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A Proof of the KNS conjecture : Dr case

Chul-hee Lee

Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

Abstract

We prove the Kuniba-Nakanishi-Suzuki (KNS) conjecture concerning the quantum
dimension solution of the Q-system of type Dr obtained by a certain specialization
of classical characters of the Kirillov-Reshetikhin modules. To this end, we use
various symmetries of quantum dimensions. As a result, we obtain an explicit
formula for the positive solution of the level k restricted Q-system of type Dr

which plays an important role in dilogarithm identities for conformal field theories.

1. introduction

1.1. Background and motivation. Let X be a simply laced Dynkin diagram

with the index set I = {1, 2, · · · , r}. For a family of variables {Q
(a)
m |a ∈ I,m ∈

Z≥0}, consider recurrences given by

(1.1)
(

Q(a)
m

)2

=
∏

b∈I

(

Q(b)
m

)I(X)ab

+Q
(a)
m−1Q

(a)
m+1 ,m ≥ 1

where I(X) denotes the adjacency matrix of X . We call it the unrestricted Q-
system of type X . Throughout the paper, we will use the boundary conditions

Q
(a)
0 = 1 for all a ∈ I.
Let k ≥ 1 be an integer. We are interested in finding complex solutions of the

Q-system satisfying another set of boundary conditions Q
(a)
k = 1 for all a ∈ I. We

define the level k restricted Q-system of type X to be the system of equations

(1.2)















Q
(a)
0 = 1 a ∈ I

(

Q
(a)
m

)2

=
∏

b∈I

(

Q
(b)
m

)I(X)ab

+Q
(a)
m−1Q

(a)
m+1 1 ≤ m < k, a ∈ I

Q
(a)
k = 1 a ∈ I

in variables {Q
(a)
m |a ∈ I, 0 ≤ m ≤ k}.

One reason to consider it comes from Nahm’s conjecture about modularity of
q-hypergeometric series. See [Nah07, Kee07, NK09] for instance. Another reason to
study it can be found in dilogarithm identities for conformal field theories [Kir89,
Nak11]. To motivate our investigation, we give a brief exposition of dilogarithm
identities related to our main results.

It is known that there exists a special unique solution of the level k restricted
Q-system possessing positivity and some additional properties as follows :

Theorem 1.1. Let X be a Dynkin diagram of type ADE of rank r. There exists

a unique solution z = (z
(a)
m ) of the level k restricted Q-system of type X satisfying

z
(a)
m > 0 for 0 ≤ m ≤ k and a ∈ I. For all a ∈ I, the following properties hold :

1
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(1) (symmetry) z
(a)
m = z

(a)
k−m for 0 ≤ m ≤ k,

(2) (unimodality) z
(a)
m−1 < z

(a)
m for 1 ≤ m ≤ ⌊k

2 ⌋ where ⌊x⌋ is the floor function.

See [Lee12, Theorem 5.3.6] for a proof. We call the solution z = (z
(a)
m ) charac-

terized in Theorem 1.1 the positive solution of the level k restricted Q-system.
The Rogers dilogarithm function is defined by

L(x) = −
1

2

∫ x

0

log(1− y)

y
+

log(y)

1− y
dy

for x ∈ (0, 1). We set L(0) = 0 and L(1) = π2/6 so that L is continuous on [0, 1].

Theorem 1.2. [Nak11] Let X be a simply laced Dynkin diagram of rank r and g

the corresponding simple Lie algebra. For 1 ≤ m ≤ k − 1 and a ∈ I, let

x(a)
m =

∏

b∈I(z
(b)
m )I(X)ab

(z
(a)
m )2

where z = (z
(a)
m ) is the positive solution of the level k restricted Q-system of type

X. The following dilogarithm identity holds :

(1.3)
6

π2

∑

a∈I

k−1
∑

m=1

L(x(a)
m ) =

k dim g

h+ k
− rankg =

(k − 1)hr

h+ k

where h denotes the Coxeter number of g.

For a physical interpretation of the rational number on the right hand side of
(1.3), see [KNS11, Theorem 5.2] and references given there.

In this paper, we will study the positive solution of the level k restricted Q-
system of type X using Lie theory. Before stating our main results, let us set up
notation and terminology.

1.2. Notation. Let X be a simply laced Dynkin diagram and C = (aij) the Cartan
matrix. Let g be the corresponding simple Lie algebra of rank r and h its Cartan
subalgebra. We denote the dual space of h by h∗ and use the symbol 〈·, ·〉 to denote
the natural pairing between h and h∗.

Let Φ ⊂ h∗ be the root system. We denote the set of positive roots by Φ+ and
the set of simple roots by Π = {αi|i ∈ I}. We will write α > 0 if α ∈ Φ+ and α ≥ β
if α − β ∈ Φ+ or α = β. For α =

∑r

i=1 ciαi ∈ Φ, we define its height, denoted by
htα, to be

∑r

i=1 ci.
Let θ =

∑r

i=1 aiαi be the highest root. We call ai the marks and set a0 = 1.
See Figures 1.2 and 2 for X = Dr. We denote the Coxeter number by h, which is
given by 1 + ht θ =

∑r
i=0 ai. Let (·|·) be the standard symmetric bilinear form on

h∗ normalized by requiring that (θ|θ) = 2.
Let Q be the root lattice and P be the weight lattice. The coroot lattice, denoted

by Q∨ is the Z-dual of the weight lattice P . We will choose the basis Π∨ = {hi ∈
h|i ∈ I} of the coroot lattice so that 〈αi, hj〉 = aji. Let {ωi ∈ P |i ∈ I} be the dual
basis of P for Π∨ so that 〈ωi, hj〉 = δij . We call ωi the fundamental weights. A
dominant weight is an element of P+ = {

∑r

i=1 λiωi ∈ P |λi ≥ 0, i ∈ I}. We call
ρ =

∑r

i=1 ωi ∈ P the Weyl vector.

We have the group algebra C[P ] with C-basis of elements of the form eλ, λ ∈ P .
We can regard eλ as a function defined on h∗ by µ 7→ e2πi(λ|µ). For a dominant
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Figure 1. The extended Dynkin diagram of type D
(1)
r and the

labeling of the nodes

weight λ ∈ P+, the character χλ ∈ C[P ] of an irreducible representation V of
highest weight λ is defined to be

∑

λ′∈h∗

(dimVλ′ )eλ
′

where Vλ′ denotes the weight space corresponding to λ′ ∈ h∗. We will regard χλ as
a function on h∗.

1.3. Statement of the KNS conjecture and the main theorem. Let q be a
non-zero complex number which is not a root of unity. The Kirillov-Reshetikhin
(KR) modules form a special class of finite dimensional modules of the quantum
affine algebra Uq(ĝ) and they are parametrized by a ∈ I, m ∈ Z≥0 and u ∈ C.
Since the quantized universal enveloping algebra Uq(g) is contained in Uq(ĝ) as

a subalgebra, for a given KR module W
(a)
m (u), we can get the finite dimensional

Uq(g)-module resW
(a)
m (u) by restriction.

The important point to note here is the fact that the classical characters Q
(a)
m

of resW
(a)
m (u) for a ∈ I and m ∈ Z≥0 satisfy the unrestricted Q-system, which was

first stated in [KR90] and later proved in [Nak03] and [Her06].

The character Q
(a)
m can be expanded into a sum of characters of irreducible

modules of g as

(1.4) Q(a)
m =

∑

ω∈P+

Z(a,m, ω)χω

where Z(a,m, ω) is a certain non-negative integer with Z(a,m,mωa) = 1. For

example, when X = Ar, we have Q
(a)
m = χmωa

for a ∈ I and m ∈ Z≥0 and they
satisfy the unrestricted Q-system of type Ar. For X = Dr, it is given by

(1.5) Q(a)
m =







∑

χkaωa+ka−2ωa−2+···+k1ω1 1 ≤ a ≤ r − 2, a ≡ 1 (mod 2),
∑

χkaωa+ka−2ωa−2+···+k0ω0 1 ≤ a ≤ r − 2, a ≡ 0 (mod 2),
χmωa

a = r − 1, r

where ω0 = 0 and the summation is over all nonnegative integers satisfying ka +
ka−2 + · · ·+ k1 = m for a odd and ka + ka−2 + · · ·+ k0 = m for a even.

For a treatment of more general cases, see [HKO+99, Appendix A], [KNS11,
Section 13] and references given there.

If we regard Q
(a)
m as a sum of characters given by (1.4), we can specialize it at

the element ρ
h+k

∈ h∗. For each a ∈ I and m ∈ Z≥0, we define z
(a)
m by

z(a)m = Q(a)
m (

ρ

h+ k
) =

∑

ω∈P+

Z(a,m, ω)χω(
ρ

h+ k
).
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This yields a solution of the unrestricted Q-system and we call it the quantum
dimension solution of the Q-system. In [KNS11], it has been conjectured that it
gives the positive solution of the level k restricted Q-system and satisfies some
additional level truncation properties.

Conjecture 1.3. [KNS11, Conjecture 14.2.] Let z
(a)
m = Q

(a)
m ( ρ

h+k
) for a ∈ I and

m ∈ Z≥0. For all a ∈ I, the following properties hold :

(1) (positivity) z
(a)
m > 0 for 0 ≤ m ≤ k,

(2) (symmetry) z
(a)
m = z

(a)
k−m for 1 ≤ m ≤ k − 1,

(3) (unit boundary condition) z
(a)
k = 1,

(4) (unimodality) z
(a)
m−1 < z

(a)
m holds true for 1 ≤ m ≤ ⌊k

2 ⌋ where ⌊x⌋ is the
floor function,

(5) (occurrence of 0) z
(a)
k+1 = z

(a)
k+2 = · · · = z

(a)
k+h−1 = 0.

We call Conjecture 1.3 the KNS conjecture. The conjecture was originated from
some unproven claims in [Kir89] whose motivation can be found in the study of
thermodynamic properties of the RSOS models [BR89]. Then it was subsequently
formulated as above in [KNS94] with more general specializations. The conjecture
had been proved only in the case of type Ar . In this paper, we will prove the
following.

Theorem. The KNS conjecture is true for X = Dr. Moreover, z
(a)
k+h = 1 for

1 ≤ a ≤ r − 2, z
(r−1)
k+h = z

(r)
k+h = 1 when r ≡ 0, 1 (mod 4) and z

(r−1)
k+h = z

(r)
k+h = −1

when r ≡ 2, 3 (mod 4).

Since our proof crucially depends on (1.4), we cannot properly deal with the
exceptional types where the decompositions are still largely conjectural. There are
more general Q-systems including non-simply laced types, for which we need to
modify (1.1) into a slightly more complicated form. Thus we focus on the case of
type Dr to see the central idea clearly. A proof for other classical types will be
given in a forthcoming paper.

This result will be divided into several parts and will be proved in Theorem 4.2,
4.5 and 4.7. The most tricky part lies in proving the unit boundary condition. Once
we prove it, many results follow from Theorem 1.1. The key ingredients of our proof
are the affine Weyl group symmetry and the extended Dynkin diagram symmetry
of quantum dimensions of the affine weights obtained by suitable affinizations of
classical weights. Although these are well-known concepts, they have not been
effectively employed to attack our problem.

In Section 2 we review necessary results about quantum dimensions. Section 3
contains some preliminary calculations involving the affine Weyl group, which will
be used in Section 4 where we prove our main results.

2. Review on quantum dimensions

In this section we summarize some of the standard facts on quantum dimensions
without proofs. For a thorough treatment we refer the reader to [DFMS97, Section
16.3].

Definition 2.1. Let P̂ be the lattice generated by ω̂0, ω̂1, · · · , ω̂r. We define P̂ k

to be {
∑r

i=0 λiω̂i ∈ P̂ |
∑r

i=0 aiλi = k} where a0 = 1. We will denote the set
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Figure 2. The extended Dynkin diagram of type D
(1)
r and the marks.

{
∑r

i=0 λiω̂i ∈ P̂ k|λi ≥ 0} by P̂ k
+. For a weight ω =

∑r
i=1 λiωi ∈ P , we define

its level k affinization ω̂ ∈ P̂ k to be
∑r

i=0 λiω̂i. Note that λ0 ∈ Z is uniquely

determined by the requirement ω̂ ∈ P̂ k.
Let α0 = −θ and α̂j =

∑r
i=0(αj |αi)ω̂i. We define the fundamental reflections

s0, s1, · · · sr on P̂ linearly by

siω̂j = ω̂j − δijα̂i

where δij denotes the Kronecker delta. They generate the affine Weyl group W .

The signature of w ∈ W will be denoted by (−1)ℓ(w) where ℓ(w) is the length of
w ∈ W .

Let ρ̂ =
∑r

i=0 ω̂i ∈ P̂ . We define the shifted affine Weyl group action on the set

P̂ by

w · λ̂ = w(λ̂+ ρ̂)− ρ̂

for w ∈ W .

Definition 2.2. Let λ ∈ P and λ̂ ∈ P̂ k be its level k affinization. The quantum

dimension or q-dimension of λ̂ is defined by

(2.1) D
λ̂
= χλ

(

ρ

h+ k

)

=

∏

α>0 sin
π(λ+ρ|α)

h+k
∏

α>0 sin
π(ρ|α)
h+k

.

Theorem 2.3. Let λ =
∑l

i=1 λiωi ∈ P+ be a dominant weight such that
∑l

i=1 aiλi ≤

k. For its level k affinization λ̂ ∈ P̂ k
+, Dλ̂

> 0.

The shifted action of the affine Weyl group will be crucial in studying quantum
dimensions as the following results show.

Theorem 2.4. For λ̂ ∈ P̂ k and w ∈ W , D
w·λ̂ = (−1)ℓ(w)D

λ̂
. If w ∈ W is an

element of odd signature and w · λ̂ = λ̂, then D
λ̂
= 0.

Theorem 2.5. If D
λ̂
6= 0 for λ̂ ∈ P̂ k, then we can find a unique element λ̂′ ∈ P̂ k

+

such that λ̂′ = w · λ̂ for some w ∈ W .

We now look at the role of the symmetry of the extended Dynkin diagram.

Theorem 2.6. If λ̂1 and λ̂2 ∈ P̂ k are conjugate by an automorphism of the ex-
tended Dynkin diagram, then D

λ̂1
= D

λ̂2
.

Corollary 2.7. Let ωi be a fundamental weight such that ω̂i is conjugate to ω̂0 by

an automorphism of the extended Dynkin diagram. If λ̂ = kω̂i ∈ P̂ k, then D
λ̂
= 1.
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3. Preliminary computations

From now on we will assume that X = Dr and

z(a)m = Q(a)
m (

ρ

h+ k
) =

∑

ω∈Ω
(a)
m

Dω̂

where Ω
(a)
m denotes the set of elements appearing in the sum (1.5).

Proposition 3.1. Let a ∈ {1, r − 1, r}. The following properties hold :

z(a)m > 0 for 0 ≤ m ≤ k,(3.1)

z(a)m = z
(a)
k−m for 0 < m < k,(3.2)

z
(a)
k = 1.(3.3)

Proof. Note that z
(a)
m = D(k−m)ω̂0+mω̂a

. The inequality (3.1) follows from Theorem
2.3. By Theorem 2.6, we have D(k−m)ω̂0+mω̂a

= Dmω̂0+(k−m)ω̂a
and it implies (3.2).

(3.3) is a consequence of Corollary 2.7. �

Proposition 3.2. The following properties hold :

z
(1)
k+j = 0 for 1 ≤ j ≤ h− 1,(3.4)

z
(1)
k+h = 1.(3.5)

Proof. To prove (3.4), we use the product formula (2.1) for the quantum dimension.
First note that for each integer l such that 1 ≤ l ≤ h − 1 = 2r − 1, there exists a
positive root α such that htα = l and α − α1 ≥ 0. Moreover, the number of such
roots is exactly h = 2r − 2. In the product (2.1) for D(k−m)ω̂0+mω̂1

, only those
roots may contribute in a non-trivial way as

z(1)m = D(k−m)ω̂0+mω̂1
=

∏

α>0
α−α1≥0

sin π(htα+m)
h+k

sin π htα
h+k

.

Since {htα+m|α > 0, α−α1 ≥ 0} is the same set as {n ∈ Z|1+m ≤ n ≤ (h−1)+m},
one can find a positive root α such that htα+m = h+k when k+1 ≤ m ≤ k+(h−1).
This proves (3.4).

We now turn to (3.5). If m = h+ k, then

D(k−m)ω̂0+mω̂1
=

∏

α>0
α−α1≥0

sin π(htα+h+k)
h+k

sin π htα
h+k

=
∏

α>0
α−α1≥0

− sin π htα
h+k

sin π htα
h+k

.

Since this product is over h = 2r− 2 terms, the final product equals 1 and it proves

z
(1)
k+h = 1. �

In the rest of the section, we will prove that for 2 ≤ a ≤ r− 2, z
(a)
s = z

(a)
s+1 when

k is odd and z
(a)
s−1 = z

(a)
s+1 when k is even where s = ⌊k

2⌋. If 2 ≤ a ≤ r − 2, we will

denote the element kaω̂a+ka−2ω̂a−2+· · ·+k2ω̂2+k0ω̂0 ∈ P̂ k by (ka, ka−2, · · · , k2, k0)

when a is even and kaω̂a+ka−2ω̂a−2+· · ·+k1ω̂1+k0ω̂0 ∈ P̂ k by (ka, ka−2, · · · , k1, k0)
when a is odd. Then we can write

z(a)m =
∑

ω̂∈Ω̂
(a)
m

Dω̂
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where

(3.6) Ω̂(a)
m =

{

(ka, ka−2, · · · , k2, k0) ∈ P̂ k |
ka + ka−2 + · · ·+ k2 ≤ m
ka, ka−2, · · · , k2 ∈ Z≥0

}

for even a such that 2 ≤ a ≤ r − 2 and

(3.7) Ω̂(a)
m =

{

(ka, ka−2, · · · , k1, k0) ∈ P̂ k |
ka + ka−2 + · · ·+ k1 = m
ka, ka−2, · · · , k1 ∈ Z≥0

}

for odd a such that 2 ≤ a ≤ r − 2.
Assume that the level k is odd and s = k−1

2 .

Proposition 3.3. If a is even and 2 ≤ a ≤ r − 2, then z
(a)
s = z

(a)
s+1.

Proof. Note that Ω̂
(a)
s ⊆ Ω̂

(a)
s+1 and

Ω̂
(a)
s+1 \ Ω̂

(a)
s =

{

(ka, ka−2, · · · , k2, k0) ∈ P̂ k |
ka + ka−2 + · · ·+ k2 = s+ 1
ka, ka−2, · · · , k2 ∈ Z≥0

}

.

If ω̂ = (ka, ka−2, · · · , k2, k0) ∈ Ω̂
(a)
s+1 \ Ω̂

(a)
s , then k0 = −1 because

k0 + 2(ka + ka−2 · · ·+ k2) = k = 2s+ 1.

So for any ω̂ ∈ Ω̂
(a)
s+1 \ Ω̂

(a)
s , Dω̂ = 0 since s0 · ω̂ = ω̂. Thus z

(a)
s+1 = z

(a)
s . �

Proposition 3.4. If a is odd and 2 ≤ a ≤ r − 2, then z
(a)
s = z

(a)
s+1.

Proof. Let ω̂ = (ka, ka−2, · · · , k1, k0) ∈ Ω̂
(a)
s+1. The condition

(3.8) k0 + k1 + 2(ka + ka−2 + · · ·+ k3) = k0 + k1 + 2(s+ 1− k1) = k = 2s+ 1

implies k0 = k1 − 1. If k1 = 0, then k0 = −1 and Dω̂ = 0 since s0 · ω̂ = ω̂.
Let

(Ω̂
(a)
s+1)

′ =

{

(ka, ka−2, · · · , k1, k0) ∈ P̂ k |
ka + ka−2 + · · ·+ k1 = s+ 1
ka, ka−2, · · · , k3 ∈ Z≥0, k1 ≥ 1

}

and

Ω̂(a)
s =

{

(ka, ka−2, · · · , k1, k0) ∈ P̂ k |
ka + ka−2 + · · ·+ k1 = s
ka, ka−2, · · · , k1 ∈ Z≥0

}

.

Let us construct a bijection between (Ω̂
(a)
s+1)

′ and Ω̂
(a)
s . Define a map from (Ω̂

(a)
s+1)

′

to Ω̂
(a)
s by

(3.9) (ka, ka−2, · · · , k1, k0) 7→ (ka, ka−2, · · · , k0, k1).

To see that the map is well-defined, note that if (ka, ka−2, · · · , k1, k0) ∈ (Ω̂
(a)
s+1)

′ ⊂

Ω̂
(a)
s+1, then (3.8) implies k0 = k1 − 1 ≥ 0. Since

ka + ka−2 + · · ·+ k3 + k0 = ka + ka−2 + · · ·+ k3 + (k1 − 1) = s,

we have (ka, ka−2, · · · , k0, k1) ∈ Ω̂
(a)
s . The map (3.9) is injective since k0 = k1 − 1.

Conversely, any element (ka, ka−2, · · · , k1, k0) ∈ Ω̂
(a)
s satisfies

k0 + k1 + 2(s− k1) = k0 − k1 + 2s = k = 2s+ 1.

Thus k0 = k1 + 1 ≥ 1 which shows that (3.9) is surjective. We thus have proved

that (3.9) is a bijection between (Ω̂
(a)
s+1)

′ and Ω̂
(a)
s .
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By Theorem 2.6, we have D(ka,ka−2,··· ,k1,k0) = D(ka,ka−2,··· ,k0,k1). This proves
our assertion. �

We now assume that the level k is even and s = k
2 .

Lemma 3.5. Let a be even and 2 ≤ a ≤ r − 2. If ω̂ = (ka, ka−2, · · · , k2,−2) ∈ P̂ k

satisfies ka + ka−2 + · · ·+ k2 = s+ 1 and k2 = 0, then Dω̂ = 0.

Proof. It is easy to check that (s0s2s0) · ω̂ = ω̂. Theorem 2.4 now gives the desired
conclusion. �

Proposition 3.6. If a is even and 2 ≤ a ≤ r − 2, then z
(a)
s−1 = z

(a)
s+1.

Proof. Recall that

Ω̂
(a)
s−1 =

{

(ka, ka−2, · · · , k2, k0) ∈ P̂ k |
ka + ka−2 + · · ·+ k2 ≤ s− 1
ka, ka−2, · · · , k2 ∈ Z≥0

}

and

Ω̂
(a)
s+1 =

{

(ka, ka−2, · · · , k2, k0) ∈ P̂ k |
ka + ka−2 + · · ·+ k2 ≤ s+ 1
ka, ka−2, · · · , k2 ∈ Z≥0

}

.

Let us define three disjoint subsets R,S and T of Ω̂
(a)
s+1 by

R = {(ka, ka−2, · · · , k2, k0) ∈ Ω̂
(a)
s+1|ka + ka−2 + · · ·+ k2 = s+ 1, k2 = 0},

S = {(ka, ka−2, · · · , k2, k0) ∈ Ω̂
(a)
s+1|ka + ka−2 + · · ·+ k2 = s+ 1, k2 ≥ 1},

T = {(ka, ka−2, · · · , k2, k0) ∈ Ω̂
(a)
s+1|ka + ka−2 + · · ·+ k2 = s}.

For ω̂ ∈ R, Dω̂ = 0 by Lemma 3.5 and so
∑

ω̂∈R Dω̂ = 0. We now want to

prove
∑

ω̂∈S∪T Dω̂ = 0. For (ka, ka−2, · · · , k2, k0) ∈ P̂ k, we have k0 + 2(ka +
ka−2 · · · + k2) = k = 2s. If (ka, ka−2, · · · , k2, k0) ∈ S, then k0 = −2. For
(ka, ka−2, · · · , k2, k0) ∈ T , we have k0 = 0. We have a bijection between S and
T since

s0 · (ka, ka−2, · · · , k2,−2) = (ka, ka−2, · · · , k2 − 1, 0).

By Theorem 2.4,
∑

ω̂∈S∪T Dω̂ = 0. Consequently,

z
(a)
s+1 =

∑

ω̂∈Ω̂
(a)
s+1

Dω̂ =
∑

ω̂∈Ω̂
(a)
s+1\(R∪S∪T )

Dω̂.

From Ω̂
(a)
s−1 ⊂ Ω̂

(a)
s+1 and Ω̂

(a)
s−1 = Ω̂

(a)
s+1 \ (R ∪ S ∪ T ), we obtain z

(a)
s+1 = z

(a)
s−1. �

Lemma 3.7. Let a be odd and 2 ≤ a ≤ r− 2. If ω̂ = (ka, ka−2, · · · , 1,−1) ∈ P̂ k or

ω̂ = (ka, ka−2, · · · , 0,−2) ∈ P̂ k, then Dω̂ = 0.

Proof. For ω̂ = (ka, ka−2, · · · , 1,−1) ∈ P̂ k, it is easy to see that s0 · ω̂ = ω̂. For

ω̂ = (ka, ka−2, · · · , 0,−2) ∈ P̂ k, we can show (s0s2s0) · ω̂ = ω̂. The lemma follows
from Theorem 2.4. �

Proposition 3.8. If a is odd and 2 ≤ a ≤ r − 2, then z
(a)
s−1 = z

(a)
s+1
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Proof. For any ω̂ = (ka, ka−2, · · · , k1, k0) ∈ Ω̂
(a)
s+1 with k1 = 0 or k1 = 1, Dω̂ = 0 by

Lemma 3.7.
Let us define (Ω̂

(a)
s+1)

′ by
{

(ka, ka−2, · · · , k1, k0) ∈ P̂ k |
ka + ka−2 + · · ·+ k1 = s+ 1
ka, ka−2, · · · , k3 ∈ Z≥0, k1 ≥ 2

}

.

Then we can write z
(a)
s+1 =

∑

ω̂∈(Ω̂
(a)
s+1)

′
Dω̂.

Let us define a map from (Ω̂
(a)
s+1)

′ to Ω̂
(a)
s−1 by

(3.10) (ka, ka−2, · · · , k1, k0) 7→ (ka, ka−2, · · · , k0, k1).

For (ka, ka−2, · · · , k1, k0) ∈ (Ω̂
(a)
s+1)

′,

k0 + k1 + 2(ka + ka−2 + · · ·+ k3) = k0 + k1 + 2(s+ 1− k1) = k = 2s.

Hence k0 = k1 − 2 ≥ 0 and it shows that (ka, ka−2, · · · , k0, k1) ∈ Ω̂
(a)
s−1 and thus the

map (3.10) is well-defined. It is clear that this is injective.

Conversely, any element (ka, ka−2, · · · , k1, k0) ∈ Ω̂
(a)
s−1 satisfies

k0 + k1 + 2(s− 1− k1) = k0 − k1 + 2s− 2 = 2s.

Thus k0 = k1 + 2 ≥ 2 and it proves that (3.10) is surjective and thus bijective.
By Theorem 2.6, D(ka,ka−2,··· ,k1,k0) = D(ka,ka−2,··· ,k0,k1) and it proves our propo-

sition. �

4. proof of the main theorem

In this section, we prove our main theorem using the results obtained in the
previous section.

Lemma 4.1. Let w = (w
(a)
m ) be a solution of the level k restricted Q-system such

that w
(a)
m 6= 0 for 0 ≤ m ≤ k and a ∈ I. If w

(a)
1 = Q

(a)
1 for any a ∈ I and

{Q
(a)
m |a ∈ I,m ∈ Z≥0} satisfies the unrestricted Q-system, then w

(a)
m = Q

(a)
m for

0 ≤ m ≤ k and a ∈ I. In particular, Q
(a)
k = 1.

Proof. This is a direct consequence of the recursion (1.1)

Q
(a)
m+1 =

(Q
(a)
m )2 −

∏

b∈I(Q
(b)
i )I(X)ab

Q
(a)
m−1

.

�

Theorem 4.2. For all a ∈ I, the following properties hold :

(1) (positivity) z
(a)
m > 0 for 0 ≤ m ≤ k,

(2) (symmetry) z
(a)
m = z

(a)
k−m for 1 ≤ m ≤ k − 1,

(3) (unit boundary condition) z
(a)
k = 1,

(4) (unimodality) z
(a)
m−1 < z

(a)
m for 1 ≤ m ≤ ⌊k

2⌋.

Proof. To prove the unit boundary condition, we divide the argument into two
cases when k is odd and k is even.
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Assume first that k is odd and s = k−1
2 . For 0 ≤ m ≤ k and a ∈ I, let us define

w
(a)
m by

w(a)
m =

{

z
(a)
m 0 ≤ m ≤ s

z
(a)
k−m s < m ≤ k

.

Since we have z
(a)
s = z

(a)
s+1 for any a ∈ I by Proposition 3.1, 3.3 and 3.4, w =

(w
(a)
m ) must be a solution of the level k restricted Q-system. Since w

(a)
1 = z

(a)
1 and

w
(a)
m > 0 for all 0 ≤ m ≤ k, we can conclude that z

(a)
m = w

(a)
m for 0 ≤ m ≤ k by

Lemma 4.1. Especially, z
(a)
k = 1 for any a ∈ I.

Assume that k is even and let s = k
2 . For 0 ≤ m ≤ k and a ∈ I, let

(4.1) w(a)
m =

{

z
(a)
m 0 ≤ m ≤ s

z
(a)
k−m s < m ≤ k

.

Since we have z
(a)
s−1 = z

(a)
s+1 for a ∈ I by Proposition 3.1, 3.6 and 3.8, w = (w

(a)
m )

is a solution of the level k restricted Q-system. By the same argument as above,

we can conclude that the unit boundary condition z
(a)
k = 1 holds for any a ∈ I.

The properties of positivity and symmetry can be easily obtained from the def-

inition for w
(a)
m . Now we know that w = z = (z

(a)
m ) is the positive solution of

the level k restricted Q-system characterized in Theorem 1.1 and it follows that

z
(a)
m−1 < z

(a)
m for 1 ≤ m ≤ ⌊k

2⌋. �

Now we prove z
(a)
k+j = 0 for any a ∈ I and 1 ≤ j ≤ h− 1.

Proposition 4.3. For all a ∈ I, z
(a)
k+1 = 0.

Proof. Since z
(a)
k = 1 and z

(a)
k−1 6= 0 for all a ∈ I by Theorem 4.2, the recursion

(1.1)

(z
(a)
k )2 =

∏

b∈I

(z
(b)
k )I(X)ab + z

(a)
k−1z

(a)
k+1

implies z
(a)
k+1 = 0. �

Lemma 4.4. Let {Q
(a)
m |a ∈ I,m ∈ Z≥0} be a solution of the unrestricted Q-system.

The following condition






Q
(a−1)
m−1 Q

(a)
m−1 Q

(a+1)
m−1

Q
(a−1)
m Q

(a)
m Q

(a+1)
m

Q
(a−1)
m+1 Q

(a)
m+1 Q

(a+1)
m+1






=





∗ 0 ∗

0 Q
(a)
m ∗

∗ ∗ ∗





implies Q
(a)
m = 0 for 2 ≤ a ≤ r− 2 where ∗ denotes an arbitrary number. Similarly,

the condition






Q
(r−2)
i−1 Q

(r−1)
i−1 Q

(r)
i−1

Q
(r−2)
i Q

(r−1)
i Q

(r)
i

Q
(r−2)
i+1 Q

(r−1)
i+1 Q

(r)
i+1






=





∗ 0 0

0 Q
(r−1)
m Q

(r)
m

∗ ∗ ∗





implies Q
(r−1)
m = Q

(r)
m = 0.
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Proof. This is again a consequence of the recursion (1.1) for Q
(a)
m :

(Q(a)
m )2 =

∏

b∈I

(Q
(b)
i )I(X)ab +Q

(a)
m−1Q

(a)
m+1.

In both cases, we obtain (Q
(a)
m )2 = 0. �

Theorem 4.5. z
(a)
k+j = 0 for any a ∈ I and 1 ≤ j ≤ h− 1.

Proof. Recall (3.4) that z
(1)
k+j = 0 for 1 ≤ j ≤ h− 1. Since z

(a)
k+1 = 0 for any a ∈ I

by Proposition 4.3, we get z
(a)
k+2 = 0 by applying Lemma 4.4. Repeated application

of Lemma 4.4 enables us to prove z
(a)
k+j = 0 for any a ∈ I and 1 ≤ j ≤ h− 1. �

For the following lemma, let us set Q
(0)
m = 1 for convenience.

Lemma 4.6. Let {Q
(a)
m |a ∈ I,m ∈ Z≥0} be a solution of the unrestricted Q-system.

The following condition






Q
(a−2)
m−1 Q

(a−1)
m−1 Q

(a)
m−1

Q
(a−2)
m Q

(a−1)
m Q

(a)
m

Q
(a−2)
m+1 Q

(a−1)
m+1 Q

(a)
m+1






=





∗ 0 0

1 1 Q
(a)
m

∗ ∗ ∗





implies Q
(a)
m = 1 for 2 ≤ a ≤ r − 2 where ∗ denotes an arbitrary number.

Proof. Let us look at (1.1) for Q
(a−1)
m ,

(Q(a−1)
m )2 = Q(a−2)

m Q(a)
m +Q

(a−1)
m−1 Q

(a−1)
m+1 .

Under the condition stated above, we obtain 12 = 1 ·Q
(a)
m + 0. This proves Q

(a)
m =

1. �

Theorem 4.7. z
(a)
k+h = 1 for 1 ≤ a ≤ r − 2 and z

(r−1)
k+h = z

(r)
k+h = ±1.

Proof. Since z
(1)
k+h = 1 by (3.5) and z

(a)
k+h−1 = 0 for any a ∈ I by Theorem 4.5, we

get z
(a)
k+h = 1 for 1 ≤ a ≤ r − 2 by applying Lemma 4.6. The recursions (1.1) for

z
(r−2)
k+h , z

(r−1)
k+h and z

(r)
k+h give the following system of equations











(z
(r−2)
k+h )2 = z

(r−1)
k+h z

(r)
k+h

(z
(r−1)
k+h )2 = z

(r−2)
k+h

(z
(r)
k+h)

2 = z
(r−2)
k+h

.

Then z
(r−2)
k+h = 1 implies z

(r−1)
k+h = z

(r)
k+h = ±1. �

Remark 4.8. Analysis similar to that in the proof of Proposition 3.2 using the

product formula (2.1) for the quantum dimension can be used to show z
(r−1)
k+h =

z
(r)
k+h = 1 when r ≡ 0, 1 (mod 4) and z

(r−1)
k+h = z

(r)
k+h = −1 when r ≡ 2, 3 (mod 4).
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Example 4.9. Let X = D5 and k = 4. We express z
(a)
m in terms of quantum

dimensions for a ∈ I and 0 ≤ m ≤ h+ k = 12. For a = 1, 4, 5, we get




































z
(1)
0 z

(4)
0 z

(5)
0

z
(1)
1 z

(4)
1 z

(5)
1

z
(1)
2 z

(4)
2 z

(5)
2

z
(1)
3 z

(4)
3 z

(5)
3

z
(1)
4 z

(4)
4 z

(5)
4

z
(1)
5 z

(4)
5 z

(5)
5

...
...

...

z
(1)
11 z

(4)
11 z

(5)
11

z
(1)
12 z

(4)
12 z

(5)
12





































=































D4ω̂0 D4ω̂0 D4ω̂0

D3ω̂0+ω̂1 D3ω̂0+ω̂4 D3ω̂0+ω̂5

D2ω̂0+2ω̂1 D2ω̂0+2ω̂4 D2ω̂0+2ω̂5

Dω̂0+3ω̂1 Dω̂0+3ω̂4 Dω̂0+3ω̂5

D4ω̂1 D4ω̂4 D4ω̂5

0 0 0
...

...
...

0 0 0
D4ω̂1 D4ω̂4 D4ω̂5































.

For a = 2, 3, we have




































z
(2)
0 z

(3)
0

z
(2)
1 z

(3)
1

z
(2)
2 z

(3)
2

z
(2)
3 z

(3)
3

z
(2)
4 z

(3)
4

z
(2)
5 z

(3)
5

...
...

z
(2)
11 z

(3)
11

z
(2)
12 z

(3)
12





































=































D4ω̂0 D4ω̂0

D4ω̂0 +D2ω̂0+ω̂2 D3ω̂0+ω̂1 +D2ω̂0+ω̂3

D4ω̂0 +D2ω̂2 +D2ω̂0+ω̂2 D2ω̂0+2ω̂1 +D2ω̂3 +Dω̂0+ω̂1+ω̂3

D4ω̂0 +D2ω̂0+ω̂2 Dω̂0+3ω̂1 +D2ω̂1+ω̂3

D4ω̂0 D4ω̂1

0 0
...

...
0 0

D4ω̂0 D4ω̂1































.

This expression is obtained by applying the shifted affineWeyl group action together
with Theorem 2.4 and 2.5.
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