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THE INDEX OF A TRANSVERSE DIRAC-TYPE OPERATOR : THE

CASE OF ABELIAN MOLINO SHEAF

ALEXANDER GOROKHOVSKY AND JOHN LOTT

Abstract. We give a local formula for the index of a transverse Dirac-type operator on
a compact manifold with a Riemannian foliation, under the assumption that the Molino
sheaf is a sheaf of abelian Lie algebras.

1. Introduction

An important test case for noncommutative geometry comes from index theory on com-
pact foliated manifolds, as pioneered by Connes and his collaborators. The most commonly
considered case is that of a leafwise Dirac-type operator D. Its index Index(D) lies in the
K-theory of a stabilized version of the foliation groupoid algebra. The local index theorem
gives an explicit formula for the pairing of Index(D) with cyclic cohomology classes of the
foliation groupoid algebra. For more information on this well-developed theory, we refer to
[15, 16, 22, 23].

This paper is concerned with a different index problem for compact foliated manifolds,
namely that of a transverse Dirac-type operator. Such an operator differentiates in direc-
tions normal to the leaves. In order to make sense of the operator, we must assume that the
foliation is Riemannian, i.e. the normal bundle to the leaves carries a holonomy-invariant
inner product. Then there is a notion of a “basic” Dirac-type operator D, a first-order dif-
ferential operator that acts on the holonomy-invariant sections of a normal Clifford module.
It was shown by El Kacimi [18] and Glazebrook-Kamber [21] that D is Fredholm and hence
has a well-defined index Index(D) ∈ Z. (In fact, this is true for any basic transversally ellip-
tic operator [18].) The index problem, which has been open for twenty years [18, Problème
2.8.9], is to give an explicit formula for Index(D), in terms of the Riemannian foliation. A
prototypical example is that of a compact manifold foliated by points, in which case the
index is given by the Atiyah-Singer formula.

From the noncommutative geometry viewpoint, a leafwise Dirac-type operator is a family
of Dirac-type operators parametrized by the “leaf space” of the foliation, where the “leaf
space” is defined in terms of algebras. In contrast, a transverse Dirac-type operator is a
differential operator on such a “leaf space”. As will be seen, the transverse index problem
can be usefully formulated in terms of Riemannian groupoids. Such groupoids also arose
in work of Petrunin-Tuschmann on the collapsing theory of Riemannian manifolds [39] and
work of the second author on Ricci flow [34, 35]. Our interest in the transverse index problem
comes from the more general program of doing analysis on Riemannian groupoids.
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To a Riemannian foliation F on a compact connected manifold M , one can canonically
associate a locally constant sheaf of Lie algebras on M , called the Molino sheaf [37]. Let
g denote the finite-dimensional Lie algebra which appears as the stalk of the Molino sheaf.
(A priori, it could be any finite-dimensional Lie algebra.) If g = 0, which happens if and
only if the leaves are compact, then the leaf space is an orbifold and the transverse index
theorem reduces to Kawasaki’s orbifold index theorem [32, 33]. In this paper we give the
first local formula for Index(D) in a case when g 6= 0. The case that we consider is when g

is an abelian Lie algebra Rk.
To state our index theorem, we recall some information about Riemannian foliations.

Although the leaf space of such a foliation may be pathological (for example non-Hausdorff),
the space W of leaf closures is a nice Hausdorff space which is stratified by manifolds. A
neighborhood of a point w ∈ W is homeomorphic to Vw/Kw, where Kw is a compact Lie
group that is canonically associated to w, and Vw is a representation space of Kw.

Assumption 1. 1. The Molino Lie algebra is an abelian Lie algebra Rk.
2. The Molino sheaf has trivial holonomy on M .
3. For all w ∈ W , the group Kw is connected.

Here Assumptions 1.1 and 1.2 automatically hold if M is simply-connected.
If Assumption 1 holds then Kw is isomorphic to T jw for some jw ∈ [0, k]. Put Wmax =

{w ∈ W : Kw
∼= T k}. Then Wmax is a smooth manifold which is the deepest stratum of

W . Note that Wmax may be the empty set.

Theorem 1. Let M be a compact connected manifold equipped with a Riemannian foliation
F . Suppose that Assumption 1 holds. Let E be a holonomy-invariant normal Clifford module
on M , on which the Molino sheaf acts. Let D be the basic Dirac-type operator acting on
holonomy-invariant sections of E . Then

(1.1) Index(D) =

∫

Wmax

Â(TWmax)NE,Q.

HereNE,Q is a “renormalized” characteristic class which is computed from the normal data
of Wmax along with the restriction of E to Wmax. More precisely, it arises by multiplying the
Atiyah-Singer normal characteristic class and an equivariant Chern class for E

∣∣
Wmax

, and
performing an averaging process; see Definition 2. Because of the computability of NE,Q,
we can derive the following consequences.

Corollary 1. Under Assumption 1,
1. The basic Euler characteristic of (M,F) equals the Euler characteristic of Wmax.
2. If F is transversely oriented then the basic signature of (M,F) equals the signature of
Wmax.
3. Suppose that F has a transverse spin structure. Let D be the basic Dirac operator. Then
Index(D) = Â (Wmax) if k = 0, while Index(D) = 0 if k > 0.

The proof of Theorem 1 requires some new techniques. To motivate these, we start with
a special case. An especially tractable example of a Riemannian foliation comes from a
suspension construction, as described in Examples 1-8 and Section 4. In this case, the
transverse structure can be described by the following data :

(1) A discrete finitely presented group Γ,
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(2) A compact Lie group G,
(3) An injection i : Γ → G with dense image, and
(4) A closed Riemannian manifold Z on which G acts isometrically.

With this data, a transverse Dirac-type operator on the suspension foliation amounts to
a Dirac-type operator on Z which is Γ-invariant or, equivalently, G-invariant. In this case,
the index problem amounts to computing the index of D, the restriction of the Dirac-type
operator to the G-invariant sections of the Clifford module. Such an index can easily be
computed as Index(D) =

∫
G
Index(g) dµG(g), where Index(g) ∈ R is the G-index and dµG

is Haar measure on G.
The Atiyah-Singer G-index theorem [5] tells us that Index(g) =

∫
Zg L(g), where Zg is the

fixed-point set of g ∈ G and L(g) ∈ Ω∗(Zg) is an explicit characteristic class. Suppose that
G is a torus group T k. After performing the integral over g ∈ T k, only the submanifolds
with Zg = ZT k

will contribute, where ZT k
denotes the fixed-point set of T k. Hence we can

write

(1.2) Index(D) =

∫

T k

∫

ZTk
L(g) dµT k(g).

In order to give a local expression for Index(D), we would like to exchange integrals and
write

(1.3) Index(D)
?
=

∫

ZTk

∫

T k

L(g) dµT k(g).

But there is a surprise : the integral
∫
T k L(g) dµT k(g) ∈ Ω∗(ZT k

) generally diverges! The
reason that (1.2) makes sense is that there are cancellations of singularities arising from

the various connected components of ZT k
. After identifying these singularities (which will

cancel in the end) one can subtract them by hand and thereby obtain a valid “renormalized”
local index formula

(1.4) Index(D) =

∫

ZTk
Â
(
TZT k

)
N .

In general, the transverse structure of a Riemannian foliation does not admit a global Lie
group action like in the suspension case. This is a problem for seeing the cancellation of
singularities. Instead, if the Molino sheaf has trivial holonomy then there is a global Lie
algebra action, by g. Because of this, we use the Kirillov delocalized approach to equivariant
index theory [6, Chapter 8]. If g is abelian then we can replace the nonexistent “integration
over G” by an averaging over g. In summary, our proof of Theorem 1 combines a parametrix
construction, using local models for the transverse structure, with Kirillov-type equivariant
index formulas and an averaging over g.

It is not clear to us whether our methods extend beyond the restrictions in Assumption
1. If we remove Assumption 1.3 then the analog of Wmax is an orbifold and the right-hand
side of (1.1) makes sense. However, in this case it is not clear whether our proof extends if
k > 0.

In this paper we focus on the transverse structure of the foliation, as opposed to the
leafwise structure. More precisely, we choose a complete transversal Z for the foliation and
work with the étale groupoid GT whose unit space is Z, as opposed to the foliation groupoid
whose unit space is M . Let us mention an attractive alternative approach to the transverse
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index theorem. It consists of passing to the normal frame bundle FO(q)M of M , where
one obtains an O(q)-transversally elliptic differential operator. Atiyah showed that such an
operator has an index which is a distribution on O(q) [1]. The numerical index Index(D) is
the result of pairing this distribution with the identity function. There is an index formula
for G-transversally elliptic operators, due to Berline and Vergne [7, 38]. Unfortunately, this
index formula is not explicit enough to yield a local formula for Index(D). Consequently, we
stick to the Riemannian groupoid GT , although we do use frame bundles for some technical
points.

Let us also mention that there is a transverse index theorem developed by Brüning-
Kamber-Richardson [11, 12, 13], based on doing analysis on the singular space W . In this
way they obtain an index formula involving integrals over desingularizations of strata along
with eta-invariants of normal spheres.

The structure of this paper is as follows. In Section 2 we review material about Riemann-
ian foliations and Riemannian groupoids. We discuss the groupoid closure and construct
a Haar system for it. In Section 3 we describe basic Dirac-type operators in the setting
of spectral triples. We prove an isomorphism between the image of a certain projection
operator, acting on all smooth sections of the transverse Clifford module, and the space
of holonomy-invariant smooth sections of the transverse Clifford module. We use this to
define the invariant Dirac-type operator as a self-adjoint operator. In Section 4, which can
be read independently of the rest of the paper, we consider the special case of a Riemannian
foliation which arises as the suspension of a group of isometries of a compact manifold. In
Section 5 we specialize to the case of abelian Molino sheaf. We construct a parametrix and
prove a delocalized index theorem. In Section 6 we localize this result and prove Theorem
1. We also compute the indices in some geometric examples.

More detailed descriptions can be found at the beginnings of the sections.
We thank the referee for useful comments.

2. Riemannian groupoids and their closures

In this section we collect material, some of it well known and some of it not so well
known, about Riemannian foliations and Riemannian groupoids. For basic information
about foliations and groupoids, we refer to [36]. A survey on Riemannian foliations is in
[28].

In Subsection 2.1 we introduce some notation and basic ideas about Riemannian groupoids.
It will be important for us to be able to take the closure of a Riemannian groupoid, in

an appropriate sense. This is because the closure is a proper Lie groupoid, which allows for
averaging. Hence in Subsection 2.2 we recall the construction of the groupoid closure. In
order to do averaging, we need a Haar system on the groupoid closure. Our construction of
the Haar system is based on passing to the frame bundle of a transversal, which is described
in Subsection 2.3. Subsection 2.4 contains the construction of the Haar system, along with
certain mean curvature one-forms.

In Subsection 2.5 we summarize Molino theory in terms of the Lie algebroid of the
groupoid closure. Subsection 2.6 recalls Haefliger’s local models for the transverse structure
of a Riemannian foliation. Finally, in Subsection 2.7, we recall Sergiescu’s dualizing sheaf
for a Riemannian groupoid and show how a square root of the dualizing sheaf allows one to
define a basic signature.
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2.1. Riemannian groupoids. Suppose that G is a smooth effective étale groupoid [36,
Chapter 5.5]. The space of units is denoted G(0). We will denote the source and range
maps of G by s and r, respectively. Our conventions are that g1g2 is defined if and only
if s(g1) = r(g2). We write Gp for r−1(p), Gp for s−1(p) and Gp

p for the isotropy group

s−1(p)∩r−1(p). For simplicity of notation, we write g ∈ G instead of g ∈ G(1) when referring
to an element of the groupoid. We write dgs(g) : Ts(g)G(0) → Tr(g)G(0) for the linearization of
g.

For us, an action of G on a manifold Z is a right action. That is, one first has a submersion
π : Z → G(0). Putting

(2.1) Z ×G(0) G = {(p, g) ∈ Z × G : π(p) = r(g)},

we must also have a smooth map Z ×G(0) G → Z, denoted (p, g) → pg, such that π(pg) =
s(g) and (pg1)g2 = p(g1g2) for all composable g1, g2. There is an associated cross-product
groupoid Z ⋊ G with s(p, g) = pg and r(p, g) = p.

Our notion of equivalence for smooth effective étale groupoids is weak equivalence [36,
Chapter 5.4], which is sometimes called Morita equivalence. (This is distinct from groupoid
isomorphism.) A useful way to characterize weak equivalence (for étale groupoids) is the
following [9, Exercise III.G.2.8(2)] : two smooth étale groupoids G and G ′ are weakly equiv-
alent if there are open covers U and U ′ of their unit spaces so that the localizations GU and
G ′
U ′ are isomorphic smooth groupoids.
A smooth étale groupoid G is Riemannian if there is a Riemannian metric on G(0) so

that the groupoid elements act by local isometries. That is, for each g ∈ G, the map dgs(g)
is an isometric isomorphism. There is an evident notion of isomorphism for Riemannian
groupoids. Two Riemannian groupoids are equivalent if there are localizations GU and G ′

U ′

which are isomorphic Riemannian groupoids.
A Riemannian groupoid is complete in the sense of [26, Definition 3.1.1] if for all p1, p2 ∈

G(0), there are neighborhoods U1 of p1 and U2 of p2 so that any groupoid element g with
s(g) ∈ U1 and r(g) ∈ U2 has an extension to all of U1. That is, for any such g, there is a
smooth map τ : U1 → G with τ(s(g)) = g and s ◦ τ = Id.

2.2. Groupoid closures. Let M be a connected closed n-dimensional manifold with a
codimension-q foliation F . A Riemannian foliation structure on F is an inner product on
the normal bundle TM/TF which is holonomy-invariant. See [36, Chapter 2.2] for some
equivalent formulations. In what follows, we assume that F has a fixed Riemannian foliation
structure.

There is a partition of M by the leaf closures. The quotient space W is Hausdorff but is
generally not a manifold.

Let FO(q)M denote the orthonormal normal frame bundle to F [36, Chapter 4.2.2]. It has

a lifted codimension-q foliation F̂ . The leaf closures of F̂ form the fibers of a smooth fiber

bundle FO(q)M → Ŵ , which is O(q)-equivariant [36, Theorem 4.26(ii)]. Also,W = Ŵ/O(q).

Let ι : Ŵ → W denote the quotient map.
Let T be a complete transversal to F [36, Example 5.19]. Because M is compact, we can

assume that T has a finite number of connected components, each being the interior of a
smooth manifold-with-boundary. Let GT be the corresponding étale holonomy groupoid [36,
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Example 5.19]. Its space of units is T . Then GT is a complete Riemannian groupoid. Its
weak equivalence class is independent of the choice of complete transversal T .

We write dµT for the Riemannian density measure on T .

Example 1. Let Γ be a finitely presented discrete group. Let G be a compact Lie group
which acts isometrically and effectively on a connected compact Riemannian manifold Z.
Suppose that i : Γ → G is an injective homomorphism. Suppose that Y is a connected

compact manifold with π1(Y, y0) = Γ. Let c : Ỹ → Y be the universal cover. Then M =

(Ỹ ×Z)/Γ has a Riemannian foliation whose leaves are the images inM of {Ỹ ×{z}}z∈Z . It
is an example of a suspension foliation. There is a complete transversal (c−1(y0)×Z)/Γ ∼= Z.
Then GT is the cross-product groupoid Z ⋊ Γ.

We will want to take the closure of GT in a certain sense, following [26, 41, 42]. To do so,
let

(2.2) J1(T ) = {(p1, p2, A) | p1, p2 ∈ T , A ∈ Isom(Tp1T , Tp2T )}
be the groupoid of isometric 1-jet elements, with the 1-jet topology. It is a Lie groupoid in
the sense of [36, Chapter 5.1], but is not an étale groupoid unless dim(T ) = 0.

Lemma 1. J1(T ) is a proper Lie groupoid in the sense of [36, Chapter 5.6]

Proof. The map (s, r) : J1(T ) → T ×T sends (p1, p2, A) to (p1, p2). It defines a fiber bundle
with fibers diffeomorphic to the compact Lie group O(q). Hence it is a proper map. �

There is a homomorphism of GT into J1(T ) that sends g ∈ GT to (s(g), r(g), dgs(g)) ∈
J1(T ). This homomorphism is injective, as follows from the fact that GT is effective, along
with the fact that if I is an isometry of a Riemannian manifold such that I(p) = p and
dIp = Id then I is the identity in a neighborhood of p.

Let GT be the closure of GT in J1(T ). It is a subgroupoid of J1(T ), again with unit space
T . (Note that T is a smooth manifold in its own right. The fact that it is the interior of a
compact manifold-with-boundary will not enter until Subsection 3.3.) Now GT is a smooth
subgroupoid of J1(T ) and so inherits a Lie groupoid structure; see [42, Section 2] and (2.6)
below. Note that dgs(g) : Ts(g)T → Tr(g)T can be defined for all g ∈ GT .

Lemma 2. GT is a proper Lie groupoid.

Proof. This follows from Lemma 1, along with the fact that GT is a closed subset of I(T ). �

The orbit space of GT is W , the space of leaf closures. Let σ : T → W denote the
quotient map.

Example 2. Continuing with Example 1, suppose that the homomorphism i : Γ → G has
dense image. Then GT is the cross-product groupoid Z ⋊G.

In addition to its subspace topology from J1(T ), the groupoid GT has an étale topology,
for which s and r are local homeomorphisms. In particular, each g ∈ GT has a local
extension to an isometry between neighborhoods of s(g) and r(g); this follows from the
fact that g is a limit of elements of GT that have this property in a uniform way. We will
call this the extendability property of g. The local extension of g is given explicitly by
expr(g) ◦dgs(g) ◦ exp−1

s(g). In what follows, when we refer to GT we will give it the subspace

topology, unless we say otherwise.
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Example 3. Continuing with Example 2, when we convert from the (proper) Lie groupoid
topology on GT to the étale topology, the result is Z ⋊ Gδ, where Gδ denotes the discrete
topology on G.

2.3. Normal frame bundle. Let π : FO(q)T → T be the orthonormal frame bundle of T .

Then GT acts on FO(q)T by saying that if g ∈ GT and f is an orthonormal frame at r(g)
then f · g is the frame (dgs(g))

−1(f) at s(g).

Let ĜT be the cross-product groupoid

(2.3) FO(q)T ⋊ GT = {(f, g) : g ∈ GT , f an orthonormal frame at r(g)}.
It has unit space FO(q)T , with s(f, g) = f · g and r(f, g) = f , and orbit space Ŵ , with the

quotient map σ̂ : FO(q)T → Ŵ being a smooth submersion [41, Theorem 4.2]. With abuse
of terminology, we may call the subsets σ̂−1(ŵ) fibers. There is a commutative diagram

FO(q)T σ̂−→Ŵ(2.4)

π ↓ ↓ ι
T σ−→W,

where σ̂ is O(q)-equivariant, and π and ι are the results of taking O(q)-quotients.

The groupoid ĜT can be considered as a lift of GT to FO(q)T . It has trivial isotropy groups
and comes from the equivalence relation on FO(q)T given by saying that f ∼ f ′ if and only
if σ̂(f) = σ̂(f ′). There is an O(q)-equivariant isomorphism

(2.5) ĜT =
(
FO(q)T ×Ŵ FO(q)T

)
.

Hence

(2.6) GT =
(
FO(q)T ×Ŵ FO(q)T

)
/O(q)

as Lie groupoids.

The groupoid ĜT also has an étale structure, coming from that of GT . To see this in

terms of local diffeomorphisms, given ĝ ∈ ĜT , write it as a pair (f, g) with g ∈ GT and
f an orthonormal frame at r(g). Let L : U → V be an extension of g to an isometry,
where U is a neighborhood of s(g) ∈ T and V is a neighborhood of r(g) ∈ T . Then the

lift L̂ : FO(q)U → FO(q)V is a diffeomorphism from a neighborhood of s(ĝ) ∈ FO(q)T to a
neighborhood of t(ĝ) ∈ FO(q)T .

In particular,

(2.7) dĝs(ĝ) : Ts(ĝ)FO(q)T → Tr(ĝ)FO(q)T
is well-defined.
There is a transverse Levi-Civita connection on FO(q)T , by means of which one can con-

struct a canonical parallelism of FO(q)T , i.e. vector fields {V i} that are pointwise linearly

independent and span TFO(q)T [36, Chapter 4.2.2]. This parallel structure is ĜT -invariant

in the sense that for all ĝ ∈ ĜT , dĝs(ĝ)(V
i
s(ĝ)) = V i

r(ĝ).
There is also a canonical Riemannian metric on FO(q)T , which comes from saying that

the vector fields {V i} are pointwise orthonormal. With respect to this Riemannian metric,
the vertical O(q)-directions are orthogonal to the horizontal directions (coming from the



8 ALEXANDER GOROKHOVSKY AND JOHN LOTT

transverse Levi-Civita connection), the O(q)-fibers are all isometric to the standard O(q)
with the bi-invariant Riemannian metric of total volume one, and the horizontal planes are
isometric to their projections to T .

With this Riemannian metric on FO(q)T , the submersion σ̂ : FO(q)T → Ŵ becomes a
Riemannian submersion.

Finally, we note that if F is transversely oriented then the above statements have analogs
in which O(q) is replaced by SO(q). Similarly, if F has a transverse spin structure then the
statements have analogs in which O(q) is replaced by Spin(q).

2.4. Haar system. For f ∈ FO(q)T , let dµf be the measure on ĜT which is supported on

ĜT
f ∼= σ̂−1(σ̂(f)) and is given there by the fiberwise Riemannian density.
To define the mean curvature form τ̂ ∈ Ω1(FO(q)T ) of the fibers, choose f ∈ FO(q)T .

Given a vector X̂f ∈ TfFO(q)T , extend it to a vector field X̂ on ĜT
f ∼= σ̂−1(σ̂(f)), the

ĜT -orbit of f , so that for all ĝ ∈ ĜT
f
we have dĝs(ĝ)(X̂s(ĝ)) = X̂f . We can find ǫ > 0 and

a small neighborhood U of f in σ̂−1(σ̂(f)) so that the geodesic flow φt(f
′) = expf ′(tX̂f ′) is

defined for all t ∈ (−ǫ, ǫ) and f ′ ∈ U , and φt maps U diffeomorphically to its image in a

fiber σ̂−1(γ(t)). Here γ is the geodesic on Ŵ starting from σ̂(f), with initial vector dσ̂f (X̂f).
Define the Lie derivative

(2.8) (LX̂dµ)
f =

d

dt

∣∣∣
t=0
φ∗
tdµ

φt(f)

Then

(2.9) τ̂ (X̂f) =
(LX̂dµ)

f

dµf

∣∣∣
f
.

Lemma 3. τ̂ is a closed 1-form which is ĜT -basic and O(q)-basic.

Proof. The form τ̂ is clearly ĜT -invariant and O(q)-invariant. As ĜT and O(q) act on FO(q)T
isometrically, if X̂f ∈ TfFO(q)T is tangent to the ĜT -orbit of f , or the O(q)-orbit of f , then

(LX̂dµ)
f = 0. Hence τ̂ is ĜT -basic and O(q)-basic.

To see that τ̂ is closed, we will define a smooth positive function F̂ in a neighborhood N

of f so that τ̂ = d log F̂ there. (The neighborhood N will be taken small enough so that the

following construction makes sense.) For f ′ ∈ N , we write σ̂(f ′) = expσ̂(f) V̂ for a unique

V̂ ∈ Tσ̂(f)Ŵ . Let X̂ be the horizontal lift of V̂ to σ̂−1(σ̂(f)). For f ′′ ∈ σ̂−1(σ̂(f)), put

φ1(f
′′) = expf ′′ X̂f ′′ . Put

(2.10) F̂ (f ′) =
dµf ′

(φ∗
1)

−1dµf

∣∣∣
f ′
.

This defines F̂ on N so that τ̂ = d log F̂ on N . Hence τ̂ is closed. �

Corollary 2. Let τ ∈ Ω1(T ) be the unique 1-form such that τ̂ = π∗τ . Then τ is closed and
GT -basic.

Recall the notion of a Haar system for a Lie groupoid; see, for example, [45, Definition 1.1].

Now {dµf}f∈FO(q)T is a Haar system for ĜT . In particular, dµf is a measure on ĜT whose
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suppport is Ĝf
T , and the family of measures {dµf}f∈FO(q)T is ĜT -invariant in an appropriate

sense.
Given p ∈ T , choose f ∈ FO(q)T so that π(f) = p. There is a diffeomorphism ip,f :

GT
p → ĜT

f
given by ip,f(g) = (f, g). Let dµp be the measure on GT which is supported

on GT
p
and is given there by i∗p,fdµ

f , where we think of dµf as a density on ĜT
f
. Then

dµp is independent of the choice of f , as follows from the fact that the family {dµf}p∈T is
O(q)-equivariant. One can check that {dµp}p∈T is a Haar system for GT .

Example 4. Continuing with Example 3, given p ∈ Z, the measure dµp on GT
p ∼= G can be

described as follows. Let {ei} be a basis for g such that the normalized Haar measure on G
is dµG = ∧ie

∗
i . Let {Vi} be the corresponding vector fields on Z. The action of Vi on FO(q)Z

breaks up as V i ⊕ ∇V i, with respect to the decomposition TFO(q)Z = π∗TZ ⊕ TO(q) of
TFO(q)Z into its horizontal and vertical subbundles. (Note that because V i is Killing, ∇V i

is a skew-symmetric 2-tensor.) Put

(2.11) Mij(p) = 〈Vi(p), Vj(p)〉 + 〈∇Vi(p),∇Vj(p)〉.
Note that the matrix M(p) is positive-definite. Then dµp =

√
det(M(p)) dµG.

We now construct a cutoff function for GT .

Lemma 4. There is a nonnegative cutoff function φ ∈ C∞
c (T ) for GT , meaning that for all

p ∈ T ,

(2.12)

∫

GT
p
φ2(s(g)) dµp(g) = 1.

Proof. The proof is similar to that of [44, Proposition 6.11]. The difference is that we use
φ2 instead of φ as in [44, Proposition 6.11]. Choose any nonnegative ψ ∈ C∞

c (T ) such that∫
GT

p ψ2(s(g)) dµp(g) > 0 for all p ∈ T . (Such a ψ exists because the orbit space of GT is

compact). Then set

(2.13) φ =
ψ√∫

GT
p ψ2(s(g)) dµp(g)

.

�

Example 5. Continuing with Example 4, we can take φ2(p) = 1√
det(M(p))

.

2.5. The Lie algebroid of the groupoid closure. Molino theory is phrased as a structure
on the foliated manifoldM in [36, Chapter 4] and [37], and as a structure on the transversal
T in [26, 41, 42]. The relationship between them is that the structure onM pulls back from
the structure on T [41, Section 3.4].

Let gT be the Lie algebroid of GT , as defined in [36, Chapter 6]. Then gT is a GT -
equivariant flat vector bundle over T whose fibers are copies of a fixed Lie algebra g. (The
flat connection on gT is related to the extendability of elements of GT .) The holonomy of
the flat connection on gT lies in Aut(g). If P : (U × g) → gT is a local parallelization of gT
and an : gT → TT is the anchor map then an ◦ P describes a Lie algebra of Killing vector
fields on U , isomorphic to g.
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The pullback π∗gT of gT to FO(q)T is isomorphic to the vertical tangent bundle T V FO(q)T
of the submersion σ̂ : FO(q)T → Ŵ .

If M is simply-connected then g is abelian and gT = T × g; see, for example, [29].

Example 6. Continuing with Example 5, let g be the Lie algebra of G. Then gT is the
product bundle Z×g, whose flat connection has trivial holonomy. The corresponding vector
fields on T = Z come from the G-action.

Example 7. Let G be a finite-dimensional connected Lie group. Let g be its Lie algebra.
Give G a right-invariant Riemannian metric. Let Γ be a finite-presented discrete group. Let
Γ → G be an injective homomorphism with dense image. Let Y be a connected compact

manifold with π1(Y, y0) = Γ. Let Ỹ be the universal cover. Suppose that h : Ỹ → G is a
Γ-equivariant fiber bundle, where Γ acts on the right on G.

Then Y has a Riemannian foliation F whose leaves are the images, in Y , of the connected
components of the fibers of h. The foliation has dense leaves and is transversally paralleliz-
able. Conversely, any Riemannian foliation on a connected compact manifold, which has
dense leaves and is transversally parallelizable, arises from this construction [36, Theorem
4.24].

A transversal T to F can be formed by taking appropriate local sections Ui → Ỹ of h.
Then gT is the product bundle T × g, whose flat connection has trivial holonomy. The
corresponding vector fields on T ∼=

∐
i Ui are the restrictions of the left-invariant vector

fields on G.
Note that in this construction, g could be any finite-dimensional Lie algebra.

2.6. Local transverse structure of a Riemannian foliation. We describe the local
transverse structure of a Riemannian foliation, following [26, 27].

Fix p ∈ T . Let K denote the isotropy group at p for GT . Let k denote the Lie algebra of
K. There is an injection i : k → g. Also, there is a representation ad : K → Aut(g) so
that
1. ad

∣∣
k
is the adjoint representation of K on k.

2. d ade is the adjoint representation of k on g, as defined using i.
Let Op be the GT -orbit of p. Its tangent space TpOp at p is isomorphic to g/k. Put

V = (TpOp)
⊥ ⊂ TpT . A slice-type theorem gives a representation ρ : K → Aut(V ) with

the property that ad⊕ρ : K → Aut((g/k)⊕ V ) is injective.
The quintuple (g, K, i, ad, ρ) determines the weak equivalence class of the restriction of

GT (with the étale topology) to a small invariant neighborhood of the orbit Op.
Given such a quintuple, one can construct an explicit local model for the transverse

structure. We will restrict here to the case when g is solvable. Then there is a Lie group G
with Lie algebra g, containing K as a subgroup, such that the restriction of GT to a small
invariant neighborhood of the orbit Op is weakly equivalent to the cross-product groupoid
(B(V )×K G)⋊Gδ, where B(V ) is a metric ball in V .

Finally, define a normal orbit type to be a quintuple (g, K, i, ad, ρ) such that the invariant
subspace V K vanishes. Given a point p ∈ T and its associated quintuple (g, K, i, ad, ρ), one
obtains its normal orbit type from replacing V by V/V K . There is a natural equivalence
relation on the set of possible normal orbit types. Then there is a stratification of T , where
each stratum is associated to a given equivalence class of normal orbit types [26, Section
3.3].
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2.7. The dualizing sheaf. Let OT be the orientation bundle of T . It is a flat real line
bundle on T . Put DT = ΛmaxgT ⊗OT . It is a GT -equivariant flat real line bundle on T .

The Haar system {dµf}f∈FO(q)T gives a nowhere-zero O(q)-invariant section of the pullback

bundle π∗ΛmaxgT ∼= ΛmaxT V FO(q)T on FO(q)T . Tensoring with this section gives an O(q)-

equivariant isomorphism Î : Ω∗(FO(q)T ; π∗OT ) → Ω∗(FO(q)T ; π∗DT ). This isomorphism
descends to an isomorphism I : Ω∗(T ;OT ) → Ω∗(T ;DT ).

Lemma 5. I−1 ◦ d ◦ I = d− τ∧ on Ω∗(T ;OT ).

Proof. This follows from the local description of τ̂ = π∗τ as d log F̂ in the proof of Lemma
3. �

Let H∗
inv(T ) be the cohomology of the GT -invariant differential forms on T , and similarly

for H∗
inv(T ;DT ). Then H∗

inv(T ) is isomorphic to the basic cohomology H∗
bas(M) of the foliated

manifold M , which is invariant under foliated homeomorphisms [19]. Also, H∗
inv(T ;DT ) is

isomorphic to H∗
bas(M ;DM), where DM is the pullback of DT from T to M . From [43], for

all 0 ≤ i ≤ dim(T ), there is a nondegenerate pairing

(2.14) Hi
inv(T )×H

dim(T )−i
inv (T ;DT ) → R.

More generally, if E is a GT -equivariant flat real vector bundle on T then there is a nonde-
generate pairing

(2.15) Hi
inv(T ;E)× H

dim(T )−i
inv (T ;E∗ ⊗DT ) → R.

The closed 1-form τ itself defines a class [τ ] ∈ H1
inv(T ).

If DT is topologically trivial, as a GT -equivariant real line bundle on T , then we can take

the (positive) square root of its holonomies to obtain D
1
2
T , a GT -equivariant flat real line

bundle. We obtain a nondegenerate bilinear form on H∗
inv(T ;D

1
2
T ) from (2.15). Hence if

dim(T ) is divisible by four then the basic signature σ(M,F ;D
1
2
T ) can be defined to be the

index of the quadratic form on H
dim(T )/2
inv (T ;D

1
2
T ). Note that H∗

inv(T ;D
1
2
T ) is isomorphic to

the cohomology of d − 1
2
τ∧ on Ω∗(T ). If in addition [τ ] = 0 then we can write τ = dH for

some H ∈ C∞
inv(T ), so d − 1

2
τ∧ = eH/2 ◦ d ◦ e−H/2 is conjugate to d on Ω∗(T ).

Similarly, we can define a basic Euler characteristic χ(M,F ;D
1
2
T ).

3. Transverse Dirac-type operators

In this section we construct the basic Dirac-type operator. Subsection 3.1 relates trans-
verse differentiation with groupoid integration. In Subsection 3.2 we define a map α from
holonomy-invariant sections of the transverse Clifford module to non-invariant sections, and
a map β which goes the other way. We show that β ◦ α = Id and β = α∗. A projec-
tion operator is then defined by P = α ◦ β. It comes from the action of an idempotent
in the groupoid algebra. The invariant Dirac-type operator Dinv is the compression of the
transverse Dirac-type operator DAPS by P . In Subsection 3.3, we write Dinv explicitly as a
differential operator.
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3.1. Transverse differentiation. Let E be a GT -equivariant vector bundle on T . Given
g ∈ GT and e ∈ Es(g), let e · g−1 ∈ Er(g) denote the action of g−1 on e. Given a compactly-
supported element ξ ∈ C∞

c (T ;E), with a slight abuse of notation we write

(3.1)

∫

GT
p
ξs(g) · g−1 dµp(g)

for the element of C∞(T ;E) whose value at p ∈ T is given by (3.1).

Lemma 6. We have an identity in Ω1(T ;E) :

(3.2) ∇E

∫

GT
p
ξs(g) · g−1 dµp(g) =

∫

GT
p
(∇Eξ)s(g) · g−1 dµp(g) + τp

∫

GT
p
ξs(g) · g−1 dµp(g).

Proof. Put ∇̂E = π∗∇E and ξ̂ = π∗ξ. Choose f ∈ FO(q)T so that π(f) = p. Given a vector

X̂f ∈ TfFO(q)T , extend it to a vector field X̂ on σ̂−1(σ̂(f)), the ĜT -orbit of f , so that for

all ĝ ∈ ĜT
f
, we have dĝs(ĝ)(X̂s(ĝ)) = X̂f . By the ĜT -invariance of ∇̂E ,

∇̂E
X̂

∫

ĜT
f
ξ̂s(ĝ) · ĝ−1 dµf(ĝ) =

∫

ĜT
f
(∇̂E

X̂
ξ̂)s(ĝ) · ĝ−1 dµf(ĝ) +

∫

ĜT
f
ξ̂s(ĝ) · ĝ−1 LX̂dµ

f(ĝ)

(3.3)

=

∫

ĜT
f
(∇̂E

X̂
ξ̂)s(ĝ) · ĝ−1 dµf(ĝ) +

∫

ĜT
f
ξ̂s(ĝ) · ĝ−1 τ̂ (X̂)s(ĝ)dµ

f(ĝ).

Since τ̂(X̂)s(g) = τ̂(X̂)f , the lemma follows. �

Corollary 3. If ω ∈ Ω∗
c(T ) then

(3.4) d

∫

GT
p
ωs(g) · g−1 dµp(g) =

∫

GT
p
(dω)s(g) · g−1 dµp(g) + τp ∧

∫

GT
p
ωs(g) · g−1 dµp(g).

Suppose now that E is a GT -equivariant Clifford module on T . In particular, if X ∈ TpT
then the Clifford action of X is an operator c(X) ∈ End(Ep) with c(X)2 = − |X|2. Let D
be the Dirac-type operator on C∞

c (T ; E). It is a symmetric operator.

Corollary 4. If ξ ∈ C∞
c (T ; E) then

(3.5) D

∫

GT
p
ξs(g) · g−1 dµp(g) =

∫

GT
p
(Dξ)s(g) · g−1 dµp(g) + c(τp)

∫

GT
p
ξs(g) · g−1 dµp(g),

where we have identified τp with its dual vector.

3.2. A projection operator. Recall the cutoff function φ from Lemma 4. Let (L2(T ; E))GT

denote the GT -invariant elements of L2(T ; E). Define maps α : (L2(T ; E))GT → L2(T ; E) and
β : L2(T ; E) → (L2(T ; E))GT by

(3.6) α(ξ) = φξ

and

(3.7) (β(η))p =

∫

g∈GT
p
ηs(g) · g−1 φs(g) dµ

p(g).

Lemma 7. We have β ◦ α = Id.
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Proof. If ξ ∈ (L2(T ; E))GT then

(3.8) (β(α(ξ)))p =

∫

g∈GT
p
ξs(g) · g−1 φ2

s(g) dµ
p(g).

Since ξ is GT -invariant, ξs(g) · g−1 = ξp and so

(3.9)

∫

g∈GT
p
ξs(g) · g−1 φ2

s(g) dµ
p(g) = ξp

∫

g∈GT
p
φ2
s(g) dµ

p(g) = ξp.

This proves the lemma. �

It follows that α is injective and induces an isomorphism between (L2(T ; E))GT and a

subspace of L2(T ; E). We equip (L2(T ; E))GT with the inner product induced by this iso-

morphism. Explicitly, for ξ, ζ ∈ (L2(T ; E))GT , we have

(3.10) 〈ξ, ζ〉 =

∫

T
(ξp, ζp) φ

2(p) dµT (p),

where dµT is the Riemannian density on T . Note that this generally differs from the inner

product on (L2(T ; E))GT coming from its embedding in L2(T ; E).
We define a sheaf S∞ on W by saying that if U is an open subset of W then S∞(U) =

(C∞(σ−1(U); E))GT . Similarly, we define a sheaf S2 on W by S2(U) = (L2(σ−1(U); E))GT .

The global sections S2(W ) are the same as (L2(T ; E))GT .

Let dµŴ denote the Riemannian measure on Ŵ . Put dµW = ι∗dµŴ , a measure on W .

Given ξ, ζ ∈ (L2(T ; E))GT , the pointwise inner product function (ξ, ζ)(p) pulls back under
ι from a measurable function on W , which we denote by (ξ, ζ)(w).

Proposition 1. We have

(3.11) 〈ξ, ζ〉 =

∫

W

(ξ, ζ)(w) dµW (w).

Proof. Put φ̂ = π∗φ. Let dµFO(q)T /Ŵ denote the Riemannian densities on the preimages of

σ̂. Then∫

T
(ξp, ζp) φ

2
p dµT (p) =

∫

FO(q)T
((π∗ξ)f , (π

∗ζ)f) φ̂
2
f dµFO(q)T (f)(3.12)

=

∫

Ŵ

(π∗ξ, π∗ζ)(ŵ)

(∫

FO(q)T /Ŵ

φ̂2
f dµFO(q)T /Ŵ (f)

)
dµŴ (ŵ)

=

∫

Ŵ

(π∗ξ, π∗ζ)(ŵ) dµŴ (ŵ)

=

∫

W

(ξ, ζ)(w) dµW (w).

This proves the proposition. �

Corollary 5. The inner product (3.10) on (L2(T ; E))GT is independent of the choice of the
cut-off function φ.



14 ALEXANDER GOROKHOVSKY AND JOHN LOTT

We will denote (L2(T ; E))GT , equipped with the inner product (3.10), by L2(S, dµW ).

Proposition 2. β = α∗.

Proof. Choose η ∈ L2(T ; E) and ξ ∈ (L2(T ; E))GT . Then

(3.13) 〈βη, ξ〉 =

∫

FO(q)T

∫

ĜT
f
φ̂2
f φ̂s(ĝ)

(
(π∗η)s(ĝ)) · ĝ−1, (π∗ξ)f

)
dµf(ĝ) dµFO(q)T (f).

Using the GT -invariance of ξ,
∫

FO(q)T

∫

ĜT
f
φ̂2
f φ̂s(ĝ)

(
(π∗η)s(ĝ)) · ĝ−1, (π∗ξ)f

)
dµf(ĝ) dµFO(q)T (f) =(3.14)

∫

ĜT

φ̂2
r(ĝ) φ̂s(ĝ)

(
(π∗η)s(ĝ), (π

∗ξ)s(ĝ)
)
dµĜT

(ĝ),

where dµĜT
is the measure on ĜT induced by the Haar system {dµf}f∈FO(q)T and the Rie-

mannian measure dµFO(q)T . Since dµĜT
is invariant under the involution ĝ 7→ ĝ−1 on ĜT ,

∫

ĜT

φ̂2
r(ĝ) φ̂s(ĝ)

(
(π∗η)s(ĝ), (π

∗ξ)s(ĝ)
)
dµĜT

(ĝ) =(3.15)

∫

ĜT

φ̂2
s(ĝ) φ̂r(ĝ)

(
(π∗η)r(ĝ), (π

∗ξ)r(ĝ)
)
dµĜT

(ĝ) =

∫

FO(q)T

∫

ĜT
f
φ̂2
s(ĝ) φ̂f ((π

∗η)f , (π
∗ξ)f) dµ

f(ĝ) dµFO(q)T (f) =

∫

FO(q)T
φ̂f ((π∗η)f , (π

∗ξ)f)) dµFO(q)T (f) =

∫

T
φf (ηp, ξp) dµT (p) = 〈η, αξ〉.

This proves the proposition. �

Corollary 6. P = α ◦ β is an orthogonal projection on L2(T ; E).
More explicitly,

(3.16) (Pη)p = φp

∫

g∈GT
p
ηs(g) · g−1 φs(g) dµ

p(g).

This shows that P comes from the action of the idempotent g → φs(g) φr(g) in the groupoid

algebra C∞
c (GT ), which we also denote by P .

The maps α and β establish an isomorphism between ImP and (L2(T ; E))GT .

3.3. Spectral triples and the invariant Dirac-type operator. Let D0 be the operator

on (L2(T ; E))GT which is the restriction of the Dirac-type operator on T to GT -invariant
spinor fields. Let DAPS denote the Dirac-type operator on L2(T ; E) with Atiyah-Patodi-
Singer (APS) boundary conditions on ∂T [4]. It is a self-adjoint extension of D. (We do not
require a product geometry near ∂T .) Note that Im(α) ⊂ Dom(DAPS), since an element of
Im(α) has compact support in T , i.e. in the interior of T .
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Remark 1. In what follows, the choice of APS boundary conditions is not essential. Any
boundary condition which gives a self-adjoint operator would work just as well. We invoke
APS boundary conditions for clarity.

Proposition 3. (C∞
c (GT ), L

2(T ; E), DAPS) is a spectral triple of dimension q.

Proof. The action of A ∈ C∞
c (GT ) on η ∈ L2(T ; E) is given by

(3.17) (Aη)p =

∫

g∈GT
p
A(g) ηs(g) · g−1 dµp(g).

As A is compactly supported, there is a compact subset K of T so that supp(A) ⊂
(s, r)−1(K ×K). It follows that the action of C∞

c (GT ) on L
2(T ; E) preserves Dom(DAPS).

Using (3.17), it follows that [DAPS, A] is a bounded operator on L2(T ; E). Thus (C∞
c (GT ), L

2(T ; E), DAPS)
is a spectral triple. Finally, from [24, Section 9], the spectral triple has dimension q in the
sense of [15, Chapter 4.2]. �

Proposition 4. We have

(3.18) β ◦DAPS ◦ α = D0 − 1

2
c(τ).

Proof. Choose ξ ∈ (L2(T ; E))GT . Then

(3.19) DAPS(α(ξ)) = DAPS(φξ) = c(dφ) ξ + φ DAPS(ξ).

Using the GT -invariance of the Dirac operator, we obtain

(β(DAPS(α(ξ))))p =

∫

g∈GT
p
(DAPS(α(ξ)))s(g) · g−1 φs(g) dµ

p(g)(3.20)

=

∫

g∈GT
p
(c(dφ) ξ)s(g) · g−1 φs(g) dµ

p(g) +

∫

g∈GT
p
φs(g) (DAPS(ξ))s(g) · g−1 φs(g) dµ

p(g)

= c

(∫

GT
p
(dφ)s(g) · g−1 φs(g) dµ

p(g)

)
ξp +

(∫

GT
p
φ2
s(g) dµ

p(g)

)
(D0ξ)p.

Since

(3.21)

∫

GT
p
φ2
s(g) dµ

p(g) = 1,

differentiation gives

0 = 2

∫

GT
p
(dφ)s(g) · g−1 φs(g) dµ

p(g) +

∫

GT
p
φ2
s(g) τp dµ

p(g)(3.22)

= 2

∫

GT
p
(dφ)s(g) · g−1 φs(g) dµ

p(g) + τp.

The proposition follows. �
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We define the invariant Dirac operator Dinv on (L2(T ; E))GT by

(3.23) Dinv = D0 − 1

2
c(τ).

Corollary 7. Dinv is a self-adjoint Fredholm operator. For all θ > 0, the operator e− θD2
inv

is trace-class.

Proof. The operator Dinv is unitarily equivalent to P ◦ DAPS ◦ P . As P is an idempotent
in the groupoid algebra C∞

c (GT ), it follows from Proposition 3 that Dinv is self-adjoint and
Fredholm.

It follows from [20, Theorem C] that e− θ[(PDAPSP )2+((1−P )DAPS(1−P ))2] is trace-class for all

θ > 0. Then e− θ(PDAPSP )2 is also trace-class. �

Corollary 8. If dim(T ) is even and D is the Gauss-Bonnet operator d + d∗ then Ind(Dinv)

equals the basic Euler characteristic χ(M,F ;D
1
2
M). If dim(T ) is even and D is the signature

operator d + d∗ then Ind(Dinv) equals the basic signature σ(M,F ;D
1
2
M).

Proof. As e− θD2
inv is trace-class, we can apply standard Hodge theory. �

Remark 2. Let chJLO(DAPS) be the JLO cocycle [31] for the spectral triple (C∞
c (GT ), L

2(T ; E), DAPS)
from Proposition 3. Then for any t > 0,

(3.24) Index(Dinv) = 〈chJLO(tDAPS), ch(P )〉.
One may hope to prove a transverse index theorem by computing limt→0〈chJLO(tDAPS), ch(P )〉
as a local expression. As will become clear in the next section, there are problems with this
approach.

Given a positive function h ∈ (C∞(T ))GT , we can write h = σ∗hW for some hW ∈
C(W ). The operator D0 − 1

2
c(τ) on L2(S, dµW ) is unitarily equivalent to the operator

D0 − 1
2
c(τ − d log h) on L2(S, hWdµW ).

Corollary 9. If [τ ] = 0 in H1
inv(T ) then up to a multiplicative constant, there is a unique

positive h ∈ (C∞(T ))GT so that τ = d log h. Hence in this case, the invariant Dirac operator
Dinv is unitarily equivalent to D0 on L2(S, hWdµW ).

Example 8. Continuing with Example 6, suppose that Z is equipped with a G-equivariant

Clifford module E . By (2.9), τ̂ = d log σ̂∗V̂, where V̂ ∈ C∞(Ŵ ) is the function for which

V̂(ŵ) = vol(σ̂−1(ŵ)). Then τ = d log σ∗V, where V ∈ C(W ) is defined by V̂ = ι∗V. In
particular, [τ ] = 0 and Dinv is unitarily equivalent to D0 on L2(S,VdµW ). Now

(3.25) VdµW = ι∗

(
V̂dµŴ

)
= ι∗σ̂∗dµFO(q)Z = σ∗π∗dµFO(q)Z = σ∗dµZ .

Hence Dinv is unitarily equivalent to D0 on L2(S, σ∗dµZ), which is what one would expect.

Remark 3. There are several approaches in the literature to the goal of constructing a
good self-adjoint basic Dirac-type operator.

Given a foliated manifold (M,F) with a bundle-like metric gM as in [36, Remark 2.7(7)],
one can consider a normal Clifford module on M and its holonomy-invariant sections. With
this approach, the natural inner product on the holonomy-invariant sections involves the
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volume form of gM . In order to obtain a self-adjoint basic Dirac-type operator with this
approach, one must assume that the mean curvature form κ of the foliated manifold (M,F)
is a basic one-form [21]. Note that the mean curvature form κ, which lives on M , is distinct
from the mean curvature form τ in this paper, which lives on T .

Still working on M , the problem of self-adjointness was resolved by means of a modified
basic Dirac-type operator, involving the basic projection of κ [25]. Given the transverse
metric, it was shown in [25] that the spectrum is independent of the particular choice of
bundle-like metric.

In the present paper we work directly with the transverse structure, so bundle-like metrics
do not enter. Presumably our operatorDinv is unitarily equivalent to the operator considered
in [25].

A different approach is to consider the operator D+ mapping from the positive-chirality
holonomy-invariant sections to the negative-chirality holonomy-invariant sections. One then
obtains a self-adjoint operator D = D+ +D∗

+, albeit not an explicit one. This is essentially
the approach of [18]. Different choices of inner product will change the definition of D∗

+ but
will not affect Index(D+).

4. The case of a compact group action

In this section we analyze the index of a Dirac-type operator when it acts on the T k-
invariant sections of a T k-equivariant Clifford module on a compact manifold Z. In Sub-
section 4.1 we express the index in terms of the Atiyah-Singer G-indices. In Subsection 4.2
we discuss the problem in switching the order of integration over T k and integration over
the fixed-point set. This turns out to be an issue about the nonuniformity of an asymptotic
expansion.

4.1. An index formula. Let

(1) Γ be a discrete group,
(2) G be a compact connected Lie group,
(3) i : Γ → G be an injective homomorphism with dense image,
(4) dµG be normalized Haar measure on G,
(5) Z be an even-dimensional compact connected Riemannian manifold on which G acts

isometrically,
(6) E be a G-equivariant Clifford module on Z, and
(7) Y be a compact connected manifold with π1(Y, y0) = Γ.

Put M = (Ỹ × Z)/Γ, where Γ acts diagonally on Ỹ × Z. Then M has a Riemannian

foliation with complete transversal Z. Now (L2(Z; E))Γ = (L2(Z; E))G. Let D be the

Dirac-type operator on L2(Z; E) and let Dinv be its restriction to (L2(Z; E))G. Given g ∈ G,
let Index(g) ∈ R denote its G-index, i.e. Index(g) = trs g

∣∣
Ker(D)

, where trs denote the

supertrace.

Lemma 8. Index(Dinv) =
∫
G
Index(g) dµG(g).

Proof. The finite-dimensional Z2-graded vector space Ker(D)± has an orthogonal decompo-
sition

(4.1) Ker(D)± = Ker(D)G± ⊕ (Ker(D)G±)
⊥.
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Then

Index(Dinv) = dim(Ker(D)G+)− dim(Ker(D)G−)(4.2)

=

∫

G

tr(g)
∣∣
Ker(D)+

dµG(g) −
∫

G

tr(g)
∣∣
Ker(D)−

dµG(g)

=

∫

G

trs(g)
∣∣
Ker(D)

dµG(g) =

∫

G

Index(g) dµG(g).

This proves the lemma. �

Let L(g) ∈ R be the Atiyah-Segal-Singer Lefschetz-type formula for Index(g) [5],[6, Chap-
ter 6]. It is the integral of a certain characteristic form over the fixed-point set Zg. Then

(4.3) Index(Dinv) =

∫

G

L(g) dµG(g).

Let T k be a maximal torus for G. Since L(g) is conjugation-invariant, the Weyl integral
formula gives

(4.4) Index(Dinv) =
1

|Weyl |

∫

T k

L(g) det
(
Ad(g−1)− I

) ∣∣∣
g/tk

dµT k(g).

4.2. Nonuniformity in the localized short-time expansion. We now specialize to the
case G = T k.

For simplicity, suppose that Z has a T k-invariant spin structure with spinor bundle SZ ,
and E = SZ ⊗W for some Z2-graded G-equivariant vector bundle W. Suppose further that
each connected component of Zg has a spin structure. Let SN denote the normal spinor

bundle. Put chW(g) = trs

(
ge

√
−1
2π

FW
)
. From [6, Chapter 6.4],

(4.5) L(g) =

∫

Zg

Â(Zg)
chW(g)

chSN
(g)

.

(In order to simplify notation, we have omitted some signs and powers of 2πi in the formula
from [6, Chapter 6.4].) From (4.3), it is clear that the only submanifolds of Z that contribute

to the integral are the connected components {ZT k

i } of the fixed-point set ZT k
, as the

integrals over the other submanifolds will be of measure zero in G. Then

(4.6) Index(Dinv) =

∫

T k

∑

i

∫

ZTk
i

Â(ZT k

i )
chW(g)

chSN
(g)

dµT k(g).

Example 9. Suppose that Z is an oriented manifold whose dimension is divisible by four.
Suppose that Z has an S1-action with isolated fixed points {zk}. Let the S1-action on
Tzk(Z) be decomposable as

(4.7) eiθ →
dim(Z)/2⊕

l=1

(
cos(nk,lθ) − sin(nk,lθ)
sin(nk,lθ) cos(nk,lθ).

)

Let Dinv be the signature operator acting on S1-invariant forms. Then

(4.8) Index(Dinv) = (−1)
dim(Z)

4

∫

S1

∑

k

dim(Z)/2∏

l=1

cot(nk,lθ/2)
dθ

2π
;
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compare with [2, Theorem 6.27].
Note that in (4.8), the sum over k and the integral over S1 generally cannot be inter-

changed. For example, suppose that dim(Z) = 4, k = 1 and n1,1 = n1,2 = 1. Then the
contribution from the fixed point z1 is

(4.9) −
∫

S1

cot2(θ/2)
dθ

2π
= −∞.

What happens is that there are cancellations among the various fixed points. This cancel-
lation is ensured by the fact that L(g) is uniformly bounded in g ∈ S1. So the integral
(4.8) makes sense but one cannot switch the order of integration and summation. This is a
problem if one wants a local formula for Index(Dinv).

To elaborate on this phenomenon, for any t > 0 we can use Lemma 8 to write

(4.10) Index(Dinv) =

∫

S1

Trs

(
g · e−tD2

)
dµS1(g) =

∫

S1

∫

Z

trs e
−tD2

(z, zg)dµZ(z)dµS1(g).

If φi is an S
1-invariant bump function with support near the fixed point zi then

(4.11) Index(Dinv) =
∑

i

lim
t→0

∫

S1

∫

Z

trs e
−tD2

(z, zg) φi(z) dµZ(z) dµS1(g).

By general arguments [10], there is an asymptotic expansion

(4.12)

∫

S1

∫

Z

trs e
−tD2

(z, zg) φi(z) dµZ(z) dµS1(g) ∼ t− dim(Z)/2
∞∑

j,k=0

ai,j,kt
j/2 (log t)k

and so

(4.13) Index(Dinv) =
∑

i

ai,dim(Z)/2,0.

On the other hand, for a fixed g ∈ S1 there is a computable limit

(4.14) lim
t→0

∫

Z

trs e
−tD2

(z, zg) φi(z) dµZ(z),

which becomes an integral over Zg. If one could commute the limt→0 with the integration
over g ∈ S1 on

(4.15)

∫

Z

trs e
−tD2

(z, zg) φi(z) dµZ(z)

then one would conclude that the asymptotic expansion in (4.12) starts at the t0-term, and
that the coefficient of the t0-term is

(4.16)

∫

S1

lim
t→0

∫

Z

trs e
−tD2

(z, zg) φi(z) dµZ(z) dµS1(g).

One finds in examples that neither of these are true. Related phenomena for local traces
(as opposed to supertraces) of basic heat kernels were noted in [40]

The underlying reason for the lack of uniformity, in the expansions with respect to t and g,
is that the fixed-point set Zg can vary wildly in g. For example, if the S1-action is effective
then Ze = Z, while Zg has codimension at least one for any g 6= e, no matter how close g
may be to e.
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5. The case of abelian Molino sheaf : a delocalized index theorem

In this section we prove a delocalized index theorem for Dinv under the assumption that
the Molino sheaf is a holonomy-free sheaf of abelian Lie algebras, and an additional connect-
edness assumption on the isotropy groups. The index formula will be localized in Section
6.

In Subsection 5.1 we use local models for the transverse structure of a Riemannian foliation
to write a formula for Index(Dinv) in terms of a parametrix. As indicated in the preceding
section, there are problems in directly computing the t → 0 limit of this index formula,
as a local expression. Hence we use a delocalized approach. In Subsection 5.2 we rewrite
the index formula in terms of the averaging of a certain almost-periodic function Ft,ǫ that
is defined on the abelian Lie algebra. The number Ft,ǫ(X) is defined by a Kirillov-type
formula. We show that it is independent of t and ǫ. In Subsection 5.3 we compute the t→ 0
limit of Ft,ǫ.

5.1. Parametrix. Hereafter we assume that Lie algebra g of the Molino sheaf is the abelian
Lie algebra R

k. We also assume that the Lie algebroid gT is a trivial flat R
k-bundle, i.e.

has trivial holonomy.
Recall the sheaf S2 onW from Subsection 3.2. The invariant operatorDinv is a self-adjoint

operator on the global sections S2(W ). We will compute the index of Dinv by constructing
a parametrix for Dinv. The parametrix will be formed using a suitable open cover of W ,
along with a partition of unity.

Corollary 9 gives a measure hW dµW which is canonical up to a multiplicative constant.
Given p ∈ T , let K be the isotropy group of GT at p. We assume that K is connected, so

K = T l for some 0 ≤ l ≤ k. From Subsection 2.6, there is an invariant neighborhood U of
the orbit Op so that the restriction of GT to U is weakly equivalent, as an étale groupoid, to
the cross-product groupoid (B(V )×KG)⋊Gδ. Here G is a k-dimensional connected abelian
Lie group containing K, V is a representation space of K and B(V ) is a metric ball in V .
The manifold B(V )×K G acquires a G-invariant Riemannian metric from the Riemannian
foliation.

If l < k then we can quotient out by a lattice in G/K, so in any case we can assume that
G = T k. Note that there is some freedom in exactly which lattice is chosen.

There is an embedding B(V )/K → W and a quotient map σ : (B(V ) ×K G) → W .
From Example 8, σ∗dµB(V )×KG is a constant times (hWdµW )

∣∣
B(V )/K

. We will want to fix

a normalization for the measure hWdµW . The normalization that we use will depend on
whether or not there are any points in T with maximal isotropy group.

Recall from Example 8 that in the local model, the relevant measure is V dµW . Here V
satisfies V̂ = ι∗V, where V̂ ∈ C∞(Ŵ ) is the function for which V̂(ŵ) = vol(σ̂−1(ŵ)). If the
isotropy group at a point p ∈ T is T k then σ̂−1(ŵ) is a (free) T k-orbit in the frame FO(q)Tp.
As its volume is canonical, i.e. independent of the choice of local model, we can consistently
normalize hWdµW in a local model with K = T l to be V dµW .

Using the connectedness of W , this determines hW dµW globally. Having now normalized
hW dµW , there may be local models with l < k. For these local models, we use the freedom
in the choice of lattice in G/K to ensure that σ∗dµB(V )×KG = (hWdµW )

∣∣
B(V )/K

.
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If there are no points in T with isotropy T k then we normalize hW dµW by requiring that∫
W
hW dµW = 1. We can then use the freedom in the choice of the lattice in G/K to ensure

that in each local model, σ∗dµB(V )×KG = (hWdµW )
∣∣
B(V )/K

.

We can find
1. Finite open coverings {Uα} and {U ′

α} of W , where Uα has compact closure in U ′
α, so that

the restriction of GT , to the preimage of U ′
α in T , is equivalent to (B(Vα) ×Kα Gα)⋊ Gα,δ.

(Here Gα is isomorphic to T k.)

2. A subordinate partition of unity {ηα} to {Uα} so that each ι∗ηα is smooth on Ŵ ,

3. Functions {ρα} with support in U ′
α so that each ι∗ρα is smooth on Ŵ , and ραηα = ηα,

i.e. ρα
∣∣
supp(ηα)

= 1.

For each α, we choose a closed Riemannian manifold Yα with an isometric Gα-action
so that there is an isometric Gα-equivariant embedding B(Vα) ×Kα Gα ⊂ Yα. This can be
done, for example, by taking a slight extension of B(Vα) to a larger ball B′

α ⊂ Vα, taking the
double of B′

α×KαGα and smoothing the metric. (Alternatively, we could work directly with

APS boundary conditions on B(Vα)×Kα Gα, at the price of having to deal with manifolds-
with-boundary.) We can also assume that the restriction of E to B(Vα)×Kα Gα extends to
Eα on Yα.

Let Dα denote the Dirac-type operator on Yα. Let Dinv,α be the restriction of Dα to

(L2(Yα, EYα))
Gα .

Given t > 0, put

(5.1) Qα =
1− e−tD2

α

D2
α

Dα =

∫ t

0

e−sD2
α Dα ds

and

(5.2) Qinv,α =
1− e−tD2

inv,α

D2
inv,α

Dinv,α =

∫ t

0

e−sD2
inv,α Dinv,α ds.

We let η̃α be the extension by zero of σ∗ηα to Yα, and similarly for ρ̃α.

Proposition 5.
∑

α ραQ
∓
inv,αηα is a parametrix for D±

inv. Also, for all t > 0, formally

(5.3) Ind(Dinv) =
∑

α

Trs

(
e−tD2

inv,αηα

)
+

1

2

∑

α

Trs (Qinv,α[Dinv,α, ηα]) ,

or more precisely,

(5.4) Ind(Dinv) =
∑

α

Trs

(
e−tD2

inv,αηα

)
+

1

2

∑

α,β

Trs (ρα(Qinv,α −Qinv,β)ηβ [Dinv,α, ηα]) .

Proof. First, we have

D−
α ρ̃αQ

+
α η̃α = [D−

α , ρ̃α]Q
+
α η̃α + ρ̃αD

−
αQ

+
α η̃α(5.5)

= [D−
α , ρ̃α]Q

+
α η̃α + ρ̃α

(
1− e−tD−

αD+
α

)
η̃α

= η̃α + [D−
α , ρ̃α]Q

+
α η̃α − ρ̃αe

−tD−
α D+

α η̃α.

The Schwartz kernel of [D−
α , ρ̃α]Q

+
α η̃α is

(5.6) c−(dρ̃α(p))Q
+
α (p, p

′) η̃α(p
′).
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As Q+
α is a pseudodifferential operator, and dρ̃α(p) η̃α(p

′) vanishes in a neighborhood of the
diagonal p = p′, it follows that η̃α − D−

α (ρ̃αQ
+
α η̃α) is a smoothing operator on L2(Yα; E+

Yα
).

In particular, η̃α − D−
α (ρ̃αQ

+
α η̃α) is trace-class on L2(Yα; E+

Yα
) and so its restriction to(

L2(Yα; E+
Yα
)
)Gα

is also trace-class. Hence the operator

I − D−
inv

∑

α

ραQ
+
inv,αηα =

∑

α

(
ηα − D−

inv,αραQ
+
inv,αηα

)
(5.7)

=
∑

α

(
ραe

−tD−
inv,αD

+
inv,αηα − [D−

inv,α, ρα]Q
+
inv,αηα

)

is also trace-class. This shows that
∑

α ραQ
+
inv,αηα is a right parametrix for D−

inv. Hence it
is also a left parametrix.

Similarly,

ρ̃αQ
+
α η̃αD

−
α = ρ̃αQ

+
αD

−
α η̃α − ρ̃αQ

+
α [D

−
α , η̃α](5.8)

= ρ̃α

(
1− e−tD+

αD−
α

)
η̃α − ρ̃αQ

+
α [D

−
α , η̃α]

= η̃α − ρ̃αe
−tD+

αD−
α η̃α − ρ̃αQ

+
α [D

−
α , η̃α].

Then

(5.9) I −
(∑

α

ραQ
+
inv,αηα

)
D−

inv =
∑

α

(
ραe

−tD+
inv,αD

−
inv,αηα + ραQ

+
inv,α[D

−
inv,α, ηα]

)
.

Changing signs in (5.7) and (5.9) gives

(5.10) I − D+
inv

∑

α

ραQ
−
inv,αηα =

∑

α

(
ραe

−tD+
inv,αD

−
inv,αηα − [D+

inv,α, ρα]Q
−
inv,αηα

)

and

(5.11) I −
(∑

α

ραQ
−
inv,αηα

)
D+

inv =
∑

α

(
ραe

−tD−
inv,αD

+
inv,αηα + ραQ

−
inv,α[D

+
inv,α, ηα]

)
.

Now

(5.12) Index(Dinv) = Tr

(
I −

(∑

α

ραQ
−
inv,αηα

)
D+

inv

)
− Tr

(
I − D+

inv

∑

α

ραQ
−
inv,αηα

)

and

(5.13) −Index(Dinv) = Tr

(
I −

(∑

α

ραQ
+
inv,αηα

)
D−

inv

)
−Tr

(
I − D−

inv

∑

α

ραQ
+
inv,αηα

)

Hence

Index(Dinv) =
1

2
Trs

(
I −

(∑

α

ραQinv,αηα

)
Dinv

)
+(5.14)

1

2
Trs

(
I − Dinv

∑

α

ραQinv,αηα

)
.
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Equations (5.7)-(5.11) now give

Index(Dinv) =
∑

α

Trs

(
ραe

−tD2
inv,αηα

)
+

1

2

∑

α

Trs (ραQinv,α[Dinv,α, ηα]) −(5.15)

1

2

∑

α

Trs ([Dinv,α, ρα]Qinv,αηα) .

By formal manipulations,

Index(Dinv) =
∑

α

Trs

(
e−tD2

inv,αηαρα

)
+

1

2

∑

α

Trs (Qinv,α[Dinv,α, ηα]ρα) +(5.16)

1

2

∑

α

Trs (Qinv,αηα[Dinv,α, ρα])

=
∑

α

Trs

(
e−tD2

inv,αηαρα

)
+

1

2

∑

α

Trs (Qinv,α[Dinv,α, ηαρα])

=
∑

α

Trs

(
e−tD2

inv,αηα

)
+

1

2

∑

α

Trs (Qinv,α[Dinv,α, ηα]) .

The last term in (5.16) actually makes sense because
∑

α dηα = 0, so the computation of

(5.17)
∑

α

Trs (Qinv,α[Dinv,α, ηα]) =
∑

α

Trs (Qinv,αc(dηα))

happens away from the diagonal. To see this more clearly, we can write
∑

α

Trs (Qinv,α[Dinv,α, ηα]) =
∑

α,β

Trs (Qinv,αηβ [Dinv,α, ηα])(5.18)

=
∑

α,β

Trs ((Qinv,α −Qinv,β)ηβ [Dinv,α, ηα])

=
∑

α,β

Trs ((Qinv,α −Qinv,β)ηβ [Dinv,α, ηα]ρα)

=
∑

α,β

Trs (ρα(Qinv,α −Qinv,β)ηβ [Dinv,α, ηα]) .

The latter expression is clearly well-defined.
This proves the proposition. �

In what follows we will use the equation (5.3) when, to justify things more formally, one
could use (5.4) instead.

5.2. Averaging over the Lie algebra. Fix a Haar measure dµg on g = R
k. If F ∈ C∞(Rk)

is a finite sum of periodic functions, put

(5.19) AVXF (X) = lim
R→∞

∫
B(0,R)

F (X) dµg(X)
∫
B(0,R)

1 dµg(X)
.
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Equivalently, if {Lj} is a finite collection of lattices in Rk and

(5.20) F (X) =
∑

j

∑

v∈Lj

cj,v e
2π

√
−1v·X

is a representation of F as a finite sum of periodic functions then AVXF (X) =
∑

j cj,0, the
sum of the coefficients of 1.

Given X ∈ Rk, we also let X denote the corresponding vector field on Yα. Let X
∗ denote

the dual 1-form and let LX denote Lie differentiation with respect to X . The moment µ(X)
of X ∈ Rk is defined by µ(X) = LX −∇X . It is a skew-adjoint endomorphism of TYα.

Proposition 6. We have

(5.21)
∑

α

Trs

(
e−tD2

inv,αηα

)
= AVX

∑

α

Trs

(
e−(tD2

α+LX)η̃α

)

and

(5.22)
∑

α

Trs (Qinv,α[Dinv,α, ηα]) = AVX
∑

α

∫ t

0

Trs

(
e−(sD2

α+LX)Dα[Dα, η̃α]
)
ds.

Proof. First,

(5.23)

∫

Yα

trs

(
e−tD2

α η̃α

)
(p, pe−X) dµYα(p)

is a periodic function in X . From (5.19),
∑

α

Trs

(
e−tD2

inv,αηα

)
= AVX

∑

α

∫

Yα

trs

(
e−tD2

α η̃α

)
(p, pe−X) dµYα(p)(5.24)

= AVX
∑

α

∫

Yα

trs

(
e−(tD2

α+LX)η̃α

)
(p, p) dµYα(p)

= AVX
∑

α

Trs

(
e−(tD2

α+LX)η̃α

)
.

Similarly,
∑

α

Trs (Qinv,α[Dinv,α, ηα]) =(5.25)

AVX
∑

α

∫ t

0

∫

Yα

trs

(
e−sD2

αDα[Dα, η̃α]
)
(p, pe−X) dµYα(p) ds =

AVX
∑

α

∫ t

0

∫

Yα

trs

(
e−(sD2

α+LX)Dα[Dα, η̃α]
)
(p, p) dµYα(p) ds =

AVX
∑

α

∫ t

0

Trs

(
e−(sD2

α+LX)Dα[Dα, η̃α]
)
ds.

This proves the proposition. �

Note that LX is a skew-adjoint operator. For t > 0 and ǫ ∈ C, put

(5.26) Dα,t,ǫ = Dα + ǫ
c(X)

4t
.
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As c(X) is skew-adjoint, if ǫ is imaginary then Dα,t,ǫ is self-adjoint. Put

Ft,ǫ(X) =
∑

α

Trs

(
e−(tD2

α,t,ǫ+LX)η̃α

)
+(5.27)

1

2

∑

α

∫ t

0

Trs

(
e−(sD2

α,t,ǫ+LX)Dα,t,ǫ[Dα,t,ǫ, η̃α]
)
ds.

From Propositions 5 and 6,

(5.28) Ind(Dinv) = AVXFt,0(X).

Proposition 7. Ft,0(X) is independent of t.

Proof. We have

Ft,0(X) =
∑

α

Trs

(
e−(tD2

α+LX)η̃α

)
+(5.29)

1

2

∑

α

∫ t

0

Trs

(
e−(sD2

α+LX)Dα[Dα, η̃α]
)
ds.

Then

d

dt
Ft,0(X) =

∑

α

−Trs

(
D2

α e
−(tD2

α+LX)η̃α

)
+(5.30)

1

2

∑

α

Trs

(
e−(tD2

α+LX)Dα[Dα, η̃α]
)

= 0.

The proposition follows. �

Proposition 8. Ft,ǫ(X) is independent of ǫ.

Proof. Let [·, ·]+ denote the anticommutator of two operators. We have an identity of oper-
ators on L2(Yα, EYα) :

e−(tD2
α,t,ǫ+LX)η̃α +

1

2

∫ t

0

e−(sD2
α,t,ǫ+LX)Dα,t,ǫ[Dα,t,ǫ, η̃α] ds =(5.31)

e−(tD2
α,t,ǫ+LX)η̃α +

∫ t

0

e−(sD2
α,t,ǫ+LX)D2

α,t,ǫ η̃α ds−

1

2

∫ t

0

[Dα,t,ǫ, e
−(sD2

α,t,ǫ+LX)Dα,t,ǫη̃α]+ ds =

e−(tD2
α,t,ǫ+LX)η̃α −

∫ t

0

d

ds
e−(sD2

α,t,ǫ+LX) η̃α ds−

1

2

∫ t

0

[Dα,t,ǫ, e
−(sD2

α,t,ǫ+LX)Dα,t,ǫη̃α]+ ds =

e−LX η̃α − 1

2

∫ t

0

[Dα,t,ǫ, e
−(sD2

α,t,ǫ+LX)Dα,t,ǫη̃α]+ ds.
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Then

(5.32) Ft,ǫ(X) =
∑

α

Trs

(
e−LX η̃α − 1

2

∫ t

0

[Dα,t,ǫ, e
−(sD2

α,t,ǫ+LX)Dα,t,ǫη̃α]+ ds

)
.

In particular,

d

dǫ
Ft,ǫ(X) = − 1

2

∑

α

Trs

[
d

dǫ
Dα,t,ǫ,

∫ t

0

e−(sD2
α,t,ǫ+LX)Dα,t,ǫη̃α ds

]

+

−(5.33)

1

2

∑

α

Trs

[
Dα,t,ǫ,

d

dǫ

(∫ t

0

e−(sD2
α,t,ǫ+LX)Dα,t,ǫη̃α ds

)]

+

= 0.

The proposition follows. �

Corollary 10. Ft,ǫ(X) is independent of t and ǫ.

Proof. This follows from Propositions 7 and 8. �

Proposition 9. Ft,2(X) has a holomorphic extension to X ∈ Ck.

Proof. One finds

(5.34) t D2
α,t,2 + LX = tD2

α + µ(X) +
1

2
c (dX∗)− X2

4t
.

Writing

Ft,2(X) =
∑

α

Trs

(
e−(tD2

α,t,2+LX)η̃α

)
+(5.35)

1

2

∑

α

∫ t

0

Trs

(
e−(sD2

α,t,2+LX)Dα,t,2[Dα,t,2, η̃α]
)
ds,

and using (5.34), we expand the right-hand side of (5.35) by means of a Duhamel expansion.
The estimates of [20, Lemma 2.1] show that the ensuing series defines a holomorphic function
of X ∈ Ck. �

As a consequence of Corollary 10 and Proposition 9, for any t > 0 and ǫ ∈ C, Ft,ǫ(X) has
a holomorphic extension to X ∈ Ck.

5.3. Short-time delocalized limit. Let Â(X, Yα) ch(X, Eα/S) ∈ Ω∗(Yα) be the equivari-
ant characteristic form defined in [6, Chapter 8.1]. Notationally,

(5.36) Â(X, Yα) =

√
det

(
Rg(X)/2

sinh (Rg(X)/2)

)
,

with Rg(X) = R + µ(X), and

(5.37) ch(X, Eα/S) = trEα/S

(
e− F

Eα/S
g (X)

)
.

Note that Â(X, Yα) ch(X, Eα/S) has an analytic extension to Ck which is regular in a
neighborhood of 0, and on the complement of Rk.
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Proposition 10. If X ∈ Rk then

(5.38) lim
t→0

Ft,1(iX) =
∑

α

∫

Yα

Â(iX, Yα) ch(iX, Eα/S) η̃α.

Proof. We can write

Ft,1(iX) =
∑

α

Trs

(
e−(tD2

α,t,i+iLX)η̃α

)
+(5.39)

1

2

∑

α

∫ t

0

Trs

(
e−(sD2

α,t,i+iLX)Dα,t,i[Dα,t,i, η̃α]
)
ds.

Note that tD2
α,t,i + iLX is a self-adjoint operator. Now

(5.40) Trs

(
e−(tD2

α,t,i+iLX)η̃α

)
=

∫

Yα

trs

(
e−(tD2

α,t,i+iLX)
)
(p, p) η̃α(p) dµYα(p).

From [8, Section 2],

(5.41) lim
t→0

(
e−(tD2

α,t,i+iLX)
)
(p, p) =

(
Â(iX, Yα) ch(iX, Eα/S)

)
(p).

Thus

(5.42) lim
t→0

∑

α

Trs

(
e−(tD2

α,t,i+iLX)η̃α

)
=
∑

α

∫

Yα

Â(iX, Yα) ch(iX, Eα/S) η̃α.

Next, we want to show that

(5.43) lim
t→0

1

2

∑

α

∫ t

0

Trs

(
e−(sD2

α,t,i+iLX)Dα,t,i[Dα,t,i, η̃α]
)
ds = 0.

For this, we have to show certain cancellations between the terms for various α.
Define a measure νt on W by

(5.44) νt =
∑

α

(πα)∗

(
1

2

∫ t

0

trs

(
e−(sD2

α,t,i+iLX)Dα,t,i[Dα,t,i, η̃α]
)
(p, p) dµYα(p) ds

)
.

We want to show that the integral of νt vanishes as t→ 0.
Given w ∈ W , choose a point p̃ ∈ T that projects to w. Let K̃ be the isotropy group of

GT at p̃. For each α with w ∈ Uα, choose pα ∈ Yα projecting to w. By the slice theorem,
there is a neighborhood of w in W homeomorphic to B(Ṽ )/K̃, where Ṽ is a representation

space of K̃ and B(Ṽ ) is a ball in Ṽ . There is a neighborhood of p̃ which, for each α, is
isometric to a neighborhood of pα. We will use this to identify each pα with p̃.

Using Example 8,

νt(w) =

(∑

α

1

2

∫ t

0

trs

(
e−(sD2

α,t,i+iLX)Dα,t,i[Dα,t,i, η̃α]
)
(p̃, p̃) ds

)
hW (w) dµW (w)(5.45)

=
∑

α,β

1

2

∫ t

0

[
trs

(
e−(sD2

α,t,i+iLX)Dα,t,i[Dα,t,i, η̃α]
)
(p̃, p̃)−

trs

(
e−(sD2

β,t,i+iLX)Dβ,t,i[Dα,t,i, η̃α]
)
(p̃, p̃)

]
ηβ(w) ds hW (w) dµW (w).
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As Dα,t,i coincides with Dβ,t,i in a neighborhood of p̃, under our identifications, it follows

from finite propagation speed estimates [14] that νt(w)
hW (w) dµW (w)

decays as t→ 0 faster than any

power of t. These estimates can clearly be made uniform in w. The proposition follows. �

We now prove a delocalized index theorem.

Corollary 11.

(5.46) Ind(Dinv) = AVX
∑

α

∫

Yα

Â(X, Yα) ch(X, Eα/S) η̃α.

Proof. As in (5.28), Ind (Dinv) = AVXFt,0(X). By Corollary 10 and Proposition 9, Ft,0(X)
has an holomorphic extension to Ck. By Corollary 10 and Proposition 10, if X ∈ iRk then

(5.47) Ft,0(X) =
∑

α

∫

Yα

Â(X, Yα) ch(X, Eα/S) η̃α.

By analytic continuation, (5.47) holds for X ∈ Ck. The corollary follows. �

Remark 4. Although
∫
Yα
Â(X, Yα) ch(X, Eα/S)η̃α may have singularities inX for individual

α, the proof of Corollary 11 shows that the sum over α is holomorphic in X .

6. Local index formula and applications

In this section we prove the main theorem of the paper. In Subsection 6.1 we localize the
index theorem of the previous section to the fixed-point sets. In Subsection 6.2 we prove the
index theorem stated in the introduction of the paper. In Subsection 6.3 we describe how
to compute the terms appearing in the local index formula. We carry out the computation
when D is the pure Dirac operator, the signature operator and the Euler operator.

6.1. Localization to the fixed-point set. Let T T k
be the subset of T consisting of

points with isotropy group isomorphic to T k. Let {ZT k

i } be the connected components of

σ
(
T T k

)
⊂ W . From our assumptions, each ZT k

i is a smooth manifold. Furthermore, the

Clifford module E on T descends to a T k-equivariant Clifford module Ei on ZT k

i . There is a

natural vector bundle Ni on Z
T k

i so that for w ∈ ZT k

i , if we choose p ∈ σ−1(w) ∈ T then the

fiber (Ni)w is isomorphic to the normal bundle of T T k
in T at p. The bundle Ni inherits an

orthogonal connection. Let RNi
denote its curvature 2-form.

For simplicity, we assume that T has a GT -invariant spin structure, with spinor bundle
ST , and that E = ST ⊗W for some Z2-graded GT -equivariant vector bundle W. Suppose
further that each ZT k

i is spin. We can define the normal spinor bundle SN on ZT k

i .
Let e−X ∈ T k denote the exponential of −X ∈ g.

Proposition 11.

(6.1) AVX
∑

α

∫

Yα

Â(X, Yα) ch(X, Eα/S) η̃α = AVX
∑

i

∫

ZTk
i

Â(TZT k

i )
chW(e−X)

chSN
(e−X)

.
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Proof. Let Z(X) denote the zero-set of X on
∐

α Yα. As in [6, Chapter 7.2], away from
Z(X) we can write

Â(X, Yα) ch(X, Eα/S) η̃α = dX

(
X∗ ∧ Â(X, Yα) ch(X, Eα/S) η̃α

dXX∗

)
+(6.2)

X∗ ∧ Â(X, Yα) ch(X, Eα/S)
dXX∗ ∧ dX η̃α.

This formula extends analytically to X lying in a suitable neighborhood of the origin in
Ck. Then because

∑
α η̃α = 1, the localization argument in the proof of [6, Theorem 7.13]

applies to give

(6.3)
∑

α

∫

Yα

Â(X, Yα) ch(X, Eα/S) η̃α =
∑

α

∫

Z(X)

Â(TZ(X))
chW(e−X)

chSN
(e−X)

η̃α.

Because the left-hand side of (6.3) has a holomorphic extension to Ck, the same is true for
the right-hand side. So the formula makes sense for X ∈ RK .

When we average over X ∈ Rk, the integral over a component of Z(X) will not contribute
unless the component lies in

⋂
X′∈Rk Z(X ′). Hence

(6.4) AVX
∑

α

∫

Yα

Â(X, Yα) ch(X, Eα/S) η̃α = AVX
∑

α

∫
⋂

X′ Z(X′)

Â(TZ(X))
chW(e−X)

chSN
(e−X)

η̃α.

We can identify the image of
⋂

X′ Z(X ′), under the projection map
∐

α (B(Vα)×Kα Gα) →
W , with

⋃
i Z

T k

i . After making this identification, the proposition follows. �

Remark 5. It follows from the proof of Proposition 11 that
∑

i

∫
ZTk
i
Â(TZT k

i ) chW (e−X)
chSN

(e−X)
is

holomorphic in X ∈ Ck. Each term
∫
ZTk
i
Â(TZT k

i ) chW(e−X)
chSN

(e−X)
is meromorphic in X ∈ Ck.

Corollary 12. For any Q ∈ Ck,

(6.5) Index(Dinv) = AVX
∑

i

∫

ZTk
i

Â(TZT k

i )
chW(e−X+Q)

chSN
(e−X+Q)

.

Proof. The integral
∫
ZTk
i
Â(TZT k

i ) chW(e−X)
chSN

(e−X)
is a meromorphic function in X ∈ Ck which is

invariant with respect to a lattice Li ⊂ Rk. As the sum over i is holomorphic, it follows

that we can write
∑

i

∫
ZTk
i
Â(TZT k

i ) chW(e−X)
chSN

(e−X)
as a finite sum

∑
j Hj(X), where each Hj is

a holomorphic function of X ∈ Ck that is invariant with respect to a lattice Lj ⊂ Rk. Now
AVXHj(X) can be computed by means of a product of contour integrals in Ck. Computing
instead AVXHj(X − Q) amounts to deforming the contours. Hence AVXHj(X − Q) =
AVXHj(X), from which the corollary follows. �

6.2. Local index formula. We will need the explicit formula for 1
chSN

(e−X+Q)
. Given z 6= 1

and a complex r-dimensional vector bundle L, put

(6.6) FDirac(L, z) =
r∏

j=1

(
z−

1
2 e

xj
2 − z

1
2 e−

xj
2

)−1

,
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where the xj ’s are the formal roots of the total Chern class of L. As usual, the expression
(6.6) is meant to be expanded in the xj ’s, which have formal degree two.

Let ZT k

i and Ni be as before. Suppose that with respect to the Rk-action, Ni is isomorphic
to the underlying real bundle of a direct sum of complex line bundles

⊕
q Nq,i, where e

−X

acts on Nq,i by e
−
√
−1nq,i·X for some nq,i ∈ Rk. Then

(6.7)
1

chSN
(e−X+Q)

= ±
∏

q

FDirac

(
Nq,i, e

−
√
−1nq,i·(X−Q)

)
.

See [3] for a discussion of the sign issue.

The individual term
∫
ZTk
i
Â(TZT k

i ) chW (e−X+Q)
chSN

(e−X+Q)
is smooth in X provided that Im(Q) /∈

⋃
q n

⊥
q,i.

Let Wmax denote the image of
⋃

iZ
T k

i under the projection map
∐

α (B(Vα)×Kα Gα) →
W . It is a smooth manifold and is the deepest stratum in W , with respect to the partial
ordering described in [26, Section 3.3]. Note that Wmax could be the empty set.

Suppose that E = ST ⊗W and that Wmax is spin.

Definition 1. If Im(Q) /∈ ⋃i

⋃
q n

⊥
q,i, define NE,Q ∈ Ω∗Wmax by

(6.8) NE,Q = AVX
chW(e−X+Q)

chSN
(e−X+Q)

.

Theorem 2.

(6.9) Index(Dinv) =

∫

Wmax

Â(TWmax)NE,Q.

Proof. This follows from Corollary 12. �

We now remove the assumptions that E = ST ⊗W andWmax is spin. We use the notation
of [6, Chapter 6.4].

Definition 2. If Im(Q) /∈ ⋃i

⋃
q n

⊥
q,i, define NE,Q ∈ Ω∗Wmax by

(6.10) NE,Q = AVX
chE/SN

(e−X+Q)√
det (1− e−X+Q · e−RN )

.

Theorem 3.

(6.11) Index(Dinv) =

∫

Wmax

Â(TWmax)NE,Q.

Proof. If E = ST ⊗W and Wmax is spin then from [6, Chapter 6.4],

(6.12)
chE/SN

(e−X+Q)√
det (1− e−X+Q · e−RN )

=
chW(e−X+Q)

chSN
(e−X+Q)

.

Hence in this case, the theorem reduces to Theorem 2. The general case can be proved
by means similar to the proof of Theorem 2, carrying along the more general assumptions
throughout. �
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Theorem 3 implies Theorem 1, because of our assumption in Theorem 1 that the Molino
sheaf acts on the Clifford module E (which lives on M). More precisely, we are assuming
that the restriction ET of E to T carries a representation of the Lie algebroid gT in the sense
of [17, Section 1.4]. Then ET is a GT -equivariant vector bundle on T and Theorem 3 applies.

Remark 6. If M is a simply-connected manifold with a Riemannian foliation then its
space W of leaf closures is the quotient of an orbifold Y by a TN -action [30]. One might
hope to reduce the computation of the index of a basic Dirac-type operator on M to the
computation of the TN -invariant index of a Dirac-type operator on Y . Unfortunately, the
étale groupoid Y ⋊ TN

δ is generally not weak equivalent to GT with its étale topology. In
general dim(Y ) > dim(T ), so there is no associated Dirac-type operator on Y .

6.3. Computing the index. For simplicity, we assume again that E = ST ⊗W (which is
always the case locally) and that Wmax is spin, so that we have the simpler formula (6.8)
for NE,Q.

The action of {e−X} on SN and W, over a connected component ZT k

i of Wmax, factors
through an action of T k. Because of this T k-action, we can compute AVX by performing
the contour integral over (S1)k ⊂ Ck of a certain rational function times dz1

2π
√
−1z1

. . . dzk
2π

√
−1zk

.

The result depends a priori on Q (recall that Im(Q) /∈ ⋃i

⋃
q n

⊥
q,i) although of course the

final answer for the index is independent of Q.
Changing Q amounts to deforming the contour of integration in Ck. Hence the local

formula for Index(Dinv) depends on Q through the chamber of
⋂

i

⋂
q(R

k − n⊥
q,i) to which

Im(Q) belongs. Passing from one chamber to another one, the local formula could a priori
change. This is not surprising, in view of the cancellations of singularities that occur; one
could add various local contributions to the index formula, which will cancel out in the end.

We now apply Theorem 1 to some geometric Dirac-type operators, in which case the
action of the Molino sheaf on E is automatic.

6.3.1. Pure Dirac operator.

Proposition 12. Suppose that D is the pure Dirac operator. Then Index(Dinv) vanishes if
k > 0, while

(6.13) Index(Dinv) = Â(W )

if k = 0.

Proof. From Corollary 12,

(6.14) Index(Dinv) = AVX
∑

i

∫

ZTk
i

Â(TZT k

i )
1

chSN
(e−X+Q)

.

Take Q so that Im(Q) ∈ ⋂i

⋂
q(R

k − n⊥
q,i). Consider the effect of multiplying Q by λ > 0.

Each factor in (6.6) has a term of either z−
1
2 or z

1
2 , appearing in the denominator. It

follows that as λ→ ∞, the right-hand side of (6.7) decreases exponentially fast in λ. Thus
if k > 0 then Index(Dinv) = 0. If k = 0 then the foliated manifold M is the total space of
a fiber bundle over W = Wmax and Dinv is conjugate to the pure Dirac operator on W , so

Index(Dinv) = Â(W ). �
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6.3.2. Signature operator.

Proposition 13. Suppose that F is transversely oriented and dim(T ) is divisible by four.

Recall the notion of the basic signature σ(M,F ;D
1
2
M) from Subsection 2.7. We have

(6.15) σ(M,F ;D
1
2
M) = σ(Wmax).

Proof. From Corollary 8, σ(M,F ;D
1
2
M) equals the index of Dinv when D is the operator

d + d∗ and the Z2-grading comes from the Hodge duality operator. A component ZT k

i of
Wmax acquires a natural orientation. Given z 6= 1 and a complex r-dimensional vector
bundle L, put

(6.16) Fsign(L, z) =

r∏

j=1

z−
1
2 e

xj
2 + z

1
2 e−

xj
2

z−
1
2 e

xj
2 − z

1
2 e−

xj
2

.

Then

(6.17) Index(Dinv) = AVX
∑

i

∫

ZTk
i

L(TZT k

i ) Φ(e−X+Q),

where

(6.18) Φ(e−X+Q) = ±
∏

q

Fsign

(
Nq,i, e

−
√
−1nq,i·(X−Q)

)
.

Take Q so that Im(Q) ∈ ⋂
i

⋂
q(R

k − n⊥
q,i). Consider the effect of multiplying Q by

λ > 0. From the structure of (6.16), and taking the signs into account, the limit as λ→ ∞
of Φ(e−X+λQ) is 1. Thus Index(Dinv) =

∑
i

∫
ZTk
i
L(TZT k

i ), which equals the signature of

Wmax. �

6.3.3. Euler operator.

Proposition 14. Suppose that dim(T ) is even. Recall the notion of the basic Euler char-

acteristic χ(M,F ;D
1
2
M) from Subsection 2.7. We have

(6.19) χ(M,F ;D
1
2
M) = χ(Wmax).

Proof. From Corollary 8, χ(M,F ;D
1
2
M) equals the index of Dinv when D is the operator

d+ d∗ and the Z2-grading comes from the form degree. Then

(6.20) Index(Dinv) = AVX
∑

i

∫

ZTk
i

e(TZT k

i ),

where e denotes the Euler form. Thus Index(Dinv) =
∑

i χ(Z
T k

i ), which equals the Euler
characteristic of Wmax. �
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Math. 124 (1996), 51–101.
[8] J.-M. Bismut, The infinitesimal Lefschetz formulas: a heat equation proof, J. of Funct. Analysis 62

(1985), 435–457.
[9] M. Bridson and A. Haefliger, Metric spaces of non-positive curvature. Grundlehren der Mathematischen

Wissenschaften 319, Springer-Verlag, Berlin (1999).
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