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ON ARITHMETIC MODELS AND FUNCTORIALITY OF BOST-CONNES SYSTEMS.

WITH AN APPENDIX BY SERGEY NESHVEYEV

BORA YALKINOGLU

Abstract. This paper has two parts. In the first part we construct arithmetic models of Bost-Connes
systems for arbitrary number fields, which has been an open problem since the seminal work of Bost and
Connes [3]. In particular our construction shows how the class field theory of an arbitrary number field can
be realized through the dynamics of a certain operator algebra. This is achieved by working in the framework
of Endomotives, introduced by Connes, Marcolli and Consani [5], and using a classification result of Borger
and de Smit [1] for certain Λ-rings in terms of the Deligne-Ribet monoid. Moreover the uniqueness of the
arithmetic model is shown by Sergey Neshveyev in an appendix. In the second part of the paper we introduce
a base-change functor for a class of algebraic endomotives and construct in this way an algebraic refinement
of a functor from the category of number fields to the category of Bost-Connes systems, constructed recently

by Laca, Neshveyev and Trifkovic [13].

Introduction

In this paper we show the existence of arithmetic models of Bost-Connes systems for arbitrary number
fields, which was an open problem going back to the work of Bost and Connes [3]. We also introduce an
algebraic refinement of a functor from the category of number fields to the category of Bost-Connes systems
constructed recently by Laca, Neshveyev and Trifkovic [13].

For every number field K there is a C∗-dynamical system (cf., section 1)

AK = (AK , σt)

called the Bost-Connes system or BC-system of K. Such a system was first constructed in the case of
the rational field in the seminal paper [3], and later for arbitrary number fields by Ha and Paugam [12].
Among the most interesting properties of BC-systems are the following four properties.

(i) The partition function of A is given by the Dedekind zeta function of K.

(ii) The maximal abelian Galois group Gal(Kab/K) of K acts as symmetries on A.

(iii) For each inverse temperature 0 < β ≤ 1 there is a unique KMSβ-state.

(iv) For each β > 1 the action of the symmetry group Gal(Kab/K) on the set of extremal KMSβ-states
is free and transitive.

In [12] property (i) and (ii) were shown to hold for all BC-systems AK . The difficult problem of classifying
the KMSβ-states of BC-systems was solved by Laca, Larsen and Neshveyev [16] by building upon earlier
work of [3], Connes and Marcolli [7], Laca [14] and Neshveyev [18], thus proving property (iii) and (iv) for
all AK . From an arithmetic view point the most interesting property of BC-systems is the existence of
arithmetic models. A BC-system AK has an arithmetic model if there exists a K-rational subalgebra
Aarith

K of AK , called an arithmetic subalgebra, such that the following additional three properties are
satisfied (see, e.g., [9])
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(v) For every extremal KMS∞-state ̺ and every f ∈ Aarith
K , we have

̺(f) ∈ Kab

and further Kab is generated over K by these values.
(vi) If we denote by ν̺ the action of a symmetry ν ∈ Gal(Kab/K) on an extremal KMS∞-state ̺ (given

by pull-back), we have for every element f ∈ Aarith
K the following compatibility relation

ν̺(f) = ν−1(̺(f)) .

(vii) The C-algebra Aarith
K ⊗KC is dense in AK .

The existence of an algebraic model of AQ was already shown in [3]. Ten years later Connes, Marcolli
and Ramachandran [9] constructed in a beautiful way arithmetic models of AK in the case of K imaginary
quadratic by drawing the connection to the theory of Complex Multiplication on the modular curve by
using the GL2-system of [7]. A first approach towards the construction of (partial) arithmetic models of
more general BC-systems AK was undertaken in [20] where the theory of Complex Multiplication on general
Siegel modular varieties and the GSp2n-systems of [12] were used to construct partial arithmetic models of
AK in the case of K containing a CM field. This approach exhausted at the same time the full power of the
existing explicit class field theory (which is only known for K = Q or imaginary quadratic, and partially for
K a CM field).

The natural question whether all BC-systems AK posses an algebraic model proved to be resistant at
first. In the case of the classical BC-system it was shown by Marcolli [17] that AQ can be described in the
context of endomotives, introduced by Connes, Consani and Marcolli [5], and the theory of Λ-rings, i.e.,
rings with a commuting family of Frobenius lifts as extra structure. We will show in our work that this ap-
proach is in fact the correct one for the general case. An elegant classification result of Borger and de Smit [1]
of certain Λ-rings in terms of the Deligne-Ribet monoid paves the way for the case of arbitrary number fields.

More precisely, for every number field K the results of [1] allow us to construct an algebraic endomotive (cf.,
6.9)

EK = EK ⋊ IK

over K, where the K-algebra EK is a direct limit lim
−→

Ef of finite, étale K-algebras Ef which come from a

refined Grothendieck-Galois correspondence in terms of the Deligne-Ribet monoid DRK (see Corollary 4.5).
The monoid of (non-zero) integral ideals IK of K is acting by Frobenius lifts on EK .
In general there is a functorial way of attaching to an algebraic endomotive E a C∗-algebra Ean, containing
E , which is called the analytic endomotive of E . Moreover, in good situations E determines naturally a
time evolution σ : R → Aut(Ean) on Ean by means of Tomita-Takesaki theory, so that we end up with a
C∗-dynamical system

Emean = (Ean, σt) ,

depending only on E called the measured analytic endomotive of E (cf., section 2). Our first main result will
be

Theorem 0.1. For every number field K the measured analytic endomotive Emean
K of the algebraic endomo-

tive EK exists and is in fact naturally isomorphic to the BC-system AK .

The key observations for proving this theorem are proposition 7.2, which shows that the Deligne-Ribet

monoid DRK is naturally isomorphic to ÔK ×Ô×
K
Gal(Kab/K), and proposition 7.10, which shows that the

time evolutions of both systems agree.

The most important result of our paper is to show that all AK posses an arithmetic model.

Theorem 0.2. For all number fields K the BC-systems AK (resp. Emean
K ) posses an arithmetic model with

arithmetic subalgebra given by the algebraic endomotive EK = EK ⋊ IK .
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The proof of this theorem relies on the fact that the algebras Ef defining the algebraic endomotive EK are
finite products of strict ray class fields of K (cf., (6.1)). In particular our main result shows that the class
field theory of an arbitrary number field can be realized through the dynamics of an operator algebra.

In the appendix (section 9) Sergey Neshveyev has shown moreover that under very natural conditions,
satisfied by our arithmetic subalgebra, the arithmetic model of a BC-system is in fact unique, see Theorem
9.1 and 9.3.

The second part of our paper will be concerned with functoriality properties of Bost-Connes systems. Re-
cently, Laca, Neshveyev and Trifkovic [13] constructed a functor from the category of number fields to an
appropriate category1 of BC-systems. We will show that their functor does fit naturally into the framework
of endomotives by constructing an algebraic refinement of their functor. For this we develop the notion of
base-change for our algebraic endomotives EK which is rooted in the functoriality properties of Artin’s reci-
procity map and certain properties of the Deligne-Ribet monoid (see section 12). Using this tool we define a
functor from the category of number fields to the category of algebraic endomotives over Q by sending a field
K to the base-changed endomotive EQK and a morphism of number fields K → L to an algebraic bimodule
ZL

K (cf., (A.1)). Our third main result reads then as follows

Theorem 0.3. The functor defined by K 7→ EQK and (K → L) 7→ ZL
K , as above recovers, by passing to the

analytic endomotive, the functor constructed by Laca, Neshveyev and Trifkovic [13].
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Part 1. Arithmetic subalgebras

Before we explain and perform our construction of arithmetic subalgebras in form of the algebraic endomo-
tives EK , we will briefly recall the definition and properties of the systems AK of Ha and Paugam, present
the theory of endomotives to an extent sufficient for our applications and explain then in some detail the
Deligne-Ribet monoid DRK which will be an object of central importance for the construction of the algebraic
endomotives EK and the classification result of Borger and de Smit.

Notations and Conventions. K will always denote a number field with ring of integers OK . Further, we
fix an embedding K ⊂ C and consider the algebraic closure K of K in C. The maximal abelian algebraic
extension of K is denoted by Kab. By IK we denote the monoid of (non-zero) integral ideals of OK and by
JK the group of fractional ideals of K. As usual, we write AK = AK,f × AK,∞ for the adele ring of K with
AK,f the finite adeles and AK,∞ the infinite adeles. If R is a ring, we denote by R× its group of invertible

elements. Invertible adeles are called ideles. By ÔK ⊂ AK we denote the finite, integral adeles of K, further

we set Ô♮
K = A×

K,f ∩ ÔK . We denote Artin’s reciprocity map by [·]K : A×
K → Gal(Kab/K). Usually we

omit the subscript K and write only [·]. Moreover we denote the idele norm by NK/Q : A×
K,f → A×

Q,f which

induces in particular the norm maps NK/Q : JK ∼= A×
K,f/Ô

×
K → Q and NK/Q : IK ∼= Ô

♮
K/Ô×

K → Z. Also,

we use the delta function δa,b =

{
1 if a = b
0 otherwise

. Finally, we denote by |X | the cardinality of a set X and,

for another set Y , we write X ⊔ Y for their disjoint union.

1. BC-systems

Let us recall the definition of the C∗-dynamical systems AK and some of its properties, following [16].
Consider the topological space

YK = ÔK ×Ô×
K
Gal(Kab/K)(1.1)

defined as the quotient space of the direct product ÔK ×Gal(Kab/K) under the action of Ô×
K given by

s · (ρ, α) = (ρs, [s]−1α) .

There are two natural actions on YK . On the one hand, the monoid IK ∼= Ô
♮
K/Ô×

K of (non-zero) integral
ideals of K acts by

s · [ρ, α] = [ρs, [s]−1α] ,(1.2)

and, on the other hand, the maximal abelian Galois group Gal(Kab/K) acts by

γ · [ρ, α] = [ρ, γα] .

The first action gives rise to the semigroup crossed product C∗-algebra

AK = C(YK)⋊ IK ,(1.3)

and together with the time evolution defined by

σt(fus) = NK/Q(s)
itfus ,(1.4)

where f ∈ C(YK) and us the isometry encoding the action of s ∈ IK , we end up with the BC-system of K
in form of the C∗-dynamical system

AK = (AK , σt) .(1.5)

Moreover, the action of the Galois group Gal(Kab/K) on YK induces naturally a map

Gal(Kab/K) −→ Aut(AK) .

Later we will need the classification of extremal σ-KMSβ-states, as given elegantly in [16], at β = 1 and
β = ∞. The approach of [16] relates KMSβ-states of AK to measures on YK with certain properties. We
recommend the reader to consult their paper.
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1.1. Classification at β = 1. In the proof of [16] Theorem 2.1 it is shown that the unique KMS1-state of
AK corresponds to the measure µ1 on YK which is given by the push-forward (under the natural projection)
of the product measure

∏

p

µp × µG

on ÔK × Gal(Kab/K), where µG is the normalized Haar measure on Gal(Kab/K), and µp is the additive
normalized Haar measure on OKp

. Equivalently, it is shown that µ1 is the unique measure on YK satisfying
µ1(YK) = 1, and the scaling condition

µ1(gZ) = NK/Q(g)
−1µ1(Z) ,(1.6)

for every Borel subset Z ⊂ YK and g ∈ JK = A×
K,f/Ô

×
K such that gZ ⊂ YK

2.

1.2. Classification at β = ∞. The set of extremal KMS∞-states of AK is parametrized by the subset

Y ×
K = Ô×

K ×Ô×
K
Gal(Kab/K) of YK , and for ω ∈ Y ×

K the corresponding extremal KMS∞-state ϕω is given

by

ϕω(fus) = δs,1f(ω) .

In other words, extremal KMS∞-states of AK correspond to Dirac measures on YK with support in Y ×
K .

2. Endomotives

We will recall briefly the theory of endomotives, following our main reference [8]. Endomotives come in three
different flavours: algebraic, analytic and measured analytic. Each aspect could be developed independently,
but for our purposes, it is enough to concentrate on algebraic endomotives, and show how to associate an
analytic and a measured analytic endomotive to it.

Recall that we fixed an embedding K ⊂ C and understand K to be the algebraic closure of K in C.

2.1. Algebraic flavour. We denote by EK the category of finite dimensional, étale K-algebras with mor-
phisms given by K-algebra homomorphisms. Let ((Ai)i∈I , S) be a pair consisting of an inductive system
(Ai)i∈I (with transition maps ξi,j for i ≤ j) in EK and an abelian semigroup S acting on the inductive limit
A = lim

−→i
Ai by K-algebra endomorphisms. We don’t require the action of S to respect the levels Ai or to

be unital, so in general e = ρ(1), for ρ ∈ S, will only be an idempotent, i.e., e2 = e. Moreover, we assume

that every ρ ∈ S induces an isomorphism of K-algebras ρ : A
∼=
−→ eAe = eA.

Definition 2.1. Let ((Ai), S) be a pair like above. Then the associated algebraic endomotive E is defined to
be the associative, unital K-algebra given by the crossed product

E = A⋊ S .

The algebraic endomotive E can be described explicitly in terms of generators and relations by adjoining to
A new generators Uρ and U∗

ρ , for ρ ∈ S, and imposing the relations

U∗
ρUρ = 1, UρU

∗
ρ = ρ(1), ∀ ρ ∈ S

Uρ1Uρ2 = Uρ1ρ2 , U∗
ρ2ρ1

= U∗
ρ1
U∗
ρ2
, ∀ ρ1, ρ2 ∈ S

Uρa = ρ(a)Uρ, aU∗
ρ = U∗

ρρ(a), ∀ ρ ∈ S, ∀ a ∈ A .

Lemma 2.2 (Lemma 4.18 [8]). 1) The algebra E is the linear span of the monomials U∗
ρ1
aUρ2 , for a ∈ A

and ρ1, ρ2 ∈ S.

2) The product Ug = U∗
ρ2
Uρ1 only depends on the ratio g = ρ1/ρ2 in the group completion S̃ of S.

3) The algebra E is the linear span of the monomials aUg, for a ∈ A and g ∈ S̃.

Remark 2.3. Equivalently one can rephrase the theory of algebraic endomotives in the language of Artin
motives. Namely, every finite, étale K-algebra B gives rise to a zero-dimensional variety Spec(B), or in
other words, to an Artin motive. This coined the term "endomotive".

2The action of the group JK ∼= A×

K,f
/Ô×

K
of fractional ideals of K on YK is the one given in (1.2).
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2.2. Analytic flavour. Given an algebraic endomotive ((Ai), S), we obtain a topological space X defined
by the projective limit

X = lim
←−
i

HomK-alg(Ai,K) ,

which is equipped with the profinite topology, i.e., X is a totally disconnected compact Hausdorff space3.
Using X ∼= HomK-alg(lim−→

Ai,K) = HomK-alg(A,K), we see in particular that each ρ ∈ S induces a homeo-

morphism ρ : X e = Hom(eA,K) −→ X by χ ∈ X e 7→ χ ◦ ρ ∈ X , where e = ρ(1). In this way, we get an
action of S on the abelian C∗-algebra C(X ) by endomorphisms

φ(f)(χ) =

{
0 if χ(e) = 0

f(χ ◦ ρ) if χ(e) = 1

and we can consider the semigroup crossed product C∗-algebra (see, e.g., [15])

Ean = C(X ) ⋊ S ,

which we define to be the analytic endomotive of the algebraic endomotive ((Ai), S). Using the embedding
ι : K → C we obtain an embedding of commutative algebras A →֒ C(X ) by

a 7→ eva : χ 7→ χ(a) ,

and this induces an embedding of algebras

E = A⋊ S →֒ C(X ) ⋊ S .

The algebraic endomotive is said to give an arithmetic structure to the analytic endomotive Ean.

2.2.1. Galois action. The natural action of the absolute Galois group Gal(K/K) on X = Hom(A,K) induces
an action of Gal(K/K) on the analytic endomotive Ean by automorphisms preserving the abelian C∗-algebra
C(X ) and fixing the Uρ and U∗

ρ . Moreover, the action is compatible with pure states on Ean which do come

from C(X ) in the following sense (see Prop. 4.29 [8]). For every a ∈ A, α ∈ Gal(K/K), and any pure state
ϕ on C(X ), we have ϕ(a) ∈ K and

α(ϕ(a)) = ϕ(α−1(a)) .

Moreover, it is not difficult to show (see Prop. 4.30 [8]) that in case where all the Ai are finite products
of abelian, normal field extensions of K, as in our applications later on, the action of Gal(K/K) on Ean

descends to an action of the maximal abelian quotient Gal(Kab/K).

2.3. Measured analytic flavour. Let us start again with an algebraic endomotive ((Ai), S). On every
finite space Xi = Hom(Ai,K), we can consider the normalized counting measure µi. We call our algebraic
endomotive uniform, if the transition maps (ξi,j) are compatible with the normalized counting measures,
i.e.,

µi = (ξi,j)∗µj , for all i ≤ j .

In this case the µi give rise to a projective system of measures and induce a propability measure µ, the
so-called Prokhorov extension, on X = lim

←−
Xi (compare p. 545 [8]).

2.3.1. A time evolution. Now, let us write ϕ = ϕµ for the corresponding state on the analytic endomotive
Ean = C(X ) ⋊ S given by

ϕ(fus) = δs,1

∫

X

fdµ .

The GNS construction gives us a representation πϕ of Ean on a Hilbert space Hϕ (depending only on ϕ).
Further, we obtain a von Neumann algebraMϕ as the bicommutant of the image of πϕ, and, under certain
technical assumptions on ϕ (see pp. 616 [8]), the theory of Tomita-Takesaki equipsMϕ with a time evolution
σϕ : R → Aut(Mϕ), the so-called modular automorphism group. Now, if we assume that πϕ is faithful,

3In other words X is given by the K-points of the provariety lim
←−

Spec(Ai)
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and moreover, the time evolution σϕ respects the C∗-algebra C(X )⋊ S ∼= πϕ(C(X )⋊ S) ⊂Mϕ, we end up
with a C∗-dynamical system

Emean = (C(X ) ⋊ S, σϕ) ,

which we call a measured analytic endomotive. If it exists, it only depends on the (uniform) algebraic
endomotive we started with.

3. The Deligne-Ribet monoid

We follow [11] and [1] in this section. Recall that IK denotes the monoid of (non-zero) integral ideals of our
number field K. For every f ∈ IK we define an equivalence relation ∼f on IK by

a ∼f b :⇔ ∃ x ∈ K×
+ ∩ (1 + fb−1) : (x) = ab−1 ,

where K×
+ denotes the subgroup of totally positive units in K and (x) the fractional ideal generated by x.

The quotient

DRf = IK/ ∼f

is a finite monoid under the usual multiplication of ideals. We denote elements in DRf by [a]f, with a ∈ IK ,
but often we omit the bracket [·]f. Moreover, for every f | f′, we obtain a natural projection map

πf,f′ : DRf′ −→ DRf, [a]f′ 7−→ [a]f(3.1)

and thus a projective system (If)f∈IK , whose limit

DRK = lim
←−
f

DRf

is a (topological) monoid4, called the Deligne-Ribet monoid of K.

3.1. Some properties of DRK . First, we have to recall some notations. A cycle h is given by a product∏
p p

np running over all primes of K, where the np’s are non-negative integers, with only finitely many of

them non-zero. Further np ∈ {0, 1} for real primes, and np = 0 for complex primes. The finite part
∏

p∤∞ pnp

can be viewed as an element in IK . Moreover, we write (∞) for the cycle
∏

p real p.

If we denote by Cf the (strict) ray class group of K associated with the cycle f(∞), for f ∈ IK , one can show
that

DR×
f = Cf ,(3.2)

i.e., the group of invertible elements DR×
f can be identified naturally with Cf (see (2.6) [11]). By class field

theory, we know that the strict ray class group Cf can be identified with the Galois group (over K) of the
strict ray class field Kf of K, i.e., we have

Cf
∼= Gal(Kf/K) .

As an immediate corollary, we obtain

DR×
K = lim

←−
f

Cf
∼= lim
←−
f

Gal(Kf/K) ∼= Gal(Kab/K) ,(3.3)

i.e., using class field theory, we can identify the invertible elements of DRK with the maximal abelian Galois
group of K. Moreover, we have the following description

DRf
∼=
∐

d|f

Cf/d ,(3.4)

where an element a ∈ Cf/d is sent to ad ∈ DRf (see the bottom of p. 239 [11] or [1]).
There is an important map of topological monoids

ι : ÔK −→ DRK(3.5)

4We take the profinite topology.
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given as follows: For mf ∈ OK/f, we choose a lift m+
f ∈ OK,+, and map this to the ideal (m+

f ) ∈ DRf. The
map ι is then defined by

(mf) ∈ lim
←−
f

OK/f ∼= ÔK 7−→ ((m+
f )) ∈ lim

←−
f

DRf = DRK ,

which can be shown to be independent of the choice of the liftings (Prop. 2.13 [11]).

Let us denote by U+
K the closure of the totally positive units O×

K,+ = O×
K ∩K×

+ in Ô×
K .

Proposition 3.1 (Prop. 2.15 [11]). Let ρ, ρ′ ∈ ÔK . Then ι(ρ) = ι(ρ′) if and only if ρ = uρ′ for some
u ∈ U+

K .

Therefore, it makes sense to speak of ι having kernel U+
K . Moreover, if we denote by (ρ) ∈ IK (resp. [ρ] ∈

Gal(Kab/K)) the ideal generated by an idele (resp. the image under Artin reciprocity’s map), then we have
the following:

Proposition 3.2 (Prop. 2.20 and 2.23 [11]). For ρ ∈ Ô♮
K , we have

ι(ρ) = (ρ)[ρ]−1 ∈ DRK .

In particular, for ρ ∈ Ô×
K , we obtain

ι(ρ) = [ρ]−1 ∈ DR×
K .

Remark 3.3. The reader should keep in mind, that the intersection IK ∩DR×
K is trivial.

4. A classification result of Borger and de Smit

The results in this section are based on the preprint [1] of Borger and de Smit. First we will fix again some
notation.

For a prime ideal p ∈ IK , we denote by κ(p) the finite residue field OK/p. The Frobenius endomor-
phism Frobp of a κ(p)-algebra is defined by x 7→ x|κ(p)|. An endomorphism f of a OK-algebra E is called a
Frobenius lift (at p) if f ⊗ 1 equals Frobp on E ⊗OK κ(p).

Definition 4.1. Let E be a torsion-free OK-algebra. A ΛK-structure on E is given by a family of endomor-
phisms (fp) indexed by the (non-zero) prime ideals p of OK , such that for all p, q, we have

1) fp ◦ fq = fq ◦ fp,
2) fp is a Frobenius lift.

Definition 4.2. A K-algebra E is said to have an integral ΛK-structure if there exists a OK-algebra Ẽ with

ΛK-structure and an isomorphism E ∼= Ẽ ⊗OK K. In this case, Ẽ is called an integral model of E.

Remark 4.3. The Frobenius-lift property is vacuous for K-algebras. This is why we need to ask for an
integral structure.

In [1], Borger and de Smit were able to classify finite, étale K-algebras with integral ΛK-structure. Their
result can be described as an arithmetic refinement of the classical Grothendieck-Galois correspondence,
which says that the category EK of finite, étale K-algebras is antiequivalent to the category SGK of finite
sets equipped with a continuous action of the absolute Galois group GK = Gal(K/K)5. The equivalence is
induced by the contravariant functor A 7→ HomK-alg(A,K).
The first observation is that giving a ΛK-structure to a finite, étale K-algebra E is the same as giving a
monoid map6

IK → EndGK (HomK-alg(E,K)) ,

so that we end up with an action of the direct product IK ×GK on HomK-alg(E,K).
Asking for an integral model of E is much more delicate and is answered beautifuly in [1] by making extensive
use of class field theory as follows.

5The morphisms are given by K-algebra homomorphisms resp. GK-equivariant maps of sets.
6Recall that IK is generated as a (multiplicative) monoid by its (non-zero) prime ideals.
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Theorem 4.4 ([1] Theorem 1.2). Let E be a finite, étale K-algebra with ΛK-structure. Then E has an inte-
gral model if and only if there is an integral ideal f ∈ IK such that the action of IK×GK on HomK-alg(E,K)
factors (necessarily uniquely) through the map IK × Gal(Kab/K) −→ DRf given by the natural projection
on the first factor and by the Artin reciprocity map7 on the second factor.

In particular one obtains the following arithmetic refinement of the classical Grothendieck-Galois correspon-
dence.

Corollary 4.5 ([1]). The functor HK : E 7→ HomK-alg(E,K) induces a contravariant equivalence

HK : EΛ,K −→ SDRK(4.1)

between the category EΛ,K of finite, étale K-algebras with integral ΛK-structure and the category SDRK
of

finite sets equipped with a continuous action of the Deligne-Ribet monoid DRK
8.

Note that we will use the same notation HK to denote the induced functor

Eind-Λ,K −→ Spro-DRK(4.2)

from the category of inductive systems in EΛ,K to projective systems in SDRK .

5. A simple decomposition of the Deligne-Ribet monoid

In this section, we describe an observation on the Deligne-Ribet monoid that will be used later on. First,
notice (see (2.5) [11]) that for ideals a, b and d in IK we have the simple fact

a ∼f b⇔ da ∼df db .(5.1)

This allows us to define a DRK-equivariant embedding

d· : DRf →֒ DRdf ; a 7→ da ,

and we can identify DRf with its image dDRdf. Now taking projective limits, we obtain an injective map

̺d : DRK → DRK(5.2)

defined by

(5.3) lim
←−f

DRf

∼=

d·
// lim
←−f

dDRdf
inc

// lim
←−f

DRdf

∼= // lim
←−f

DRf,

which is in fact just a complicated way of writing the multiplication map

a ∈ DRK 7−→ da ∈ DRK .

We profit from our reformulation in that we see immediately that the image Im(̺d) = lim
←−f

dDRdf is a closed

subset of DRK . Also, using (5.1), we see that the complement of Im(̺d) in DRK is closed, and therefore we
obtain, for every d ∈ IK , a (topological) decomposition

DRK = Im(̺d) ⊔ Im(̺d)
c .(5.4)

6. The endomotive EK

For every number field K, we want to construct an algebraic endomotive EK .
The main tool for this purpose is provided by the refined Grothendieck-Galois correspondence (see 4.5)
between finite, étale K-algebras with integral ΛK-structure and finite sets with a continuous action of the
Deligne-Ribet monoid DRK .
We observe that DRK is acting continuously on the finite monoid DRf, for every f ∈ IK . Therefore, we
know, by correspondence 4.5, that there exists a finite, étale K-algebra Ef with integral ΛK-structure, such
that

DRf
∼= HomK-alg(Ef,K) .

7GK → Gab
k
→ Cf ⊂ DRf .

8The morphisms are given by K-algebra homomorphisms respecting the integral ΛK -structure resp. by DRK-equivariant
maps of finite sets.
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Further, using the decomposition DRf
∼=
∐

d|fCf/d (cf., (3.4)), where Cd
∼= Gal(Kd/K) = HomK-alg(Kd,K),

we see, again by invoking our correspondence 4.5, that we have the following description of Ef.

Lemma 6.1. For every f ∈ IK , we have an isomorphism of finite, étale K-algebras with integral ΛK-structure

Ef
∼=
∏

d|f

Kf/d ,(6.1)

where Kd ⊂ Kab denotes the strict ray class field (of conductor d) in the maximal abelian extension Kab of
K. In particular, we see that

DRf
∼= HomK-alg(Ef,K

ab) .(6.2)

Further, the projection maps πf,f′ : DRf′ → DRf, for every f | f′, are equivariant with respect to the action
of DRK . Therefore, we obtain, again by making use of our correspondence 4.5, an inductive system (Ef)f∈IK

of finite, étale K-algebras with integral ΛK-structure, with transition maps

ξf,f′ : Ef → Ef′(6.3)

defined by

ξf,f′ = H−1
K (πf,f′) .

Definition 6.2. We define the unital and commutative K-algebra EK to be the inductive limit of the system
(Ef)f∈IK , i.e., we have

EK = lim
−→
f

Ef .

If we denote the action of d ∈ IK on Ef (coming from its integral ΛK-structure) in terms of endomorphisms

f f
d : Ef → Ef, we have, for all f, f′, d ∈ IK with f | f′, the following compatibility relation:

(6.4) Ef

ξf,f′ //

ff
d

��

Ef′

ff′

d

��
Ef

ξf,f′ // Ef′ .

In particular, this means that we obtain a natural action of IK on the inductive limit EK , given, for every
d ∈ IK , by the K-algebra endomorphism σd, defined by

σd = lim
−→
f

f f
d : EK → EK .

Recall that ̺d : DRK → DRK is defined to be the injective multiplication-by-d map (see (5.2)).

Lemma 6.3. For every d ∈ IK , we have the equality

̺d = HK(σd) ,

i.e., under the contravariant equivalence of categories (cf., corollary 4.5), the two maps σd and ̺d correspond
to each other.

Proof. This follows by applying the functor HK to the diagram (6.4) and the fact that the ΛK-structure of
Ef does come from action of DRK on DRf given by multiplication. �

Now, by making use of the decomposition DRK = Im(̺d) ⊔ Im(̺d)
c (see (5.4)), we conclude the following

decompositions of our algebra EK .

Lemma 6.4. For every d ∈ IK , there exists a projection9 πd ∈ EK , such that

Im(̺d) ∼= HomK-alg(πdEK ,K)

and

Im(̺d)
c ∼= HomK-alg((1− πd)EK ,K) .

9This means π2
d = πd .
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In particular, for every d ∈ IK , we obtain the following decomposition

EK = πdEK ⊕ (1− πd)EK .

Proof. This follows directly from the correspondence 4.5 and the decomposition (5.4). Note that for two
unital and commutative K-algebrasA and B, we have the elementary decomposition10 HomK-alg(A⊕B,K) ∼=
HomK-alg(A,K) ⊔ HomK-alg(B,K). �

We can now make the following crucial definition (again by using the correspondence 4.5).

Definition 6.5. For every d ∈ IK , we define the endomorphism ρd ∈ EndK-alg(EK) by

ρd = i ◦ H−1
K (̺−1

d : Im(̺d)
∼=
−→ DRK) ,(6.5)

where i : πdEK → EK denotes the natural inclusion.

In order to see that the endomorphisms ρd are actually well-defined, one has to observe that all the maps
occurring in (5.3) are DRK-equivariant, and therefore our use of H−1

K is justified.

Remark 6.6. The reader should be aware of the fact that the ρd are not level preserving like the σd, in the
sense that the latter restrict to maps Ef → Ef, for every f ∈ IK .

Let us give a schematic overview of what we have done so far.

Proposition 6.7. For every d ∈ IK , we have the following everywhere commutative diagram

(6.6) EK

σd

##●
●●

●●
●●

●

pr

��

EK

πdEK

id

88
∼= // EK

ρd

;;✈✈✈✈✈✈✈✈✈ ∼= // πdEK .

i

OO

Proof. This is only a translation of the results from section 5 in terms of the correspondence described in
corollary 4.5. �

The following relations hold by construction.

Lemma 6.8. For all d, e in IK and every x ∈ EK , we have

ρd(1) = πd, πdπe = πlcm(d,e),
σd ◦ σe = σde, ρd ◦ ρe = ρde,

ρd ◦ σd(x) = πdx, σd ◦ ρd(x) = x.

Proof. For the second assertion on the first line, notice that, by remark 3.3, we have

d ·DRK ∩ e ·DRK = lcm(d, e) ·DRK .

�

Finally, we can define our desired algebraic endomotive.

Proposition 6.9. The inductive system (Ef)f∈IK ,with transition maps (ξf,f′) defined in (6.3), of finite,
étale K-algebras, together with the action of IK on EK = lim

−→f
Ef in terms of the ρd, defines an algebraic

endomotive EK over K, given by

EK = EK ⋊ IK .

Proof. We only have to show that the ρd induce an isomorphism between EK and πdEK , but this is contained
in proposition 6.7. �

Remark 6.10. As done in [6] for the case of K = Q, it is possible to construct integral models of our
algebraic endomotives EK . These integral models will play a role in a forthcoming paper.

10Observe that every homomorphism f ∈ HomK-alg(A ⊕ B,K) sends necessarily exactly one of the two elements

(1A, 0), (0, 1B) ∈ A⊕B to zero.
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7. Proof of Theorem 0.1 and 0.2

Theorem 7.1. The algebraic endomotive EK gives rise to a C∗-dynamical system that is naturally isomorphic
to the BC-system AK (see (1.5)).

We will prove the theorem in two steps.

7.1. Step One. For every number field K there is a natural map of topological monoids

Ψ : YK = ÔK ×Ô×
K
Gal(Kab/K) −→ DRK

given by

[ρ, α] 7−→ ι(ρ)α−1 .

This map is well defined due to the fact that ι(s) = [s]−1 ∈ Gal(Kab/K) for s ∈ Ô×
K (see proposition 3.2).

Proposition 7.2. The map Ψ is an equivariant isomorphism of topological monoids with respect to the
natural actions of each of IK and Gal(Kab/K).

Proof. It is enough to show that the map

Ψf : OK/f×(OK/f)× Cf 7−→ DRf ,(7.1)

given by

[ρ, α] 7→ ιf(ρ)α
−1 ,

is an isomorphism of finite monoids for every f ∈ IK . This follows from the compactness of YK,f =
OK/f×(OK/f)× Cf and the simple fact that lim

←−f
YK,f

∼= YK . Denote by π0 the group of connected components

of the infinite idele group (AK,∞)× and consider, for every f ∈ IK , the following everywhere commutative
and exact diagram

(7.2) 1

π0 × (OK/f)× // Cf
// CK

OO

// 1

(OK/f)×

OO

jf // Cf
//

=

OO

C1

OO

// 1 ,

π0

OO

as can be found for example in [19]. From B.1 we know that OK/f and
∐

d|f(OK/d)× are isomorphic as sets,

but they are in fact isomorphic as monoids:

Lemma 7.3. There is an isomorphism of monoids σf : OK/f →
∐

d|f(OK/d)× such that the following

diagram is commutative

OK/f

σf

��

ιf // DRf

��∐
d|f(OK/(f/d))×

∐
jf/d // ∐

d|fCf/d .

Proof. It is enough to consider the case f = pk where p a prime ideal. The general case follows using the
chinese remainder theorem. It is well known that OK/pk is a local ring with maximal ideal p/pk, i.e., we
have a disjoint union OK/pk = (OK/pk)× ⊔ p/pk. Further, there is a filtration {0} ⊂ pk−1/pk ⊂ pk−2/pk ⊂
. . . ⊂ p/pk and, for x ∈ p/pk and x+ ∈ OK a (positive) lift, we have

x ∈ pk−i/pk − pk−i+1/pk ⇔ pk−i || (x+)⇔ x+ ∈ (OK/pk−i+1)× .

A counting argument as in B.1, and recalling the definition of (3.4), finishes the proof. �
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Now, we can conclude the injectivity of Ψf, because assuming ιf(ρ)α
−1 = ιf(σ)β

−1, for ρ, σ ∈ OK/f,
α, β ∈ Cf, we must have that α and β map to the same element in C1. This is, because ιf(σ)αβ

−1 lies in the
image of ιf and is therefore mapped to the trivial element in C1. But lying over the same element in C1 means
that there exists s ∈ (OK/f)× such that αβ−1 = [s] = ιf(s)

−1, and therefore, we get [ρ, α] = [σ, β] ∈ YK,f.
To prove surjectivity, we use again the decomposition DRf =

∐
d|fCf/d. We have to show that, for every

d | f, we have Cf ·Im(jd) = Cf/d, where · denotes the multiplication in the monoid DRf. One has to be careful

because it is not true that Cf acts transitively on Im(jd).
11 Instead, we show that Cf ·d intersects every fibre

of Cf/d → C1 non-trivially. For every element x ∈ C1, we find lifts xf ∈ Cf and xf/d ∈ Cf/d such that xf is
mapped to xf/d under the natural projection DRf → DRf/d. Our claim is equivalent to xfd ∼f xf/dd, which
is equivalent (see (5.1)) to xf ∼f/d xf/d, which is is true by construction.
To finish the proof, we have to show that Ψ is compatible with each of the natural actions of IK and

Gal(Kab/K) on YK and DRK respectively. Let us recall that the action of IK ∼= Ô
♮
K/Ô×

K on YK is given

by s[ρ, α] = [ρs, [s]−1α], and Gal(Kab/K) is acting by γ[ρ, α] = [ρ, γα]. The equivariance of Ψ under the
action of Gal(Kab/K) is clear, and the equivariance under the action of IK follows from proposition 3.2,

namely Ψ(s[ρ, α]) = ι(ρ)ι(s)[s]α−1 3.2
= ι(ρ)(s)α−1 = (s)Ψ([ρ, α]). This shows that Ψ is an isomorphism of

topological DRK-monoids. �

Now we obtain immediately:

Corollary 7.4. Let K be a number field. Then the isomorphism Ψ from above induces an isomorphism

Ψ : AK = C(YK)⋊ IK −→ E
an
K = C(DRK)⋊ IK

between the C∗-algebra AK of the BC-system AK and the analytic endomotive EanK .

7.2. Step Two. It remains to show that EK defines a measured analytic endomotive whose time evolution
on EanK agrees with the time evolution of the BC-system AK (see (1.5)).

First, we will show that EK is a uniform endomotive, i.e., the normalized counting measures µf on DRf

give rise to a measure µK = lim
←−

µf on DRK = Hom(EK ,K).
Then, in order to show that µK indeed defines a time evolution on EanK using the procedure described in
section 2.3.1 which, in addition, agrees with the time evolution of AK , we only have to show that µK equals
the measure µ1 on YK characterizing the unique KMS1-state of AK (see section 1.1).
This follows from standard arguments in Tomita-Takesaki theory. Namely, if µK defines a time evolution σt

on EanK , then we know a priori that the corresponding state ϕµK : EanK → C is a KMS1-state characterizing
the time evolution σt uniquely (cf., chapter 4, section 4.1 [8] and the references therein).

Lemma 7.5. Let f be an arbitrary ideal in IK . Then we have

|DRf| = 2r1hKNK/Q(f) ,

where hK denotes the class number of K and r1 is equal to the number of real embeddings of K.

Proof. Recall the fundamental exact sequence of groups (see, e.g., [19])

1 // Uf
// (OK/f)×

jf // Cf
// C1

// 1 ,

with notations as in (7.2) and Uf making the sequence exact, from which we obtain immediately

|Cf| =
2r1ϕK(f)hK

|Uf|
,

where ϕK denotes the generalized Euler totient function from Appendix B. In order to count the elements of
DRK we notice (cf., proposition 3.1) that the fibers of the natural projectionOK/f×Cf → OK/f×(OK/f)×Cf

∼=

DRf all have the same cardinality given by ϕK(f)
|Uf|

and this finishes the proof. �

Lemma 7.6. Let f and g be in IK such that f divides g. Then the cardinalities of all the fibres of the natural
projection DRg → DRf are equal to |DRg|/|DRf| = NK/Q(g/f).

11Consider for the example the case when gcd(d, f/d) = 1, then d, d2 ∈ Im(jd) but d2 /∈ Cf · d
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Proof. To show that all the cardinalities of the fibers of the projection DRg → DRf are equal, we look at
the following commutative diagram (with the obvious maps)

OK/g× Cg
//

��

OK/g×(OK/g)× Cg

ξ

��
OK/f× Cf

// OK/f×(OK/f)× Cf .

All the maps in the diagram are surjective, and in order to show that the cardinalities of all the fibers of ξ
are equal, it is enough to show this property for the other three maps. In the proof of the preceding lemma,
we have shown that the horizontal maps have this property, and for the remaining vertical map on the left,
this property is trivial. Therefore, we conclude that the cardinalities of all the fibers of ξ are equal and,
together with the isomorphism (7.1) and the preceding lemma, the assertion follows. �

Corollary 7.7. The algebraic endomotive EK is uniform.

Proof. Let f, g ∈ IK with f | g, and denote by ξ the natural projection DRg → DRf. In order to show that
EK is uniform, we have to show that ξ∗(µg) = µf, which follows directly from the preceding lemma. More
precisely, if we take a subset X ⊂ DRK , we obtain

ξ∗(µg)(X) = µg(ξ
−1(X))

7.6
= |X | ·NK/Q(g/f)/|DRg|

7.6
= |X |/|DRf| = µf(X) .

�

Lemma 7.8. Denote by µ̃f the push-forward of µ1 under the projection πf : YK
Ψ
−→ DRK −→ DRf. Then

µ̃f is the normalized counting measure on DRf.

Proof. We only have to show that

µ̃f(q) = µ̃f(q
′) for all q, q′ ∈ DRf ,

because by definition we have 1 = µ̃f(DRf) =
∑

q µ̃f(q). Recall that µ1 is defined to be the push forward

of the product measure µ =
∏

p µp × µG on ÔK ×Gal(Kab/K), where the µp and µG are normalized Haar

measures under the natural projection π : ÔK ×Gal(Kab/K)→ YK (cf., section 1.1). It is immediate that
for given q and q′ in IK , we find m = mq,q′ ∈ IK and s = sq,q′ ∈ Gal(Kab/K), such that the translate of

Xq = π−1
f (π−1(q)) under m and s equals Xq′ , i.e.,

mXqs := {(m+ ρ, sα) | (ρ, α) ∈ Xq} = Xq′ .

Due to translation invariance of Haar measures we can conclude µ(Xq) = µ(mXqs) = µ(Xq′) and therefore

µ̃f(q) = µ̃f(q
′) .

�

Lemma 7.9. The measure µK = lim
←−

µf satisfies the scaling condition (1.6).

Proof. Let d and f be in IK . Without loss of generality, we can assume that d divides f, because we are
looking at the limit measure. Recall further the commutative diagram

DRf
d· //

����

DRf .

DRf/d

,

�

d·
::✈✈✈✈✈✈✈✈✈

In order to show that µK satisfies the scaling condition, it is enough to show that the cardinalities of the
(non-trivial) fibers of the multiplication map d· : DRf → DRf are all equal to the norm NK/Q(d) = |OK/d|.
By the commutativity of the last diagram, we only have to show that the fibres of the natural projection
DRf → DRf/d all have cardinality NK/Q(d). This follows immediately from lemma 7.6. �

As corollary of the preceding two lemma we obtain the following.
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Proposition 7.10. We have the equality of measures

µK = µ1 .

Proof. We have seen that µK satisfies the two defining properties of µ1 (cf., section 1.1). �

Corollary 7.11. The procedure described in 2.3.1 defines a time evolution (σt)t∈R on EanK , and the resulting
measured analytic endomotive Emean = (EanK , (σt)t∈R) is naturally isomorphic to AK , via Ψ.

Next we will show that EK = EK ⋊ IK provides AK with an arithmetic subalgebra. This follows in fact
directly from the construction.

Theorem 7.12. For all number fields K the BC-systems AK (resp. Emean
K ) posses an arithmetic model with

arithmetic subalgebra given by the algebraic endomotive EK = EK ⋊ IK .

Proof. Recall from section 1.2 that extremal KMS∞-states are indexed by Gal(Kab/K)
(3.3)
∼= DR×

K ⊂
HomK-alg(EK ,K), i.e., an extremal KMS∞-state ̺ω, for ω ∈ DR×

K , is given on a function f ∈ C(DRK)
simply by

̺ω(f) = f(ω) .

Now, if we take an element eva ∈ EK ⊂ C(DRK), which was defined by eva : g ∈ HomK-alg(EK ,K) =
HomK-alg(EK ,Kab) 7→ g(a) ∈ Kab (see (6.2)), we find that

̺ω(eva) = eva(ω) = ω(a) ∈ Kab ,

and this shows, together with the definition of EK , that property (v) from the list of axioms of a Bost-Connes
system is valid. In order to show property (vi), we take a symmetry ν ∈ Gal(Kab/K) and simply calculate

ν̺ω(eva) = ̺ω(
νeva) =

νeva(ω) = eva(ν
−1 ◦ ω) = ν−1(ω(a)) = ν−1(̺ω(eva)) .

�

8. Outlook

We would like to state some questions and problems which might be interesting for further research.

• It might be interesting to use integral models AOK of our BC-systems AK (by using integral models
of our arithmetic subalgebras), as done in [6] in the case of the classical BC-system for K = Q, to
investigate whether general BC-systems can be defined over F1 or some (finite) extensions of F1.

• In a recent preprint [4] Connes and Consani construct p-adic representations of the classical Bost-
Connes system AQ using its integral model AZ. One of the main tools is thereby the classical Witt
functor which attaches to a ring its ring of Witt vectors. Borger [2] has introduced a more general
framework of Witt functors which are compatible with our arithmetic subalgebras. It might be
interesting to construct analogous p-adic representations of general Bost-Connes systems.

• In particular, Connes and Consani [4] recover p-adic L-functions in the p-adic representations of AQ.
Using the results of [11], it would be interesting to try to recover p-adic L-functions of totally real
number fields in the p-adic representations of BC-systems of totally real number fields.

• On the other hand, it seems interesting to ask whether p-adic BC-systems are related to Lubin-Tate
theory12.

12In a forthcoming paper we will deal with these questions.
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9. On uniqueness of arithmetic models. Appendix by Sergey Neshveyev

The goal of this appendix is to show that the endomotive EK constructed in the paper is, in an appropriate
sense, the unique endomotive that provides an arithmetic model for the BC-system AK . We will also give
an alternative proof of the existence of EK .

Assume E = E ⋊ S is an algebraic endomotive such that the analytic endomotive Ean is AK = C(YK)⋊ IK .
By this we mean that S = IK and there exists a Gal(K/K)- and IK-equivariant homeomorphism of

HomK-alg(E,K) onto YK = ÔK ×Ô×
K
Gal(Kab/K). Then E considered as a K-subalgebra of C(YK) has the

following properties:

(a) every function in E is locally constant;
(b) E separates points of YK ;
(c) E contains the idempotents ρna (1) for all a ∈ IK and n ∈ N;
(d) for every f ∈ E we have f(YK) ⊂ Kab and the map f : YK → Kab is Gal(Kab/K)-equivariant.

Recall that the endomorphism ρa is defined by ρa(f) = f(a−1·), with the convention that ρa(f)(y) = 0 if
y /∈ aYK .

Theorem 9.1. The subalgebra EK = lim
−→

Ef of C(YK) constructed in the paper is the unique K-subalgebra

of C(YK) with properties (a)-(d). It is, therefore, the K-algebra of all locally constant Gal(Kab/K)-valued
Gal(Gal(Kab/K)/K)-equivariant functions on YK .

Proof. We have to show that if a K-subalgebra E ⊂ C(YK) satisfies properties (a)-(d), then it contains every
locally constant Kab-valued Gal(Kab/K)-equivariant function f .
Fix a point y ∈ YK . Let L ⊂ Gal(Kab/K) be the field of elements fixed by the stabilizer Gy of y in
Gal(Kab/K). Then f(y) ∈ L by equivariance.

Lemma 9.2. The map E ∋ h 7→ h(y) ∈ L is surjective.

Proof. Let L′ be the image of E under the map h 7→ h(y). Since E is a K-algebra, L′ is a subfield of L.
If L′ 6= L then there exists a nontrivial element of Gal(L/L′) ⊂ Gal(L/K) = Gal(Kab/K)/Gy. Lift this
element to an element g of Gal(Kab/K). Then, on the one hand, gy 6= y, and, on the other hand, for every
h ∈ E we have h(gy) = gh(y) = h(y). This contradicts property (b). �

Therefore there exists h ∈ E such that h(y) = f(y). Since the functions f and h are locally constant,
there exists a neighbourhood W of y such that f and h coincide on W . We may assume that W is the image
of an open set of the form

(
∏

v∈F

Wv × ÔK,F

)
×W ′ ⊂ ÔK ×Gal(Kab/K)

in YK , where F is a finite set of finite places of K; here we use the notation ÔK =
∏

v∈VK,f
OK,v, ÔK,F =∏

v∈VK,f\F
OK,v. Furthermore, we may assume that F = F ′ ⊔ F ′′ and for v ∈ F ′ we have Wv ⊂ pnv

v O
×
K,v,

while for v ∈ F ′′ we have Wv = pnv
v OK,v. Since the functions f and h are equivariant, they coincide on the

set U = Gal(Kab/K)W . The equality

Gal(Kab/K)W =

(
∏

v∈F ′

pnv
v O

×
K,v ×

∏

v∈F ′′

pnv
v OK,v × ÔK,F

)
×Ô×

K
Gal(Kab/K)

shows that the characteristic function p of U belongs to E: it is the product of ρnv
pv
(1) − ρnv+1

pv
(1), v ∈ F ′,

and ρnv
pv
(1), v ∈ F ′′. Therefore fp = hp ∈ E.

Thus we have proved that for every point y ∈ YK there exists a neighbourhood U of y such that the
characteristic function p of U belongs to E and fp ∈ E. By compactness we conclude that f ∈ E. �

The following consequence of the above theorem shows that the arithmetic subalgebra EK = EK ⋊ IK of
the BC-system is unique within a class of algebras not necessarily arising from endomotives.
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Theorem 9.3. The K-subalgebra EK of AK constructed in the paper is the unique arithmetic subalgebra
that is generated by some locally constant functions on YK and by the elements Ua and U∗

a , a ∈ IK .

Proof. Assume E is such an arithmetic subalgebra. Consider the K-algebra E = E ∩ C(YK). It satisfies
properties (a)-(c), while (d) a priori holds only on the subset Y ×

K ⊂ YK . However, the algebra E is invariant
under the endomorphisms σa, a ∈ IK , defined by σa(f) = f(a ·) = U∗

afUa. Hence property (d) holds on the
subsets aY ×

K of YK . Since ∪a∈IKaY ×
K is dense in YK and the functions in E are locally constant, it follows

that (d) holds on the whole set YK . Therefore E = EK by the previous theorem, and so E = EK . �

Let E be the K-algebra of locally constant Kab-valued Gal(Kab/K)-equivariant functions on YK . Let us
now show directly that E ⋊ IK is an arithmetic subalgebra of AK .
In order to prove the density of the C-algebra generated by E ⋊ IK in AK , it suffices to show that the C-
algebra generated by E is equal to the algebra of complex valued locally constant functions on YK . Since YK

is a projective limit of finite Gal(Kab/K)-sets, this follows from the following simple statement: if L is a
finite Galois extension of K and Y is a finite Gal(L/K)-set, then the L-linear span of the K-algebra of
Gal(L/K)-equivariant functions Y → L coincides with the L-algebra of all L-valued functions on Y .
In particular, E separates points of YK . The property that Kab is generated by the values f(y), f ∈ E, for
any y ∈ Y ×

K , follows now from Lemma 9.2, as Gal(Kab/K) acts freely on Y ×
K .

Thus E⋊ IK ⊂ AK is indeed an arithmetic subalgebra. Furthermore, it is easy to see that E is an inductive
limit of étale K-algebras and HomK-alg(E,K) = YK . Therefore E = E ⋊ IK is, in fact, an endomotive and
Ean = AK .

We finish by making a few remarks about general arithmetic subalgebras of the BC-system AK . Assume
E ⊂ AK is an arithmetic subalgebra. Also assume that it contains the elements Ua and U∗

a for all a ∈ IK .
Consider the image of E under the canonical conditional expectation AK → C(YK), and let E be the
K-algebra generated by this image. Then E satisfies the following properties:

(a′) every function in E is continuous;
(b′) the C-algebra generated by E is dense in C(YK); in particular, E separates points of YK ;
(c′) E is invariant under the endomorphisms ρa and σa for all a ∈ IK ;
(d′) for every f ∈ E we have f(Y ×

K ) ⊂ Kab and the map f : Y ×
K → Kab is Gal(Kab/K)-equivariant.

Conversely, if E is a unital K-algebra of functions on YK with properties (a′)-(d′), then E = E ⋊ IK is an
arithmetic subalgebra of AK and the intersection E ∩C(YK), as well as the image of E under the conditional
expectation onto C(YK), coincides with E. Note again that the property that Kab is generated by the
values f(y), f ∈ E, for any y ∈ Y ×

K , follows from the proof of Lemma 9.2. The largest algebra satisfying

properties (a′)-(d′) is the K-algebra of continuous functions such that their restrictions to aY ×
K are Kab-

valued and Gal(Kab/K)-equivariant for all a ∈ IK . This algebra is strictly larger than the algebra EK .
Indeed, it, for example, contains the functions of the form

∑∞
n=0 qnρ

n
pv
(1), where

∑
n qn is any convergent

series of rational numbers. Such a function takes value
∑∞

n=0 qn, which can be any real number, at every
point y ∈ ∩n≥0p

n
vYK .

Part 2. Functoriality

In [13] Laca, Neshveyev and Trifkovic were able to construct a functor from the category of number fields
to the category of BC-systems. In the latter morphisms are given by correspondences in form of a Hilbert
C∗-bimodule. More precisely, for an inclusion σ : K → L of number fields they construct, quite naturally,
an AL-AK correspondence Z = ZL

K,σ, i.e. a right Hilbert AK-module Z with a left action of AL (cf., (1.5)).
Unfortunately, the time evolutions of AK and AL are not compatible under Z, which is in fact not surprising.
In order to remedy the situation the authors of [13] introduce a normalized time evolution σ̃t on the AK

given by

σ̃t(fus) = NK/Q(s)
it/[K:Q]fus .(9.1)

With this normalization they obtain a functor K 7→ (AK , σ̃t) where the correspondences are compatible with
the time evolutions.
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We will show that their functor arises naturally in the context of (algebraic) endomotives. However it
doesn’t seem likely that the normalized time evolution (9.1) can be recovered naturally in the framework of
endomotives, at least not in a naive sense (see section 13.3).

The first obstacle in constructing an algebraic version of the functor constructed in [13] is that the dif-
ferent algebraic endomotives EK are defined over different number fields which means that they live in
different categories.
To overcome this, we introduce the notion of "base-change" in this context. More precisely, one finds two
natural ways of changing the base of EK which correspond to the two fundamental functoriality properties
of class field theory given by the Verlagerung and restriction map respectively. Although both procedures
change the algebraic endomotive, the analytic endomotive of the initial and base changed endomotive will
remain the same.

Our strategy is then, first, to base change all the EK down to Q and then, second, construct a functor
from the category of number fields to the category of algebraic endomotives over Q. Finally, we will show
that our functor recovers the functor constructed in [13] (except for the normalization (9.1)).

Remark 9.4. We would also like to mention the very interesting recent work of Cornelissen and Marcolli
[10], where it is shown that two BC-systems are isomorphic as ("daggered") C∗-dynamical systems if and
only if the underlying number fields are isomorphic.

Notations and Conventions. In the following, when speaking about extensions of number fields, instead
of specifying an embedding σ : K → L, we simply write L/K. Moreover we fix a tower M/L/K of
finite extensions of number fields (contained in C). We denote the Artin reciprocity map by [·]K : A×

K →
Gal(Kab/K).

10. Algebraic preliminaries

Recall the two fundamental functoriality properties of Artin’s reciprocity map in form of the following two
commutative diagrams (cf., [19])

(10.1) A×
L

[·]L // Gal(Lab/L) A×
L

NL/K

��

[·]L // Gal(Lab/L)

Res

��
A×

K

[·]K //

iK/L

OO

Gal(Kab/K)

V er

OO

A×
K

[·]K // Gal(Kab/K)

Remark 10.1. Notice that the Verlagerung V er is injective.

The diagrams allow one to define two maps of topological monoids (which are of central importance for
everything that eventually follows)

VL/K : ÔK ×Ô×
K
Gal(Kab/K) −→ ÔL ×Ô×

L
Gal(Lab/L) ; [ρ, α] 7→ [iK/L(ρ), V er(α)]

and

NL/K : ÔL ×Ô×
L
Gal(Lab/L) −→ ÔK ×Ô×

K
Gal(Kab/K) ; [γ, β] 7→ [NL/K(γ), Res(β)] .

Remark 10.2. The first map is always injective13, whereas the second map is in general neither injective
nor surjective.

Now, using these two maps, we can define two "base-change" functors relating the categories SDRK
and

SDRL (cf., section 4).
The first functor

V = VL/K : SDRL −→ SDRK

13This follows from a Galois descent argument.
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is given by sending a finite set S with action of DRL to the set S with an action of DRK given by restricting
the action of DRL via VL/K .
The second functor

N = NL/K : SDRK
−→ SDRL

is defined by sending a finite set S with its action by DRK to the same set S with an action of DRL defined
by pulling back the action of DRK via NL/K . Using the functorial equivalence SDRK

→ EΛK (see (4.1)),
we obtain corresponding functors on the algebraic side

Valg : EΛL −→ EΛK

and

Nalg : EΛK −→ EΛL .

Lemma 10.3. 1) The functor Valg is determined by the fact that a finite abelian extension L′ of L is sent to

the direct product
∏h

i=1 K
′, where the finite, abelian extension K ′ of K and the index h are specified below.

2) The functor Nalg is given by E 7→ E ⊗K L.

Proof. 1) Define the map φ to be the composition of the Verlagerung Gal(Kab/K) → Gal(Lab/L) and

the projection Gal(Lab/L) → Gal(L̃′/L) where L̃′ denotes the Galois closure of L′. We can identify the

quotient Gal(Kab/K)/Kerφ with a finite, abelian Galois group Gal(K̃/K) sitting inside Gal(L̃′/L), i.e.

Gal(K̃/K) ∼= Gal(L̃′/LK) for a subfield LK ⊂ L̃′. We define K ′ to be the subfield of K̃ corresponding to

the subgroup Gal(L̃′/L′) ∩Gal(L̃′/LK) ⊂ Gal(K̃/K). Using again only basic Galois theory we see that the
fraction

|Gal(L̃′/L)| · |Gal(L̃′/L′) ∩Gal(L̃′/LK)|

|Gal(L̃′/LK)| · |Gal(L̃′/L′)|

is actually a natural number and this will be the index h. In particular we see that we have the equality

|HomL(L
′, L)| = h · |HomK(K ′,K)| = |HomK(

∏h
i=1 K

′,K)|.
2) This is obvious. �

Remark 10.4. If L′/L is Galois then K ′/K is also Galois.

Let us make the functor Valg more transparent in the context of strict ray class fields which occur in the
definition of the EK . For this, let us first introduce the following notation. If d denotes a non-zero, integral
ideal in IK , we denote by dL the corresponding ideal in IL. For example, if d = p is a prime ideal then
pL = pOL is usually written in the form

pL =
∏

P|p

Pe(P|p) ,

where P denotes a prime ideal of L and e(P|p) the ramification index of P in p. Moreover, let us denote

by Kd and LdL the corresponding strict ray class fields and by KdL

the field constructed from LdL above.
Then we have the following:

Lemma 10.5. With the notations from above let d be in IK . Then we have

Kd = KdL

⊂ LdL .

Proof. Using basic class field theory (cf., [19]) the two assertions can be reformulated in the idelic language
and are seen to be equivalent to

ι−1
L/K(CdL

L ) = Cd
K and ιL/K(NL/K(CdL

L )) ⊂ CdL

L ,

where Cd
K is the standard open subset of CK = A×

K/K× such that CK/Cd
K
∼= Gal(Kd/K) and analogously

for CdL

L . Further, it is enough to consider the case d = pi for some i ≥ 1. Let us recall the following fact from
ramification theory. If P divides p with ramification index e = e(P|p) and if we denote by ιP : Kp → LP

the natural inclusion of local fields, we have

ι−1
P (PeiOLP

) = piOKp
.
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This proves the first assertion, and the second assertion follows directly from the definition of the norm map
NL/K . �

As a first application, it is shown in the next proposition how one can relate the different algebras EK (cf.,
6.2).

Proposition 10.6. 1) The functor Valg induces a K-algebra homomorphism Valg(EL) → EK compatible
with the ΛK-structure.
2) The functor Nalg induces a L-algebra homomorphism EK ⊗K L→ EL compatible with the ΛL-structure.
3) There exists an injective K-algebra homomorphism EK → EL.

Proof. Using the two commutative diagrams

DRL

VL/K

XX DRKXX
VL/Koo DRK

NL/K

XX DRL

NL/Koo
XX

DRK DRK DRL DRL

the first two assertions follow immediately if we can show that VL/K : DRK → DRL and NL/K : DRL →
DRK are compatible with the profinite structures of DRK and DRL. In this case we can simply apply
the equivalence (4.2). The compatibility of NL/K with the profinite structure of DRL follows from the
compatibility of VL/K with the profinite structure of DRK , and this would follow if VL/K factors over

OK/f×(OK/f)× Cf → OL/f
L ×(OL/fL)× CfL .

But this is true thanks to our previous lemma.
To prove the third assertion we define a surjective map

ωf : {D | D divides fL} → {d | d divides f}

by

D 7−→
∏

p|f

pmax{j : Pje(P|p) |D ∀ P|p} .

Now we can define an embedding of K-algebras

EK,f =
∏

d|f

Kd −→ EL,fL =
∏

D|fL

LD

by embedding Kd into LD whenever ωf(D) = d. It is not very difficult to check that these maps induce a
K-algebra embedding of the corresponding inductive systems. �

Remark 10.7. Due to the fact that fM = (fL)M we see that the third map of the last proposition is in fact
functorial, i.e., the composition EK → EL → EM equals EK → EM . But, on the other hand, the inclusion
EK → EL is not compatible with any Λ-structure.

11. On correspondences of endomotives

In this section we will follow our main reference [8] pp. 594.

11.1. Algebraic correspondences. An algebraic endomotive E = A⋊ S can be described equivalently as

a groupoid G as follows. Let us introduce, for s = ρ1/ρ2 ∈ S̃, two projections E(s) = ρ−1
1 (ρ2(1)ρ1(1)) and

F (s) = ρ−1
2 (ρ2(1)ρ1(1)). They satisfy the relations E(s−1) = F (s) = s(E(s)) and show up naturally in that

they are the biggest projections such that s : AE(s) = E(s)A→ AF (s) is an isomorphism. Now, as a set G is
defined by

G = Spec(
⊕

s∈S̃

AF (s)) = ⊔s∈S̃Spec(AF (s)) .
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The range and source maps

r, s : Spec(
⊕

s∈S̃

AF (s))→ Spec(A)

are given by the natural projection A → AF (s), and the natural projection composed with the antipode
P :

⊕
AF (s) →

⊕
AF (s) given by

P (a)s = s(as−1), ∀s ∈ S̃ .

An algebraic correspondence between two algebraic endomotives E ′ = A′ ⋊ S′ and E = A ⋊ S is given
by a disjoint union of zero-dimensional pro-varietes Z = Spec(C) together with compatible left and right
actions of G′ and G respectively. A right action of G on Z is given by a continuous map

g : Spec(C)→ Spec(A)

together with a family of partial isomorphisms

z ∈ g−1(Spec(AE(s))) 7→ z · s ∈ g−1(Spec(AF (s))) ∀s ∈ S̃

satisfying the obvious rules for a partial action of an abelian group (cf., [8] p. 597). Analogously, one defines
a left action. It is straightforward to check that a left (resp. right) action of G on Z is equivalent to a left
(resp. right) E-module structure on C.
The composition of algebraic correspondences is given by the fibre product over a groupoid. On the algebraic
side this corresponds to the tensor product over a ring.

Remark 11.1. The main advantage of using the groupoid language comes from the fact that it provides
a natural framework for constructing so called analytic correspondences Zan between E ′an and Ean out of
algebraic correspondences. In fact, the procedure is functorial (see Thm. 4.34 [8])

In our reference [8], morphisms of the category of algebraic endomotives over K are defined in terms of étale
correspondences, where Z is étale if it is finite, and projective as a right module. We shall eventually see
that the finiteness condition is too restrictive for our applications. Nevertheless, the functorial assignment
Z 7→ Zan has a domain much larger than only étale correspondences, containing in particular the algebraic
correspondences occurring in our applications. In summary, we enlarge tacitly the morphisms in the category
of algebraic endomotives by allowing those contained in the domain of the assignment Z 7→ Zan.

11.2. Analytic correspondences. As we have already seen in the section 2.2 about analytic endomotives,
the (functorial) transition between algebraic and analytic endomotives is based on the functor X 7→ X(K)
taking K-valued points.
Given an algebraic endomotive E with corresponding groupoid G, we define the analytic endomotive Gan

to be the totally disconnected locally compact space G(K) of K-valued points of G. An element of Gan is

therefore given by a pair (χ, s) with s ∈ S̃ and χ a character of the (reduced) algebra AF (s), i.e. χ(F (s)) = 1.
The range and source maps

r, s : Gan → HomK-alg(A,K)

are given by

r(χ, s) = χ and s(χ, s) = χ ◦ s .

One shows that Ean = C(HomK-alg(A,K)) is isomorphic to the groupoid C∗-algebra C∗(Gan).

Now, given an algebraic correspondence Z between E ′ and E , i.e., we have (for the right action) a con-
tinuous map

g : Z → Spec(A) ,

together with partial isomorphisms, we obtain, by taking the K-valued points, a continuous map of totally
disconnected locally compact spaces

gK = g(K) : Z(K) = HomK-alg(C,K)→ HomK-alg(A,K) ,
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together with partial isomorphisms

z ∈ g−1
K (HomK-alg(AF (s),K)) 7→ z ◦ s ∈ g−1

K (HomK-alg(AE(s),K)) ,

fulfilling again the obvious rules.
As in the algebraic case, this right action of Gan on Z(K) gives the space of continuous and compactly
supported functions Cc(Z(K)) on Z(K) the structure of a right Cc(G

an)-module. Moreover, if the fibers
of gK are discrete (and countable) there is a natural way of defining a Cc(Gan)-valued inner product on
Cc(Z(K)) by setting

〈ξ, η〉(χ, s) =
∑

z∈g−1
K (χ)

ξ(z)η(z ◦ s) .

In this case we obtain a right Hilbert-C∗-module Zan over C∗(Gan) by completion. Together with the left
action Zan becomes a C∗(G′an)-C∗(Gan) Hilbert-C∗-bimodule.

11.3. Examples. 1) Every algebraic endomotive E is a correspondence over itself. In particular the inner
product is given on Ean = C(X ) ⋊ S simply by

〈ξ, η〉 = ξ∗η ∀ξ, η ∈ Ean .

2) Let S ⊂ T be an inclusion of abelian semigroups. Then the algebraic endomotive K[T ] = K ⋊ T is
naturally a K[T ]-K[S] correspondence with the obvious continuous map g : Spec(

⊕
t∈T̃ K)→ Spec(K) and

partial isomorphisms. If we denote the corresponding analytic endomotives by C∗(T ) and C∗(S), which are

related by the natural conditional expectation E : C∗(T )→ C∗(S) induced by t ∈ T 7→

{
t if t ∈ S
0 otherwise

, we

see that the C∗(S)-valued inner product on C∗(T ) is given by

〈ξ, η〉 = E(ξ∗η), ∀ξ, η ∈ C∗(T ) .

12. On base-change

Let us start with the data defining our algebraic endomotive EL, namely the inductive system (Ef)f∈IL and
the collection of "Frobenius lifts" σd (cf., (6.5)), where the latter define of course the ρd but are better suited

for the functors V
alg
L/K and N

alg
M/L due to their level preserving property. Let us concentrate on the functor

V = V
alg
L/K , the arguments for N

alg
M/L are analogous. Define the K-algebras Ẽf = V(Ef), ẼL = lim

−→
Ẽf and

the K-algebra homomorphisms σ̃d = V(σd) : ẼL → ẼL. Due to the fact that (cf., (4.2))

HL(ẼL) = DRL

and

HL(σ̃d) = σd : DRL → DRL ,

the same arguments as in section 6 show the existence of projections π̃d and endomorphisms ρ̃d of ẼL such
that

EKL = V
alg
L/K(EL) = ((Ẽf), ĨL)

is in fact an algebraic endomotive over K. Analogously we construct

EML = N
alg
M/L(EL)

and obtain in summary the following base-change properties of our algebraic endomotives EL.

Proposition 12.1. With the notations from above we have that EKL and EML are algebraic endomotives over
K and M , respectively. Moreover, on the analytic level we have

(EKL )an = EanL = (EML )an .

Remark 12.2. Both assignments are functorial.
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13. A functor, a pseudo functor and proof of Theorem 0.3

13.1. Going down to Q. The base-change mechanism from the last section enables us now to construct a
functor from the category of number fields to the category of algebraic endomotives over Q which sends a
number field K to EQK . Unfortunately, it is not possible to construct an algebra homomorphism between EQK
and EQL because the actions of IK and IL are not compatible. Instead, given an extension L/K we construct

an algebraic EQL -EQK correspondence ZL
K as follows. Recall the examples 11.3. From the first one, we see that

we can regard EQK as a Q[IK ]-EQk correspondence, because we have naturally the inclusion Q[IK ] ⊂ EQK . Using
the second example in the case of the inclusion IK ⊂ IL we obtain the Q[IL]-Q[IK ] correspondence Q[IL].

In performing the fibre product over Q[IK ] we obtain the Q[IL]-E
Q
K correspondence ZL

K = Q[IL] ×Q[IK ] E
Q
K

which can be described algebraically by

ZL
K = Q[IL]⊗Q[IK ] E

Q
K .

We want to show that there is a natural left action of EQL making ZL
K the desired EQL -EQK correspon-

dence. Namely, using the same arguments as in proposition 10.6, we obtain a Q-algebra homomorphism

φ : Valg
L/Q(EL)→ VK/Q(EK) which is furthermore compatible with the IK-actions on both algebras induced

by functoriality from the actions of DRK and VL/K(DRK) on DRK and DRL, respectively. Thus, we see
that

eUs · (Ut ⊗ f) = Ust ⊗ φ(ẽ)f ,

for s, t ∈ IL, e ∈ V
alg
L/Q(EL), f ∈ E

Q
K and ẽ defined by the equation eUst = Ustẽ ∈ E

Q
L , gives a well-defined

left EQL -module structure on ZL
K .

We can now prove the main result of this chapter.

Theorem 13.1. 1) The assignments K 7→ EQK and L/K 7→ ZL
K define a (contravariant) functor from the

category of number fields to the category of algebraic endomotives over Q.
2) The corresponding functor given by K 7→ (ELK)an and L/K 7→ (ZL

K)an from the category of number fields
to the category of analytic endomotives is equivalent to the functor constructed by Laca, Neshveyev and
Trifkovic in Thm. 4.4 [13].

Proof. 1) One only has to show that ZM
L ⊗EQ

L
ZL

K
∼= ZM

K , which is obvious.

2) One can check without difficulties that (ZL
K)an is given as a Hilbert C∗-module by the inner tensor product

of the right C∗(IK)-module C∗(IL) and the right EanK -module EanK with its natural left action of C∗(IK), i.e.,

(ZL
K)an = C∗(IL)⊗C∗(IK) E

an
K ,

and this is exactly the same correspondence as constructed in Theorem 4.4 of [13]. �

Remark 13.2. We see that ZL
K is not an étale correspondence because the complement of IK in IL is infinite.

Nevertheless, the definition of ZL
K seems to be the most natural one under the circumstances that it is not

possible to define interesting algebra homomorphisms between E
(Q)
K and E

(Q)
L , which comes from the fact that

Verlagerung and Restriction are not inverse to each other in general, and therefore the actions of IK and IL
are not compatible.

13.2. Q is too big. In analogy with the last section, where we constructed algebraic correspondences using

the base-change induced by the functor Valg
L/K , one can also use the functor Nalg

L/K to construct bimodules of

algebraic endomotives.

Again, by proposition 10.6, we see that

YL
K = L[IK ]⊗L[IL] EL

is an ELK-EL correspondence. The right L[IL]-module structure of L[IK ] is induced by the norm map IL → IK .
But this time, we do not obtain a functor. Of course, one can check that for a tower M/L/K of number
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fields we have an isomorphism of EMK -EM bimodules

(M [IK ]⊗M [IL] E
M
L )⊗EM

L
(M [IL]⊗M [IM ] EM ) ∼= M [IK ]⊗M [IM ] EM ,

but in order to make this functorial for all number fields, we would have to make sense of a Λ-structure over
Q which is compatible with Λ-structures over number fields and this does not seem likely to the author.

13.3. On the time evolution. In this section we would like to make some remarks about the question of
whether the normalized time evolution (9.1) introduced in [13] fits into the framework of endomotives.

Due to the fact that the analytic endomotive of the base-changed algebraic endomotive EQK is equal to

EanK we see in particular that EQK is an uniform endomotive (over Q) with the same measure µK as the

natural measure of EK . So, in particular the base-changed endomotive EQK does not recover the normalized

time evolution, if one tries to define the time evolution on EQK by means of normalized counting measures.

This is clear, because the normalized norm Ñ = N
1/[K:Q]
K/Q used in [13] is no longer rational-valued on ideals

of K, so Ñ cannot arise from a counting procedure as one can for the usual norm NK/Q. This shows that

in order to extend the base-change EK 7→ E
Q
K in a way such that the normalized time evolution appears on

(EQK)an one has to find a natural method of assigning to µK a measure µQ
K which recovers the normalized time

evolution14. We have argued that this cannot be done in the naive sense, but it would surely be interesting
to find a natural method solving this problem.

Appendix A. Compatibility of symmetries with other constructions

We would like to clarify the relation between the different definitions of symmetries of Bost-Connes systems
occurring in the literature.
In [16] or in the framework of endomotives, as in our work, symmetries are always given by automorphisms,
on the other hand, e.g., in [9] symmetries occur also in form of endomorphisms.
Apart from the two natural actions used to define the Bost-Connes system AK in form of the action of

IK = Ô♮
K/Ô×

K on YK = ÔK ×Ô×
K
Gal(Kab/K) by

s · [ρ, α] = [ρs, [s]−1α]

and the action of Gal(Kab/K) on YK given by

γ · [ρ, α] = [ρ, γα] ,

there is a third natural action of Ô♮
K on YK given by

s ⋆ [ρ, α] = [ρs, α] .

In this way we get an action of Gal(Kab/K) as automorphisms on C(YK) by

γf([ρ, α]) = f([ρ, γ−1α])

and an action of Ô♮
K on C(YK) as endomorphisms by

s⋆f([ρ, α]) =

{
f([ρs−1, α]), if ρs−1 ∈ ÔK

0 otherwise
.

The latter action is used for example in [9] to define the symmetries of the corresponding Bost-Connes

systems. The two notions of symmetries are related as follows. If we take s ∈ Ô♮
K , denote by γ = [s] ∈

Gal(Kab/K) its image under Artin’s reciprocity map and by s ∈ IK the associated integral ideal, we see
that for every function f ∈ C(YK) the following relation holds

s⋆f(s · [ρ, α]) = γf([ρ, α]) .(A.1)

This explains why both definitions of symmetries induce the same action on extremal KMSβ-states, for
β > 1, and on extremal KMS∞-states evaluated on the arithmetic subalgebra.

14The methods of [16] show that such a measure should exist and is in fact determined by the normalized norm Ñ .
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Remark A.1. One does immediately see that the strict ray class group Cl+K = Gal(Kab/K)/[Ô×
K ] of K

is responsible for the fact that Ô♮
K acts by endomorphisms on C(YK). If the strict ray class group of K is

trivial, then Ô♮
K acts by automorphisms as well and the actions of Gal(Kab/K) and Ô♮

K agree, in fact.

Appendix B. On Euler’s formula

In the following we show that the classical Euler totient function can be naturally generalized to arbitrary
number fields. This is surely a well-known result.

Lemma B.1. For K a number field define the function ϕK : IK → N by setting

ϕK(f) = |(OK/f)×| .

Then the following equality holds

N(f) = |OK/f| =
∑

d|f

ϕK(d) .

Proof. Thanks to the Chinese remainder theorem, it is enough to show ϕK(pk) = N(pk) −N(pk−1) for all
k ≥ 1. Using the fact that OK/pk is a local ring with maximal ideal p/pk we obtain ϕK(pk) = |OK/pk| −
|p/pk| = N(pk) − |p/pk|. The isomorphism (OK/pk)/(p/pk) ∼= OK/p and the multiplicativity of the norm
imply |p/pk| = N(pk−1) which finishes the proof. �
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