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STABILITY AND SEPARATION IN VOLUME
COMPARISON PROBLEMS

ALEXANDER KOLDOBSKY

Abstract. We review recent stability and separation results in
volume comparison problems and use them to prove several hyper-
plane inequalities for intersection and projection bodies.

1. Introduction

A typical volume comparison problem asks whether inequalities

fK(ξ) ≤ fL(ξ), ∀ξ ∈ Sn−1

imply |K| ≤ |L| for any K,L from a certain class of origin-symmetric
convex bodies in R

n, where fK is a geometric characteristic of K. One
can have in mind the hyperplane section function fK(ξ) = |K ∩ ξ⊥|,
where |K| stands for volume of proper dimension and ξ⊥ is the central
hyperplane perpendicular to ξ ∈ Sn−1.
In the case where the answer to a volume comparison problem is

affirmative, one can ask a stronger stability question. Suppose that
ε > 0 and

fK(ξ) ≤ fL(ξ) + ε, ∀ξ ∈ Sn−1. (1)

Does there exist a constant c not dependent on ε and such that for
every ε > 0

|K|n−1

n ≤ |L|n−1

n + cε? (2)

Stability results are related to hyperplane inequalities as follows.
Suppose stability holds for both pairs K,L and L,K with the same
constant c. Put

ε = max
ξ∈Sn−1

|fK(ξ)− fL(ξ)| ,

then one can switch K and L in (1) and, correspondingly, in (2). The
resulting inequality for volumes will be called a volume difference in-
equality:

∣∣∣|K|n−1

n − |L|n−1

n

∣∣∣ ≤ cε = c max
ξ∈Sn−1

|fK(ξ)− fL(ξ)| . (3)
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Suppose now that the function fL converges to zero uniformly with
respect to ξ when L = βBn

2 is a multiple of the unit Euclidean ball and
β → 0. Then, when L = βBn

2 and β → 0, the inequality (3) turns into
what we call a hyperplane inequality:

|K|n−1

n ≤ c max
ξ∈Sn−1

fK(ξ). (4)

One can also consider a separation problem. Suppose that ε > 0 and

fK(ξ) ≤ fL(ξ)− ε, ∀ξ ∈ Sn−1. (5)

Does there exist a constant c not dependent on ε and such that for
every ε > 0

|K|n−1

n ≤ |L|n−1

n − cε? (6)

In the case where the answer is affirmative, assuming that

ε = min
ξ∈Sn−1

(fL(ξ)− fK(ξ)) > 0,

we get another kind of a volume difference inequality:

|L|n−1

n − |K|n−1

n ≥ cε = c min
ξ∈Sn−1

(fL(ξ)− fK(ξ)) . (7)

Again, if fβBn

2
converges to zero uniformly in ξ when β → 0, we get the

following version of a hyperplane inequality:

|L|n−1

n ≥ c min
ξ∈Sn−1

fL(ξ). (8)

This strategy was first applied in [K6] to several functions fK in-
cluding the hyperplane section function and the hyperplane projection
function. In [K8] similar inequalities were proved for arbitrary measure
with continuous density in place of volume. Sections of lower dimen-
sions were considered in [KM], and stability and hyperplane inequalities
for complex convex bodies were proved in [K7, KPZ].
In this article we review stability and separation results and prove

some of them with the best possible constants, while in the original
papers the constants were sometimes estimated. The proofs are based
on recently developed Fourier analytic approach to sections and pro-
jections of convex bodies; see [K4, KRZ, KY]. We also prove several
hyperplane inequalities for intersection and projection bodies.

2. Hyperplane sections

Suppose that

fK(ξ) = SK(ξ) =
∣∣K ∩ ξ⊥

∣∣ , ξ ∈ Sn−1,
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is the hyperplane section function, then the volume comparison ques-
tion is the matter of the Busemann-Petty problem, raised in 1956 in
[BP]. Let K,L be origin-symmetric convex bodies in R

n such that∣∣K ∩ ξ⊥
∣∣ ≤

∣∣L ∩ ξ⊥
∣∣ for every ξ ∈ Sn−1. Does it necessarily follow that

|K| ≤ |L|? The problem was solved at the end of the 1990’s as the
result of a sequence of papers [LR], [Ba1], [Gi], [Bo4], [L], [Pa], [G1],
[G2], [Z1], [Z2], [K2], [K3], [Z3], [GKS] ; see [K4, p. 3] or [G3, p. 343]
for the history of the solution. The answer is affirmative if n ≤ 4, and it
is negative if n ≥ 5. Moreover, Lutwak [L] proved that if K is an inter-
section body (see definition below) and L is any origin-symmetric star
body, then the answer to the Busemann-Petty problem is affirmative
in every dimension.
The corresponding stability result was proved in [K6, Theorem 1].

The theorem is stated in [K6] with cn replaced by 1, though the proof
there actually establishes the result with the constant cn, which is the
best possible. Also, the proof in [K6] is geometric, while here we use
methods of Fourier analysis.
Throughout the paper

cn :=
|Bn

2 |
n−1

n

|Bn−1

2 | ,

where Bn
2 is the unit Euclidean ball. Note that cn ∈ ( 1√

e
, 1); see for

example [KL, Lemma 2.1].

Theorem 1. ([K6]) Suppose that ε > 0, K and L are origin-symmetric
star bodies in R

n, and K is an intersection body. If for every ξ ∈ Sn−1

|K ∩ ξ⊥| ≤ |L ∩ ξ⊥|+ ε, (9)

then
|K|n−1

n ≤ |L|n−1

n + cnε.

Recall that the constant cn < 1. To prove Theorem 1 we need several
definitions and known facts. We say that a closed bounded set K in R

n

is a star body if every straight line passing through the origin crosses
the boundary of K at exactly two points different from the origin, the
origin is an interior point of K, and the Minkowski functional of K
defined by

‖x‖K = min{a ≥ 0 : x ∈ aK}
is a continuous function on R

n.
The radial function of a star body K is defined by

ρK(x) = ‖x‖−1

K , x ∈ R
n.

If x ∈ Sn−1 then ρK(x) is the radius of K in the direction of x.
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Writing volume in polar coordinates we get the polar formula for
volume

|K| = 1

n

∫

Sn−1

ρnK(θ)dθ =
1

n

∫

Sn−1

‖θ‖−n
K dθ, (10)

and the polar formula for the volume of a section

|K ∩ ξ⊥| = 1

n− 1

∫

Sn−1∩ξ⊥
ρn−1

K (θ)dθ. (11)

The class of intersection bodies was introduced by Lutwak [L]. Let
K,L be origin-symmetric star bodies in R

n. We say that K is the
intersection body of L if the radius of K in every direction is equal
to the (n − 1)-dimensional volume of the section of L by the central
hyperplane orthogonal to this direction, i.e. for every ξ ∈ Sn−1,

ρK(ξ) = ‖ξ‖−1

K =
∣∣L ∩ ξ⊥

∣∣ . (12)

A more general class of intersection bodies can be defined (see [GLW])
as the closure of the class of intersection bodes of star bodies in the
radial metric

ρ(K,L) = max
ξ∈Sn−1

|ρK(ξ)− ρL(ξ)| .

We consider Schwartz distributions, i.e. continuous functionals on
the space S(Rn) of rapidly decreasing infinitely differentiable functions

on R
n. The Fourier transform of a distribution f is defined by 〈f̂ , φ〉 =

〈f, φ̂〉 for every test function φ ∈ S(Rn). For any even distribution f ,

we have (f̂)∧ = (2π)nf .
If K is a star body and 0 < p < n, then ‖ · ‖−p

K is a locally integrable
function on R

n and represents a distribution acting by integration.
Suppose that K is infinitely smooth, i.e. ‖ · ‖K ∈ C∞(Sn−1) is an
infinitely differentiable function on the sphere. Then by [K4, Lemma
3.16], the Fourier transform of ‖ · ‖−p

K is an extension of some function
g ∈ C∞(Sn−1) to a homogeneous function of degree−n+p on R

n.When

we write
(
‖ · ‖−p

K

)∧
(ξ), we mean g(ξ), ξ ∈ Sn−1. If K,L are infinitely

smooth star bodies, the following spherical version of Parseval’s formula
was proved in [K5] (see [K4, Lemma 3.22]): for any p ∈ (−n, 0)
∫

Sn−1

(
‖ · ‖−p

K

)∧
(ξ)

(
‖ · ‖−n+p

L

)∧
(ξ) = (2π)n

∫

Sn−1

‖x‖−p
K ‖x‖−n+p

L dx.
(13)

A distribution is called positive definite if its Fourier transform is
a positive distribution in the sense that 〈f̂ , φ〉 ≥ 0 for every non-
negative test function φ. It was proved in [K2, Theorem 1] that an
origin-symmetric star body in R

n is an intersection body if and only if
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the function ‖·‖−1

K represents a positive definite distribution. As proved
in [G2, Z3] (see also [GKS] or [K4, p. 73]), every origin-symmetric con-
vex body in R

n, n ≤ 4 is an intersection body. It was shown in [K2,
Theorem 3] that the unit ball of any finite dimensional subspace of
Lp, 0 < p ≤ 2 is an intersection body. For other results on intersection
bodies, see [G3, Chapter 8] and [K4, Chapter 4].
For origin-symmetric star bodies K,L in R

n, the radial sum K +r L
of K and L is a star body defined by

ρK+rL(ξ) = ρK(ξ) + ρL(ξ), ∀ξ ∈ Sn−1.

If K and L are both intersection bodies, then their radial sum is also
an intersection body, which follows, for example, from the Fourier char-
acterization of intersection bodies formulated above.

Proof of Theorem 1. By approximation (see, for example [S2, The-
orem 3.3.1]), we can assume that the bodies K and L are infinitely
smooth. It was proved in [K1] that

∣∣K ∩ ξ⊥
∣∣ = 1

π(n− 1)
(‖x‖−n+1

K )∧(ξ), ∀ξ ∈ Sn−1, (14)

so (9) can be written as

(‖x‖−n+1

K )∧(ξ) ≤ (‖x‖−n+1

L )∧(ξ) + π(n− 1)ε, ∀ξ ∈ Sn−1.
(15)

Also, by the remark before the proof and the Fourier characterization
of intersection bodies, (‖x‖−1

K )∧ is an infinitely smooth non-negative
function on the sphere. By (15), the polar formula for volume (10) and
Parseval’s formula on the sphere (13),

(2π)nn|K| = (2π)n
∫

Sn−1

‖x‖−n+1

K ‖x‖−1

K dx

=

∫

Sn−1

(‖x‖−1

K )∧(θ)(‖x‖−n+1

K )∧(θ)dθ

≤
∫

Sn−1

(‖x‖−1

K )∧(θ)(‖x‖−n+1

L )∧(θ)dθ

+ π(n− 1)ε

∫

Sn−1

(‖x‖−1

K )∧(θ)dθ. (16)

By Parseval’s formula and Hölder’s inequality,
∫

Sn−1

(‖x‖−1

K )∧(θ)(‖x‖−n+1

L )∧(θ)dθ
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= (2π)n
∫

Sn−1

‖x‖−n+1

L ‖x‖−1

K dx ≤ (2π)nn|K| 1n |L|n−1

n . (17)

To estimate the second summand in (16), we use the formula for the
Fourier transform (in the sense of distributions; see [GS, p.194])

(
|x|−n+1

2

)∧
(θ) =

2π
n+1

2

Γ(n−1

2
)
|θ|−1

2 .

Again using Parseval’s formula and then Hölder’s inequality,
∫

Sn−1

(‖x‖−1

K )∧(θ)dθ

=
Γ(n−1

2
)

2π
n+1

2

∫

Sn−1

(‖x‖−1

K )∧(θ)
(
|x|−n+1

2

)∧
(θ)dθ

=
(2π)nΓ(n−1

2
)

2π
n+1

2

∫

Sn−1

‖x‖−1

K dx

≤ (2π)nΓ(n−1

2
)|Sn−1|n−1

n

2π
n+1

2

(∫

Sn−1

‖x‖−n
K dx

) 1

n

=
(2π)nΓ(n−1

2
)|Sn−1|n−1

n

2π
n+1

2

(n|K|)
1

n

Combining this with (16) and (17), we get

(2π)nn|K| ≤ (2π)nn|K| 1n |L|n−1

n

+
(2π)nεπ(n− 1)n

1

nΓ(n−1

2
) |Sn−1|

n−1

n

2π
n+1

2

|K|1/n.

Now to represent the coefficient in the required form use

|Sn−1| = n|Bn
2 | =

2π
n

2

Γ(n
2
)
.

✷

Interchanging K and L in Theorem 1, we get the corresponding
volume difference inequality.

Corollary 1. If K and L are intersection bodies in R
n (in particular,

any origin-symmetric convex bodies in R
3 or R

4), then
∣∣∣|K|n−1

n − |L|n−1

n

∣∣∣ ≤ cn max
ξ∈Sn−1

∣∣|K ∩ ξ⊥| − |L ∩ ξ⊥|
∣∣ .
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If L = δBn
2 in the latter inequality, then sending δ to zero we get

that for any intersection body K in R
n and, in particular, any origin-

symmetric convex body in R
3 or R4,

|K|n−1

n ≤ cn max
ξ∈Sn−1

|K ∩ ξ⊥|. (18)

Inequality (18) also immediately follows from the affirmative part of the
Busemann-Petty problem; see [G3, Theorem 9.4.11]. Note that (18) is
a particular case of the well-known and still open Hyperplane Problem
(see [Bo1, Bo2, Ba3, MP]) which can be formulated as follows. Does
there exist an absolute constant C so that for any origin-symmetric
convex body K in R

n

|K|n−1

n ≤ C max
ξ∈Sn−1

|K ∩ ξ⊥|.

The best-to-date estimate C ∼ n1/4 belongs to Klartag [Kl], who
slightly improved the previous estimate of Bourgain [Bo3].
The volume difference inequality of Corollary 1 can also be used to

prove a hyperplane inequality for the average volume of central hyper-
plane sections, which we denote by

as(K) =
1

|Sn−1|

∫

Sn−1

|K ∩ ξ⊥|dξ.

For any continuous function h on Sn−1,

|Sn−2|
∫

Sn−1

h(x)dx =

∫

Sn−1

(∫

Sn−1∩ξ⊥
h(x)dx

)
dξ.

Using this and (11) ,

as(K) =
1

(n− 1)|Sn−1|

∫

Sn−1

(∫

Sn−1∩ξ⊥
ρn−1

K (θ)dθ

)
dξ

=
|Sn−2|

(n− 1)|Sn−1|

∫

Sn−1

ρn−1

K (θ)dθ. (19)

Corollary 2. If K is an intersection body in R
n, n ≥ 3, then

as(K) ≤ |Bn−1
2 |

|Bn−2

2 ||Bn
2 |

1

n

max
ξ∈Sn−1

as(K ∩ ξ⊥) |K| 1n ,

with equality when K = Bn
2 .

Proof : Since K and Bn
2 are intersection bodies, for every ε > 0

the radial sum K +r εB
n
2 is also an intersection body. By Corollary 1



8 ALEXANDER KOLDOBSKY

applied to the bodies K +r εB
n
2 and K, we get that for every ε > 0

|K +r εB
n
2 |

n−1

n − |K|n−1

n

ε
≤ cn max

ξ∈Sn−1

|(K ∩ ξ⊥) +r εB
n−1
2 | − |K ∩ ξ⊥|
ε

.
(20)

By the polar formula for the volume (10),

|K +r εB
n
2 | =

1

n

∫

Sn−1

(ρK(θ) + ε)ndθ,

so

lim
ε→0

|K +r εB
n
2 |

n−1

n − |K|n−1

n

ε
=

n− 1

n
|K|− 1

n

∫

Sn−1

ρn−1

K (θ)

=
n− 1

n
|K|− 1

n

(n− 1)|Sn−1|
|Sn−2| as(K).

Similarly, the limit of the right-hand side of (20), as ε → 0, is equal to

cn
(n− 2)|Sn−2|

|Sn−3| max
ξ∈Sn−1

as(K ∩ ξ⊥).

It is easily seen that the convergence of the quotient in the right-hand
side of (20) is uniform with respect to ξ, as ε → 0, so one can switch the
limit and maximum. Sending ε to 0 in (20) and using |Sn−1| = n|Bn

2 |
we get the result.

✷

A separation result for hyperplane sections was proved in [K6, Theo-
rem 2]. The constant c in this result does not depend on ε, but depends
on the dimension and on the normalized inradius of K :

r(K) =
minξ∈Sn−1 ρK(ξ)

|K|1/n .

Theorem 2. ([K6]) Let K and L be origin-symmetric star bodies in
R

n and ε > 0. Assume that K is an intersection body. If for every
ξ ∈ Sn−1

|K ∩ ξ⊥| ≤ |L ∩ ξ⊥| − ε, (21)

then

|K|n−1

n ≤ |L|n−1

n −
√

2π

n+ 1
r(K)ε.
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Since the answer to the Busemann-Petty problem is negative in most
dimensions, one may ask what information about the hyperplane sec-
tion function SK does allow to compare the volumes in all dimen-
sions. An answer to this question was given in [KYY]: for two origin-
symmetric infinitely smooth bodies K,L in R

n and α ∈ [n− 4, n− 1)
the inequalities

(−∆)α/2SK(ξ) ≤ (−∆)α/2SL(ξ), ∀ξ ∈ Sn−1 (22)

imply that |K| ≤ |L|, while for α < n − 4 this is not necessarily true.
Here ∆ is the Laplace operator on R

n, and the fractional powers of the
Laplacian are defined by

(−∆)α/2f =
1

(2π)n
(|x|α2 f̂(x))∧,

where the Fourier transform is considered in the sense of distributions,
|x|2 stands for the Euclidean norm in R

n, and the function SK is ex-
tended in (22) to a homogeneous function of degree -1 on the whole
R

n. The corresponding stability result was proved in [K6, Theorem 3].

Theorem 3. ([K6]) Let ε > 0, α ∈ [n− 4, n− 1), and let K and L be
origin-symmetric infinitely smooth convex bodies in R

n, n ≥ 4, so that
for every ξ ∈ Sn−1

(−∆)α/2SK(ξ) ≤ (−∆)α/2SL(ξ) + ε. (23)

Then

|K|n−1

n ≤ |L|n−1

n + cε,

where

c = c(α, n) =

√
π(n− 1)Γ(n−α−1

2
)

2α+
1

nn
n−1

n Γ(α+1

2
)
(
Γ(n

2
)
)n−1

n

.

A separation result was proved in [K6, Theorem 4].

Theorem 4. ([K6]) Let ε > 0, α ∈ [n− 4, n− 1), K and L be origin-
symmetric infinitely smooth convex bodies in R

n, n ≥ 4, so that for
every ξ ∈ Sn−1

(−∆)α/2SK(ξ) ≤ (−∆)α/2SL(ξ)− ε. (24)

Then

|K|n−1

n ≤ |L|n−1

n − cε,

where

c = r(K)
π(n− 1)Γ(n−α−1

2
)

n2αΓ(α+1

2
)Γ(n

2
)

.
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3. Hyperplane projections

Now we pass to the hyperplane projection function

fK(ξ) = PK(ξ) = |K|ξ⊥|,
where K|ξ⊥ is the orthogonal projection of K to the hyperplane ξ⊥.
The corresponding volume comparison result is known as Shephard’s
problem, which was posed in 1964 in [Sh] and solved soon after that
by Petty [Pe] and Schneider [S1], independently. Suppose that K and
L are origin-symmetric convex bodies in R

n so that |K|ξ⊥| ≤ |L|ξ⊥|
for every ξ ∈ Sn−1. Does it follow that |K| ≤ |L|? The answer if
affirmative only in dimension 2. Both solutions use the fact that the
answer to Shephard’s problem is affirmative in every dimension under
the additional assumption that L is a projection body; see definition
below.
In the case of projections the constant in the stability result depends

on the body and dimension, while the constant in the separation result
does not. One can say that separation is a more natural property for
projections than stability, while for sections it is the other way around.
Therefore, we start with a separation result which was proved in [K6,
Theorem 6]. The constant cn in [K6] was at the last moment estimated
from below by 1/

√
e, so we now formulate and prove the result with

the best possible constant.

Theorem 5. ([K6]) Suppose that ε > 0, K and L are origin-symmetric
convex bodies in R

n, and L is a projection body. If for every ξ ∈ Sn−1

|K|ξ⊥| ≤ |L|ξ⊥| − ε, (25)

then
|K|n−1

n ≤ |L|n−1

n − cnε.

To prove Theorem 5 we need several more definitions and results
from convex geometry. We refer the reader to [S2] for details.
The support function of a convex body K in R

n is defined by

hK(x) = max
{ξ∈Rn:‖ξ‖K=1}

(x, ξ), x ∈ R
n.

If K is origin-symmetric, then hK is a norm on R
n.

The surface area measure S(K, ·) of a convex bodyK in R
n is defined

as follows. For every Borel set E ⊂ Sn−1, S(K,E) is equal to Lebesgue
measure of the part of the boundary of K where normal vectors belong
to E. We usually consider bodies with absolutely continuous surface
area measures. A convex body K is said to have the curvature function

fK : Sn−1 → R,
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if its surface area measure S(K, ·) is absolutely continuous with respect
to Lebesgue measure σn−1 on Sn−1, and

dS(K, ·)
dσn−1

= fK ∈ L1(S
n−1),

so fK is the density of S(K, ·).
By the approximation argument of [S2, Th. 3.3.1], we may assume

in the formulation of Shephard’s problem that the bodies K and L are
such that their support functions hK , hL are infinitely smooth functions
on R

n \ {0}. Using [K4, Lemma 3.16] we get in this case that the

Fourier transforms ĥK , ĥL are the extensions of infinitely differentiable
functions on the sphere to homogeneous distributions on R

n of degree
−n− 1. Moreover, by a similar approximation argument (see also [GZ,
Section 5]), we may assume that our bodies have absolutely continuous
surface area measures. Therefore, in the rest of this section, K and L
are convex symmetric bodies with infinitely smooth support functions
and absolutely continuous surface area measures.
The following version of Parseval’s formula was proved in [KRZ] (see

also [K4, Lemma 8.8]):
∫

Sn−1

ĥK(ξ)f̂L(ξ) dξ = (2π)n
∫

Sn−1

hK(x)fL(x) dx. (26)

The volume of a body can be expressed in terms of its support func-
tion and curvature function:

|K| = 1

n

∫

Sn−1

hK(x)fK(x) dx. (27)

If K and L are two convex bodies in R
n the mixed volume V1(K,L)

is equal to

V1(K,L) =
1

n
lim
ε→+0

|K + ǫL| − |K|
ε

.

We use the following first Minkowski inequality (see [K4, p.23]): for
any convex bodies K,L in R

n,

V1(K,L) ≥ |K|n−1

n |L| 1n . (28)

The mixed volume can also be expressed in terms of the support and
curvature functions:

V1(K,L) =
1

n

∫

Sn−1

hL(x)fK(x) dx. (29)

Let K be an origin-symmetric convex body in R
n. The projection

body ΠK of K is defined as an origin-symmetric convex body in R
n
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whose support function in every direction is equal to the volume of the
hyperplane projection of K to this direction: for every θ ∈ Sn−1,

hΠK(θ) = |K|θ⊥|. (30)

If L is the projection body of some convex body, we simply say that
L is a projection body. The Minkowski (vector) sum of projection
bodies is also a projection body. Every projection body is the limit in
the Hausdorff metric of Minkowski sums of symmetric intervals. An
origin-symmetric convex body in R

n is a projection body if and only if
the polar body is the unit ball of an n-dimensional subspace of L1; see
[S2, G3, K4] for proofs and more properties of projection bodies.

Proof of Theorem 5. By approximation (see [S2, Theorem 3.3.1]),
we can assume that K,L are infinitely smooth. It was proved in [KRZ]
that

PK(ξ) = |K|ξ⊥| = −1

π
f̂K(ξ), ∀ξ ∈ Sn−1, (31)

where fK is extended from the sphere to a homogeneous function of

degree −n − 1 on the whole R
n, and the Fourier transform f̂K is the

extension of a continuous function PK on the sphere to a homogeneous
of degree 1 function on R

n.
Therefore, the condition (25) can be written as

1

π
f̂K(ξ) ≥

1

π
f̂L(ξ) + ε, ∀ξ ∈ Sn−1. (32)

It was also proved in [KRZ] that an infinitely smooth origin-symmetric

convex body L in R
n is a projection body if and only if ĥL ≤ 0 on

the sphere Sn−1. Therefore, integrating (32) with respect to a negative
density,

∫

Sn−1

ĥL(ξ)f̂L(ξ) dξ ≥
∫

Sn−1

ĥL(ξ)f̂K(ξ) dξ − πε

∫

Sn−1

ĥL(ξ) dξ.

Using this, (27) and (26), we get

(2π)nn|L| = (2π)n
∫

Sn−1

hL(x)fL(x) dx =

∫

Sn−1

ĥL(ξ)f̂L(ξ) dξ

≥
∫

Sn−1

ĥL(ξ)f̂K(ξ) dξ − πε

∫

Sn−1

ĥL(ξ) dξ

= (2π)n
∫

Sn−1

hL(x)fK(x) dx− πε

∫

Sn−1

ĥL(ξ) dξ. (33)
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We estimate the first summand from below using the first Minkowski
inequality:

(2π)n
∫

Sn−1

hL(x)fK(x) dx ≥ (2π)nn (Voln(L))
1

n (Voln(K))
n−1

n .
(34)

To estimate the second term in (33), note that, by (31), the Fourier
transform of the curvature function of the Euclidean ball

f̂2(ξ) = −π|Bn−1
2 |.

Therefore, by Parseval’s formula, (29) and the first Minkowski inequal-
ity,

πε

∫

Sn−1

ĥL(ξ) dξ = − ε

|Bn−1
2 |

∫

Sn−1

ĥL(ξ)f̂2(ξ) dξ

= −(2π)nε

|Bn−1

2 |

∫

Sn−1

hL(x)f2(x) dx = −(2π)nε

|Bn−1

2 |nV1(B
n
2 , L)

≤ −(2π)nnε

|Bn−1

2 | |L|
1

n |Bn
2 |

n−1

n = −(2π)nnεcn|L|
1

n .

Combining this with (33) and (34), we get the result.

✷

As explained in the Introduction, the separation result of Theorem
5 leads to a volume difference inequality of the type (7).

Corollary 3. If L is a projection body in R
n and K is an arbitrary

origin-symmeric convex body in R
n so that

min
ξ∈Sn−1

(|L|ξ⊥| − |K|ξ⊥|) > 0,

then

|L|n−1

n − |K|n−1

n ≥ cn min
ξ∈Sn−1

(|L|ξ⊥| − |K|ξ⊥|). (35)

Putting K = βBn
2 in (35) and sending β → 0, we get a hyperplane

inequality of the type (8), which was earlier deduced directly from
the solution to Shephard’s problem in [G3, Corollary 9.3.4]: if L is a
projection body in R

n, then

|L|n−1

n ≥ cn min
ξ∈Sn−1

|L|ξ⊥|. (36)

Recall that cn > 1/
√
e. For general symmetric convex bodies, Ball [Ba2]

proved that cn may and has to be replaced in (36) by c/
√
n, where c

is an absolute constant. Also, note that the inequality

|L|n−1

n ≤ cn max
ξ∈Sn−1

|L|ξ⊥|
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holds for all origin-symmetric convex bodies and follows from the Cauchy
projection formula for the surface area (the first part of (39)) and the
classical isoperimetric inequality; see [G3, p. 363].
The volume difference inequality (35) allows to prove a hyperplane

inequality for the surface area of projection bodies.

Corollary 4. Let L be a projection body in R
n, n ≥ 3, then the surface

area

S(L) ≥ n

n− 1
cn min

ξ∈Sn−1
S(L|ξ⊥) |L| 1n .

Proof : The surface area of L can be computed as

S(L) = lim
ε→+0

|L+ εBn
2 | − |L|
ε

.

For every ε > 0 the Minkowski sum L+ εBn
2 is also a projection body.

The inequality (35) with the bodies L+ εBn
2 and L in place of L and

K implies

|L+ εBn
2 |

n−1

n − |L|n−1

n

ε
≥ cn min

ξ∈Sn−1

|(L|ξ⊥) + εBn−1

2 | − |L|ξ⊥|
ε

.
(37)

By the Minkowski theorem on mixed volumes ([S2, Theorem 5.1.6] or
[G3, Theorem A.3.1]),

|(L|ξ⊥) + εBn−1

2 | − |L|ξ⊥|
ε

=
n−1∑

i=1

(
n− 1

i

)
Wi(L|ξ⊥)εi−1,

(38)

where Wi are quermassintegrals. The function ξ 7→ L|ξ⊥ is continuous
from Sn−1 to the class of origin-symmetric convex sets equiped with
the Hausdorff metric, and Wi’s are also continuous with respect to this
metric (see [S2, p. 275]), so the functions ξ 7→ Wi(L|ξ⊥) are continuous
and, hence, bounded on the sphere. This implies that the left-hand side
of (38) converges to S(L|ξ⊥), as ε → 0, uniformly with respect to ξ.
The latter allows to switch the limit and maximum in the right-hand
side of (37), as ε → 0. Sending ε to zero in (37), we get

n− 1

n
|L|−1/nS(L) ≥ cn min

ξ∈Sn−1
S(L|ξ⊥).

✷

Note the similarity between Corollaries 4 and 2. In fact, the Cauchy
projection formula (see for example [G3, p. 408]) can be written as

S(L) =
1

|Bn−1

2 |

∫

Sn−1

|L|ξ⊥|dξ = |Sn−1|
|Bn−1

2 | ap(L), (39)
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where we denote by ap(L) the average hyperplane projection of L.
Thus, the inequality of Corollary 4 turns into

ap(L) ≥ |Bn−1

2 |
|Bn−2

2 ||Bn
2 |

1

n

min
ξ∈Sn−1

ap(L|ξ⊥) |L| 1n .

A stability result for hyperplane projections was proved in [K6, The-
orem 5]. Define the normalized circumradius of L by

R(L) =
maxξ∈Sn−1 ρL(ξ)

|L| 1n
.

Theorem 6. ([K6]) Suppose that ε > 0, K and L are origin-symmetric
convex bodies in R

n, and L is a projection body. If for every ξ ∈ Sn−1

|K|ξ⊥| ≤ |L|ξ⊥|+ ε, (40)

then

|K|n−1

n ≤ |L|n−1

n +

√
2π

n
R(L)ε.

Since the answer to Shephard’s problem is negative in most dimen-
sions, one can ask what condition on the hyperplane projection func-
tion does imply the inequality for volumes. Yaskin [Y] proved that for
α ∈ [n, n+ 1) the inequalities

(−∆)α/2PK(ξ) ≥ (−∆)α/2PL(ξ), ∀ξ ∈ Sn−1 (41)

imply that |K| ≤ |L|, where the projection functions are extended to
homogeneous functions of degree 1 on the whole R

n. The latter result
is no longer true for α < n. We end this section by formulating the
stability version of the result of Yaskin.

Theorem 7. Let ε > 0, α ∈ [n, n + 1), K and L be origin-symmetric
infinitely smooth convex bodies in R

n, n ≥ 3, so that for every ξ ∈ Sn−1

(−∆)α/2PK(ξ) ≤ (−∆)α/2PL(ξ) + ε.

Then

|K|n−1

n ≤ |L|n−1

n + cε,

where

c =
Γ(n−α+1

2
) |Sn−1|R(L)

2α+1π
n

2 Γ(α+1

2
)n

.

Note that this is no longer true if α < n, because the underlying
comparison result fails, as shown in [Y].
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4. Arbitrary measures

Zvavitch [Zv] found a remarkable generalization of the Busemann-
Petty problem to arbitrary measures, namely, one can replace volume
by any measure with even continuous density in R

n. In particular, if K
is an intersection body in R

n and L is an arbitrary origin-symmetric
star body in R

n, then the inequalities

µ(K ∩ ξ⊥) ≤ µ(L ∩ ξ⊥), ∀ξ ∈ Sn−1

imply
µ(K) ≤ µ(L).

Stability in Zvavitch result was established in [K8, Theorem 2]. Note
that in the case of volume (when f ≡ 1), the result of Theorem 8 is
weaker than that of Theorem 1. Also, Theorem 8 was formulated in
[K8] for dimensions up to 4 only, however, the proof works in any
dimension under the assumption that K is an intersection body.

Theorem 8. ([K8]) Let f be an even non-negative continuous function
on R

n, let µ be the measure with density f, let K and L be origin-
symmetric star bodies in R

n, and let ε > 0. Suppose that K is an
intersection body and that for every ξ ∈ Sn−1,

µ(K ∩ ξ⊥) ≤ µ(L ∩ ξ⊥) + ε. (42)

Then

µ(K) ≤ µ(L) +
n

n− 1
cn|K|1/nε. (43)

Interchanging K and L, we get the volume difference inequality.

Corollary 5. If K and L are intersection bodies in R
n (in particular,

any origin-symmetric convex bodies in R
n, n ≤ 4), then

|µ(K)− µ(L)|

≤ ncn
n− 1

max
ξ∈Sn−1

∣∣µ(K ∩ ξ⊥)− µ(L ∩ ξ⊥)
∣∣max

{
|K| 1n , |L| 1n

}
.
(44)

Sending L to the emply set, we arrive at the hyperplane inequality
for arbitrary measure.

Corollary 6. If K is an intersection body in R
n (in particular, any

origin-symmetric convex body in R
n, n ≤ 4), then

µ(K) ≤ n

n− 1
cn max

ξ∈Sn−1
µ(K ∩ ξ⊥) |K|1/n. (45)

The constant in (45) is sharp, it is achieved asymptotically when
K = Bn

2 and µ converges weakly to the uniform measure on the sphere
Sn−1; see [K8].
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