in the variety dual to A.

2. ALGEBRAIC TORUS DEFORMATIONS

This paper systematically combines constructions from toric geometry and the theory
of isospectral deformations. Isospectral deformations produce noncommutative geome-
tries by using the isometric action of a real n-dimensional torus T" on a Riemannian
(spin) manifold and its noncommutative deformation Ty [13, 14]. We will extend these
constructions to actions of the algebraic torus (C*)", in order to obtain an analogous
deformation of toric algebraic varieties. In this section we spell out the various algebraic
constructions behind these deformations. Throughout this paper an implicit sum over
repeated upper and lower indices is always understood.



ALGEBRAIC DEFORMATIONS OF TORIC VARIETIES I 9

2.1. The noncommutative algebraic torus. The definition of the noncommutative
real torus essentially relies on harmonic analysis and a choice of homomorphism of groups
between the space of characters and the torus itself. This procedure may be easily ex-
tended to a generic locally compact abelian Lie group GG. We are ultimately interested
in the case G = (C*)". Let A(G) C C*(G) be the commutative algebra of a class of
functions on GG with a suitable growth condition “at infinity”. The Fourier transform on

G provides a decomposition of every function f € A(G) over a basis of functions {x,},ca
labelled by the group of characters of G, i.e. its Pontrjagin dual G= Hom¢ (G, C*). For
every p € @, we set x, to be the function on G defined by x,(g9) = (p,g), for g € G,
where (—,—) : G x G — C* is the pairing between G and G. This defines the Fourier

components f : G — C of f € A(G) as

= /G f(9) Xp(g) dg

where p € G and dg denotes the bi-invariant Haar measure of G. Using L?-orthonormality
of the characters, the inverse Fourier transformation is given by

= /A F(0) xp(9) dp
G

with dp the bi-invariant Haar measure of G.

In order to define a noncommutative associative product on A(G) it is enough to de-
scribe it on the G-eigenbasis {x, } g and then extend it to A(G) via the Fourier transform.

Given a homomorphism of groups © : G — G, we set
Xp %6 Xq = Xp - (O(0) > Xq) = (4, O(P)) Xpq

for p,q € G. Here the symbol > denotes the (left) action of the group G on A(G). Using
the Fourier transformation this extends to a product on functions f, f' € A(G):

(f*e f')g) = f( ) ) Xp+q(9 <q )> dp dg .

Gxd
The vector space A(G) with this product defines a noncommutative associative algebra
denoted Ag(G).

Example 2.1. Let G =V be a locally compact abelian vector Lie group of (real) dimension
n. Then G = V* = Homg(V,R). By choosing an R-basis of V', there are isomorphisms
V =2 R" and V* = R™. In this case the homomorphism © may be taken to be a linear
endomorphism on V' defined by a real skew-symmetric n X n matriz 6 € /\2 V, and we get
the Moyal product on R™.

Example 2.2. Let G = V/L with V' as in Example 2.1 and L C V' a lattice of mazimal
rank n. Then G = L* = Homy(L,Z). Upon choosing a Z-basis for L, there are isomor-
phisms L =2 7", L* 2 7" and G = T™. In this case we put ©(p) = exp(% 0-p) forpe L*
with 6 again a real skew-symmetric n X n matriz, and we obtain the noncommutative
torus Ty .

When G = T is an algebraic torus of (complex) dimension n over C, we proceed as
follows. Let L be a lattice of rank n. Let L* = Homy(L,Z) be the dual lattice and denote
the canonical pairing between the lattices by (—, —) : L* x L — Z. The dual lattice is the
group of characters {x,}per+ which provide a basis of T-eigenfunctions on the algebraic
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torus T = L ®; C*, i.e. one has G = L* = Homg(T,C*). Thus L = Homg(C*,T)

is the lattice of one-parameter subgroups of 7. Pick a Z-basis eq,...,e, of L, with
corresponding dual basis e}, ..., e’ for L*. Then there is an isomorphism 7" = (C*)". Set
p=>,pief € L*andt =3, e;®t; € T. Then the characters are given by

(2.3) Xp(t) =P =" b

The Fourier components in this case are given by
(2.4) fo) = [ s
T

with respect to the T-invariant measure d*¢ = (dt dt )/|t|?. Using the discrete measure on

the Pontrjagin dual T = L*, every function f : T — C with suitable growth “at infinity”
can be written in terms of its Fourier components via the Laurent power series expansion

=3 Fo) e

peL*

The space Cy,, is the eigenspace for the T-action corresponding to the character given
by (p,—) : T — C* in Hom¢(7T,C*) = L*. Thus the L*-grading gives precisely the
eigenspace decompositions of algebraic objects, dual to T-invariant geometric objects.

The homomorphism © : L* — T is defined by a compler skew-symmetric n X n matrix
0 via the usual relation O(p) = exp(%@ - p). The real part of 6 again describes the
deformation of the compact real torus T" C (C*)™, while the imaginary part applies to
the “dilatation” part given by (RT)" according to the polar decomposition

(C)" = (RT)" xT" =R x T" .

In this way we may think of the deformation of (C*)™ as a simultaneous and independent
deformation of R™ and T" as given in Example 2.1 and Example 2.2. However, for concrete
computations this prescription is not very useful, because the Moyal deformation affects
log |t| for elements t € (C*)™ and thus leads to rather involved commutation relations.
The transformation (2.4) with this decomposition of (C*)™ is the Fourier transform with
respect to the real torus and the Mellin transform with respect to (RT)".

As an algebraic variety, the torus (C*)" is dual to the Laurent polynomial algebra in
n variables C[t¥!,...,tF!]. The monomials in this coordinate algebra are the functions
labelled by the characters x,(t) = t” that we introduced in (2.3). The deformation of the
product between such functions may be written explicitly as

(2.5) 2P %g w? = exp (% Z p; 09 qj) 2Pt
ij

where 2 =Y. e, ® 2z, w=> ., e, ®w; € T, and p,q € L*. The product (2.5) is extended
linearly to all of C[tF1, ..., t1].

Definition 2.6. The vector space A(T) = C[t{?, ... t21] with the product xg is called the
quantum Laurent algebra Ay(T) = Cy[t5!,...,t1] and its elements are called quantum
Laurent polynomials. It is dual to a noncommutative variety denoted (C;)".

Remember that 6 is a complex matrix. As we show explicitly in §2.2, the regular action
of the group T on itself extends to an action on (C;)". In particular, T" acts by algebra
automorphisms with respect to the product .
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2.2. Twisted toric actions. Using the Hopf algebraic approach described in §1.1, we can
alternatively define the quantum Laurent algebra by twisting the (quantum) enveloping
algebra H of the algebraic torus group 7. This is simply the polynomial algebra in n
commuting elements H;, the infinitesimal generators of the group. In fact we rather need

formal power series in some parameters ¢, but we will abuse notation by simply writing
H = HI[[0]].

As twisting element we take the abelian Drinfel’d twist
(2.7) F=F=exp(-1 Zij 0" H; @ H;) .

The infinitesimal action of 7" on characters is given by H;>x, = (p, ;) x, for p € L*. Then
formula (1.6) for @ = 2z and b = w? monomials in the algebra A(T) = C[t{, ... t11]
coincides exactly with (2.5).

On the other hand, in this case H = Hy := Hp, as Hopf algebras. Since the Lie algebra
of T is abelian, the coproduct Ay := Ap, of Hy computed from (1.5) is unaffected by the
deformation and is given on generators by

The antipode defined in (1.5) is also unaffected by the deformation, Sp, = S, as is always
the case with Drinfel’d twist elements of the form (2.7) [11]. Indeed, one shows that the
element Up, = Fe(l) S (Fg(z)) in this case is the identity by computing its n-th order term
for any n > 0 in a formal power series expansion in 6. This term is proportional to

> ¢ G Hy - H, S(Hj, - Hj,)
=> (=1)"g" g Hy - H Hy, e Hy =0
and the vanishing follows from 0% = —6* and H, H; = H; H; for each i,j = 1,...,n.
Thus H = Hy as a Hopf algebra, and the deformed algebra Ay(T) is also an H-module
algebra with respect to the same (undeformed) toric action. In this case the deformation

of the triangular structure R = 1 ® 1 of H by the twist element (2.7) gives the twisted
R-matrix

(2.8) Re, =F;' (1@ 1) F,' = F;? |
so that the twisted enveloping algebra JHy is triangular, 7 o 9%;91 = Rp,, but no longer
cocommutative, resulting in a nontrivial, albeit symmetric, braiding in the category s¢,.# .

The coproduct on the algebra of functions A(T') on the torus 7" is given on character
elements x, : T'— C*, p € L*, by

(2.9) Av(Xp) = Xp @ Xp »

while the antipode is the inverse S, (x,) = X, ' in C*. For this undeformed case, the dual
pairing between generators H; of T" and the character algebra A(T) is provided by the
evaluation of the Lie derivative Ly, with respect to the invariant vector field associated
to H;; in particular for the characters one finds:

(Hi, Xp) = L, (xp)(1) = pi -

Using the Drinfel’d twist (2.7) and its dual twist element FV = FY defined by (1.14),
from Theorem 1.11 we obtain the twisted Hopf algebra Fun’(T) with deformed product
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on characters given by
Xp X0 Xq = FG(XI?@XII) (Xp * Xq) FG_l(X:n@)Xq)
= (Fo, xp @ xq) 0 - Xa) (Fy 5 Xp ® Xq)

= ep (=3, p07q) 0o xg exp (3D 207 q) = X Xa s

which coincides with the undeformed product on the character algebra. The antipode
is also unaffected by the deformation, ST ’ (Xp) = Sv(xp), as can be checked directly by
using (1.12), or by using duality and the fact that the antipode in Hy is unchanged by the
deformation in this case. Thus the quantum group symmetry underlying the quantum
Laurent algebra also coincides with the classical (undeformed) toric symmetry.

2.3. The noncommutative variety GLy(n). Some of our constructions will rely on
a noncommutative (C*)" deformation of the general linear group GL(n) over C. The
deformation is realized using the action of the algebraic torus by a (dual) Drinfel’d twist
on the algebra of functions &, := Fun(GL(n)) on GL(n), as described in §1.1, which
depends on an n X n skew-symmetric complex matrix 6. The Hopf algebra F,, is dual to
the enveloping Hopf algebra H"™ = $U(gl(n)). The left regular action of H™ on F,, defined
in general in (1.9), is a covariant action which makes ¥, into a left H"-module algebra.
There is an analogous right regular covariant action of H™ on &,, which makes J,, into a
right H"-module algebra.

The deformation of GL(n) which we use in the following is the only one which deforms
F,, as a Hopf algebra, and also as an H"-bimodule algebra. Within the context of §1.1
and §1.2, it would be more natural to consider ¥, as a left H"-module algebra via either
the left regular action or the left adjoint action, or by their right acting versions. For
our purposes this is undesirable as it introduces an asymmetry between row and column
operations on matrix elements considered in the following. The deformation we use is
compatible with the Hopf algebra structure, which is instrumental in some of our later
constructions of differential forms, and moreover it is the one that is compatible with the
embeddings we will consider into noncommutative projective spaces.

We first twist the standard Hopf algebra structure of H"™ to obtain Hj, using the
twist element (2.7), where the H; are the generators of the Lie algebra of the diagonally
embedded maximal torus (C*)* C GL(n). Let {E;;}i =1, . be the standard basis of
gl(n), with matrix elements (Ej;)u = 6ix 0;; and H; = Ej;, and the commutation relations

(Eij, B = By djk — Ey;j 6 [Hy, Ejj) = Eij (0ki — Okj) -

These are used to compute the twisted coproduct Ay := Ap, asin (1.5). A straightforward
computation, along the lines of [11], yields

Ag(Eij) - Eij ® )\Z_jl + )‘ij ® Eij
with the group-like element \;; defined by
)\ij = exXp (% Zkl Hkl (5zk — 5]k) Hl) .
As expected, the generators H; of the twist have undeformed coproduct.

By the general discussion of §1.1, in order to obtain a deformation of &F,, which preserves
the quantum group structure, we use the Drinfel’d twist I’V = F? defined as in (1.14),
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which is dual to the initial twist (2.7). As in §2.2 we compute the pairings
(Hk, 9ij) = Hi(9i5)(1) = L, (955)(1) = gi;(H) = i O

with the generators g;; of the algebra JF,. Using Theorem (1.11) we then obtain the
twisted Hopf algebra F9 still generated by elements g;;, but now with noncommutative
relations between them given by

n

gi¥o g = Y F(gir @ grs) (Grm - 9p) F* 7 (G @ g1)

m,p,r,s=1

= Z <F€ s Gir ® gks> (grm . gsp) <F9_1 y Gmj ® gpl>

m,p,r,s=1

n

(210) = Z ki 5ir 5ks (grm ) gsp) Qmp 5mj 5pl = (ki qj1 (gij : gkl) )

m,p,r,s=1
where

¢ij = exp (% Hij) .
Introducing coefficients
(2.11) Qij ki = Qki 41 = Qg i » Q?j;kl = G qf‘l
we write the commutation rule for the deformed product as

(2.12) 9ij X0 gkl = Q?j;kl 9kl X6 Gij -

As usual, the coproduct A, and the counit ¢, are left unchanged. On the other hand,
the commutativity of the generators H;’s implies, as in §2.2, that the antipode 559 (9i) =
Sv(gij) is unaltered as well.

Definition 2.13. The noncommutative Hopf algebra 972 = (Fp, X9, Ay, ey, Sy) is called
the algebraic torus deformation quantum group of GL(n). It is dual to a noncommutative
variety denoted GLg(n).

A proper definition of the variety GLgy(n) involves the notion of noncommutative de-
terminant; we will return to this point in detail in §2.4.

Remark 2.14. This formalism may also be adapted to define noncommutative rectangular
d x n matriz algebras, with d < n, as the C-subalgebra of F generated by g;; with i < d.
There is a C-algebra retraction of F4 onto this subalgebra whose kernel is generated by g;;
with i > d, and hence the subalgebra is isomorphic to F° / (gij)isa-

In the sequel we will drop the product notation x4 for simplicity. The Hopf algebra F¢
is dually paired with Jj under the same pairing which links the untwisted algebras. The
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left H#-module structure of 9 is given by (1.9) and is easily computed to get

Eijv>gn = Q;S) (Ej, gfff’>

= Z Jkm <Eij7 gml>
m=1

= Z Grm g1 (L)
m=1

= Z Gkem Omi 051 = 051 Gri -
m=1

2.4. Quantum determinants. The coordinate algebra of the noncommutative variety
GLg(n) should be properly defined as the Ore localization of the noncommutative algebra
generated by arbitrary matrix units with respect to an invertible and permutable element
dety, the determinant element. If we consider the elements at the crossings of rows 7, j
and columns k,[ of a given matrix, then the determinant of this 2 x 2 sub-matrix is
classically given by gix g;1 — gjx 9. In order to get a well-defined element of F2, we put in
front of every monomial in the matrix elements g;; a suitable element of the deformation
matrix. For example, in front of g;; g we write Qj;.ix, so that the determinant of the
minor above is Qji.ik Gik 9j1 — Qi;jk gjk gu- This is well-defined because if we choose to
write the determinant using a different ordering of the monomials, then we get the same
element of F¢ thanks to the relations (2.12) which imply

le;ik ik 951 = Qik;jl gji Gik -

For a generic n X n matrix we can define the determinant by adapting the usual Laplace
expansion in minors, with respect to either rows or columns, or the Leibniz formula which
expresses it as a linear combination of products [], Jio(i) OF I, Jo(i)i as o runs through
the symmetric group .S, weighted by its sign. Using the above rule for the coefficients
in front of every monomial to pull out a factor (). for every pair gg; g;; appearing in
IL 9i0a), we define

i
L

n—j
detg := Z sgn (o) ( H Qi+jo(i+j);jo(j)) 9io(1) " Ino(n)

o€Sn j=1 =1
n—1 n—j

(2.15) = ) sen(o) ( IT 11 Qa(i+j)i+j;0(j)j) o)1~ Gotm)n -
gESy 7j=1 =1

This element corresponds to a mapping of 5, into the braid group B, on n strands, as
we shall see below.

The formula (2.15) may be rewritten in a more succinct way by using the fact that the
classical Leibniz formula can be expressed in terms of the totally antisymmetric Levi—
Civita symbol € as

1

(SRR o Jidn Jitin o g
€ nglil.'.gn’ln_ge e ngjlll g]n'ln .

In the noncommutative case, we introduce a #-deformed Levi-Civita symbol €y which
satisfies braided antisymmetry rules. Since the row and column indices in (2.11) and
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(2.12) behave differently, we actually require two different symbols eér), which refers to

row indices, and e((f), which refers to column indices. In this way we may absorb the Q-
dependent coefficients of (2.15), consistently with the braided antisymmetry. Explicitly,

1

1
ko

3
|

6291'“2" () _ sgn(il .. Zn) Qs+kis+k§kik )

1 1

H Jstkstkijrk -

=
Il

w
Il

6?91 = sgn(ji - -

II:I

They obey the alternating rules

Egl “Jarjpgn(€) _qjma Egl “dp Joan()7
(2.16) gia i in " _ _qiiﬁ i1-m g rin (1)
For example, for n = 2 we have ¢,° = 1 and €, ) = —¢%,, and the sole braided
antisymmetry relation e, © = _¢g2 e ) is satisfied. Similarly, we have € ™ =1 and

= —¢yy. In this sense eér) may be thought of as the inverse of the symbol eéc)

Clearly, we are referring to the ordered multi-index J = (12). In computing minors with
unordered indices, like J = (21), we get the extra sign from the permutation.

631 (r)

Definition 2.17. The quantum determinant is the element of F¢ given by

1 i1t (7 n
(2.18) dety = ] € ( )Eél e )Qz’ljl © Yingn -

Theorem 2.19. The element dety is a T-eigenvector which is left and right permutable
in FP.

Proof: The first statement follows from an elementary calculation using the coproduct
Ay(H;) of §2.2 and the (C*)™-action H;>gr = 0 gy For the second statement, note that
since every monomial occuring in dety is of the form []; g;»(¢) for some permutation o in
Sy, every row and column index appears exactly once. By (2.12), commuting a generic
element gi; from right to left in such a monomial picks up the coefficient

H Q?a(i);kl = H e qg(i)l
i=1 i=1
It follows that

(dety) g = ( H Q7 kl) gt (dety)

for all k,1=1,...,n, and hence (dety) F? = F (dety). [

Corollary 2.20. The set of non-negative powers of dety is a left and right denominator
set in FU.

Corollary 2.21. The element dety is central in F% if and only if

n

z": ok = Z ok (mod 2)

k=1 k=1
foralli,j=1,... n.
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Although our deformation of the general linear group lies in the class of deformations
considered in [3], our definition of quantum determinant is different, though it satisfies the
same formal properties. The element (2.18) originates from the braiding of the category
of Hopf-module algebras described in §1.2, in the enveloping algebra approach, since this
captures pairwise noncommutativity relations in a deformed exterior algebra. Consider
the Hopf algebra Hy dual to F2. The #-deformed exterior algebra of degree d for an
element V' in the category s of Hj-module algebras is defined as

(2.22) AoV i= V& [ (v @ vy + Tp(v1 @ o))

where W, := Uy, = 70 F,;? is the braiding morphism of the category. For § = 0 we

v1,v2€V

recover the usual flip operator ¥y = 7 and the exterior algebra /\d V. For 6 # 0 we obtain
a braided skew-symmetric algebra /\Z V', which is spanned by the collection of minors of
order d < n in elements of V' when n is the number of generators of V. For this, consider
two multi-indices I = (i; - - -i4) and J = (j; - - - j¢) which label the rows and columns of a
given minor, and define the determinant A' of this sub-matrix as

(2.23) d' Z 6“ o ]1 Ja( Girjr *** Gigja

where the symbols ¢y satisfy alternating rules derived from (2.22). Here the 3{j-module
structure of GL(n) = GL(V) is induced from the H}-module structure of V" and of its dual
V*. When this H}-module structure induces the noncommutative product (2.12) among
the entries of elements of GL(V'), the alternating properties of the deformed Levi-Civita
symbols coincide with those of (2.16).

In the classical case, there is a Laplace expansion for the above determinant in terms of
lower order minors. If I is a row multi-index, J a column multi-index with |I| = |J| = d we
write 1% = I\ {in} = (i}, ...,i5 ;) and J* = J\ {jo} = (49,..., 75 ) for a € (1,...,d).
The classical Laplace expansion with respect to the k-th row of the determinant A’ is
then written as:

(2.24) A = Zd: eikUIkej“UJagkaAIk;Ja )

a=1
In the deformed case, we need to take into account the (Q-coefficients associated to each
ke standing in front of A", Since A"+/" is a product of elements gikje, With il e I*
and jg € J* and the coefficient does not depend on the order of the elerilents, we have
as noncommutative version of (2.24) the following

d d-1 d d-1
a k ja a k ja
(2.25) A=Y TIEDQujgia grad™ =D TTD " Qraitjs A g
a=1 =1 a=1 =1

Similarly, if we expand with respect to the k-th column we have

d d—1 d d-1
J _ k @ I*gk k+a I*J k
(226) A = Z;yl(— + Q ,g]B’ak gakA — 2_31;‘_[1(_1) + Qak zB]BA

Remark 2.27. Our definition (2.22) of exterior algebra is equivalent to the standard
definition of an exterior algebra in a braided monoidal category [41] (see also [29, §13.2.2] ),
written in the symmetric case. In this construction, one takes the quotient of the tensor
algebra by the kernel of the antisymmetrizer. A slightly different, but somewhat simpler,
definition involves the quotient by the ideal generated by the kernel of the antisymmetrizer
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in degree two, which coincides with the morphism id — Wy (29, p. 512]. This agrees with
our definition (2.22), since we work in a symmetric category with Vi = id, and so the
kernel of the antisymmetrizer id — Wy coincides with the image of the symmetrizer id+ W,.

For later use we work out the explicit commutation rules between any two dxd and d'xd’
minors A’7 and A7’ for the case V = F?, regarded as the coordinate algebra A(GLg(n))
of the noncommutative variety GLgy(n), with |I| = |J| =d and |I'| = |J'| = d’. One has

LI AL iaeia(r) giega(e) Bty (r) didy (e)
A A - 69 69 69 69 (giljl o .gidjd) (glljl ' gld"yd’)

d d’
- (Il 1l @
- iaja?'i;/j;/

a=1 o/=1

ivig (r) _gregae) iy (1) diedy (e)
X € € € € (92"1]1 g,d,]d,) (Gings =~ Ginja)

_ ( H H me > ) A AT

a=1 o/=1

Introducing the coefficient

d d
(2.28) Rryry = H H Qiaja;i;,j;,

a=1 o/'=1
we have the commutation relations
(2.29) AN = Ry ATTAT
In particular, this shows that the minors of order d generate a subalgebra.

Another useful identity concerns how minors behave when we choose two multi-indices
which differ only by transposfcmn on a pair of indices. Consider a palr of multi-indices

of the form J = (j1+ja--Js--Ja) and J# = (j1-+-jg - jo - Jja). From (2.23) one
obtains the alternatlng relatlons
(2.30) AT = (—1)Bel gL

which can be further generalized to arbitrary permutations.

3. NONCOMMUTATIVE TORIC VARIETIES

The strategy of (toric) isospectral deformations is that once we have a noncommutative
deformation of the torus we can deform every space acted upon by it. For Riemannian
manifolds the isospectral condition means restricting to isometric actions. Using the
algebraic torus 7' = (C*)™ and its deformation constructed in §2.1, we will now proceed
to deform toric algebraic varieties. Our approach makes use of and extends a construction
due to Ingalls [25].

3.1. Noncommutative deformations of toric varieties. Toric varieties X may be
described in several equivalent ways. As complex varieties they come with an open em-
bedding of an algebraic torus, which is dense in X. In this picture their geometry is
encoded by combinatorial data, a fan, that describes the way in which (C*)" acts on
X. As symplectic manifolds they come with a hamiltonian action of a real torus. The
corresponding moment map, whose image is a convex polytope, provides the information
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about the structure of X. Noncommutative deformations of toric varieties in the sym-
plectic framework are defined in [8]. In this paper we will use the fan picture. For a more
exhaustive introduction to toric varieties, along with further definitions and terminology;,
see e.g. [16, 17, 22].

Definition 3.1. A toric variety X of dimension n is an irreducible algebraic variety over
C which contains (C*)" as a Zariski open subset and the regular action of (C*)™ on itself
extends to an action on the whole of X.

Basic examples are the affine planes C", the projective spaces CP", and the weighted
projective spaces CP"[ag, ay,...,a,]. Additional examples comes from cones (of suitable
type) and families of them as we now show. We denote by Lg = L ®z R = R"™ the real
vector space obtained from a lattice L. Its dual vector space is L = L* ®7 R = (R")*.

Definition 3.2. A rational polyhedral cone ¢ C Ly is a cone 0 = Rtv; & --- @& Rto,
generated by finitely many elements vy, ...,vs € L. It is strongly convex if it does not
contain any real line, c N (—o) = 0.

Definition 3.3. For every rational polyhedral cone o C Lg we define the dual cone

o' ={mely|(mu)y>0 Yueao}.

Then, the set 0¥ N L* is a finitely generated semigroup under addition (Gordan’s Lemma).

Given a rational polyhedral cone o which is in addition strongly convex, one constructs
a normal affine toric variety U[o]. We sketch the main points of the construction; for more
details one may refer for instance to [17, §1.6]. Note that in general ¢" is not strongly
convex (even if o is), so that if (mq,...,m;) are the generators of the initely generated
semigroup ¢¥ N L* one has that [ > n.  To each of the generators m, = ), (m,); €}
there is associated a Laurent monomial in C[t5°', ..., ¢X1] by the assignment m, + t" =
tgm“)l cglmadn - The product between two such elements is given by the corresponding
sum of characters, t™ -t := t™a*" _Thus the generators of ¢V N L* span a subalgebra of
C[tf?, ..., t51] which we denote by C[o]. The affine toric variety U[o] is defined to be the
spectrum of Clo], i.e. C|o] is the coordinate algebra of Ulo]. The variety Ulo] is shown
to be normal (i.e. C[o] is integrally closed) and of dimension n. These are all normal
affine varieties that are also toric, that is, any such a variety is isomorphic to Ulo] for
some strongly convex rational polyhedral cone o. Note that the inclusion 0 < ¢ induces

an embedding of the torus 7" = UJ[0] as a dense open subset of Ulo].

The variety Ulo] may also be described as an embedding in the complex plane C!. If
oY N L* has | generators, consider the polynomial algebra Clxq,...,z;] (one variable z,
for each m,). Recall that the generators m, are [ rational vectors in L, so there are at
least | — n linear relations among them. Then we may quotient the algebra Clxy, ..., /]
by the ideal generated by these relations among the vectors m,, realized as multiplicative
relations among the variables z,. If we denote the subspace generated by these relations
as Rlm,| C Clxy, ..., 7], then we get a realization of U[o] as the spectrum of the quotient
algebra Clo| = Clxy, ...,z /(R[m,]).

We obtain generic toric varieties by gluing together affine toric varieties. This has a
corresponding picture in terms of cones.

Definition 3.4. Given a cone o C Ly, a face 7 C o is a subset of the form 7 = o N'm™*
for some m € oV, where m* :={u € Lg | {m,u) = 0}.
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Definition 3.5. A fan X C Ly is a non-empty finite collection of strongly convex rational
polyhedral cones in Lr satisfying the following conditions:

(1) If o € ¥ and 7 is a face of o, then T € X; and
(2) If o, 7 € X, then the intersection o N T is a face of both o and T.

To a fan ¥ in Ly we associate a toric variety X = X[X]. The cones ¢ € ¥ correspond
to the open affine subvarieties Ulo| C X[X], and U[o] and U[r] are glued together along
their common open subset Ulo N 7] = Ulo] N U[r]. Various properties of X [¥], such as
smoothness and compactness, may be stated entirely in terms of the fan structure ¥ (see
e.g. [22] for details).

Our definition of noncommutative toric varieties will involve a multi-parameter defor-
mation X [X] — Xy[¥] which makes use of the same fan structure ¥, deforming only the
product structure of the coordinate algebra of every strongly convex rational polyhedral
cone of ¥.. We have already defined the quantum Laurent algebra Cy[ti®, ... t5!], the
coordinate algebra of the noncommutative algebraic torus (C;)". Since the undeformed
torus (C*)" is densely contained in every toric variety X[¥]| = (J, 5, Ulo], we expect to
have morphisms between the noncommutative algebras corresponding to the noncommu-
tative varieties Xo[¥] and Cy[ti", ..., t51].

We begin by defining noncommutative affine toric varieties. They are associated to
a strongly convex rational polyhedral cone o C Ly, just as in the commutative case.
However, now we use the complex skew-symmetric matrix 6 to define a noncommutative
product in the algebra C[o], according to the group character relation given by

Xp *0 Xq = €XP (% Zij pi 07 qj) Xp+q -

Thus if (my,...,my) are the generators of the semigroup o¥ N L* and ¢ are the as-
sociated Laurent monomials, then the algebra Cylo] is defined to be the subalgebra of
Co[t{?, ..., t51] generated by {t™} with product

™ xg T = exp (4 Z (Mma); 07 (my);) t7et™
ij

This may be regarded as a deformation of the algebra generated by the characters, but,
we stress once again, not of their group structure. It is for this reason that we will describe
noncommutative toric varieties by using the same fan of the corresponding commutative
varieties. The noncommutative affine variety corresponding to the algebra Cy[o]| is denoted
Uplo]. It is a multi-parameter deformation of Ulo].

Proposition 3.6. The action of the torus T' on (C; )" restricts to a faithful torus action
O on Upylo], which is dually a map @ : T — Aut(Cylo]).

pra = g glmo),

Proof: On generators of the algebra Cy[o] of the form with m, €

oVNL*and a=1,...,1, the action of 7 = (71, ...,7,) € T is given by

@T(tma) = H Ti timd)l
=1

The corresponding infinitesimal action of the torus generator H; is then
Hi >t = (ma)i te s

i.e. multiplication by the coefficient (m,);, the i-th component of m,. If the action is
not faithful, there is at least one index ¢ with corresponding generator H; acting trivially
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and for this ¢ one would have (m,); = 0 for every a, i.e. the generators of the dual cone
would have vanishing i-th component. But this would mean that every vector along the
i-th component has negative pairing with elements of the cone ¢, which contradicts the
assumption that o is strongly convex. |

This toric action really parallels the undeformed situation: strongly convex cones o
represent the affine toric varieties Ulo] that are glued together to get the full toric variety
X; and in each of them the torus is embedded and acts freely (the usual extension of the
action of the torus on itself). In other words, the U[o]’s are open affine toric subvarieties
of X, so they carry a faithful action of the torus.

Recall that the L*-grading gives precisely the eigenspace decompositions of algebraic
objects, dual to T-invariant geometric objects. In particular, since the torus 71" acts on
Cylo] by C-algebra automorphisms for each o € X, the algebra Cy[o] is spanned by T-
eigenvectors for which the corresponding eigenvalues are rational. This yields a vector
space decomposition

(3.7) Colo] = B Colo]? .

peL*

where Cy[o]P denotes the eigenspace of Cy[o] labelled by the character p € L*, and
Cy[o]P 9 Cylo]? C Cylo]P*4 for all p,q € L*, since T" acts by automorphisms. Thus we get
a grading of Cy[o] by the free abelian group of characters L*, such that the homogeneous
elements are the T-eigenvectors in Cy[o].

We have seen how affine toric varieties may also be regarded as subvarieties of complex
planes C!, via the quotient algebra C|o] = Clay, ..., 1;]/(R[m,]). An analogous realization
is possible for noncommutative affine toric varieties. Remembering that in general [ > n,
the noncommutative deformation of the polynomial algebra Clzy, ..., x| is obtained from
the multiplicative relations between the monomials t™=. If we denote 0, := (ma)i 67 (my);
witha,b=1,...,0,1,7=1,...,nand ¢, = eXp(% f4), then the relation between Laurent
monomials becomes

(3.8) M kg U = g T

As a consequence, the generators of the algebra of the affine variety obey
Qba Ta *g Tb = Gab Tp *§ T

or equivalently

(3.9) Ty *g Ty = (Qab)z Tp k5 Ty -

The relations (3.9) define the [-dimensional noncommutative complex plane with coor-
dinate algebra Cglzy, ..., 2], which is a special instance of the general class of quantum
affine spaces considered by Manin [38].

The [ —n linear relations among the generators of the dual cone {m,} are now expressed
in the character algebra. These relations can always be brought to the form

l
Z (ps,a - Ts,a) meg = 0 5

a=1



ALGEBRAIC DEFORMATIONS OF TORIC VARIETIES I 21

for s = 1,...,l—n, with non-negative integer coefficients p; 4, 75 .. For each s, one obtains
from (3.8) the additional relation
Ps,1 | . CaPsl ~ Ps,aPs,b—Ts,aTs,b Ts, 1o, Tl
(3.10) Ty *g o xe L —< H (Gab) >:c1 xg kgL
1<a<b<l

The subspace of relations (3.10) is denoted Rg[m,]. It is a multi-parameter deformation
of the subspace R[m,], which generates a two-sided ideal in Cglzy,...,2;]. Thus we
may realize Uy[o| either as the noncommutative algebra Cylo]| or as the quotient algebra
Cylxr, ..., z]/(Rzlmal).

We obtain generic noncommutative toric varieties Xy[¥] by gluing together noncom-
mutative affine toric varieties. If ¢ and o’ are two cones in the fan ¥ which intersect
along the face 7 = o N ¢’, then there are canonical morphisms between the associated
noncommutative algebras Cylo| — Cy[r] and Cy[o’] — Cy[7] induced by the inclusions
7 — o and 7 < o’. The images of these morphisms in Cy[7] are related by an equi-
variant algebra automorphism which plays the role of a “coordinate transition function”
between Uy[o| and Uplo’ |, and may be described explicitly as follows. On 7¥ N L* there
is a complete set of relations of the form

l 4
Z (Ug — va) Mg + Z (uly —vly)my =0
a=1 a’=1

among the generators {m,},_, and {m/,}",_, of the dual semigroups of ¢ and ¢, with
non-negative integers u,, v, and u,,v’,. For each of these relations, the generators z, and
!, of the algebras Cy[o] and Cy[o’] are identified in Cy[7] through the relation

ul el Uy
1’1 *0'*0[[’[ *60 1’1 1*6/ *0/ ZL’l/ v
L\ Ug Up —Vg Vp . u' ,ul, =o', v
(I ) (T ()
1<a<b<l 1<a/ <b/ <V
l 4 , ,
- Uq U ,—Vq UV / /
X ( H H ()™ “’) T K kg @) ko XY K e ke
a=1 da/=
) . i / ~ _ i : . / i /
where 0, := (mq); 07 (m,,); and G, = exp(s 0y, ), while 0., := (m,); "/ (mj,); and

quy = exp(5 Oy, ), together with the commutation relations
/ o \2
To xgo Ty = (Go)” Ty *go Tq -

Since each algebra Cy[o] for o € ¥ is a subalgebra of Cy[t; ", ..., 5], there is a mor-
phism (C;)" — Xy[X]. This also means that the intersection of the algebras Cy[o] is
well-defined, and the “algebra of functions” A(Xj[X]) on Xy[X] can be represented via
the exact sequence

(3.11) 0 — A(Xo[D]) — [] Colo] — ][] Colond’],
ceX o,0'€X
with the gluing automorphisms above. By Proposition 3.6, the toric actions on Uy[o] for

o € X all agree, and hence combine to give an action of 7" on X,[X].

Remark 3.12. Toric isospectral deformations can be shown to be strict deformation quan-
tizations in the sense of Rieffel [39]. It is an open question if our deformation, which may
be thought of as generated by C™ instead of Rieffel’s R™, satisfies a similar property.
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In the remainder of this section we will work out some explicit examples of noncom-
mutative deformations of toric varieties. We set ¢;; 1= exp (% Qij) for i < 7. It may

be regarded as a form ¢ € A*T = (C*)"""D/2 with q;; = q(e},€;) = (e, 0(e})), or
equivalently as a map ¢ € Homz(/\2 L*,C*). When n = 2 we write ¢ := exp (% 9) with
0 = 02 = —9* ¢ C. In the following we omit the star product symbol %4 from the

notation for brevity.

3.2. Algebraic Moyal plane and D-modules. Besides T itself, the simplest toric vari-
ety is the n-dimensional complex plane C". It contains an embedding of the commutative
torus (C*)" < C™ given by the log map

t; — z; =logt; , i=1,....,n.
Then the toric action on C" is \; > z; = z; + §;; log A; for (Ar,..., \,) € (C*)". Passing
to the multi-parameter deformation (C; )" of the torus defined by the quantum Laurent

algebra Cy[t{', ... t=], the elements z; obey the commutator relations
[ZZ', Zj] = 192] .
The corresponding algebra of complex polynomial functions Cy[zy, ..., z,] is dual to a

noncommutative affine variety that we call the algebraic Moyal plane Cjj. This algebra
can be identified with the d-th Weyl algebra D(C?) of polynomial differential operators
on the complex space C?, with d = | 5], whose projective modules furnish basic examples
of D-modules. Note that Cjj and Cj, are isomorphic if and only if the matrices 6 and ¢’

have the same rank.

3.3. Noncommutative projective plane. The fan Ycp: C Z? of CP? contains three
one-dimensional cones 7, = Rtwv;, i = 1,2,3, with vectors v; = (1,0), v, = (0,1) and
v3 = (—1,—1). The three maximal cones of Ycp2 are generated by pairs of these as

o =Rt @R 040 , i=1,2,3 (with the labels read mod 3).
The corresponding open affine subvarieties U[o;] generate an open cover of X |[X] = CP2.

There are no relations among the generators of the subalgebras Cy[o;] C Cy(ty,t2), as
each dual cone o) is strongly convex. For example, the semigroup oy N Z? is generated
by my = (1,0) and my = (0,1), so that § = 6 := §'2 for the deformation matrix, and the
algebra Cylos] = Cy[x1, x| is generated by z, = t™* =t,, a = 1,2, with the relation

(3.13) Ty Ty = ¢ TaTy

where g := ¢12. The other two cones o; for ¢ = 1,2 are similarly treated and, after suitable
redefinitions of the generators, in each case one finds § = # and that Cy[o;] is generated
by elements z;, x5 satisfying the relations (3.13). All three varieties Uy[o;] = C3 are thus
copies of the two-dimensional complex Moyal plane.

To glue the noncommutative affine toric varieties together, consider for example the
face 71 = 03 N oy. The semigroup 7' N Z? is generated by m; = (1,0), my = (0,1) and
ms = —my. The generators of the subalgebra Cy[ry]| = Cylt1,to,t;"'] are the elements
Y1 =t1, yo = to and y3 = t2_1 with the relations

(3.14) Vi = Y21, iy =q " Ysy,  Yoys=1=1y3ys,

which we may identify as the algebra dual to a noncommutative projective line CP}. The
algebra morphisms Cy[oy] — Cy[r] and Cylos] — Cy[r1] are both natural inclusions of
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subalgebras, and in this manner there is a natural algebra automorphism Cy[o1] — Cylos].
The other faces are similarly treated.

3.4. Noncommutative orbifold. We can also deform singular toric varieties in our
formalism. For illustration, let us consider the quotient singularity C?/Z,, where the
cyclic group Zs acts as C? 3 (21, 22) = (—2z1, —22). The fan ¥ C Z? consists of a single
cone 0 = RTv; @ RTwy, where v; = (1,0) and vy = (1,2). The dual cone o is generated
by m; = (2, —1), my = (0,1) and m3 = (1,0). The coordinate algebra Cy[t7, t;]%2 of the
noncommutative affine variety X4[¥] = Uy|o] is thus generated by x = t2t,*, y = t, and
z = t; with the relations

zy=q'yr, xz=q¢zx, yr=q’zy, awy—¢*=0.

The blow-up of the quotient singularity C?/Zs is obtained by adding the vector vy =
(1,1) to the fan 3 above. There are now two maximal cones o, = Rtv; @& Rty and
o_ = Rty @ Rtw,, with dual semigroups generated by mi = +e! and mi = e} F e,
respectively. The coordinate algebras of the noncommutative affine toric varieties Uy|o ]
are generated respectively by elements uy = t{', vy = tJ ' t5 subject to the relations

+2
UV = ¢ UV Uy,

and hence Uy[oy] = C2. The intersection 7 = o, No_ = R wy is generated by m; = (1,0),
my = (1,—1) and m3 = (—1,1). The generators of Cy[7] are thus y; = t1, y = t; 5 and
y3 =t t,* with the relations (3.14).

3.5. Noncommutative conifold. The threefold ordinary double point, or conifold sin-
gularity, is defined by the locus of the equation z y—zw = 0 in C*. Its fan ¥ C Z? consists
of a single maximal cone o generated by wy = €1, wy = €5, w3 = €1 + e3 and wy = €5 + €3,
where ¢; (i = 1,2,3) are the standard generators of Z*. The dual cone ¢ is generated
by my = e1, my = €9, m3 = e and my = e; + ey — e3, so that my + my = ms + my. The
generators of the coordinate algebra of the noncommutative conifold Xy[X] = Up[o] are
thus the elements © =t1, y =19, 2 = t3 and w = t1 t, tgl subject to the relations

_ 2 _ 2 2 9
TY={q2 YT, Tz=(q3 =27, TW={(qpq3 W,
_ 2 2 9 2 9
Yz=4(qy3 2Y, YW = (g9 g3 WY, 2W = (1343 WZ
and
2 2 9 _
TY—Gqiaqi3 Qo3 2w =0

The crepant resolution of the conifold singularity is the non-singular toric Calabi—Yau
threefold whose fan ¥ C Z32 is defined by the vectors v, = e; + ey + €3, v = €1 + e3,
v3 = e; and vy, = e; + €9, and the maximal cones oy = RTv; @ Rtvy & RTog and
gy = RTu; @ Rtog @ RTuy. So for example op is generated by my = €5, my = e} — €}
and mg = e — e, thus Cyloy] is generated by o = ty, y = t; ' t3 and z = t; t5* with the
relations

_9 _ —2
TY=q YT,  TI=qdm 2T, Yr=(qg 2Y .

The other maximal cone is treated similarly, and the gluing morphism is similar to that
of the quotient singularity blow-up of §3.4.
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4. SHEAVES ON NONCOMMUTATIVE TORIC VARIETIES

In this section we develop a sheaf theory on noncommutative toric varieties, follow-
ing [25]. The idea is that the “topology” of the noncommutative space Xy = Xy[¥] is
given by the cones in the fan ¥ (the toric open sets in the topology of Xjy). The assign-
ment o — Cy[o] of the noncommutative algebra Cy[o] to every cone o € X is viewed as
the structure sheaf Ox, of the noncommutative toric variety Xg.

4.1. Quasi-coherent sheaves. We begin with recalling the following result, of which we
omit the elementary proof.

Lemma 4.1. For each cone o € X, the algebra Cy[o] is a noetherian domain.

We use the category Open(Xy) of toric open sets to define the category of sheaves on
the variety Xy = Xy[X]. We call a set of inclusions (o; < 0);cr of cones a covering if
0 = U;e; 0i- Then Open(Xjy) always contains a sufficiently fine open cover. The category
Open(Xy) with the data of coverings forms a Grothendieck topology on Xj.

Proposition 4.2. The map o — Cy[o] defines a sheaf of C-algebras Ox, on Open(Xy).

Proof: Let (0; < 0);er be a covering, i.e. 0 = |J,o; ;. Then Cylo] = ,o; Cy[o], where

the intersection is well-defined since each algebra Cy[o;] is contained in Co[ty ", ... tE1].
Thus, as in (3.11), the sequence
(4.3) 0 — Cylo] & J[ Coloi] & ] Colos o]
iel ijel
is exact, and the result follows. [ |

We now define mod(Xy) to be the category of sheaves of right O x,-modules on Open(Xpy).
If ¥ consists of a single cone o, i.e. Xy[X] = Uylo] is an affine variety, then

(4.4) mod (Uy[o]) = mod(Cy[o])

coincides with the category of right Cy[o]-modules. We denote by M the sheaf associated
to a module M under the isomorphism (4.4). A sheaf of right Ox,-modules is called
quasi-coherent if its restriction to each affine open set Up[o] is of the form M for some
right Cy[o]-module M. It is called coherent if M is finitely-generated.

Let coh(Xj) denote the category of quasi-coherent sheaves of right O x,-modules. Given
a cone o in X, we write coh(o) for the category of right Cy[o]-modules. There are restric-
tion functors
(4.5) Jo @ coh(Xy) — coh(o)

for each open inclusion j, : Ulo] < X[X]. Let tor(o) be the full Serre subcategory of
coh(Xjy) generated by objects E such that j3(F) = 0. In [25, Prop. 4.3] the following
fundamental result is proven.

Proposition 4.6. Let o be a cone in 3. Then the restriction functor (4.5) is exact, and
there is a natural equivalence of categories

coh(Xy) /tor(o) = coh(o) .
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Each cone o in the fan ¥ gives a toric open set of Xy[>]. We will use Proposition 4.6 to
reduce geometric problems in the category coh(Xjy) to algebraic problems in the algebra
Cylo] via the localization functors j3. This gives an explicit description of the quotient
category. The objects of coh(o) are the same as those of coh(Xy), and we write E, for
the object in coh(o) corresponding to a sheaf E. The morphisms are given by

Homcoh(o) (Eaa Fa) = lgl Homcoh(Xg)(Ela F) )
E/

where the inductive limit is taken over all subsheaves E’ C E with j2(E/E") = 0.

For any pair of sheaves E, F' € coh(Xj), let Ext?(E, F') be the p-th derived functor of
the Hom-functor Hom(E, F') = Homeon(x,)(E, F'). For a sheaf £ € coh(Xj), we define

Hp(Xg,E) = Eti(OXG, E) .

Definition 4.7. (1) A coherent sheaf € € coh(Xy) is called locally free or a bundle if
each &,, o € ¥ corresponds to a free module Cyla|®" for some r € N. The integer

r is called the rank of €.
(2) A coherent sheaf E € coh(Xy) is called torsion free if each E,, o € ¥ has no

finite-dimensional submodules, or equivalently® if it admits an embedding E — &
into a locally free sheaf &. The rank of E is the rank of & minus the rank of E/E.

4.2. Equivariant sheaves. Recall from §3.1 that for each ¢ € ¥ there is a grading
(3.7) of the algebra Cy[o] by the free abelian group of characters L*, the homogeneous
elements in the decomposition being identified with the eigenvectors of the T-action on
Cylo]. To get a similar eigenspace decomposition on right Cy[o]-modules, we need to lift
the T-action. We denote with mod™ (Cy[o]) the subcategory of the category mod(Cy[o])
made of left T-equivariant right Cy[o]-modules. There is a left action of the Hopf algebra
Hy on elements M € mod”®(Cylo]) which is compatible with the Hg-action on Colo].
This means that h> (M - a) = (hay> M) - (b >a) for h € Hy, a right Cylo]-module M,
and a € Cylo| (with the usual notation A(h) = h1) ® h) for the coproduct). Objects
of mod”* (Cylo]) admit then an L*-graded T-eigenspace decomposition M = D, M?
such that MP - Cylo]? C MPT for all p,q € L*, and t™* > MP C M™*? for all p € L* and
for m, € 0¥ N L*. This also means that the category of right Cy[o]-modules carrying
a compatible left Hy-action is naturally a braided monoidal category of left Hy-modules.
Via the braiding morphism Wy, we can deform the category 4. as described in §1.2, and
there is a functorial equivalence between the categories mod” (Clo]) and mod™ (Cylo]).

This construction extends to give a left Hy-action on the category coh(Xy) and T-
equivariant sheaves on Open(Xj), i.e. the subcategory coh’®(Xj,) of coherent sheaves
E € coh(Xy) with a compatible T-action, which decompose as direct sums

E= E
peLl*

of T-eigensheaves EP of Ox,-modules. If E is locally free, then each summand E? is

also locally free. There is a functorial equivalence between the categories coh’™(X) and
coh”™ (Xp).

IThe equivalence holds since we have an Ore domain, but not in general (see e.g. [31, Ex. 10.19B]).
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4.3. Invariant subschemes and ideal sheaves. In applications to instanton counting
problems, which will be presented in [12], one is faced with the task of classifying the fixed
points of the natural torus action on the category coh(Xy) obtained by lifting the action
of T on Xy as described in §4.2. In the classical case, one uses the orbit decomposition
Theorem [22] asserting that the toric variety X[¥] is a disjoint union over the orbits O,
of the T-action on X, which are in bijective correspondence with the cones o € ». One
has dimg (o) + dime(O,) = n, and O, C O, if and only if 7 is a face of 0. In particular,
the fixed points of the torus action, i.e. the closed T-orbits, correspond to the maximal
cones in the fan 3, while Oy = T'. We will now show that these orbits are somewhat more
easily classified in the noncommutative case, in the sense that they arise as the generic
T-invariant subvarieties in Xj.

In analogy with the classical setting, we have the notion of a “noncommutative scheme”.

Definition 4.8. A closed subscheme of Xy is a full subcategory Yy C coh(Xy) whose
inclusion functor is has a right-adjoint i* and a left-adjoint i°.

Definition 4.9. An ideal sheaf on Open(Xy) is a coherent sheaf I € coh(Xy) whose
restriction to each affine open set Uylo] is a two-sided ideal I, of the algebra Cy[o].

For each cone o € X, it follows from Lemma 4.1 that every torsion free module of
rank one in coh(o) = mod(Cy|o]) is isomorphic to a right ideal of Cy[o]. Hence an ideal
sheaf I € coh(Xj) can be regarded as a torsion free sheaf of rank one on Open(Xy). (The
converse does not hold globally: there are torsion free sheaves of rank one on Xy which
are not isomorphic to ideal sheaves.) Moreover, the category of sheaves of right O, /I-
modules determines a closed subscheme Yy of Xy. The following result describes to what
extent this correspondence fails to be a bijection (generalizing thus the commutative case;
see e.g. [15, §3]).

Theorem 4.10. There is a bijective correspondence between closed subschemes of Xy and
ideal sheaves I on Open(Xg) such that I, xg Cylo N o’ | = I, %9 Cylo N c’]| on overlaps
UQ[U N O',].

Proof:  Let i, be the inclusion of a subcategory in coh(Xjy) corresponding to a closed
subscheme Yy, with left adjoint functor i®. Then the map Yy, — Yy, M — i,i*(M) is
surjective. Fix a cone o € X, and suppose that M € tor(o), i.e. j2(M) = 0. Since
the restriction functor j¢ is exact, the map j2(M) — j2i,i*(M) is also surjective, and
hence by Proposition 4.6 the functor i,:® acts on the category coh(o). It follows [25,
Prop. 4.5] that Cylo] — is1°(Cy[o]) is a surjective bimodule morphism, whose kernel
is the desired two-sided ideal I,. Conversely, given an ideal sheaf I on Open(Xj) with
the stated property, we define the functor ¢* by mapping the module M over Cy[o] to
M/M x4 1, € mod(Cylo]/I,). |

If o is a cone in the fan ¥, and 7 € ¥ is a face of o, define I,(7) to be the kernel of the
algebra morphism Cy[o] — Cy[7]. Then

(4.11) L(r)= @ Cxn

mgTVNL*
is an ideal in Cy[o], and hence each face 7 C ¢ canonically determines a closed subscheme
of Xy. The cone point of a strongly convex cone ¢ is a distinguished torus fixed point of
Ulo]. It follows that for any given face 7 < o, there is a natural morphism Cy[o] — Cy|7]
dual to inclusion of an orbit closure.
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Definition 4.12. A closed subscheme Yy is irreducible if each inclusion of a full subcat-
eqory Yy C Wy U Zy implies Yy C Wy or Yy C Zy, where Wy, Zy are closed subschemes of
Xo and Wy U Zy is the full subcategory of coh(Xy) whose objects M are extensions

0O — w — M — ¢ — 0,

of objects w and ¢ of Wy and Zy respectively.

The union operation U in Definition 4.12 corresponds to the product of ideals in each
algebra Cy[o], 0 € X [25, Prop. 4.5] for the correspondence in Theorem 4.10. It follows
that irreducible subschemes give prime ideals on each open affine set Up[o] under the
correspondence of this theorem. For a subset S C L}, we denote

Sti={velp|(uv)=0 YueS},

and for a C-algebra A we denote by Spec(A) the spectrum of A, i.e. the set of prime
ideals equipped with the Zariski topology.

Recall from Definition 3.3 that ¢" denotes the cone dual to . The following charac-
terization of the irreducible subschemes of Xy is proven in [25, Thm. 6.8].

Proposition 4.13. There is a natural bijection between the set of irreducible subschemes
of Xo(X) and the disjoint union | | 5, Spec(Co[(c5)"]).

For 0 sufficiently generic, the only subschemes of X, are dual to closed T-orbits and
to all points of one-dimensional torus orbits [25, §6.2]. To better understand this point,
notice that if .J is any ideal of the algebra Cy[o] for o € ¥, the intersection, (),o, t>J, of
the T-orbit of J is the largest torus invariant ideal of Cy[o] contained in .J. In particular,
it is a T-invariant prime ideal for every J € Spec(Cy[o]). The T-strata partition the space
of prime ideals Spec(Cy[o]) into a disjoint union over 7T-invariant prime ideals.

Proposition 4.14. For each cone o € X and for every T-invariant prime ideal I in
Colo], the T-stratum {J € Spec(Cqy[o]) | (Nyer t>J = I} is a single T-orbit.

Proof: This follows by Lemma 4.1 and [24, Thm. 6.8], which imply that the torus 7" acts
transitively on the T-strata of prime ideals in Cy[o]. |

Proposition 4.15. There is a natural bijection between the sets of T-equivariant ideal
sheaves on Open(Xy), satisfying the conditions of Theorem /.10, and L*-graded sub-
schemes of Xy[X].

Proof: Let Yy be a closed subscheme of Xy, defined by an ideal sheaf I according to
Theorem 4.10. Then Yj is invariant under the torus action if and only if the action of
T on the category coh(Xj) induces an action on Y. Suppose first that Xy[X] = Uplo] is
affine. Then this invariance is equivalent to the requirement that there is a commutative
diagram

Colo] x T 2= Cylo]

| |

I, xT I,

(I)‘IUXT

where ® is the right covariant action of 7" on Cy[o| constructed in Proposition 3.6, I,
is a two-sided ideal in Cy[o], and the vertical morphisms are restrictions. This is true
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if and only if ®.(I,) C I,, for all 7 € T. It follows that if > «,t™* is in I,, with
mg, € 0V NL* C L* for a = 1,...,1, then the transformed ) o, ®,(t™) is also in I,
and so o, t™ € I, for every a = 1,...,l. Thus I, is an L*-graded ideal of Cy[o]. If we
now write [, = P,y Cx, for some subset S C 0¥ N L*, then the condition for I, to be
an ideal in Cylo] is equivalent to the requirement that for all m, € ¢¥ N L* and p € S,
one has m, +p € S. Hence [, is T-equivariant. The global statement for general Xy[X]
now follows by gluing these equivalences together. [ ]

Remark 4.16. For o € 3, the T-invariant ideal I, of the algebra Cylo] appearing in the
proof of Proposition 4.15 is generated by elements of the form t™= for m, € cYNL*, i.e. I,
is a monomial ideal. Moreover, I, is prime if and only if (¥ NL*)\ S is a sub-semigroup
of oV N L*. 1t follows that the irreducible invariant subschemes of Uylo| are in bijective
correspondence with the faces T of o, such that the corresponding monomial ideal is given

by (4.11).

For fixed 0 € ¥, let L, = LNo and let p : L — L(o) := L/L, be the canonical
projection. Then L(c)* = L* No*. The homomorphism © : L* — T naturally restricts
to the sublattice L(o)* C L*. Let pg = p ® R. Then the collection of cones pg(7),
where 7 € 3 is a cone for which o is a face of 7, form a fan ¥(0) in L(o) ®z R. Set
Vo(o) = Xy[X(0)]. By Theorem 4.10, the projection ¥ — ¥(o) shows that Vy(o) defines
a closed subscheme of Xy = Xy[X].

Example 4.17. Suppose that o is the maximal cone of ¥ generated by the basis ey, . .., e,
of the lattice L = Z", with dual basis e, ... e:. Then the corresponding noncommutative
affine variety is the algebraic Moyal plane Uy[o] = Cj, i.e. Cylo] = Cylty, ..., t,] where
t; =t%. Let T be a face of o generated by {e;}ien for some subset N C {1,...,n}. Then

Vo(T) is defined by the monomial ideal (t; )ien in Cqlty, ..., t,)].

4.4. Kahler differential forms. We will now construct sheaves of noncommutative dif-
ferential forms. We start by recalling some definitions and properties of Kéhler differen-
tials. We then show how the general construction behaves under a Drinfel’d twist using
the braided monoidal category theory of §1.2. This formalism may be used to define
sheaves of Kéhler differentials over generic noncommutative toric varieties Xy = Xy[X].

The general framework we need from the theory of Kahler differentials describes deriva-
tions of a unital C-algebra (A, ) into an A-bimodule M, i.e. C-linear maps D : A — M
obeying the Leibniz rule D(ab) = (Da) b+ a (Db) for every a,b € A.

The universal algebra of derivations over A is realized by the A-bimodule

Qo =Ia=ker(p: A9 A — A)

Aun

which is a two-sided ideal of the algebra A® A generated by elements of the form a®1—1®a
with a € A, and differential given by da := a®1—1®a. The universal property means that
every derivation D : A — M factors through QY ,, by a unique morphism of A-bimodules

¢p : Uy — M with D = ¢p o d. The morphism ¢p is defined by

(4.18) ¢p(ai (da) az) := ay D(a) as .

The construction of Q) . respects the inclusion of subalgebras, i.e. Q, ,, = ker(u|yga) =

ker(p) N (A’ ® A") for any subalgebra A" C A.



ALGEBRAIC DEFORMATIONS OF TORIC VARIETIES I 29

For the Kéahler differential forms one is interested (see e.g. [34, §1.3]) in derivations with
values in a symmetric A-bimodule M (i.e. am = ma for all a € A and m € M). Since
for all a,a; € A one has

(4.19) a; (da) — (da)a; = (a1 ®1-1®a)) (a®1-1®a) € I3,

the A-bimodule of symmetric differential forms is I,/73 =: QY, which can be shown to
be universal.

We will begin by defining bimodules Qj[c] of noncommutative Kéahler differentials on
noncommutative affine varieties for each cone o € ¥, and then show that the assignment
o — Qo] defines a sheaf on Open(Xj). Each affine open set Uy[o] of a noncommutative
toric variety Xu[¥] has noncommutative coordinate algebra Cy[o] which is a Drinfel’d
twist deformation of the classical coordinate algebra, coming from the algebraic torus
action. The construction of Kahler differential forms on noncommutative affine toric
varieties follows from the general theory of Kéahler differentials for twisted Hopf-module
algebras, and the natural setting for the construction is the functorial framework of §1.2.
When the noncommutative algebra is a deformation of a commutative algebra induced
by a Drinfel’d twist, we can functorially interpret each step in the general construction
described above as a deformation of the corresponding commutative construction.

Indeed, if A is an object in the braided monoidal category ., the A-bimodule of
universal one-forms QY . is naturally an H-module algebra with H-action

hda:=d(h>a) .

This is the universal covariant differential calculus, in the sense of Woronowicz [41], and
it has a natural noncommutative deformation in the category g,.# of twisted Hopf-
module algebras. If Ap is a twisted Hopf-module algebra defined by a Drinfel’d twist
clement F' € H ® H as in Theorem 1.4, then the bimodule Q ,, is defined as before
to be the kernel of the multiplication map pur = po (F_l l>) : Ap ® Ap — Ap. Higher
degree differential forms may be introduced via the Ny-graded braided exterior algebra of
one-forms
:4F,un = /\;7 QAIAF,un = T(Q,l%lp,un) / <w ® n + \IIF(W ® 77)>w777691 )

Ap,un

where T(Q ) = Bno (Va, ) 47" s the tensor algebra of covariant twisted diffe-
rential one-forms with (Q}L‘Run)o := Ap, and ¥p is the braiding morphism on the category
3 defined as in Proposition 1.18 with the twist deformed R-matrix Rp. This algebra
coincides with the twist deformation of the Hopf-module algebra with the action

Aun>
of the twist F" extended to the whole of T'(Q} ,,,) by

The choice of k here is irrelevant thanks to the associativity of the tensor product, and F()
and F® act by iterating the formula (1.2) for covariant actions on H-module algebras.

The Ap-bimodule structure of 2
of the associative product in Ar as

Apam 15 then deformed according to the deformation

ay »r (d&) dp Q9 1= a1 *p (a®1 — 1®a)*pa2 .
It agrees with the usual deformation induced in the category,

a; »r (da) = a(F‘l > (a1 ® da)) | (da) 4F as = a(F‘l > (da ® as)) |
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where o : A® Q) ,, ® A = A denotes the action of A on QY .. Then the differential
d of the untwisted differential calculus is still a derivation of the deformed product g,
as expected by general twisting theory [37]. It naturally extends to the braided exterior

algebra Q% ,, as a graded derivation of degree one by defining

d(m ®92) = (dm) @ 92 + (~1)8 5, @ (do)
for homogeneous differential forms 1,72 € Q% .-

The notion of symmetric bimodule has a braided analog by demanding that the left
and right module morphisms A\p : Ap @ QY . — QY and pp: Q). @ Ap — Q) are
related by the braiding morphism of 4, ..

Definition 4.20. Let Ap be an Hp-module algebra, and let W = Vg be the braiding
morphism of Proposition 1.18. An Ap-bimodule M in the category gc,..# is said to be
braided symmetric if one of the following two conditions is satisfied:

(1) Ap=proWa, p; or
(2) pF:AFoq]M,AF-

The two conditions in Definition 4.20 are not equivalent unless the category itself is
symmetric, i.e. 2 = id. This is the case, for example, for Drinfel’d twists of triangular
Hopf algebras such as the ones we are dealing with in this paper. In the non-symmetric
case they are not compatible with each other, so there are two distinct and inequivalent
notions of braided symmetric bimodule structure that one can choose from.

We want to show that a natural quotient I, /I3, is the universal braided symmet-
ric Ap-bimodule for braided commutative algebras in (twisted) braided monoidal cate-
gories ¢, , with universality understood in the same sense as the untwisted A-bimodule
Q. Then we can define noncommutative differential forms via the usual deformation in
the category of Hopf-module algebras, and this definition is compatible with the construc-
tion of universal differential forms in braided monoidal categories.

Proposition 4.21. Let A be a commutative H-module algebra, and F' a Drinfel’d twist
element for a triangular Hopf algebra H. Let 14, = ker(pup : Ap ® Ap — Ap), and con-
sider the quotient QY == I, /I3 . Then (Q,,d) is the universal algebra of derivations
over Ap with values in a braided symmetric Ap-bimodule.

Proof:  We will prove this by direct computation for the twisted Hopf algebra of §2.2.
The general result is just another example of the generic functorial equivalence between
g and g¢, A discussed in §1.2. We will denote Ay := Ap,, etc. Given a simple tensor
aRQw € Ay ® Q}% with a € Ay and w the class of w® 1 —1®@ w, w € Ay, we will compare
the quantity (A\g — pg o \IIAQ’QAQ)(G; ®w) with (a®@1—-1®a)x (W1 -1Qw)eI;,.

On the one hand, one computes
(a®1-1®a)x (wRl-—1Qw)=arxpw®l—aRuwW+ 1R axgw
S D (b 0) @ (H - H )
n=0 ’
On the other hand, one has
MaRw)=ax (Wl -—1Qw)=axpw®l—a®w,
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while

in

o O\IIA97Q}40(Q®W) — Z F@iljl ...einjn ((Hj H]n [>w) X (Hzl ...Hin |>a)
n=0 ’

— 1®(HJ1H]an) *0 (H,-l---HinDa)) .

It remains to show that the second formal power series in this last equation is equal to
1 ® a *p w. This follows from the equality a; xg as = p(Fy> (a2 ® a1)) [11, Lem. 1.16].

Universality follows by the same argument of the undeformed case, i.e. by the formula
(4.18) now understood in the twisted setting. [

We can now apply this construction of Kahler differentials for noncommutative alge-
bras with product induced by a Drinfel’d twist to each affine open set in a toric variety
X[X]. Starting from a strongly convex rational polyhedral cone ¢ € ¥, we form the
noncommutative coordinate algebra Cylo| as in §3.1 and define the Cy|o]-bimodule of
Kahler differentials Qj[o] = Q(%:Q[O'] as above. To show that this construction defines a
sheaf of noncommutative differential forms on a generic noncommutative toric variety Xp,
as we did for the structure sheaf Ox, in Proposition 4.2, we have to show that these local
definitions glue together in such a way that they satisfy the sheaf axioms.

Proposition 4.22. The noncommutative differential forms o — Qp[o| define a coherent
sheaf of Ox,-bimodule algebras Yy, on Open(Xj).

Proof: We will show that for each affine covering (o; < 0);c; there is an exact sequence
(4.23) 0 — Qlo] — [] Uloi] — ] Qbloinoy] .
iel ijel
Exactness of (4.23) is proved by using the exactness of the corresponding sequence (4.3)
of coordinate algebras. For brevity, we use the shorthand notation
Ai=Cyloy], A=Colo]=()A. Ai=Clo;Nay],
iel
and let 4 denote the product map of A. Let I4 = ker(ua) with canonical inclusion
denoted by 14 : [4 > A® A.

Consider the commutative diagram of sequences

0 A "~ 1 A . IT Ay
icl ijel
pa Ha; T”AU
O—>A®A—pl>HAi®Aii> II A ®A;
iel ijel
14 LA; TZAZ‘J'
0 Iy = [T 14, - I1 [Aij
iel ijel

0 0 0
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where p; = p®p, ps = p1|1, and similarly for ¢;, ¢o. All columns are exact. The exactness
of the middle row thus follows from the exactness of the top row. Then the exactness of
the bottom row is proven with standard homological algebra. The map ps is injective due
to the injectivity of the maps 14, p1 and u4,, because if there exists 0 # w € I4 such that
pa(w) = 0 then py(24(w)) # 0 but py(14(w)) = 24,(p2(w)) = 0. The composition gz o ps is
zero, since if there exists w € I4 such that ga(pa(w)) # 0 then further composing with 24,
gives a non-zero element in []; .., A;; ® Aj;, while ¢1(p1(24(w))) = 0. Finally, we show
that im(py) = ker(gq). Let 8 € ker(go) and consider its lift b = 124,(/5). One has ¢;(b) =0
since 24,,(q2(83)) = 0, so there exists ' € A® A such that p;(b') = b. But p(ua(b’)) =0
since p14,(b) = 0, so there exists ' € [, such that 14(5") = V' and po(8’) = B. This
completes the proof for universal differential forms (the third row).

For braided-symmetric differential forms, we further consider the commutative diagram

0 0 0
2 P2 2 q2 2
0 I3 I1 I, — [Al-j
el 1,5€l
JA JA; JA;;
D2 q2
0 I 1 1., —2- Ia,
el 1,5€l
TA TA; TA
1 172 1 q~2 1
0 Q4 [T, — Aij
el 1,5€l
0 0 0

where 4 is the inclusion I3 < I, and 74 is the projection Iy — I4/I%, while we set
Do = P2 2, P2 = P2l1,/ 1z and similarly for ¢, ¢2. Again all columns are exact, and the
exactness of the bottom row follows from the exactness of the top and middle rows, as one
can check directly by using the same homological algebra we employed above. It follows
that the noncommutative differential forms define a sheaf Q, on Open(Xp).

The fact that this sheaf is coherent follows from the construction of QY . Since the
construction of Kahler differentials commutes with the localization functors j3 of §4.1 (see
e.g. [15, §3] and [35, Thm. 1.2.1]), for each affine open set Uy[o] there is an isomorphism of
sheaves j3(QY,) = Qglo] over Uy|o]. For any finitely generated algebra A the A-bimodule
of Kahler differentials QY is a finitely generated module over A, since if ay, .. ., a, are the
generators of A then Q) is generated by day, ..., da, as an A-bimodule. [ ]

5. NONCOMMUTATIVE PROJECTIVE VARIETIES

In this section we will specialize to the noncommutative projective spaces Xy = CPy.
The example n = 2 was treated in detail in §3.3. These classes of examples admit a
more “global” description of their noncommutative toric geometry which reduces after
Ore localization to the local description of CIPj provided by the noncommutative affine
open sets Uy|o|. Moreover, they may be used to define noncommutative deformations of
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projective varieties via restriction from CPPj. In the remainder of this paper we will omit
the star product symbols x4 for brevity.

5.1. Noncommutative projective spaces CPj. The construction in §3.3 for CP? gen-
eralizes straightforwardly to the higher-dimensional projective spaces CP", n > 2, re-
garded as a toric variety X[¥] generated by a fan 3 of the lattice L = Z" of characters of
the torus T = L®zC* = (C*)"™. Choose a basis ey, ...,e, of L. Set v; = ¢; fori=1,...,n

and v,41 = —e; —- - - — e, which generate the one-dimensional cones 7; = R v; of 3. The
n + 1 maximal cones of ¥ are labelled by the missing generator and are given by
O'i:R+Ui+1@"'@R+U,'+n, z'zl,...,n—l—l,

with indices understood mod n + 1 and o; N o4 = R0 & - - ® RYv;,,, a maximal
cone of CP"* < CP". There are of course many other overlaps, and hence cones, in this
instance.

Again there are no relations and Co] = C[zy, ..., x,] for each maximal cone.
(1) The generators of the semigroup o, , N L* are m; = e} for i = 1,...,n. The
subalgebra Cylo,1] C Cy[tF?, ..., t51] is generated by the elements z; = t™ = t;

subject to the relations

(5.1) :Eizvj:q?j ;T , 1< g,
and hence Uy[o, 1] = C§.

(2) For 1 < k < n, the semigroup o) N L* is generated by m; = e} — e for i # k and
my, = —ej.. The subalgebra Cy[oy| in this case is generated by elements x; = t; t,;l,
i # k and xy, = t;,! with relations
TiTh = (i Tu T i £k,
(5.2) rx; = qizjqiqu?k T T, k#£i<7j.

The faces can be treated analogously to the n = 2 case.

5.2. Homogeneous coordinate algebras. We now show that there is a noncommu-
tative homogeneous coordinate algebra for the noncommutative projective spaces CPy,
with a local description given by noncommutative Ore localization which is equivalent
to that of the noncommutative affine open sets Ug[o]. The construction depends on an
embedding (C;)" — (Cg)ﬁ, with 7 > n and @ suitably defined. Explicit computations
are simplified by considering the embedding (C; )" — (C7)"*'with

é:(g g).

The corresponding algebraic Moyal plane Cg“ is defined by the graded polynomial algebra

Cylwi, ..., wpy1] in n + 1 generators w;, i = 1,...,n+ 1 of degree 1 with the quadratic
relations

Wpy1 W; = W;Wpat , izl,...,n,
(5.3) w;w; = quiji, hj=1,....,n.

This algebra is called the homogeneous coordinate algebra A = A(CP}) of the non-
commutative toric variety CPj. It is a special instance of the noncommutative weighted
projective spaces defined in [5, §2.2]. For n = 2, it is the same as the noncommutative
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variety P?],hzo defined in [27, §9], which is an Artin—Schelter regular algebra of global ho-
mological dimension three [1] in the classification of noncommutative deformations of the
projective plane. The grading on A is by the usual polynomial degree and one has

A:éflk,
k=0

with Ag = Cand A = B, , i,k Cw} - w;"jll for k > 0. The algebra A is made into

a right comodule algebra over the Hopf algebra 3'“2 .1 via the natural action of GL(n +1).
The (C*)™ torus action can be recovered by restriction with respect to the embedding of
(C*)™ in (C*)™! described above.

It is straightforward to verify that each monomial w; generates a left (and right) de-
nominator set in A. Let Afw; '] be the left Ore localization of A with respect to w;.
Since w; is homogeneous of degree 1, the algebra A[w; '] is also Ny-graded. Elements of
degree 0 in Afw; '] form a subalgebra which we denote by Afw; '],. It is not difficult to
prove that for each maximal cone o; € 3,7 =1,...,n+1, there is a natural T-equivariant
isomorphism of noncommutative algebras Cylo;] = Afw; '] o

If I € A is a graded two-sided ideal generated by a set of homogeneous polynomials
fis-oos fm € Chlwy, ..., wyyq], then the quotient algebra A; := A/I is identified as the
coordinate algebra of a noncommutative projective variety. The projection n; : A — Aj
can be regarded as the dual of a closed embedding given by Xy(I) < CP}, identified
with the common zero locus in (CgJrl given by the set of relations {f; = 0,..., f,, = 0}.
Its homogeneous coordinate algebra m;(Cjlw, . . ., w,41]) has relations (5.3) together with
fi=0,..., fn=0. Itis also graded, A; = @, (Ar)k, with (A;)g = C and dime(Af), <
oo for all k& > 0. The torus action on A naturally restricts to A;. What is constructed
here could be taken as an example of a noncommutative polarization of a given Xy(I).
Note that a variety is projective if and only if its deformation is, in the sense that Xy_o(7)
is projective if and only if Xy(I) is projective. This follows from the fact that, once we
fix 6, we get a canonical deformation of every algebra acted upon by (C*)", the inverse
process given by setting 6 = 0.

In the remainder of this section we will look at some explicit examples, which among
other things will illustrate that in general certain additional algebraic constraints must
be imposed on the noncommutative ambient space CPy.

5.3. Noncommutative grassmannians Gry(d;n). Using our noncommutative defor-
mation of the general linear group GL(n) from §2.3, we will now construct a noncommu-
tative deformation of the Grassmann variety Gr(d;n) = Gr(d; V'), d < n of d-dimensional
subspaces of an n-dimensional complex vector space V. For this, we will derive a suitable
noncommutative version of Pliicker equations in A(CPY) for N = () — 1, yielding a
noncommutative projective variety Gry(d;n) whose homogeneous coordinate algebra is
a graded quadratic algebra with (2.22) as the space of generators. The Drinfel’d twist
via the n x n skew-symmetric complex matrix 6 induces constraints on the form of the
N x N matrix © which realizes the noncommutativity relations in the projective space in
which we embed the grassmannian. We will find these constraints, whence showing that
in general it is not possible to go in the opposite direction, i.e. there are noncommutative
projective spaces (CIP’g which do not admit any such embedding due to the form of their
deformation matrix ©.
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There is a rich literature on quantum or noncommutative deformations of grassman-
nians (see e.g. [32, 40, 23, 21, 27]), mostly relying on g-deformations of matrices, so our
noncommutative relations are somewhat different and easier to deal with. This is because
in our construction the minors of a noncommutative matrix still close to a noncommutative
algebra and in §2.4 we have explicitly computed their noncommutativity relations; these
will be the noncommutativity relations of the homogeneous coordinate algebra generators
of the noncommutative projective space CPy. Here we shall follow [32] to define the
noncommutative deformation of Pliicker equations, or Young symmetry relations, which
is an approach to noncommutative grassmannians based on quasideterminants [23].

Classically, the Pliicker embedding Pl : Gr(d;n) = Gr(d; V) — P(A*V) = CPV, with
dime(V) =n and N = (1) — 1, is defined as follows: a d x n matrix A of maximal rank,
representing an element in Gr(d, n) by associating to A the subspace of V' spanned by the
rows of A, is mapped into the (Z)—tuple (...,A7,...) where each component is a d x d
minor of A. In the notation of §2.4, the row multi-index is always I = (12---d) so we
label minors by the column multi-index J alone. Pliicker equations in CP" express the
condition on points of the projective space to belong to the image of this embedding.
Each Pliicker coordinate can be viewed as a section of a certain ample line bundle over
Gr(d;n), and the collection of such sections defines an embedding of Gr(d;n) into CPV.

Let us fix some notation. For 1 < r < d, denote with I = (41 ---i41,) a (d + r) multi-
index, with J a (d — r) multi-index, and with = = (i, - - -i¢,) an r multi-index. Then by
I'\ 2 we mean the multi-index (i - - - g, - - -ig, - - - i44,) With the hats indicating omitted
indices, and by A U B the multi-index (a;---agb;---bs) when |A| = k and |B| =
Finally, we will use the short-hand notation ¢ = €%%. One way to express the Pliicker
equations is through the following result [32].

Proposition 5.4. A point z € CPY = P(\*V) belongs to the image of the Plicker map
PIGr(d; V) if and only if for all 1 < r < d, and for all choices of multi-indices I and J,
the homogeneous coordinates of x, expressed as d x d minors A% of d x n matrices, satisfy

(5.5) Z (D\EWVE A\INE A\SUT _

=CI:|E|=r

As a way of exemplification, we show how to prove the classical Plucker relations (5.5)
for » = 1 using the Laplace expansion (2.24). We have |I| = d+ 1, |J| = d — 1 and
D =(1,...,d); we have (when the row are labeled by D we omit it)

d+1 d+1 d
Z el "ia A% TS — Z(_l)(dJrl—a)AI“ < Z(_l)(l-i-ﬁ)gﬁiaADﬁJ)
a=1 a=1 5=1
d+1
B SR o 5 EEICIRICE:
B=1 a=1
d
= Z(_l)(l-l'ﬁ-l-d)A(BUD)IADBJ —0
ps=1

where in the first line we expand A%Y’ with respect to the first column i, in the second
line we recognize the expression in parenthesis as the expansion of ABYP) along the first
row (3. The last expression is zero since every term in the sum vanishes: for all g € D
one has APYP) = 0, being the determinant of a matrix with two identical rows.
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Note that each equation (5.5) is quadratic in the homogeneous coordinates of the projec-
tive space and has as many terms as the number of submulti-indices of I with cardinality 7.
The total number of equations is quite large as there is one for each choice of the integer r,
and of the multi-indices I and .J. One shows [32, Prop. 13| that all relations with r > 1
are generated from those at r = 1.

Let us now turn to the noncommutative setting. In §2.4 we have defined minors for
matrices in the homogeneous coordinate algebra of GlLg(n) = GLy(V), where V is an
Hj-module of dimension n. An element of the homogeneous coordinate algebra of the
noncommutative grassmannian Grg(d; n) = Gry(d; V) is defined as an element in P(AJ V),
obtained by taking the #-deformed exterior product of d rows of a matrix in A(GLy(V))
(and quotienting by the appropriate equivalence relation). The Pliicker maps still make
sense. We take a noncommutative d x n matrix representing an element of A(Gry(d;n))
and send it into the (Z) -tuple of its minors. Then we need to find the noncommutativity
relations between the minors, seen now as homogeneous coordinates in A(CPY) with
N = (3) — 1, as well as noncommutative Pliicker relations between them.

From (2.29) with |J| = |J'| = d representing two different minors we have
d
AT 2 T
(5.6) MA" =TT a2y ) A7 A
a,f=1

This implies that the N x N noncommutativity matrix © of the projective space con-
taining the embedding of Gry(d;n) is completely determined (mod 27) from the n x n
noncommutativity matrix ¢ of the grassmannian as

d
(5.7) O =" s
a,f=1

These relations mean that while given 6 there is always one and only one noncommutative
projective space CIP’g in which the grassmannian Gry(d;n) embeds, the converse is in
general not true. One can always find a noncommutative projective space for which there
is no compatible noncommutativity matrix ¢ parametrizing a grassmannian Gry(d;n)
which would embed into it. The necessary and sufficient conditions for such an embedding
to exist are given by (5.7). Note that if we instead chose to use ordered column multi-
indices, we would again obtain noncommutative relations among the minors which agree
with those in CPJ, now with a minus sign on the right-hand side of (5.7).

Given the noncommutative relations between generators of the projective space, the
next step is to exhibit noncommutative Pliicker relations. They generate an ideal in the
homogeneous coordinate algebra A(CPY) of the projective space, and we will define the
noncommutative quotient algebra to be the homogeneous coordinate algebra A(Gry(d;n))
of the (embedding of the) noncommutative grassmannian.

The noncommutative version of (5.5) is obtained by using the noncommutative Laplace
expansions (2.25) and (2.26). Indeed, we have the following:
Proposition 5.8. Noncommutative minors of order d in GLg(n) obey Pliicker relations
A+l d d-1

(5.9) Z H H (-1 Qi3 Qivjs AN =0,

y=1 a=1 =1

for every choice of multi-indices I,J such that |I| =d+ 1 and |J| =d — 1.
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Proof: We expand A"/ with respect to its first column i.; by (2.26) we have
d d-1
APYT — Z H (_1)(1—1—;)) ngjg;piq gpiyADp;J
p=1 B=1
so that substituting in (5.9) we get
d+1 d

d
(5.10) SOOI 0" (=), i g A g, AP

In the expression above we can recognize the expansion of APYPi with respect to the first
row p, which according to (2.25) is

d+1

Z H v+1) Qi i A 9o,
v=1 a=1
and which is zero for every p = (1,...,d). With this identification we can read (5.10) as
d d d-1
> 11 ) G o AOPIAP = 0.
p=1 p=1 6:1

By these definitions, one has Gry(1;n) = (CP)~1)*. Since dimg(Gr(d;n)) = d (n — d),
the n x n matrix 6, which deforms the maximal torus of GL(n), should be expressed
in terms of the (C*)?("~%_action on the grassmannian through a suitable embedding,
analogous to those described in §5.2. We will return to this point in §6.4.

Remark 5.11. The Plicker relations (5.9) are the generalization of the classical ones
(5.5) for the the case r = 1. We are unable to state Pliicker relations for arbitrary r nor
to prove that the general case can be reduced to the case r = 1, as in the undeformed
situation, though this is true for every example we have worked out. For q-deformations
considered in [32], this is implied by Prop. 13 there.

The classical Pliicker relations (5.5) contain trivial identities when I N J # (), together
with “true” Pliicker equations. The same situation arises in the noncommutative case,
but now the “trivial” identities encode the noncommutativity and alternating relations of
the noncommutative minors. In fact, in certain instances it seems that starting from (5.9),
one can derive all relations necessary to describe the noncommutative Grassmann variety,
i.e. the “true” Pliicker equations as well as the noncommutativity relations between the
generators of A(CPY) in (5.6) and the alternating property (2.30). Again we will return
to this point in more generality below.

5.4. Noncommutative flag varieties Fly(dy, ..., d,;n). We will now generalize the con-
structions of §5.3 to flag varieties. Classically, given an n-dimensional complex vector
space V' and a sequence of positive integers v = (71, ...,741) with 1 <r <n — 1 which

is a partition of n, i.e. a Young diagram, we consider an increasing chain of nested vector
subspaces of V,

0=V &V &V & - & Vig=V,
such that v, = dim¢(V;) — dime (V1) for @ = 1,...,7 + 1. The corresponding flag
variety Fl(v; V)= Fl(v;n) is the moduli space of chains (or “flags”) associated to the
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sequence v = (1,...,%4+1). Two typical examples are the complete flag varieties with
partition v = (1,...,1) (n times), i.e. the sequences of subspaces where dim¢(V;) = i for
i=1,...,n, and the grassmannians Gr(d;n) which are here recovered from the two-term

partltlons v = (d,n—d).

By choosing a basis in V| the flag varieties F1(~; V') can also be represented as spaces
of equivalence classes of matrices in the reductive algebraic group GL(n). We represent
a chain of subspaces by a matrix whose rows are the basis vectors of each subspace, and
notice that the part of GL(n) which acts trivially on such a representation is given by block
upper (or lower) triangular matrices, with 7+ 1 diagonal blocks of dimensions vy, ..., 7,41
These matrices form a subgroup of GL(n) denoted P,. It is a parabolic group, and the flag
variety may be realized as the homogeneous space Fl(v;n) = GL(n)/P, with associated
principal bundle

(5.12) P, — GL(n) — Fl(vy;n) .

The Borel subgroup of GL(n) is the parabolic group P, associated with v = (1,...,1)
representing the complete flag, i.e. the group of upper (or lower) triangular matrices, and
we will denote it by B,,. Since B,, is the minimal parabolic subgroup of GL(n), each flag
variety Fl(v; n) is the total space of a canonical fibration over the corresponding complete
flag variety with fibre P, /B,, given by

P, /B, < GL(n)/P, = GL(n) /B, .

We shall describe the Pliicker embedding of flag varieties into projective spaces, in a
similar way as in the case of grassmannians. This involves the minors of the n x n matrix
representing each flag. Set d; =) .. 7, = dim¢(V;) fori =1,...,r+ 1. Given a point in
F1(vy;n) represented by an equivalence class [A] in GL(n)/P,, there is a natural Pliicker
map Pl; : Fl(y;n) — CPYi, with N; = ( ) —1 for each 1, Where the image is the ("Z_)—tuple
of all minors of A obtamed from the first d; rows. Hence each minor is labelled by a
multi-index representing the d; columns involved while the rows are always given by the
standard ordered multi-index (12---d;). Assembling all of these maps together we get a
Pliicker embedding

(5.13) Pl : Fl(y;n) — CP(y;n) := CP™ x ... x CP" |

where the last factor corresponding to i = r 4 1 gives a trivial contribution since N, =
(Z) —1 = 0. The image of the Pliicker map Pl in CP(;n) is described by a set of quadratic
equations called the Young symmetry relations. With the same notation, a generalization
of Proposition 5.4 to flag varieties is given by the following result [33].

Proposition 5.14. Given a partition v of n and the Plicker map Pl in (5.13), a point x
in CP(y;n) belongs to the image PI(F1(~y;n)) if and only if for all choices of multi-indices
given by I = (i1 igrs) and J = (j1 -+ ja—s), as subsets of (12---n) for all s > 1 and
for all d,d'" € {d;}i=1. ,+1 with d > d', the homogeneous coordinates of x, expressed as
d; X d; minors of n xn matrices now of variable size, satisfy the Young symmetry relations

(5.15) Z (D\EE \I\E ASUT _

ECI:|E|=s

We are now ready to construct a noncommutative deformation of flag varieties, general-
izing what we did in §5.3 for noncommutative grassmannians. The definition of minors of



ALGEBRAIC DEFORMATIONS OF TORIC VARIETIES I 39

matrices with noncommuting entries is the same as in (2.23). We now need to handle non-
commutative minors of different size, with each size describing a projective space in the
cartesian product CP(v;n), and apply a noncommutative version of the Young symme-
try relations (5.15) instead of (5.5). The relations (5.5) essentially describe the relations
among minors of fixed size, so they describe the image of the Pliicker embedding in each
projective space copy (with appropriate dimension) inside CP(y;n). What (5.15) adds is
to express relations between minors of different size, i.e. relations between coordinates of
different factors in CP(v;n).

In this case we use the more general noncommutative relations (2.29) between d x d
and d’ x d’ minors of different size, i.e. with multi-indices of different lengths |/| = |J| = d
and |I"| = |J'| = d’. The noncommutative Young symmetry relations are again derived
from the Laplace expansion of the minors in (2.25) and (2.26). In particular the r = 1
case of the classical relations (5.15) is proved in a way similar to (5.9).

Proposition 5.16. Noncommautative minors of order d and d in GLg(n) obey Young
symmetry relations

d+1 d d-1

(5.17) STITIT -0 g a5, A7 A =0,

y=1 p=1 v=1
for every choice of multi-indices I and J with |[I| =d+ 1 and |J| =d — 1.

In this setting the coordinate algebra of the noncommutative flag variety Flo(v;n) =
Fly(dy,...,d,;n) is the quotient of the homogeneous coordinate algebra of CPg(v;n) by
the ideal generated by the noncommutative Young symmetry relations (5.17). As we did
for noncommutative grassmannians, it is useful to distinguish between the different kinds
of equations that are generated by the noncommutative Young symmetry relations. We
will divide them into three classes, called alternating equations, structure equations, and
Pliicker equations.

By alternating equations we mean relations like (2.30), i.e. the behaviour of a minor
under interchange of two indices inside the multi-index which parametrizes it. These equa-
tions are in principle contained in the definition of noncommutative minors, and once we
have decided to parametrize coordinates in the projective spaces which are targets for our
Pliicker map by ordered multi-indices, they are not to be interpreted as relations between
coordinates of these projective spaces. However, in Proposition 5.14 it is convenient to
consider unordered multi-indices I and J, since even when J is ordered the multi-index
iy U J is in general not ordered, so the Young symmetry relations automatically generate
equations with unordered multi-indices. This increases the number of equations in the
Young symmetry relations, as it increases the number of ways in which one can choose
I and J, exactly by adding relations of alternating type. These are the ones in which
I" and i, U J differ only by permutations. This can only happen when d = d’, and the
alternating relations are a particular class of equations where only two terms in the sum
survive. Thus by including unordered multi-indices, alternating relations arise as a subset
of the Young symmetry relations.

By structure equations we mean the class of equations where only two terms repre-
senting distinct noncommuting coordinates in A(CPg(v;n)) survive. They specify the
noncommutativity of the target space of the Pliicker embedding. In §5.3 we showed that
not every noncommutative projective space (of the appropriate dimension) can contain
a Pliicker embedding of a noncommutative grassmannian, since the noncommutativity
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matrix © of CPY has to satisfy the constraints (5.7). It is natural to now ask if these
structure equations could have been completely deduced from the noncommutative Young
symmetry relations, or if they have to be put in by hand when defining the noncommu-
tative projective space of the Pliicker embedding. Some straightforward combinatorial
considerations show that only a small part of the structure equations for CPg(vy;n) are a
subset of the Young symmetry relations, and all other noncommutativity relations must
be introduced independently.

Proposition 5.18. The only structure equations contained in the noncommutative Young
symmetry relations are those within a single factor of the algebra A(CPg(~y;n)) involving
minors whose multi-indices differ in only one index.

Proof: We look at the conditions needed for an equation of the Young symmetry relations
(5.15) to reduce to a two-term equation. Each equation has d 4+ 1 terms. To reduce this
number to 2 and get a structure equation, I and J must contain some common indices
so that when J takes indices from I we get a repetition of indices in i, U J, and the
corresponding term in the equation vanishes. Denote by k£ the number of shared indices,
i.e. |INJ| = k. The constraints are k < d’ — 1 and d > d’. The number of surviving
terms in each equation is d 4+ 1 — k and hence the condition we want is d+1—k = 2. This
implies that structure equations only arise for noncommutative minors of equal size d = d’
(i.e. inside a single factor of A(CPg(7;n))), and it is not possible to recover any of the
structure equations between minors of different size (i.e. between coordinates of different
noncommutative projective space factors in CPg(7;n)). For fixed d = d’, these constraints
also show that k = d—1 = d’'—1. So to obtain structure equations, J must be a subset of I
obtained by removing two indices, i.e. the two minors involved differ only by one index. W

The remaining relations involving more than two terms are called Plicker equations.
They are quadratic in the coordinate algebra generators of the noncommutative projective
spaces, and are the ones which genuinely describe the image of the Pliicker embedding,
i.e. the projection given by A(CPg(vy;n)) — A(Flyp(y;n)) which realizes Fly(y;n) as a
noncommutative quadric in CPg(7y;n). By (2.29) and Proposition 5.14, there are canonical
inclusions of homogeneous coordinate algebras

pi » AFl(dy, ... di,... dyn)) — A(Fl(dy,... dy;n))

of noncommutative flag varieties for each ¢ = 1,...,r. For generic n, this leads to a
web of multiple noncommutative fibrations, which are classically obtained by truncat-
ing flags in the obvious way. Furthermore, the additional relations coming from (2.29)
are naturally compatible with the structure of the braided tensor product of algebras
A(Grg(di;n)) ®p - - - @ A(Grg(d,;n)) induced by the braiding morphism ¥, on the cate-
gory gen A of Hj-module algebras as explained in §1.2. By definition and Proposition 5.14,
the algebra A(Fly(dy,...,d,;n)) may be realized as the quotient algebra of this braided
tensor product by the additional relations arising from (5.15), and there is a natural
algebra surjection

A(Gry(di;n)) ®g -+ @9 A(Gro(dy;n)) — A(Flg(dy,...,drsn)) .
6. GEOMETRY OF NONCOMMUTATIVE PROJECTIVE VARIETIES

We now develop a more thorough noncommutative sheaf theory and, with the alter-
native description of §5 in hand, apply it in particular to noncommutative deformations
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of projective varieties. In this way noncommutative projective varieties inherit algebraic
and geometric properties from CPj by restriction. These properties are described below.

6.1. Cohomology of CP; . We start by summarizing the pertinent cohomological prop-
erties of the homogeneous coordinate algebras A. We write mod(A) for the category of
all finitely-generated right A-modules. Since most of the results hold for generic values
of #, and hence they are similar to the commutative case, we often omit the proofs (see
e.g. [7, 9] for some details).

The algebra A = A(CP}) is a quadratic algebra whose Koszul dual A' is generated by

elements w;, 1 =1,...,n + 1, with the relations
w? o= 0, i=1,...,n+1,
wiwn+l+wn+lwi = O> 7;:].,...,”,
(6.1) W+ g wiw; = 0, ihj=1,...,n.

The dual algebra A' = @kzo Ai is a deformation of the exterior algebra of A*, graded
again by polynomial degree. It is a special case of the graded DG-algebras defined in [5,
§2.6]. In the category s, .# of Hz-modules, there are isomorphisms

Al 2 NFAG

There is a canonical identification (A')' = A. In a way similar to the commutative case,
one defines the right Koszul complex K*(A) (as well as the left one). One use we make
of the Koszul complex is in establishing crucial “smoothness” properties of our algebras.
Considering a minimal free resolution of the trivial right A-module Ay = C,

(6.2) 0 — Eg®0A — -+ — BEA — A — Ay — 0,

with £} = Ay and Fy = R C A; ® A; the space of quadratic relations (5.3), the integer
d is the “global homological dimension” gl-dim(A) of the algebra A [4]; it is shown to be
finite for the case at hand.

By applying the functor Homped(a) (A, —) to the chain complex of (free) right A-modules
in (6.2), one obtains a cochain complex of left A-modules whose cohomology is denoted
by Extpoq) (Ao, A). One can show that Ext],fqod(A) (Ag,A) = dgq C, and this means that
the algebra A is “Gorenstein” and that the cochain complex as well defines a minimal
projective resolution of the trivial left A-module A,. Together with (6.2) this implies the
isomorphisms

By = EXtﬁwod(A) (Ao, Ao) = Eg-

of vector spaces for £ = 0,1,...,d. Thus the Gorenstein property is a variant of Poincaré
duality for the noncommutative toric variety CPy.

It is also not hard to prove that the homogeneous coordinate algebra A = A(CPy) is a
noetherian domain, a Koszul algebra, and that A' is a Frobenius algebra of index n + 1.
Algebras of finite global homological dimension with the Gorenstein property are called
regular [19]. The following result is a corollary of [5, Prop. 2.6].

Proposition 6.3. The quadratic algebra A is a reqular algebra of global homological di-
mension d = gl-dim(A) =n + 1.

Proof: This follows similarly to [6, Prop. 7.2.3]. As mentioned, the global homological
dimension of A equals the length of the minimal projective resolution for Ay = C. Since
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the Koszul complex is exact, it provides such a minimal resolution, and the global ho-
mological dimension coincides with the number of non-trivial graded components of the
algebra A', each of which can be identified as

A;g = Ethmod(A) (Ao, Ao) -

The dual algebra A' provides a Frobenius resolution, thus the only non-trivial cohomology
group is
Extptl (Ao, A) = AL  © A

mod

and the Gorenstein property follows. [ |

For an algebra A of polynomial growth (which is the case for the homogeneous coordi-
nate algebra A = A(CPy)), one has also the notion of Gel’fand—Kirillov dimension

k—o0

GK-dim(A) := lim inf {a cR ‘ dime ( ® A, ) < ka} .
=0

This is finite for A = A(CP}). Indeed dim¢(Ag) = pno1(k) is the number of partitions of &
into n+1 parts, and it is a classic result [20] that the function p,, 1 (k) grows asymptotically
like (nil)! (’:1) Then the Stirling expansion shows that the dimension of Aj grows like
E™ for k > 0, so that the Gel'fand—Kirillov dimension is n + 1. Combining this with the
Gorenstein properties of Proposition 6.3 we see that A = A(CPy) is regular in the sense

of Artin-Schelter [1].

6.2. Sheaves on CPP;. By Propositions 4.2 and 4.6, together with the results of §5.2,
it follows that quasi-coherent sheaves on Open(CPy) can be identified with objects of
the module category mod(A), with A = A(CPy). Let gr(A) be the category of finitely-
generated graded right A-modules M = €, , M and degree zero morphisms, and let
tor(A) be the full Serre subcategory of gr(A) consisting of finite-dimensional graded A-
modules M, i.e. My = 0 for k> 0. Henceforth, we will identify the category of coherent
sheaves on Open(CPy) with the abelian quotient category gr(A)/tor(A), and denote it
by coh(CPy). Let 7 : gr(A) — coh(CPy) be the canonical projection functor. Under
this correspondence, the structure sheaf Ocpn is the image m(A) of the homogeneous
coordinate algebra itself, regarded as a free right A-module of rank one. If £ = 7(M)
where M € gr(A) is a graded right A-module, then M[w; ']y = (M ®,4 A[w;!])o is a right
Cylo;]-module for each i =1,...,n+ 1.

On the category gr(A) there is a natural autoequivalence defined by the degree shift
functor M~ M(1), where M(l) is the [-th shift of the graded module M = B, ., M
with degree k& component M (1), = M;,y. For each k € 7Z we define the sheaf

O(c]pg(k‘) = W(A(k‘)) .

For any sheaf E = (M) we write E(k) for the sheaf w(M(k)) in coh(CPy). Conversely,
given a sheaf £ € coh(CPy), the vector space

M = F(E) = é HOm(OCPg<—]{3) s E)

is a graded right A-module with 7(M) = E (with the A-module structure given in general
by [2, eq. (4.0.3)]).

Asin [5, §2.3], sheaves on Open(CPy) have the following basic cohomological properties.
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Proposition 6.4. Every sheaf E € coh(CPy) enjoys the following properties:

(1) Ampleness: There exists an epimorphism
@ O(C]P’g(_ki) — EF — 0
i=1

for some positive integers ki, ..., ks, and there exists a positive integer ko such
that HP(CPy, E(k)) = 0 for all k > ko and p > 0;

(2) x-condition: dimc(HP(CPy, E)) < oo for all p > 0; and

(3) Serre duality: There are natural isomorphisms of complex vector spaces

H?(CPy , E) 2 Ext"?(E, Ocpp(—n — 1))
where (—)* denotes the C-dual.

Proof: This follows from the regularity properties of the algebra A derived in §6.1, to-
gether with [2, Thm. 8.1] (for points (1) and (2)) and [42, Thm. 2.3] (for point (3)). W

The following result is a special case of [5, Prop. 2.7].

Proposition 6.5. (1) There are isomorphisms
A for p=0,k>0,
HP(CIPZ, Ocpg(l{?)) = ‘Aik—n—l f07’ p=n, Ek<-n-—1 ,
0 otherwise .

(2) The cohomological dimension of the category coh(CIPy) is equal to n, i.e. one has
HP(CPy, E) =0 for all E € coh(CPy) and p > n.

Proof: This follows from the regularity properties of the homogeneous coordinate algebra
A derived in §6.1, together with the Serre duality of Proposition 6.4 and [2, Thm. 8.1]. W

Let gr;(A) be the abelian category of finitely-generated graded left A-modules. We
will denote by 7, : gr;(A) — coh,(CPy) := gr,(A) /tor,(A) the corresponding quotient
projection. For any sheaf E' € coh(CPy), the graded space

Hom (E, Ocpp) = 7TL< éHom(E, Ocpy (k)) )

has a natural left A-module structure (see [27, §5.3] and [6, §1.1]), and is thus a well-
defined object of the abelian category cohy(CPy). It is called the dual sheaf of E and
is denoted EY. The internal Hom-functor Jom (—, Ocpy) is left exact on coh(CPy) —
coh(CPy) and has corresponding right derived functors Ext”(—, Ocpy) given by

ExtP(E, Ocpy) = 7TL( @ Ext?(E, Ocu»g(k)))
k=0

for p > 0. Since A is a noetherian regular algebra, the functor Ext”(—, Ocpp) gives an
anti-equivalence between the derived categories of coh(CPy) and cohy (CPy) (see [42, §4]
and [27, §5.3]). It follows that there are isomorphisms

Ext?(E, F) = Exth (FY, EY) := Ext?

cth((C]P’g)(Fv7 EY )

for any p > 0 and for any pair of torsion-free sheaves F, F' € coh(CPy).
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For a sheaf F' € coh(CPy), there is a functorial isomorphism
H}(CPy, Hom (F, Ocpp)) = Hom (F, Ocpy)
and also a functorial spectral sequence
EP? = HY (CPy , Ext!(F, O(C]pg)) = Ext* (F, O(C]pg) .

The sheaves Ocpy (), k € Z are locally free, with Hom (Ocpy (k), Ocpy (1)) = Ocpy (I — k) as
sheaves of bimodules. More generally, bundles over noncommutative projective varieties
may be characterized as follows.

Proposition 6.6. Let & € coh(CPy) and M =T'(€) € gr(A). Then the following state-
ments are equivalent:

(1) € is a locally free sheaf;

(2) &xtP(€,Ocpp) = 0 for all p > 0; and

(3) M[w; o is projective in coh(a;) for eachi=1,...,n+ 1.
Proof: This is a consequence of Proposition 4.6 and Definition 4.7, together with the
functorial equivalence of §1.2, and the fact that the result holds in the commutative case
0 =0 [27]. If € is locally free, then its restrictions &,, are direct sums of shifts of Cy[o;],
with

Coloi] (k) := (A(k) @4 Alw; '), -
Since Ext’g’r(A)(A(l),A(k:)) = 0 for £ > [ and p > 0, it follows from the y-condition
of Proposition 6.4 that P, Ext”(E, Ocpy (k)) is finite-dimensional, and hence one has
ExtP(&, Ocpy) = 0 for all p > 0. Conversely, by Serre duality of Proposition 6.4 one has
@p(& O(C]P’g) = ﬂ-L( @ Hn—p(cpg7 8(_k —n- 1))*> )
k=0

where the group H"P(CPy, &(—k —n — 1)) coincides with Ext" ?(Ocpp (k +n + 1), €).
Hence if Ext”(€, Ocpy) = 0 for p > 0, then by the x-condition Ext*(Ocpy (k+n+1),&) =0
for all 0 < s <n and k> 0. That € is locally free now follows again by localization and

the corresponding result in the category gr(A). Finally, if M is projective, then the func-
tor Homyg,(4) (M, —) is exact, and hence Extgr(A)(M,A(k)) =0forallp>0andk>0. N

Example 6.7. For noncommutative projective varieties we can provide an equivalent
global description of the sheaves of differential forms, constructed in §4.4 using Kahler
differentials, in terms of Koszul complexes, since their homogeneous coordinate algebras
are Koszul algebras. Affine open subsets Ug[o] correspond to localizations of the homo-
geneous coordinate algebra A = Cjlwy, ..., wn41] of CPy, and the construction of Kdihler
differentials commutes with Ore localization (see e.g. [15, §3] and [35, Thm. 1.2.1]). The
bimodule of Kdhler differentials QY = I4/1% is defined as in §4.4 via the kernel of the
multiplication map pg : A Q@A — A. Using the constructions of §4.4, it is easy to see
that QY is isomorphic to the free A-bimodule A®™*Y . On the other hand, since A is a
Koszul algebra one can define the left (resp. right) A-module K,(A) as the cohomology of
the left (resp. right) Koszul complex of A in §6.1 truncated at the p-th term [27, Def. 4.8].
Forp =1, the module X1(A) sits in the exact sequence

0 — KA) — (A)'®A 5 A4 = C — 0
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so that K1 (A) = ker(d). But here the differential d is exactly py. It follows that there is
a natural identification Qﬁ,m = K,(A), and so the Koszul description of the sheaves of
differential forms coincides with that in terms of Kahler differentials in these cases.

6.3. Tautological bundles on Gry(d;n). We give some explicit examples of locally
free sheaves on the noncommutative Grassmann varieties of §5.3, which further admit
straightforward extensions to the general noncommutative flag varieties of §5.4. Recall
that in the commutative case the tautological hyperplane bundle (or universal sub-bundle)
8 is the vector bundle over Gr(d; V') such that the fibre over each point [A] € Gr(d; V) is
the d-plane V) C V defined by A itself. It sits inside the Euler sequence

(6.8) 0 — 8 — Gr(d;V)xV — Q — 0,

where Q is the quotient sub-bundle. To describe the embedding of § in the trivial bundle
Gr(d; V) x V, we note that, when dim¢(V) = n, a section of Gr(d;V) x V is an n-
dimensional vector

(6.9) w=> wi(A)@v; € AGr(d:V))®V

i=1
of functions w;(A) on Gr(d; V'), where {v;}!'_; is any basis for V. This defines a section
of 8 if and only if for each A the vector (6.9) belongs to V.

In that case, if we add the vector w to the d x n matrix A as the (d + 1)-th row, thus
generating a (d + 1) x n matrix, then all the minors of order d + 1 are zero. Denote by
J = (J1+Jar1) an ordered (d + 1) multi-index with j; < jo < -+ < jgi1, and by J* the
order d multi-index with j, removed. Then, as before, A’* is the minor of order d in A
obtained from the columns labelled by J* = (j¢,...,7%). By expanding the minors with
respect to the (d+ 1)-th row w, the requisite condition can be expressed as the equations

d+1
(6.10) D e AT =0

a=1
for every ordered (d 4 1) multi-index J. A section of the trivial bundle (6.9) is a section
of 8 if and only if it satisfies (6.10). This is a local description since we have to choose a
d x n matrix A to represent a point in Gr(d; V'), and our condition (6.10) is written using
the data of this local representative.

To pass to the noncommutative coordinate algebra A(Gry(d;n)), we use the Laplace
exansion in (2.25). Then 8y is defined to be the subsheaf of elements of the free mod-
ule (wi(A),...,w,(A)) € A(Gryg(d;n))®™ over the noncommutative grassmannian which
satisfy the equations

d+1 / d
(6.11) > ( qjajg> (=1)* A" w;, =0

a=1 \p=1
for every ordered (d+1) multi-index .J, where the minors of order d obey the relations (5.6).
We can use the Pliicker map to regard the noncommutative minors A’® as homogeneous
coordinates in P(A4V). Then the quotient by the graded two-sided ideal generated
by the set of homogeneous relations (6.11) defines the projection from the free module
P(ASV)®V — 8. In this case we have to consider the restriction of (6.11) to those
elements A which also satisfy the Young symmetry relations (5.9). This gives the sheaf
8p the natural structure of a graded A(Gry(d; n))-bimodule.
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Proposition 6.12. The sheaf Sy is locally free on Open(Gry(d;n)).

Proof: The geometric description of the embedding of 8§ in Gr(d; V') x V by a projector
amounts to taking a section (6.9) and projecting the vector w over the d-plane V) for each
[A] € Gr(d; V). To obtain a well-defined projector, we choose an inner product (—, —), on
the complex vector space V' such that the vectors vy, ..., vy which span V, are orthonor-
mal. Then the projection of a vector w € V over Vj is given by pa(w) = Y. (w, v;)a v;.
This yields a unique idempotent p : A(Gr(d;V)) ® V. — A(Gr(d;V)) ® V which maps
w(A) in (6.9) to pa(w(A)), with p? = p, trace equal to d, and im(p) = 8. The matrix
representation of py is given by the n x n matrix AT A, where for A we choose a ma-
trix representative whose d rows are the orthonormal generators of the plane V, so that
AAT =1and (ATA)(ATA) = AT A. The extension to the noncommutative setting only
requires using noncommuting entries in A with noncommutative relations in the coordi-
nate algebra 3¢ of GLg(n), given in §2.3, in a way which is compatible with the projector
constraints. The statement now follows by point (3) of Proposition 6.6. [

Example 6.13. For d = 1, it is easy to see that the equations (6.11) are solved by
taking wj(A) = A7 to be the generators of the homogeneous coordinate algebra A(CP, ™),
and one has a canonical isomorphism of bimodules 8¢ = Ocpgfl(l). Alternatively, use

Proposition 6.12 to get im(p) = A(CP;™").

6.4. Differential forms on Gry(d;n). There is also a useful alternative description of
the bundle of Kéhler differentials Qérg (dn)- In the classical case, the tangent bundle over
Gr(d; V) is represented in terms of the Euler sequence (6.8) as the morphism bundle
Hom(8,Q) = 8 ® Q, whose fibre spaces are given by TizGr(d; V) = Home(Vy, V/Vy).
This description can be transported to the noncommutative setting via the following
characterization.

Lemma 6.14. The total space of the cotangent bundle over the grassmannian Gr(d;n) is
the base of the principal fibration

Lyn—a:=GL(d) x GL(n —d) — GL(n) — T"Gr(d;n) .

Proof: Let E denote the principal P, _g4-bundle given in (5.12) for v = (d,n — d).
Let g and p be the Lie algebras of GL(n) and P,,_4, respectively. Then the cotangent
bundle can be represented by TGr(d;n) = E Xaa*(p,,_,) (8/9)". If Py,_q is embedded
in GL(n) as the subgroup of upper triangular matrices, then a € g/p is represented by
a (strictly) block upper triangular matrix. Embed L;,_4 in GL(n) as the subgroup of
block diagonal matrices. Then Lg,_q is the reductive Levi subgroup of Fy,_4 and there
is a Levi decomposition Py, _q = Rgn—d X Ad(La.n—q) Ldn—d where Rg,,_4 is the unipotent
radical of the parabolic group Pj,_q which is the additive subgroup of GL(n) represented
by block upper d x (n — d) matrices with respect to this embedding. On GL(n)/Lgj,—q
there is still the proper and free left action of R, ,_4, and the quotient is our grassmannian

Rd,n—d \ GL(H) /Ld,n—d = GL(H) /Pd,n—d = Gl"(d; n) .

We claim that this principal R4,_4-bundle F' — Gr(d;n) is isomorphic to the cotangent
bundle. For this, we define a bundle map T*Gr(d;n) — F', such that on the fibre over
the equivalence class of the identity of GL(n) in GL(n)/P;,_4 there is an isomorphism
Pan—a Xad*(Py,_a) (g/p)" = Ran—q. With respect to the block embeddings described
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above, this is given by

(5 3))— (")

Since the two fibrations have the same base space, the bundle map reduces to a morphism
between the fibre spaces. Since the base space is homogeneous with respect to the action
of GL(n), the isomorphism on a generic fibre is the conjugation by GL(n) of the isomor-
phism over the identity constructed above. ]

We will use Lemma 6.14 to provide a purely algebraic description of the cotangent
bundle in terms of coinvariant elements in the Hopf algebra &, of GL(n) with respect to the
coaction induced from the subgroup Lg,_q. Then we will deform this construction using
a Drinfel’d twist, obtaining an alternative description of the bundle of noncommutative
Kéhler differentials Qé}re( dn)- The algebraic version of the inclusion Lg,_4 — GL(n) is a
surjective algebra homomorphism 7(*¢) from F,, to the Hopf subalgebra £, dual to the
subgroup Lg,—4. As in §2.3, we denote the generators of ¥, = Fun(GL(n)) by ¢;; with
i,j =1,...,n. The generators of £, = Fun(L,,—_4) are denoted /;; with 1 < i,j < d
and d+ 1 < i,j < n. Then the projection homomorphism 7*dn) : F, — L4, is given by

Lan) (g ) = ll] ) ]-Slajgd and d—l—lﬁz,an,
(6.15) @ (935) { 0 ,  otherwise .

The left coaction “4n® : F, — L4, ®7, dual to the right multiplicative action of Lg,,_q4
on GL(n) is the unital algebra morphism given by “dn® := (W(Ld'”) ® 1) Ay, or explicitly

(6.16) Land(g) = (740 @ 1) Ay(g) = 7% (g1)) @ g2 -
The subalgebra of left coinvariants, defined in the usual way by
CO_Ld’n?n _ {g cTF, ‘ Ld,nq)(g) -1® g} 7

gives the algebraic description of the base of the fibration GL(n)/Lg—4, i.e. the cotangent
bundle T*Gr(d;n). We use the general strategy to find coinvariants through projector
maps [29, Ch. 13].

Proposition 6.17. A set of generators for ©~*nJF, is given by elements

d

(6.18) Nij = Z Sv(gik) Jkj 5 1<4,5<n
k=1

and

(6.19) mg= > Sulgw) gk, L1<ij<n.

k=d+1
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Proof: By direct computation one has

n

d d
a3 Sulow) o) = (@ ©1) (30 D0 (Suln) 91m) @ (S(9) 9ms) )

1 k=1 m,p=1
d
k,m,p=1

_ Z 5pm ® (Sv(gzp) gm] = 1® ( Z SV gzp gp]) :

m,p=1
The coinvariance of the second set of generators follows easily from

> Sulgin) gry = 65
k=1

since the coinvariants generate a vector space. ]

The generators 7;; and 772# = d;j — 1;; are not independent, but are characterized by a
set of relations. They can be regarded as entries of n x n matrices, yielding an algebraic
description of the vector bundle with associated principal bundle given in Lemma 6.14.

Proposition 6.20. The generators n;; (resp. 77”) fori,7=1,...,n are the entries of an
idempotent matriz n (resp. nt) with trace equal to d (resp. n — d).

Proof: Again by direct computation one has

n n d
Z Nim Nmj = Z Z Sv(gik) Grm Sv(gmp) Ipj
m=1

m=1 k,p=1

d
= Z Sv(Gik) Orp Gp;

k,p=1

d
= > Sulgw) gk = mij -
k=1

The trace condition is easily computed as

n

Zﬁmmzz stgmk ) Gkm = dek—

m=1 m=1 k=1

The corresponding results for n* = 1,4, — 1 now easily follow. |

Comparing with Proposition 6.12 and Lemma 6.14, it follows that we can interpret
n as the matrix describing the finitely-generated projective A(Gr(d;n))-module 8§ =
n(A(Gr(d;n))®"). Recall that there is a canonical isomorphism Gr(d; V) = Gr(n—d; V)
of grassmannians given by Vy — (V/Vy)*. Under this isomorphism, the universal quotient
bundle Q on Gr(d; V') corresponds to the dual of the tautological bundle 8+ of rank n —d
on the variety Gr(n — d; V*). We may then identify 8+ = n*(A(Gr(d;n))®"), and one
has the anticipated isomorphism ©~“4nJF, = 8 @ 4Gy 8- of A(Gr(d; n))-modules.
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We now consider the Drinfel’d twist deformation F¢ of the coordinate algebra of GL(n),
given in Definition 2.13. This deformation applies to the Hopf subalgebra £,, as well.
Since we are interested in toric (C*)?™~% deformations of the variety Gr(d;n), we con-
sider a deformation ?Z(d) ® fﬂgffgd) of the Hopf algebra Fun(Lg,—q) and use the subgroup
inclusion described by the algebra homomorphism (6.15). Then, as explained in §5.2, the
n xn matrix 6 is given by 67 = 4" for the block 1 < i,j < d, 0" = 0,,_" for the block
d+1<1i,5<n,and Y = 0 otherwise. Hence the noncommutative Hopf algebra Lfl’n is
also well-defined. The left coaction of £9, on FY is the same as that of (6.16), since the
twist does not change the coproduct. In émalogy with the undeformed case, we interpret
the algebra CO_LZ%?Z of left coinvariants as the algebra of the (C*)?("~9 deformation of
the cotangent manifold 7*Gr(d;n) = GL(n)/Lg,. This identification will be justified
below. The algebra CO_LZ%?Z is generated by elements 7;; introduced in (6.18) and by
elements 7;; given in (6.19).

Theorem 6.21. The noncommutative product in CO_LZ%?Z 1s described by commutation
relations among generators 1;; and ni# given by

Nij X0 Niry = Kzzj irgr Mirg: <o Mij
My Xo My = K5y Mg X0
(6.22) TMij <o nz‘J’_j’ = Ki2j;i’j’ m/jf X9 Mij
where
(6.23) Kij g = G Q50 Qirj Qg0 -

Proof: We compute the twisted relations between 7;; directly from the definition (1.12).
For this, we need the quantity (id ® Ay) Ay(n;;) = nz(jl) ® 7](2) ® 77” . Beginning with

Av(my) = Z Z (Sv(gpr) ® Sv(9ip)) * (Gkm ® Gums)

k=1 m,p=1

d n
= D Y (Sulgpr) gem) ® (Su(gip) Gmi) -

k=1 m,p=1

we expand the second factor at the end to get

ny @nd @ = Z Z (Sv(pk) Gom) @ (Sv(Grp) Gms) @ (Su(gir) 95)

k=1 m,p,r,s=1

and similarly

nz(lj)’ ® nz’j’ ® nz ]’ - Z Z (SV(gP'k/) gk’m’) & (SV(gT/p/) gmls’) & (Sv(gi’r’) gS/j/) :

k'=1 m/p'r' s'=1

Using these expressions we compute the three terms of the deformed product in (1.12).
Starting with

F (i @ mig) = (Fo,n) @miy) = (exp (= 30 Ho© 1), i) @ myy)
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and looking at the first order term in ¢ we compute separately

d
(Ho,n) = > (Ha, Sulgpr) gom)

d
- Z (H, ®1+1® Hqy, Su(gpk) @ Gm )

(= (Har 900) ulgun) + 0 (S (g)) (Has gin) )

Eonl Eonl
QU Il U Il
— —

( - 5ap Oak Okm + 5pk Oak 5am) =0,

B
Il

1

where we have used duality to transfer the antipode S\, from F? to the enveloping algebra

Hy in the pairing. An identical calculation shows that (Hb,nz ' ,) = 0. Only the zeroth
order term gives a contribution, so that

Py enl) = el o)

i'j ij i’j
d d
- Z Ev (SV (gpk) gkm) Ev (Sv(gp’k’) gk’m’) = Z 5pk 5mk 5p’k’ 5m’k’ .
Je k=1 ke k=1

The third factor in (1.12) is given by
FO ) @nd)) = (F;, 0 @nl)) = (exp (L0 Hy® H.) , 0 @) .
Looking at the first order term in 6, we compute separately
(Hy, 2y = (Hy, Su(gir) 95)
= (H,®1+1® H,, Sy(g) @ gs;)
= — (Hy, gir) ev(9s) + v (Sv(gir)) (Hp, gsj) = = Oi Ori Oj + O 0ri O -

An identical calculation shows that (H., n” > = — O¢ir Oir G511 + Ocjr Oprir Ogrjr. So the first
order term is given by

% o (— Opi Oy 055 + Opj Oy O55) (— Ocir Oyrir Ogrjr =+ gt Oprir Ogri7)
and summing over all orders we finally arrive at
o —1(,(3) (3)y _
F 1(771] ®ni’j’) = Qii’ Qj%i Gitj G55 Ori Osj Orriy Ostjr

We are now ready to write the deformed product between generators n;; as

iy xeney = F(ni @nl) () ni)) F* (0 @ nir))

— i i ( Z Ok Ok Sy e )

m,p,r,s=1 m/p/' r’ s'=1 k,k'=1
X (S\/ (grp> 9ms S\/ (gr’p’) gm’s’) (Qii’ qji 4i'5 454 5m' 53]‘ 5r’i’ 53’]")
Qiir G503 Q5 955" Mij Mi'5’ -
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Computing in exactly the same way the deformed product n;j: x¢ n;; and comparing the
two expressions, we find the first set of relations in (6.22). The remaining relations follow
from 772# = 0;j — Nij. |

The noncommutative relations (6.22) are not compatible with the constraints of Propo-
sition 6.20. However, the new generators

. | TR
Nij = Q5 "hij > Mij = Qij Mij

enjoy the same commutation relations (6.22) as well as the orthogonal projector rela-

~Y

tions of Proposition 6.20. By Proposition 6.12, there is a natural isomorphism &y =
7} (A(Grg(d;n))®") of bundles on Open(Gry(d;n)), and we define the orthogonal comple-
ment of the tautological bundle 87 := i* (A(Gry(d; n))®"). Note that the duality between
the bundles 8§ and 59l now also involves interchange of the block matrices 04y and 0,_q)
above. Denoting by Vy the trivial bimodule A(Gry(d;n))®V, the noncommutative version
of the exact sequence (6.8) of bundles is then given by

1\ @) U
(6.24) 00— (8§) —— Vo = 8 — 0,

and it follows from Theorem 6.21 that the sheaf of noncommutative differential forms is
isomorphic to the braided tensor product

(6.25) oLinF? = 8y Ry Sk
as a bimodule algebra over A(Grg(d;n)) in the category gen .

The geometric meaning of the generators n;; and 772# can be better understood by
computing their transformation properties under the action of the torus 7' = (C*)(=d),

Proposition 6.26. The noncommutative fibration CO_LZ’nfr'“fL is a T-equivariant bundle
with eigenbasis generated by n;;.

Proof: =~ We show that the generators n;; are T-eigenvectors with respect to the left
action of (C*)4(=9 induced by the algebra homomorphism (6.15) and the right coaction
lan - Fh — F) @ L, given by

1 2
(6.27) Plan(g;,) = (1 Q W(Ld,n)) Ay(gi) = gl(j) Q W(Ld,n)(gi(j)) .
Let H, (resp. hy), a =1,...,n be the toric generators in the enveloping algebra of GL(n)
(resp. Lgn—q). Dual to 7£an) there is an injective algebra homomorphism ¢*4n) between
the corresponding enveloping algebras such that ((*an)(h,) = H,. Using results of §2.3,
the image under ((“¢») of the left action (1.9) of the enveloping algebra of T' dually induced
by the the right coaction (6.27) of £, on F} is then given by

H,>gi; = gﬁ;) <ha> W(Ld'”)(gi(y?)»

= Z Gik <L(Ld’")(ha) ) gkj>
k=1

(6.28) = > g (Har0)) = s 95 »
)
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where we have used the duality between 7(*¢n) and (*e») Similarly, one computes
H,v> S\/(Qij) = <ha ) mrLan) (S\/(gij)(2))> S\/(gij)(l)

= (Ea)(n,), Sy (9i) @) Svlgii)

— Z <Ha, S\/(gik» Sv(9kj)

k=1

(6.29) = - Z (Ha, gik) Sv(grj) = —0ai Sv(9ij) -
k=1
Using (6.28) and (6.29), the left action of H, on the left coinvariant generators 7;; is thus
computed to be
d
(6.30) Hoo =Y ((Hav Sul(g) gns + Sulgie) (Ha® 913) ) = (Gas = bui) s
as required. - |

By (6.30), we notice that the diagonal elements of the matrices  and n* are T-invariant.
However, in contrast to the deformed products obtained by Drinfel’d twists of Hopf-
module algebras (such as those defined in §2.2), they do not span a commutative ideal
but rather only a commutative subalgebra, as one easily checks from the relations (6.22).

Example 6.31. For d = 1, one has Grg(1;n) = (CPy~")* with 0 = 0(,_1y, and the
Ore localization with respect to the embeddings above identifies the generators n;, with the
elements
Lyp = L w; wy

generating the degree 0 localized subalgebras as one readily checks using (6.22). The non-
commutative affine subvarieties Uglo;], i = 1,...,n constructed from each maximal cone
o; in the fan ¥ of CP"™' are thus generated exactly by each row of the matriz n. By
Example 6.13 one has a natural isomorphism 8¢ = Ocpgq(l), and in a similar vein

Sy = O(cpgfl(—l). By tensoring the exact sequence (6.24) from the right with the lo-

cally free sheaf 8; = O@qu(—l), and by using (6.25) and dualizing, one finds the Euler
sequence

0 — T — VY(-1) — Ogrr — 0,

analogous to that of [27, §8.11]. In the commutative case, this sequence is dual to the
description of the tangent bundle in terms of the surjective bundle map Ocpn-1 @ V' —
Ocpn-1 which evaluates global sections of the hyperplane bundle. The construction above
provides a geometrical interpretation for the sequence of Example 6.7 which describes the
bundle of Kdihler differentials QF

—1-
Cry
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