
ELECTRONIC RESEARCH ANNOUNCEMENTS doi:10.3934/era.2013.20.109
IN MATHEMATICAL SCIENCES
Volume 20, Pages 109–120 (December 9, 2013)
S 1935-9179 AIMS (2013)

CHARACTERISTIC CLASSES OF SINGULAR TORIC

VARIETIES
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Abstract. We introduce a new approach for the computation of characteristic

classes of singular toric varieties and, as an application, we obtain generalized
Pick-type formulae for lattice polytopes. Many of our results (e.g., lattice

point counting formulae) hold even more generally, for closed algebraic torus-

invariant subspaces of toric varieties. In the simplicial case, by combining
this new computation method with the Lefschetz-Riemann-Roch theorem, we

give new proofs of several characteristic class formulae originally obtained by

Cappell and Shaneson in the early 1990s.

A d-dimensional toric variety X is an irreducible normal variety on which the
complex d-torus acts with an open orbit, e.g., see [11, 12, 15, 23]. Toric varieties
arise from combinatorial objects called fans, which are collections of cones in a
lattice. Toric varieties are of interest both in their own right as algebraic varieties
and for their application to the theory of convex polytopes. For instance, Danilov
[12] used the Hirzebruch-Riemann-Roch theorem to establish a direct connection
between the problem of counting the number of lattice points in a convex polytope
and the Todd classes of toric varieties. Thus, the problem of finding explicit formu-
lae for characteristic classes of toric varieties is of interest not only to topologists
and algebraic geometers but also to combinatorists, programmers, etc.

Let X = XΣ be the toric variety associated to a fan Σ in a d-dimensional lattice
N of Rd. We say that X is simplicial if the fan is simplicial, i.e., each cone σ of Σ is
spanned by linearly independent elements of the lattice N . If, moreover, each cone
σ of Σ is smooth (i.e., generated by a subset of a Z-basis for the lattice N), the
corresponding toric variety XΣ is smooth. Denote by Σ(i) the set of i-dimensional
cones of Σ. One-dimensional cones ρ ∈ Σ(1) are called rays. For each ray ρ ∈ Σ(1),
we denote by uρ the unique generator of the semigroup ρ ∩N . The {uρ}ρ∈σ(1) are
the generators of σ. To each cone σ ∈ Σ there corresponds a subvariety Vσ of XΣ,
which is the closure of the orbit Oσ of σ under the torus action. Each Vσ is itself a
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toric variety of dimension d− dim(σ). The singular locus of XΣ is
⋃
Vσ, the union

being taken over all singular cones σ ∈ Σsing in the fan Σ.
In this note, we announce the computation of several characteristic classes of

(possibly singular) toric varieties (see [20] for more details and proofs). More con-
cretely, we indicate how to compute the motivic Chern class mCy(XΣ), and the

homology Hirzebruch classes, both the normalized T̂y∗(XΣ) and the un-normalized
Ty∗(XΣ) [5], of such a toric variety XΣ. These characteristic classes depending on
a parameter y are valued in G0(X)[y] and resp. H∗(XΣ) ⊗ Q[y], where G0(X) is
the Grothendieck group of coherent sheaves, and H∗(−) denotes either the Chow
group CH∗ or the even degree Borel-Moore homology group HBM

2∗ .
By using work of Ishida [18], the motivic Chern class of a toric variety XΣ can

be computed as

mCy(XΣ) =

d∑
p=0

[Ω̃pXΣ
] · yp ∈ G0(X)[y], (1)

where Ω̃pXΣ
denotes the sheaf of Zariski differential p-forms. In fact, this formula

holds even for a torus-invariant closed algebraic subset X := XΣ′ ⊆ XΣ (i.e., a
closed union of torus-orbits) corresponding to a star-closed subset Σ′ ⊆ Σ, with the

sheaves of differential p-forms Ω̃pX as introduced by Ishida [18]. Most of our results
below apply to this more general context.

The un-normalized homology Hirzebruch class of such a torus-invariant closed
algebraic subset X := XΣ′ is defined as

Ty∗(X) := td∗ ◦mCy(X) =

d′∑
p=0

td∗([Ω̃
p
X ]) · yp, (2)

with d′ = dim(X) and td∗ : G0(−) → H∗(−) ⊗ Q the Todd class transforma-

tion of [3]. The normalized Hirzebruch class T̂y∗(X) is obtained from Ty∗(X) by
multiplying by (1 + y)−k on the degree k-part Ty,k(X) ∈ Hk(X), k ≥ 0.

The degree of these characteristic classes for compact X := XΣ′ recovers the
χy-genus of X defined in terms of the Hodge filtration of Deligne’s mixed Hodge
structure on H∗c (X,C):∑

j,p

(−1)j dimC GrpFH
j
c (X,C) (−y)p =: χy(X) (3)

=
∑
p≥0

χ(X, Ω̃pX)yp

=

∫
X

Ty∗(X) =

∫
X

T̂y∗(X).

The homology Hirzebruch classes, defined by Brasselet-Schürmann-Yokura in
[5], have the virtue of unifying several other known characteristic class theories for
singular varieties. For example, by specializing the parameter y in the normalized

Hirzebruch class T̂y∗ to the value y = −1, our results for Hirzebruch classes translate

into formulae for the (rational) MacPherson-Chern classes c∗(X) = T̂−1∗(X). By
letting y = 0, we get formulae for the Baum-Fulton-MacPherson Todd classes

td∗(X) = T̂0∗(X) of a torus-invariant closed algebraic subset X of a toric variety.
Moreover, for simplicial projective toric varieties or compact toric manifolds XΣ,
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we have for y = 1 the following identification of the Thom-Milnor L-classes

L∗(XΣ) = T̂1∗(XΣ).

Conjecturally, the last equality should hold for a complete simplicial toric variety.
The Thom-Milnor L-classes L∗(X) ∈ H2∗(X,Q) are only defined for a compact
rational homology manifold X, i.e., in our context for a complete simplicial toric
variety.

We present below two different perspectives for the computation of these char-
acteristic classes of toric varieties and their torus invariant closed algebraic subsets.

Motivic Chern and Hirzebruch classes via orbit decomposition. First, we
take advantage of the torus-orbit decomposition of a toric variety together with
the motivic properties of these characteristic classes to express the motivic Chern
and resp. homology Hirzebruch classes in terms of dualizing sheaves and resp. the
(dual) Todd classes of closures of orbits. We prove the following result:

Theorem 1. Let XΣ be the toric variety defined by the fan Σ, and X := XΣ′ ⊆ XΣ

a torus-invariant closed algebraic subset defined by a star-closed subset Σ′ ⊆ Σ. For
each cone σ ∈ Σ with corresponding orbit Oσ, denote by kσ : Vσ ↪→ X the inclusion
of the orbit closure. Then the motivic Chern class mCy(X) is computed by:

mCy(X) =
∑
σ∈Σ′

(1 + y)dim(Oσ) · (kσ)∗[ωVσ ], (4)

and, similarly, for the un-normalized homology Hirzebruch class Ty∗(XΣ) we have:

Ty∗(X) =
∑
σ∈Σ′

(1 + y)dim(Oσ) · (kσ)∗td∗([ωVσ ])

=
∑
σ∈Σ′

(−1− y)dim(Oσ) · (kσ)∗ (td∗(Vσ)∨) .
(5)

Here ωVσ is the canonical sheaf of Vσ and the duality (−)∨ acts by multiplication
by (−1)i on the i-th degree homology part Hi(−). The normalized Hirzebruch class

T̂y∗(X) is given by

T̂y∗(X) =
∑
σ∈Σ′,i

(−1− y)dim(Oσ)−i · (kσ)∗tdi(Vσ). (6)

These results should be seen as characteristic class versions of the well-known
formula

χy(X) =
∑
σ∈Σ′

(−1− y)dim(Oσ) (7)

for the χy-genus of a toric variety, resp. its torus-invariant closed algebraic subsets,
which one recovers for compact X by taking the degree in (5) or (6) above, as∫
Vσ
td0(Vσ) = 1.

Letting, moreover, y = −1, 0, 1 in (5) and (6), we obtain as special cases the
following:

Corollary 2. (Chern, Todd and L-classes)
Let XΣ be the toric variety defined by the fan Σ, and X := XΣ′ ⊆ XΣ a torus-
invariant closed algebraic subset defined by a star-closed subset Σ′ ⊆ Σ. For each
cone σ ∈ Σ with corresponding orbit Oσ, denote by kσ : Vσ ↪→ X the inclusion of
the orbit closure.
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(a) (Ehler’s formula [1, 4]) The (rational) MacPherson-Chern class c∗(X) is
computed by

c∗(X) =
∑
σ∈Σ′

(kσ)∗tddim(Oσ)(Vσ) =
∑
σ∈Σ′

(kσ)∗[Vσ]. (8)

(b) The Todd class td∗(X) of X is computed by

td∗(X) =
∑
σ∈Σ′

(kσ)∗td∗([ωVσ ]) =
∑
σ∈Σ′

(−1)dim(Oσ) · (kσ)∗ (td∗(Vσ)∨) . (9)

(c) The classes T1∗(X) and T̂1∗(X) are computed by

T1∗(X) =
∑
σ∈Σ′

2dim(Oσ) · (kσ)∗td∗([ωVσ ]) =
∑
σ∈Σ′

(−2)dim(Oσ) · (kσ)∗ (td∗(Vσ)∨) (10)

and

T̂1∗(X) =
∑
σ∈Σ′,i

(−2)dim(Oσ)−i · (kσ)∗tdi(Vσ). (11)

Here T1∗(XΣ) = LAS∗ (XΣ) is the Atiyah-Singer L-class for XΣ a compact

toric manifold, and T̂1∗(XΣ) = L∗(XΣ) is the Thom-Milnor L-class for XΣ

a compact toric manifold or a simplicial projective toric variety.

Taking the degree in (11), we get the following description of the signature
sign(XΣ) of a compact toric manifold or a simplicial projective toric variety XΣ

(compare also with [22], and in the smooth case also with [23][Thm.3.12]):

sign(XΣ) = χ1(XΣ) =
∑
σ∈Σ

(−2)dim(Oσ). (12)

Moreover, in the case of a toric variety XΣ (i.e., Σ′ = Σ), one gets the following
formula from (9) and (10) by using a “duality argument:”

td∗([ωXΣ
]) =

∑
σ∈Σ

(−1)codim(Oσ) · (kσ)∗td∗(Vσ) (13)

and in the simplicial context,

T1∗(XΣ) = (−1)dim(XΣ) · (T1∗(XΣ))
∨

=
∑
σ∈Σ

(−1)dim(XΣ) · (−2)dim(Oσ) · (kσ)∗td∗(Vσ).

(14)
The above formulae calculate the homology Hirzebruch classes (and, in particu-

lar, the Chern, Todd and L-classes, respectively) of singular toric varieties in terms
of the Todd classes of closures of torus orbits. As it will be discussed below, in the
simplicial context these Todd classes can also be computed by using the Lefschetz-
Riemann-Roch theorem of [13] for geometric quotients.

Application: Weighted lattice point counting. Let M be a lattice and let
P ⊂MR ∼= Rd be a full-dimensional lattice polytope with associated projective toric
variety XP and ample Cartier divisor DP . By the classical work of Danilov [12],
the (dual) Todd classes of XP can be used for counting the number of lattice points
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in (the interior of) a lattice polytope P :

|P ∩M | =
∫
XP

ch(OXP (DP )) ∩ td∗(XP )

=
∑
k≥0

1

k!

∫
XP

[DP ]k ∩ tdk(XP ),

|Int(P ) ∩M | =
∫
XP

ch(OXP (DP )) ∩ td∗([ωXP ])

=
∑
k≥0

(−1)d

k!

∫
XP

[−DP ]k ∩ tdk(XP ),

(where |−| denotes the cardinality of sets), as well as the coefficients of the Ehrhart
polynomial of P , EhrP (`), counting the number of lattice points in the dilated
polytope `P := {` · u | u ∈ P} for a positive integer `:

EhrP (`) := |`P ∩M | =
d∑
k=0

ak`
k,

with

ak =
1

k!

∫
XP

[DP ]k ∩ tdk(XP ).

In the special case of a lattice polygon P ⊂ R2, the Todd class of the correspond-
ing surface XP is given by the well-known formula (e.g., see [15][p.130])

td∗(XP ) = [XP ] +
1

2

∑
ρ∈ΣP (1)

[Vρ] + [pt], (15)

where ΣP denotes the fan associated to P . So by evaluating the right-hand side of
the above lattice point counting formula for P , one gets the classical Pick’s formula:

|P ∩M | = Area(P ) +
1

2
|∂P ∩M |+ 1, (16)

where Area(P ) is the usual Euclidian area of P .
As a direct application of Theorem 1, we show that the un-normalized homol-

ogy Hirzebruch classes are useful for lattice point counting with certain weights,
reflecting the face decomposition

P =
⋃
Q�P

Relint(Q),

with Relint(Q) denoting the relative interior of a face Q. In particular, we obtain
the following generalized Pick-type formulae:

Theorem 3. Let M be a lattice of rank d and P ⊂MR ∼= Rd be a full-dimensional
lattice polytope with associated projective toric variety XP and ample Cartier divisor
DP . In addition, let X := XP ′ be a torus-invariant closed algebraic subset of XP

corresponding to a polytopal subcomplex P ′ ⊆ P (i.e., a closed union of faces of P ).
Then the following formula holds:∑

Q�P ′
(1 + y)dim(Q) · |Relint(Q) ∩M | =

∫
X

ch(OXP (DP )|X) ∩ Ty∗(X). (17)
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Corollary 4. The Ehrhart polynomial of the polytopal subcomplex P ′ ⊆ P as above,
counting the number of lattice points in the dilated complex `P ′ := {` · u | u ∈ P ′}
for a positive integer `, is computed by

EhrP ′(`) := |`P ′ ∩M | =
d′∑
k=0

ak`
k,

with

ak =
1

k!

∫
X

[DP |X ]k ∩ tdk(X),

and X := XP ′ the corresponding d′-dimensional torus-invariant closed algebraic
subset of XP .

Note that EhrP ′(0) = a0 =
∫
X
td∗(X) can be computed as the Euler characteris-

tic of P ′ on the combinatorial side by formula (7), while on the algebraic geometric
side it is given by the arithmetic genus of X := XP ′ :

χ(P ′) :=
∑
Q�P ′

(−1)dimQ = χ0(X) =

∫
X

td∗(X) = χ(X,OX). (18)

Moreover, by using the duality formula (14), we also have:

Theorem 5. If XP is the simplicial projective toric variety associated to a sim-
ple polytope P , with corresponding ample Cartier divisor DP , then the following
formula holds:∑
Q�P

(
−1

2

)codim(Q)

· |Q ∩M | =
∫
XP

ch(OXP (DP )) ∩
(

1

2

)dim(XP )

· T1∗(XP ). (19)

Formula (19) extends the result of [14][Corollary 5] for Delzant lattice polytopes
to the more general case of simple lattice polytopes.

Generalized toric Hirzebruch-Riemann-Roch. By using a well-known “mod-
ule property” of the Todd class transformation td∗, we obtain the following:

Theorem 6. (generalized toric Hirzebruch-Riemann-Roch)
Let XΣ be the toric variety defined by the fan Σ, and X := XΣ′ ⊆ XΣ be a torus-
invariant closed algebraic subset of dimension d′ defined by a star-closed subset
Σ′ ⊆ Σ. Let D be a fixed Cartier divisor on X. Then the (generalized) Hirzebruch
polynomial of D,

χy(X,OX(D)) :=

d′∑
p=0

χ(X, Ω̃pX ⊗ OX(D)) · yp, (20)

with Ω̃pX the corresponding Ishida sheaf of p-forms, is computed by the formula:

χy(X,OX(D)) =

∫
X

ch(OX(D)) ∩ Ty∗(X). (21)

By combining the above formula with Theorem 3, we get the following combi-
natorial description (see also [19] for another approach to this result in the special
case Σ′ = Σ):
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Corollary 7. Let M be a lattice of rank d and P ⊂MR ∼= Rd be a full-dimensional
lattice polytope with associated projective simplicial toric variety X = XP and ample
Cartier divisor DP . In addition, let X := XP ′ be a torus-invariant closed algebraic
subset of XP corresponding to a polytopal subcomplex P ′ ⊆ P . Then the following
formula holds:

χy(X,OX(DP |X)) =
∑
Q�P ′

(1 + y)dim(Q) · |Relint(Q) ∩M |. (22)

Hirzebruch classes of simplicial toric varieties via Lefschetz-Riemann-
Roch. It is known that simplicial toric varieties have an intersection theory, pro-
vided that Q-coefficients are used. The generators of the rational cohomology (or
Chow) ring are the classes [Vρ] defined by the Q-Cartier divisors corresponding to
the rays ρ ∈ Σ(1) of the fan Σ. So it is natural to try to express all character-
istic classes in the simplicial context in terms of these generators. This brings us
to our second computational method, which employs the Lefschetz-Riemann-Roch
theorem for the geometric quotient realization XΣ = W/G of such simplicial toric
varieties. This approach was already used by Edidin-Graham [13] for the compu-
tation of Todd classes of simplicial toric varieties, extending a corresponding result
of Brion-Vergne [6] for complete simplicial toric varieties.

We enhance the calculation of Edidin-Graham [13] to the homology Hirzebruch
classes, by using their description (2) in terms of the sheaves of Zariski p-forms, to
prove the following:

Theorem 8. The normalized Hirzebruch class of a simplicial toric variety X = XΣ

is given by

T̂y∗(X) =

∑
g∈GΣ

∏
ρ∈Σ(1)

[Vρ] ·
(
1 + y · aρ(g) · e−[Vρ](1+y)

)
1− aρ(g) · e−[Vρ](1+y)

 ∩ [X] . (23)

Here GΣ ⊂ G is the set of group elements having fixed-points in the Cox quotient
realization XΣ = W/G, and aρ is a character (coordinate projection) of a |Σ(1)|-
torus containing G.

Example 9. Weighted projective spaces
Consider a d-dimensional weighted projective space

XΣ = P(q0, . . . , qd) := (Cd+1 \ {0})/G,
with G ' C∗ acting with reduced weights (q0, . . . , qd) so that this quotient realiza-
tion is the Cox construction. The normalized Hirzebruch class is then computed
by

T̂y∗(XΣ) =

 ∑
λ∈GΣ

d∏
j=0

qjT ·
(
1 + y · λqj · e−qj(1+y)T

)
1− λqj · e−qj(1+y)T

 ∩ [XΣ] , (24)

with

GΣ :=

d⋃
j=0

{λ ∈ C∗ | λqj = 1}

and T =
[Vj ]
qj
∈ H2(XΣ;Q), j = 0, . . . , d, the distinguished generator of the rational

cohomology ring H∗(XΣ;Q) ' Q[T ]/(T d+1). The un-normalized Hirzebruch class
of XΣ is obtained from the above formula (24) by substituting T for (1 + y)T and
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(1 + y)d · [X] in place of [X]. The resulting formula recovers Moonen’s calculation
in [21][p.176] (see also [7][Ex.1.7]).

By specializing to y = 0, one recovers from (23) exactly the result of Edidin-

Graham [13] for the Todd class td∗(X) = T̂0∗(X) of X. Moreover, in the case of
a smooth toric variety one has GΣ = {id}, with all aρ(id) = 1, so we also obtain
formulae for the Hirzebruch classes of smooth toric varieties, in which the generators
[Vρ] (ρ ∈ Σ(1)) behave like the Chern roots of the tangent bundle of XΣ:

Corollary 10. The normalized Hirzebruch class of a smooth toric variety X = XΣ

is given by

T̂y∗(X) =

 ∏
ρ∈Σ(1)

[Vρ] ·
(
1 + y · e−[Vρ](1+y)

)
1− e−[Vρ](1+y)

 ∩ [X] . (25)

Mock Hirzebruch classes. Following terminology from [8, 24], we define the

(normalized) mock Hirzebruch class T̂
(m)
y∗ (X) of a simplicial toric variety X = XΣ

to be the class given by the right hand side of formula (25). Similarly, by taking
the appropriate polynomials in the [Vρ]’s, one can define mock Todd classes, mock
Chern classes and mock L-classes, all of which are specializations of the mock Hirze-
bruch class obtained by evaluating the parameter y at −1, 0, and 1, respectively.

The following result shows that the difference T̂y∗(X) − T̂ (m)
y∗ (X) between the

actual (normalized) Hirzebruch class and the mock Hirzebruch class of a simplicial
toric variety X = XΣ is localized on the singular locus, and the contribution of
each singular cone σ ∈ Σsing to this difference is identified explicitly:

Theorem 11. The normalized homology Hirzebruch class of a simplicial toric va-
riety X = XΣ is computed by the formula

T̂y∗(X) = T̂
(m)
y∗ (X) +

∑
σ∈Σsing

Ay(σ) ·
(

(kσ)∗T̂
(m)
y∗ (Vσ)

)
, (26)

with kσ : Vσ ↪→ X denoting the orbit closure inclusion, and

Ay(σ) :=
1

mult(σ)
·
∑
g∈G◦σ

∏
ρ∈σ(1)

1 + y · aρ(g) · e−[Vρ](1+y)

1− aρ(g) · e−[Vρ](1+y)
. (27)

Here, the numbers aρ(g) are roots of unity of order mult(σ), different from 1. In
particular, since X is smooth in codimension one, we get

T̂y∗(X) = [X] +
1− y

2

∑
ρ∈Σ(1)

[Vρ] + lower order homological degree terms. (28)

The corresponding mock Hirzebruch classes T̂
(m)
y∗ (Vσ) of orbit closures in (26)

can be regarded as tangential data for the fixed point sets of the action in the
geometric quotient description of XΣ, whereas the coefficient Ay(σ) encodes the
normal data information.

It should be noted that in the above coefficient Ay(σ) only the cohomology classes
[Vρ] depend on the fan Σ, but the multiplicity mult(σ) and the character aρ : Gσ →
C∗ depend only on the rational simplicial cone σ (and not on the fan Σ nor the
group G from the Cox quotient construction). In fact, these can be given directly
as follows. For a k-dimensional rational simplicial cone σ generated by the rays
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ρ1, . . . , ρk one defines the finite abelian group Gσ := Nσ/(u1, . . . , uk) as the quotient
of the sublattice Nσ of N spanned by the points in σ ∩ N modulo the sublattice
(u1, . . . , uk) generated by the ray generators uj of ρj . Then |Gσ| = mult(σ) is
just the multiplicity of σ, with mult(σ) = 1 exactly in the case of a smooth cone.
Let mi ∈ Mσ for 1 ≤ i ≤ k be the unique primitive elements in the dual lattice
Mσ of Nσ satisfying 〈mi, uj〉 = 0 for i 6= j and 〈mi, ui〉 > 0, so that the dual
lattice M ′σ of (u1, . . . , uk) is generated by the elements

mj
〈mj ,uj〉 . Then aρj (g) for

g = n+ (u1, . . . , uk) ∈ Gσ is defined as

aρj (g) := exp
(
2πi · γρj (g)

)
, with γρj (g) :=

〈mj , n〉
〈mj , uj〉

.

Moreover,

G◦σ := {g ∈ Gσ| aρj (g) 6= 1 for all 1 ≤ j ≤ k}.
Finally, using the parallelotopes

Pσ := {
k∑
i=1

λiui| 0 ≤ λi < 1} and P ◦σ := {
k∑
i=1

λiui| 0 < λi < 1},

we also have G◦σ ' N ∩ P ◦σ via the natural bijection Gσ ' N ∩ Pσ.

Note that for y = −1 one gets by A−1(σ) =
|G◦σ|

mult(σ) an easy relation between

Ehler’s formula (8) for the MacPherson Chern class and the mock Chern class of a
toric variety, which is given by

c
(m)
∗ (XΣ) :=

 ∏
ρ∈Σ(1)

(1 + [Vρ])

 ∩ [XΣ] =
∑
σ∈Σ

1

mult(σ)
· [V (σ)].

Similarly, the top-dimensional contribution of a singular cone σ ∈ Σsing in for-
mula (26) is computed by

1

mult(σ)
·
∑
g∈G◦σ

 ∏
ρ∈σ(1)

1 + y · aρ(g)

1− aρ(g)

 · [Vσ], (29)

which for an isolated singularity Vσ = {pt} is already the full contribution. For a
singular cone of smallest codimension, we have that G◦σ = Gσ\{id} and Gσ is cyclic
of order mult(σ), so that aρ(g) (g ∈ G◦σ) are primitive roots of unity. Specializing
further to y = 0 (resp. y = 1) we recover the correction factors for Todd (and resp.
L-) class formulae of toric varieties appearing in [2, 6, 16, 24, 25]) (resp. [27] in the
case of weighted projective spaces) also in close relation to (generalized) Dedekind
(resp. cotangent) sums.

Moreover, for y = 1, we get for a projective simplicial toric variety XΣ the
correction terms of the singular cones for the difference between the Thom-Milnor
and resp. the mock L-classes of XΣ. In particular, the equality

sign(XΣ) =

∫
XΣ

L
(m)
∗ (XΣ)

holds in general only for a smooth projective toric variety.

Example 12. Weighted projective spaces, revisited.
Consider the example of a d-dim. weighted projective space XΣ = P(1, . . . , 1,m)
with weights (1, . . . , 1,m) and m > 1. This is a projective simplicial toric variety
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that has exactly one isolated singular point for d ≥ 2. Formula (26) becomes in
this case

T̂y∗(XΣ) = T̂
(m)
y∗ (XΣ) +

1

m

∑
λm=1,λ6=1

(
1 + λy

1− λ

)d
· [pt] . (30)

In particular, for y = 1, we get

sign(XΣ) =

∫
XΣ

L
(m)
∗ (XΣ) +

1

m

∑
λm=1,λ 6=1

(
1 + λ

1− λ

)d
,

and it can be easily seen that the correction factor does not vanish in general, e.g.,
for d = 2, the last sum is given by∑

λm=1,λ 6=1

(
1 + λ

1− λ

)2

= −1

3
(m− 1)(m− 2),

see [17][p.7]. Similarly, for y = 0, we obtain for the arithmetic genus

χ0(XΣ) =

∫
XΣ

td
(m)
∗ (XΣ) +

1

m

∑
λm=1,λ6=1

(
1

1− λ

)d
,

where the last sum is given for d = 2 by (see [17][p.4])∑
λm=1,λ6=1

(
1

1− λ

)2

= − (m− 1)(m− 5)

12
.

The characteristic class formulae of Cappell-Shaneson. We next combine
the two computational methods described above for proving several formulae origi-
nally obtained by Cappell and Shaneson in the early 1990s, see [8, 26]. The following
formula (in terms of L-classes) appeared first in Shaneson’s 1994 ICM Proceedings
paper, see [26][(5.3)].

Theorem 13. Let the T -class of a d-dimensional simplicial toric variety X be
defined as

T∗(X) :=

d∑
k=0

2d−k · tdk(X). (31)

For any cone σ ∈ Σ, let kσ : Vσ ↪→ X be the inclusion of the corresponding orbit
closure. Then the following holds:

T∗(X) =
∑
σ∈Σ

(kσ)∗T̂1∗(Vσ). (32)

Recall here that the identification L∗(XΣ) = T̂1∗(XΣ) holds for a simplicial
projective toric variety or a compact toric manifold.

While Cappell-Shaneson’s method of proof of the above result uses mapping
formulae for Todd and L-classes in the context of resolutions of singularities, our
approach relies on Theorem 1, i.e., on the additivity properties of the motivic
Hirzebruch classes.

Theorem 13 suggests the following definition of mock T -classes (cf. [8, 26]) in
terms of mock L-classes of the orbit closures Vσ (σ ∈ Σ):

T
(m)
∗ (X) :=

∑
σ∈Σ

(kσ)∗L
(m)
∗ (Vσ). (33)
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Then we have as in [8][Theorem 4] the following expression for the T -classes (which
are, in fact, suitable renormalized Todd classes) in terms of mock T - and L-classes,
with Ay(σ) as in (27):

Theorem 14. Let X = XΣ be a simplicial toric variety. Then using the above
notations we have that:

T∗(X) = T
(m)
∗ (X) +

∑
σ∈Σsing

A1(σ) · (kσ)∗T
(m)
∗ (Vσ) . (34)

While Cappell-Shaneson’s approach to the above result uses induction and Atiyah-
Singer type results for L-classes in the local orbifold description of toric varieties,
we use the specialization of formula (26) in Theorem 11 to the value y = 1, which is
based on Edidin-Graham’s Lefschetz-Riemann-Roch theorem in the context of the
Cox global geometric quotient construction.

Finally, the following renormalization of the result of Theorem 14 in terms of
coefficients

α(σ) :=
1

mult(σ)
·
∑
g∈G◦σ

∏
ρ∈σ(1)

1 + aρ(g) · e−[Vρ]

1− aρ(g) · e−[Vρ]

=
1

mult(σ)
·
∑
g∈G◦σ

∏
ρ∈σ(1)

coth

(
πi · γρ(g) +

1

2
[Vρ]

) (35)

fits better with the corresponding Euler-MacLaurin formulae (see [9][Thm.2] and
[26][Sect.6]), with α({0}) := 1 and α(σ) := 0 for any other smooth cone σ ∈ Σ.

Corollary 15. Let X = XΣ be a simplicial toric variety. Then we have

td∗(X) =
∑
σ∈Σ

α(σ) ·

 ∑
{τ |σ�τ}

mult(τ)
∏

ρ∈τ(1)

1

2
[Vρ]

∏
ρ/∈τ(1)

1
2 [Vρ]

tanh( 1
2 [Vρ])

∩ [X]. (36)

The relation with the corresponding Euler-MacLaurin formulae will be discussed
elsewhere.
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